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Abstract

We study nonlinear parabolic stochastic partial differential equations with Wick-
power and Wick-polynomial type nonlinearities set in the framework of white noise
analysis. These equations include the stochastic Fujita equation, the stochastic
Fisher-KPP equation and the stochastic FitzHugh-Nagumo equation among many
others. By implementing the theory of C0−semigroups and evolution systems into
the chaos expansion theory in infinite dimensional spaces, we prove existence and
uniqueness of solutions for this class of SPDEs. In particular, we also treat the
linear nonautonomous case and provide several applications featured as stochastic
reaction-diffusion equations that arise in biology, medicine and physics.
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1 Introduction

We study stochastic nonlinear evolution equations of the form

ut(t, ω) = Au(t, ω) +

n∑
k=0

aku
♦k(t, ω) + f(t, ω), t ∈ (0, T ] (1.1)

u(0, ω) = u0(ω), ω ∈ Ω,

where u(t, ω) is an X−valued generalized stochastic process; X is a certain Banach alge-
bra and A corresponds to a densely defined infinitesimal generator of a C0−semigroup.
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Stochastic evolution equations with nonlinearities

The nonlinear part is given in terms of Wick-powers u♦n = u♦n−1♦u = u♦ . . .♦u, n ∈ N,
where ♦ denotes the Wick product. The Wick product is involved due to the fact that we
allow random terms to be present both in the initial condition u0 and the driving force
f . This leads to singular solutions that do not allow to use ordinary multiplication, but
require a renormalization of the multiplication, which is done by introducing the Wick
product into the equation. The Wick product is known to represent the highest order
stochastic approximation of the ordinary product [16].

In our previous paper [14] we treated the case of linear stochastic parabolic equations
with Wick-multiplicative noise which includes the case n = 1. The present paper is an
extension of [14] to nonlinear equations, where the nonlinearity is generated by a
Wick-polynomial function leading to stochastic versions of Fujita-type equations ut =

Au+u♦n+f , FitzHugh-Nagumo equations ut = Au+u♦2−u♦3+f , Fisher-KPP equations
ut = Au + u − u♦2 + f and Chaffee-Infante equations ut = Au + u♦3 − u + f . These
equations have found ample applications in ecology, medicine, engineering and physics.
For example, the FitzHugh-Nagumo equation is used to study electrical activity of
neurons in neurophysiology by modeling the conduction of electric impulses down a
nerve axon. The Fisher-Kolmogorov-Petrovsky-Piskunov equation provides a model for
the spread of an epidemic in a population or for the distribution of an advantageous
gene within a population. Other applications in medicine involve the modeling of cellular
reactions to the introduction of toxins, and the process of epidermal wound healing.
In plasma physics it has been used to study neutron flux in nuclear reactors, while in
ecology it models flame propagation of fire outbreaks. Thus, the study of their stochastic
versions, when some of the input factors is disturbed by an external noise factor and
hence it becomes randomized, is of immense importance. For instance, a stochastic
version of the FitzHugh-Nagumo equation has been studied in [1] and [3], while the
stochastic Fisher-KPP equation has been studied in [10] and [19].

We implement the Wiener-Itô chaos expansion method combined with the operator
semigroup theory in order to prove the existence and the uniqueness of a solution for
(1.1). Using the chaos expansion method any SPDE can be transformed into a lower
triangular infinite system of PDEs (also known as the propagator system) that can be
solved recursively. Solving this system, one obtains the coefficients of the solution to
(1.1). In order to solve the propagator system, we exploit the intrinsic relationship
between the Wick product and the Catalan numbers that was discovered in [11] where
the authors considered the stochastic Burgers equation. We build upon these ideas in
order to solve a general class of stochastic nonlinear equations (1.1).

The plan of exposition is as follows: In the introductory section we recall upon basic
notions of C0−semigroups, evolution systems and white noise theory including chaos
expansions of generalized stochastic processes. In Section 2, which represents the main
part of the paper, we prove existence and uniqueness of the solution to (1.1) for the case
when a0 = a1 = · · · = an−1 = 0 and an = 1. This normalization is made for technical
simplicity to illustrate the method of solving and to put out in details all building blocks
of the formulae involved. In Section 3 we treat the general case of (1.1) and provide
some concrete examples.

1.1 Evolution systems

We fix the notation and recall some known facts about evolution systems (see [20,
Chapter 5]). Let X be a Banach space. Let {A(t)}t∈[s,T ] be a family of linear operators
in X such that A(t) : D(A(t)) ⊂ X → X, t ∈ [s, T ] and let f be an X−valued function
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Stochastic evolution equations with nonlinearities

f : [s, T ]→ X. Consider the initial value problem

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s < t ≤ T, (1.2)

u(s) = x.

If u ∈ C([s, T ], X) ∩ C1((s, T ], X), u(t) ∈ D(A(t)) for all t ∈ (s, T ] and u satisfies (1.2),
then u is a classical solution of (1.2).

A two parameter family of bounded linear operators S(t, s), 0 ≤ s ≤ t ≤ T on X is
called an evolution system if the following two conditions are satisfied:

1. S(s, s) = I and S(t, r)S(r, s) = S(t, s), 0 ≤ s ≤ r ≤ t ≤ T

2. (t, s) 7→ S(t, s) is strongly continuous for all 0 ≤ s ≤ t ≤ T.

Clearly, if S(t, s) is an evolution system associated with the homogeneous evolution
problem (1.2), i.e. if f ≡ 0, then a classical solution of (1.2) is given by u(t) = S(t, s)x, t ∈
[s, T ].

A family {A(t)}t∈[s,T ] of infinitesimal generators of C0−semigroups on X is called
stable if there exist constants m ≥ 1 and w ∈ R (stability constants) such that (w,∞) ⊆
ρ(A(t)), t ∈ [s, T ] and

∥∥∥ k∏
j=1

R(λ : A(tj))
∥∥∥ ≤ m

(λ− w)k
, λ > w,

for every finite sequence 0 ≤ s ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T, k = 1, 2, . . . .

Let {A(t)}t∈[s,T ] be a stable family of infinitesimal generators with stability constants
m and w. Let B(t), t ∈ [s, T ], be a family of bounded linear operators on X. If ‖B(t)‖ ≤
M, t ∈ [s, T ], then {A(t) +B(t)}t∈[s,T ] is a stable family of infinitesimal generators with
stability constants m and w +Mm.

Let {A(t)}t∈[s,T ] be a stable family of infinitesimal generators of C0−semigroups on
X such that the domain D(A(t)) = D is independent of t and for every x ∈ D, A(t)x is
continuously differentiable in X. If f ∈ C1([s, T ], X) then for every x ∈ D the evolution
problem (1.2) has a unique classical solution u given by

u(t) = S(t, s)x+

∫ t

s

S(t, r)f(r)dr, 0 ≤ s ≤ t ≤ T.

From the proof of [20, Theorem 5.3, p. 147] one can obtain

d

dt
u(t) = A(t)S(t, s)x+A(t)

∫ t

s

S(t, r)f(r)dr + f(t), s < t ≤ T.

Since t 7→ A(t) is continuous in B(D,X) and (t, s) 7→ S(t, s) is strongly continuous for all
0 ≤ s ≤ t ≤ T, we have additionally that the solution u to (1.2) exhibits the regularity
property u ∈ C1([s, T ], X) and d

dtu(t)|t=s = A(s)x+ f(s). Recall that the evolution system
S(t, s) satisfies:

1. ‖S(t, s)‖ ≤ mew(t−s), 0 ≤ s ≤ t ≤ T ;

2. ∂+

∂t S(t, s)x
∣∣∣
t=s

= A(s)x, x ∈ D, 0 ≤ s ≤ T which implies that ∂
∂tS(t, s)x =

A(t)S(t, s)x since t 7→ A(t) is continuous in B(D,X);

3. ∂
∂sS(t, s)x = −S(t, s)A(s)x, x ∈ D, 0 ≤ s ≤ t ≤ T ;

4. S(t, s)D ⊆ D;
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Stochastic evolution equations with nonlinearities

5. S(t, s)x is continuous in D for all 0 ≤ s ≤ t ≤ T and x ∈ D.

Remark 1.1. Considering infinitezimal generators depending on t, we follow the stan-
dard approach of Yosida (cf. [24], [12]). We refer to [18] for a method based on an
equivalent operator extension problem (see also references in [18]). The chaos expan-
sion approach, which is the essence of our paper, requires the existence results for the
propagator system i.e. for the coordinate-wise deterministic Cauchy problems. For this
purpose we demonstrate the applications of the hyperbolic Cauchy problem given in
[20].

1.2 Generalized stochastic processes

Denote by (Ω,F , µ) the Gaussian white noise probability space (S′(R),B, µ), where
Ω = S′(R) denotes the space of tempered distributions, B the Borel sigma-algebra
generated by the weak topology on S′(R) and µ the Gaussian white noise measure
corresponding to the characteristic function∫

S′(R)

ei〈ω,φ〉dµ(ω) = exp

[
−1

2
‖φ‖2L2(R)

]
, φ ∈ S(R),

given by the Bochner-Minlos theorem.
We recall the notions related to L2(Ω, µ) (see [9]). The set of multi-indices I is (NN0 )c,

i.e. the set of sequences of non-negative integers which have only finitely many nonzero
components. Especially, we denote by 0 = (0, 0, 0, . . .) the zero multi-index with all
entries equal to zero, the length of a multi-index is |α| =

∑∞
i=1 αi for α = (α1, α2, . . .) ∈ I

and α! =
∏∞
i=1 αi!. We will use the convention that α− β is defined if αn − βn ≥ 0 for all

n ∈ N, i.e., if α− β ≥ 0.

The Wiener-Itô theorem (sometimes also referred to as the Cameron-Martin theorem)
states that one can define an orthogonal basis {Hα}α∈I of L2(Ω, µ), where Hα are
constructed by means of Hermite orthogonal polynomials hn and Hermite functions ξn,

Hα(ω) =

∞∏
n=1

hαn(〈ω, ξn〉), α = (α1, α2, . . . , αn . . .) ∈ I, ω ∈ Ω.

Then, every F ∈ L2(Ω, µ) can be represented via the so called chaos expansion

F (ω) =
∑
α∈I

fαHα(ω), ω ∈ S′(R),
∑
α∈I
|fα|2α! <∞, fα ∈ R, α ∈ I.

Denote by εk = (0, 0, . . . , 1, 0, 0, . . .), k ∈ N the multi-index with the entry 1 at the kth
place. Denote by H1 the subspace of L2(Ω, µ), spanned by the polynomials Hεk(·), k ∈ N.
The subspace H1 contains Gaussian stochastic processes, e.g. Brownian motion is given
by the chaos expansion B(t, ω) =

∑∞
k=1

∫ t
0
ξk(s)ds Hεk(ω).

Denote by Hm the mth order chaos space, i.e. the closure in L2(Ω, µ) of the linear
subspace spanned by the orthogonal polynomials Hα(·) with |α| = m, m ∈ N0. Then
the Wiener-Itô chaos expansion states that L2(Ω, µ) =

⊕∞
m=0Hm, where H0 is the set of

constants in L2(Ω, µ).
Changing the topology on L2(Ω, µ) to a weaker one, T. Hida [8] defined spaces of

generalized random variables containing the white noise as a weak derivative of the
Brownian motion. We refer to [8], [9] for white noise analysis.

Let (2N)α =
∏∞
n=1(2n)αn , α = (α1, α2, . . . , αn, . . .) ∈ I. We will often use the fact

that the series
∑
α∈I(2N)−pα converges for p > 1. Using the same technique as in [9,

Chapter 2] one can define Banach spaces (S)ρ,p of test functions and their topological
duals (S)−ρ,−p of stochastic distributions for all ρ ≥ 0 and p ≥ 0.
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Stochastic evolution equations with nonlinearities

Definition 1.1. The stochastic test function spaces are defined by

(S)ρ,p = {F =
∑
α∈I

fαHα ∈ L2(Ω, µ) : ‖F‖2(S)ρ,p =
∑
α∈I

(α!)1+ρ|fα|2(2N)pα <∞},

for all ρ ≥ 0, p ≥ 0.

Their topological duals, the stochastic distribution spaces, are given by formal sums:

(S)−ρ,−p = {F =
∑
α∈I

fαHα : ‖F‖2(S)−ρ,−p =
∑
α∈I

(α!)1−ρ|fα|2(2N)−pα <∞},

for all ρ ≥ 0, p ≥ 0.

The space of test random variables is (S)ρ =
⋂
p≥0(S)ρ,p, ρ ≥ 0 endowed with the

projective topology.
Its dual, the space of generalized random variables is (S)−ρ =

⋃
p≥0(S)−ρ,−p, ρ ≥ 0

endowed with the inductive topology.

The action of F =
∑
α∈I bαHα ∈ (S)−ρ onto f =

∑
α∈I cαHα ∈ (S)ρ is given by

〈F, f〉 =
∑
α∈I(bα, cα)α!, where (bα, cα) stands for the inner product in R. Thus, they

form a Gelfand triplet

(S)ρ ⊆ L2(Ω, µ) ⊆ (S)−ρ, ρ ≥ 0.

Clearly, the spaces (S)ρ,p and (S)−ρ,−p are separable Hilbert spaces. Moreover, (S)ρ
and (S)−ρ are nuclear spaces.

For ρ = 0 we obtain the space of Hida stochastic distributions (S)−0 and for ρ = 1 the
Kondratiev space of generalized random variables (S)−1. It holds that

(S)1 ↪→ (S)0 ↪→ L2(Ω, µ) ↪→ (S)−0 ↪→ (S)−1,

where ↪→ denotes dense inclusions. Usually the values of ρ are restricted to ρ ∈ [0, 1] in
order to establish the S−transform (see [8], [9]) when solving SPDEs, but in our case
values ρ > 1 may be considered as well.

The time-derivative of the Brownian motion B(t, ω) =
∑∞
k=1

∫ t
0
ξk(s)ds Hεk(ω) exists

in a generalized sense and belongs to the Kondratiev space (S)−1,−p for p ≥ 5
12 . We refer

it as the white noise and its formal expansion is given by W (t, ω) =
∑∞
k=1 ξk(t)Hεk(ω).

We extended in [21] the definition of stochastic processes to processes with the chaos
expansion form U(t, ω) =

∑
α∈I uα(t)Hα(ω), where the coefficients uα are elements of

some Banach space of functions X. We say that U is an X-valued generalized stochastic
process, i.e. U(t, ω) ∈ X ⊗ (S)−ρ if there exists p ≥ 0 such that ‖U‖2X⊗(S)−ρ,−p =∑
α∈I(α!)1−ρ‖uα‖2X(2N)−pα <∞.
For example, let X = Ck[0, T ], k ∈ N. We have proved in [22] that the differentiation

of a stochastic process can be carried out componentwise in the chaos expansion, i.e. due
to the fact that (S)−ρ is a nuclear space it holds that Ck([0, T ], (S)−ρ) = Ck[0, T ]⊗̂(S)−ρ
where ⊗̂ denotes the completion of the tensor product which is the same for the
ε−completion and π−completion. In the sequel, we will use the notation ⊗ instead
of ⊗̂. Hence Ck[0, T ]⊗ (S)−ρ,−p and Ck[0, T ]⊗ (S)ρ,p denote subspaces of the correspond-
ing completions. We keep the same notation when Ck[0, T ] is replaced by another Banach
space. This means that a stochastic process U(t, ω) is k times continuously differentiable
if and only if all of its coefficients uα(t), α ∈ I are in Ck[0, T ].

The same holds for Banach space valued stochastic processes i.e. elements of
Ck([0, T ], X)⊗ (S)−ρ, where X is an arbitrary Banach space. It holds that

Ck([0, T ], X ⊗ (S)−ρ) = Ck([0, T ], X)⊗ (S)−ρ =
⋃
p≥0

Ck([0, T ], X)⊗ (S)−ρ,−p.
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Stochastic evolution equations with nonlinearities

In addition, if X is a Banach algebra, then the Wick product of the stochastic
processes F =

∑
α∈I fαHα and G =

∑
β∈I gβHβ ∈ X ⊗ (S)−ρ,−p is given by

F♦G =
∑
γ∈I

∑
α+β=γ

fαgβHγ =
∑
α∈I

∑
β≤α

fβgα−βHα,

and F♦G ∈ X ⊗ (S)−ρ,−(p+k) for all k > 1 (see [9]). The nth Wick power is defined by
F♦n = F♦(n−1)♦F , F♦0 = 1. Note that Hnεk = H♦n

εk
for n ∈ N0, k ∈ N. Throughout the

paper we will assume that X is a Banach algebra.

2 Stochastic nonlinear evolution equation of Fujita-type

First we consider the equation (1.1), with a0 = a1 = · · · = an−1 = 0 and an = 1, i.e.
the equation:

ut(t, ω) = Au(t, ω) + u♦n(t, ω) + f(t, ω), t ∈ (0, T ] (2.1)

u(0, ω) = u0(ω), ω ∈ Ω.

Let A : D ⊂ X ⊗ (S)−1 → X ⊗ (S)−1 be a coordinatewise operator that corresponds
to a family of deterministic operators Aα : Dα ⊂ X → X, α ∈ I

Au(t, ω) = A

(∑
α∈I

uα(t)Hα(ω)

)
=
∑
α∈I

Aαuα(t) Hα(ω), u ∈ D,

(see [14, Section 2]). We are looking for a solution of (2.1) as an X-valued stochastic
process u(t) ∈ X ⊗ (S)−1, t ∈ [0, T ] represented in the form

u(t, ω) =
∑
α∈I

uα(t) Hα(ω), t ∈ [0, T ], ω ∈ Ω. (2.2)

The chaos expansion representation of the Wick-square is given by

u♦2(t, ω) =
∑
α∈I

(∑
γ≤α

uγ(t) uα−γ(t)
)
Hα(ω) (2.3)

= u20(t)H0(ω) +
∑
|α|>0

(
2u0(t)uα(t) +

∑
0<γ<α

uγ(t) uα−γ(t)
)
Hα(ω),

where t ∈ [0, T ], ω ∈ Ω. Let u♦mγ (t), γ ∈ I, m ∈ N denote the coefficients of the chaos
expansion of the mth Wick power, i.e. u♦m(t, ω) =

∑
γ∈I u

♦m
γ (t)Hγ(ω), for m ∈ N. Then,

for arbitrary n ∈ N, it can be shown that the nth Wick-power is given by

u♦n(t, ω) = u♦n−1(t, ω)♦u(t, ω) =
∑
α∈I

(∑
γ≤α

u♦n−1γ (t) uα−γ(t)
)
Hα(ω)

= un0(t)H0(ω) +
∑
|α|>0

((
n

1

)
un−10 (t)uα(t) +

(
n

2

)
un−20

∑
0<γ1<α

uα−γ1(t) uγ1(t)

+

(
n

3

)
un−30

∑
0<γ1<α

∑
0<γ2<γ1

uα−γ1(t) uγ1−γ2(t)uγ2(t) + · · ·+

+

(
n

n

) ∑
0<γ1<α

∑
0<γ2<γ1

· · ·
∑

0<γn−1<γn−2

uα−γ1(t) uγ1−γ2(t) . . . uγn−2−γn−1(t)uγn−1(t)

)
Hα(ω)

= un0(t)H0(ω) +
∑
|α|>0

(
nun−10 (t)uα(t) + rα,n(t)

)
Hα(ω),
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Stochastic evolution equations with nonlinearities

where t ∈ [0, T ], ω ∈ Ω. The functions rα,n(t), t ∈ [0, T ], α ∈ I, n > 1 contain only
the coordinate functions uβ , β < α. Moreover, we recall that the Wick power u♦n of a
stochastic process u ∈ X ⊗ (S)−1,−p is an element of X ⊗ (S)−1,−q, for q > p+ n− 1, see
[9].

We rewrite all processes that figure in (2.1) in their corresponding Wiener-Itô chaos
expansion form and obtain∑

α∈I

d

dt
uα(t) Hα(ω) =

∑
α∈I

Aαuα(t) Hα(ω) +
∑
α∈I

(∑
γ≤α

u♦n−1γ (t) uα−γ(t)
)
Hα(ω)

+
∑
α∈I

fα(t) Hα(ω)∑
α∈I

uα(0) Hα(ω) =
∑
α∈I

u0α Hα(ω).

Due to the orthogonality of the base Hα this reduces to the system of infinitely many
deterministic Cauchy problems:

1◦ for α = 0
d

dt
u0(t) = A0u0(t) + un0(t) + f0(t), u0(0) = u00, and (2.4)

2◦ for α > 0

d

dt
uα(t) =

(
Aα + nun−10 (t) Id

)
uα(t) + rα,n(t) + fα(t), uα(0) = u0α. (2.5)

with t ∈ (0, T ] and ω ∈ Ω.

Let

Bα,n(t) = Aα + nun−10 (t) Id and gα,n(t) = rα,n(t) + fα(t), t ∈ [0, T ]

for all α > 0. Then, the system (2.5) can be written in the form

d

dt
uα(t) = Bα,n(t)uα(t) + gα,n(t), t ∈ (0, T ]; uα(0) = u0α. (2.6)

Note that the inhomogeneous part gα,n in (2.6) does not contain any of the functions
uβ , β < α for |α| = 1, while for |α| > 1 it involves also uβ , β < α. Hence, we distinguish
these two cases.

(a) Let |α| = 1, i.e. α = εk, k ∈ N. Then gεk,n = fεk , k ∈ N and thus (2.6) transforms to

d

dt
uεk(t) = Bεk,n(t)uεk(t) + fεk(t), t ∈ (0, T ]; uεk(0) = u0εk . (2.7)

(b) Let |α| > 1. Then

d

dt
uα(t) = Bα,n(t)uα(t) + gα,n(t), t ∈ (0, T ]; uα(0) = u0α.

Each solution u to (2.1) can be represented in the form (2.2) and hence its coefficients
u0 and uα for α > 0 must satisfy (2.4) and (2.6) respectively. Vice versa, if the coefficients
u0 and uα for α > 0 solve (2.4) and (2.6) respectively, and if the series in (2.2) represented
by these coefficients exists in X ⊗ (S)−1, then it defines a solution to (2.1).
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Stochastic evolution equations with nonlinearities

Definition 2.1. An X−valued generalized stochastic process u(t) =
∑
α∈I uα(t)Hα ∈

X ⊗ (S)−1, t ∈ [0, T ] is a coordinatewise classical solution to (2.1) if u0 is a classical
solution to (2.4) and for every α ∈ I \ {0}, the coefficient uα is a classical solution to
(2.6). The coordinatewise solution u(t) ∈ X ⊗ (S)−1, t ∈ [0, T ] is an almost classical
solution to (2.1) if u ∈ C([0, T ], X) ⊗ (S)−1. An almost classical solution is a classical
solution if u ∈ C([0, T ], X)⊗ (S)−1 ∩ C1((0, T ], X)⊗ (S)−1.

We assume that the following hold:

(A1) The operators Aα, α ∈ I, are infinitesimal generators of C0−semigroups {Tα(s)}s≥0
with a common domain Dα = D, α ∈ I, dense in X. We assume that there exist
constants m ≥ 1 and w ∈ R such that

‖Tα(s)‖ ≤ mews, s ≥ 0 for all α ∈ I.

The action of A is given by

A(u) =
∑
α∈I

Aα(uα)Hα,

for u ∈ D ⊆ D ⊗ (S)−1 of the form (2.2), where

D =
{
u =

∑
α∈I

uα Hα ∈ D ⊗ (S)−1 : ∃p0 ≥ 0,
∑
α∈I
‖Aα(uα)‖2X(2N)−p0α <∞

}
.

(A2) The initial value u0 =
∑
α∈I u

0
αHα ∈ D, i.e. u0α ∈ D for every α ∈ I and there exists

p ≥ 0 such that ∑
α∈I
‖u0α‖2X(2N)−pα <∞,

∑
α∈I
‖Aα(u0α)‖2X(2N)−pα <∞.

(A3) The inhomogeneous part f(t, ω) =
∑
α∈I fα(t)Hα(ω), t ∈ [0, T ], ω ∈ Ω belongs to

C1([0, T ], X)⊗ (S)−1; hence t 7→ fα(t) ∈ C1([0, T ], X), α ∈ I and there exists p ≥ 0

such that∑
α∈I
‖fα‖2C1([0,T ],X)(2N)−pα =

∑
α∈I

(
sup
t∈[0,T ]

‖fα(t)‖X + sup
t∈[0,T ]

‖f ′α(t)‖X
)2

(2N)−pα <∞.

(A4-n) The Cauchy problem

d

dt
u0(t) = A0u0(t) + un0(t) + f0(t), t ∈ (0, T ]; u0(0) = u00,

has a classical solution u0 ∈ C1([0, T ], X).

Remark 2.1. Particularly, if A0 = ∆ is the Laplace operator and f0 ≡ 0, then (2.4)
belongs to the class of Fujita equations

ut = ∆u+ up, u(0) = u0, (2.8)

studied by Fujita, Chen and Watanabe [6, 7]. The authors proved that for a nonnegative
initial condition u0 ∈ C(RN ) ∩ L∞(RN ), equation (2.8) has a unique classical solution
on some [0, T1). Moreover, if p > 1 + 2

N then there exist a positive bounded solution.
The Fujita equation (2.8) apart from an interest per se also acts as a scaling limit of
more general superlinear equations whose nonlinearities exhibit a polynomial growth
rate. Originally, it has been developed to describe molecular concentration of a solution
subjected to centrifugation and sedimentation.
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Remark 2.2. In general, equations of the form (2.4), i.e. the deterministic equation for
α = 0 can be solved by the Fixed Point Theorem [25]. Thus, in order to check if condition
(A4-n) holds, one has to apply fixed point methods or other established methods for
deterministic PDEs. The solution to (2.4) will usually blow-up in finite time. Especially
the description of blow-up in the Sobolev supercritical regime poses a challenge that has
been tackled in several papers (e.g. [7], [15] for the Fujita equation). We stress that our
equation (2.1) and hence also (2.4) is given on a finite time interval, which is assumed to
provide a solution on the entire interval (we restrict our considerations form the very
start to the interval where no blow-up appears).

Now we focus on solving (2.6) for α > 0.

Lemma 2.3. Let the assumptions (A1)-(A4-n) be fulfilled. Then for every α > 0 the
evolution system (2.6) has a unique classical solution uα ∈ C1([0, T ], X).

Proof. First, for every α > 0, we consider the family of operators Bα,n(t) = Aα +

nun−10 (t)Id, t ∈ [0, T ]. According to assumption (A1), the constant family {Aα(t)}t∈[0,T ] =

{Aα}t∈[0,T ] is a stable family of infinitesimal generators of a C0−semigroup {Tα(s)}s≥0
on X satisfying ‖Tα(s)‖ ≤ mews with stability constants m ≥ 1 and w ∈ R. Let

Mn = sup
t∈[0,T ]

‖u0(t)‖X . (2.9)

The perturbation nun−10 (t)Id : X → X, t ∈ [0, T ] is a family of uniformly bounded linear
operators such that

‖nun−10 (t)x‖X = ‖nun−10 (t)‖X‖x‖X ≤ sup
t∈[0,T ]

n ‖u0(t)‖n−1X ‖x‖X ≤ nMn−1
n ‖x‖X ,

for all x ∈ X, t ∈ [0, T ], i.e. ‖nun−10 (t)Id‖ ≤ nMn−1
n , t ∈ [0, T ]. Thus, for every α > 0, the

family {Aα+nun−10 (t)Id}t∈[0,T ] is a stable family of infinitesimal generators with stability
constants m and w + nMn−1

n m. By assumption (A4-n) the function u0 ∈ C1([0, T ], X)

so we obtain continuous differentiability of (Aα + nun−10 (t)Id)x, t ∈ [0, T ] for every
x ∈ D and for every α > 0. Additionally, the domain of the operators nun−10 (t)Id is the
entire space X which implies that all of the operators Bα,n(t), t ∈ [0, T ] have a common
domain D(Bα,n(t)) = D(Aα) = D not depending on t. Notice here that assumption (A1)
additionally provides the same domain D of the family {Bα,n(t)}t∈[0,T ] for all α > 0.

Finally, one can associate the unique evolution system Sα,n(t, s), for 0 ≤ s ≤ t ≤ T for
all α > 0 to the system (2.6) such that

‖Sα,n(t, s)‖ ≤ mewn (t−s) ≤ mewn(T−s), 0 ≤ s ≤ t ≤ T, α > 0, (2.10)

where wn = w + nMn−1
n m see [20, Thm 4.8., p. 145]. Without loss of generality we may

assume that w > 0 and thus will be wn > 0.
Now one can solve the infinite system of the Cauchy problems (2.6) by induction

on the length of the multiindex α. Let |α| = 1. Since fεk ∈ C1([0, T ], X), we obtain the
unique classical solution uεk ∈ C1([0, T ], X) to (2.7) given by

uεk(t) = Sεk,n(t, 0)u0εk +

∫ t

0

Sεk,n(t, s) fεk(s) ds, t ∈ [0, T ]. (2.11)

Now let for every β ∈ I such that 0 < β < α the unique classical solution of (2.6) satisfy
uβ ∈ C1([0, T ], X). Then for fixed |α| > 1 the inhomogeneous part gα,n ∈ C1([0, T ], X)

and the solution to (2.6) is of the form

uα(t) = Sα,n(t, 0)u0α +

∫ t

0

Sα,n(t, s) gα,n(s) ds, t ∈ [0, T ], (2.12)

where uα ∈ C1([0, T ], X). For more details see [20, Thm 5.3., p. 147].
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Now we proceed with four technical lemmas that will be used in the sequel.

Lemma 2.4. Let α ∈ I. Then

|α|!
α!
≤ (2N)2α.

Proof. This is a direct consequence of [11, Proposition 2.3]. More precisely, in [11]
authors proved that |α|! ≤ qαα! if a sequence q = (qk)k∈N satisfies

1 < q1 ≤ q2 ≤ . . . and
∞∑
k=1

1

qk
< 1.

Since
∞∑
k=1

1

(2k)2
=
π2

24
< 1, the sequence (2N)2 = ((2k)2)k∈N satisfies a required property.

Lemma 2.5. For every c > 0 there exists q > 1 such that the following holds∑
α∈I

c|α|(2N)−qα <∞.

Proof. Let c > 0 and choose s ≥ 0 such that c ≤ 2s. Then, for q > s+ 1,

∑
α∈I

c|α|(2N)−qα ≤
∑
α∈I

∞∏
i=1

(2s)αi
∞∏
i=1

(2i)−qαi ≤
∑
α∈I

∞∏
i=1

(2i)(s−q)αi =
∑
α∈I

(2N)(s−q)α <∞.

In the next lemma, for the sake of completeness, we give some useful properties of
the well known Catalan numbers, see for example [23].

Lemma 2.6. A sequence {cn}n∈N defined by the recurrence relation

c0 = 1, cn =

n−1∑
k=0

ck cn−1−k, n ≥ 1 (2.13)

is called the sequence of Catalan numbers. The closed formula for cn is a multiple of the
binomial coefficient, i.e. the solution of the Catalan recurrence (2.13) is

cn =
1

n+ 1

(
2n

n

)
or cn =

(
2n

n

)
−
(

2n

n+ 1

)
.

The Catalan numbers satisfy the growth estimate

cn ≤ 4n, n ≥ 0. (2.14)

Lemma 2.7. [11, p.21] Let {Rα : α ∈ I} be a set of real numbers such that R0 =

0, Rεk , k ∈ N are given and

Rα =
∑

0<γ<α

RγRα−γ , |α| > 1.

Then

Rα =
1

|α|

(
2|α| − 2

|α| − 1

)
|α|!
α!

∞∏
k=1

Rαkεk , |α| > 1.
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Proof. Let α ∈ I, |α| > 1 be given. Then α = (α1, . . . , αd, 0, 0, . . . ) has only finally many
non-zero components, so one can associate to it a d−dimensional vector (α1, . . . , αd) ∈
Nd0. Adopting the proof for the classical Catalan numbers, the authors in [11] consid-
ered the function G(z) =

∑
β∈Nd0

Mβz
β , z ∈ Nd0, where Mβ =

∑
0<γ<βMγMβ−γ and

zβ = zβ1

1 · · · z
βd
d . The function G satisfies G2(z)−G(z) +

∑d
k=1Mεkzk = 0, which implies

that G(z) =
∑∞
n=1

1
n

(
2n−2
n−1

) (∑d
k=1Mεkzk

)n
. Finally, applying the multinomial formula(∑d

k=1Mεkzk

)n
=
∑
β∈Nd0 , |β|=n

n!
β!

∏d
k=1 (Mεkzk)

βk one obtains

G(z) =
∑
β∈Nd0

Mβz
β =

∞∑
n=1

∑
β∈Nd0 , |β|=n

1

n

(
2n− 2

n− 1

)
n!

β!

d∏
k=1

Mβk
εk

d∏
k=1

zβkk

=
∑
β∈Nd0

(
1

|β|

(
2|β| − 2

|β| − 1

)
|β|!
β!

d∏
k=1

Mβk
εk

)
zβ .

2.1 Proof of the main theorem

The statement of the main theorem is as follows.

Theorem 2.8. Let the assumptions (A1) − (A4 − n) be fulfilled. Then there exists a
unique almost classical solution u ∈ C([0, T ], X)⊗ (S)−1 to (2.1).

Proof. The proof of Theorem 2.8 will be given by induction with respect to n ∈ N in
Theorems 2.9 and 2.10. We will prove in the first one that the statement of the main
theorem holds for n = 2. Since it is technically pretty challenging to write down the
proof of the inductive step for arbitrary n ∈ N, in Theorem 2.10 the proof is given for
n = 3 by reducing the problem to the case n = 2. In the same way one can reduce the
problem for arbitrary n ∈ N to the case n− 1.

First consider (2.1) for n = 2, i.e.

ut(t, ω) = Au(t, ω) + u♦2(t, ω) + f(t, ω), t ∈ [0, T ] (2.15)

u(0, ω) = u0(ω),

The chaos expansion representation of the Wick-square is given by (2.3). Applying the
Wiener-Itô chaos expansion to the nonlinear stochastic equation (2.15) one obtain∑

α∈I

d

dt
uα(t) Hα(ω) =

∑
α∈I

Aαuα(t) Hα(ω) +
∑
α∈I

(∑
γ≤α

uγ(t) uα−γ(t)
)
Hα(ω)

+
∑
α∈I

fα(t) Hα(ω)∑
α∈I

uα(0) Hα(ω) =
∑
α∈I

u0α Hα(ω).

which reduces to the system of infinitely many deterministic Cauchy problems:

1◦ for α = 0
d

dt
u0(t) = A0u0(t) + u20(t) + f0(t), u0(0) = u00, and (2.16)

2◦ for α > 0

d

dt
uα(t) =

(
Aα+2u0(t) Id

)
uα(t)+

∑
0<γ<α

uγ(t) uα−γ(t)+fα(t), uα(0) = u0α. (2.17)

with t ∈ (0, T ] and ω ∈ Ω.
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Recall that

Bα,2(t) = Aα + 2u0(t) Id and gα,2(t) =
∑

0<γ<α

uγ(t) uα−γ(t) + fα(t), t ∈ [0, T ]

for all α > 0, so the system (2.17) can be written in the form

d

dt
uα(t) = Bα,2(t)uα(t) + gα,2(t), t ∈ (0, T ]; uα(0) = u0α. (2.18)

Theorem 2.9. Let the assumptions (A1) − (A4 − 2) be fulfilled. Then there exists a
unique almost classical solution u ∈ C([0, T ], X)⊗ (S)−1 to (2.15).

Proof. According to Lemma 2.3 for every α > 0 the evolution equation (2.18) has an
unique classical solution uα ∈ C1([0, T ], X). Thus, the generalized stochastic process
u(t, ω) =

∑
α∈I uα(t)Hα(ω), t ∈ [0, T ], ω ∈ Ω has coefficients that are all classical

solutions to the corresponding deterministic equation (2.18), hence in order to show that
u is an almost classical solution to (2.15) one has to prove that u ∈ C([0, T ], X)⊗ (S)−1.

Let u0 ∈ X ⊗ (S)−1 be an initial condition satisfying assumption (A2) which states
that there exist p̃ ≥ 0 and K̃ > 0 such that

∑
α∈I ‖u0α‖2X(2N)−p̃α = K̃. Then there also

exist p ≥ 0 and K ∈ (0, 1) such that
∑
α∈I ‖u0α‖2X(2N)−2pα = K2, or equivalently

(∃p ≥ 0) (∃K ∈ (0, 1)) (∀α ∈ I) ‖u0α‖X ≤ K(2N)pα. (2.19)

The inhomogeneous part f ∈ C1([0, T ], X)⊗ (S)−1 satisfies assumption (A3) which states
that there exists p̃ ≥ 0 such that

∑
α∈I supt∈[0,T ] ‖fα(t)‖2X(2N)−p̃α <∞. Then there exist

p ≥ 0 and K ∈ (0, 1) such that

sup
t∈[0,T ]

‖fα(t)‖X ≤ K(2N)pα, α ∈ I. (2.20)

The coefficients uα, α ∈ I, α > 0 of the solution u are given by (2.11) and (2.12) for
n = 2. Denote by

Lα := sup
t∈[0,T ]

‖uα(t)‖X , α ∈ I.

First, for α = 0 using (2.9) one obtain

L0 = sup
t∈[0,T ]

‖u0(t)‖X = M2, (2.21)

since the solution to (2.16) satisfies assumption (A4-2). Let |α| = 1. Then α = εk, k ∈ N
and using (2.11) we have that

‖uεk(t)‖X ≤ ‖Sεk,2(t, 0)‖‖u0εk‖X +

∫ t

0

‖Sεk,2(t, s)‖‖fεk(s)‖Xds, t ∈ [0, T ].

From (2.10) we obtain that∫ t

0

‖Sα,2(t, s)‖ds ≤
∫ t

0

mew2(t−s)ds = m
ew2t − 1

w2
≤ m

w2
ew2T , t ∈ [0, T ], α > 0 (2.22)

and now (2.10), (2.19) and (2.20) imply that

Lεk = sup
t∈[0,T ]

‖uεk(t)‖X ≤ sup
t∈[0,T ]

{
‖Sεk,2(t, 0)‖‖u0εk‖X + sup

s∈[0,t]
‖fεk(s)‖X

∫ t

0

‖Sα,2(t, s)‖ds
}

(2.23)

≤ mew2TK(2N)pεk +
m

w2
ew2TK(2N)pεk = m2e

w2TK(2N)pεk , t ∈ [0, T ], k ∈ N,
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where m2 = m+ m
w2
.

For |α| > 1 we consider two possibilities for Lα. First, if Lα ≤
√
K(2N)pα for all

|α| > 1 then the statement of the theorem follows directly since for q > 2p+1 and, having
in mind (2.21) and (2.23), we obtain∑
α∈I

sup
t∈[0,T ]

‖uα(t)‖2X(2N)−qα =
∑
α∈I

L2
α(2N)−qα = L2

0 +
∑
k∈N

L2
εk

(2N)−qεk +
∑
|α|>1

L2
α(2N)−qα

≤M2
2 + (m2e

w2TK)2
∑
k∈N

(2N)(2p−q)εk +K
∑
|α|>1

(2N)(2p−q)α <∞,

i.e. u ∈ C([0, T ], X)⊗ (S)−1,−q.

In what follows, we will assume that Lα >
√
K(2N)pα for some α ∈ I, |α| > 1. Denote

by I∗ the set of all multi-indices α ∈ I, |α| > 1, for which Lα >
√
K(2N)pα. Then from

(2.12) we obtain

uα(t) = Sα,2(t, 0)u0α +

∫ t

0

Sα,2(t, s)
[ ∑
0<γ<α

uα−γ(s)uγ(s) + fα(s)
]
ds, t ∈ [0, T ].

From this we have

Lα = sup
t∈[0,T ]

‖uα(t)‖X

≤ sup
t∈[0,T ]

{
‖Sα,2(t, 0)‖‖u0α‖X +

∫ t

0

‖Sα,2(t, s)‖
∥∥∥ ∑

0<γ<α

uα−γ(s)uγ(s)
∥∥∥ds

+

∫ t

0

‖Sα,2(t, s)‖‖fα(s)‖Xds

}

≤ sup
t∈[0,T ]

{
mew2t‖u0α‖X + sup

s∈[0,t]

∑
0<γ<α

‖uα−γ(s)‖X‖uγ(s)‖X ·
∫ t

0

‖Sα,2(t, s)‖ds

+ sup
s∈[0,t]

‖f(s)‖X
∫ t

0

‖Sα,2(t, s)‖ds

}
.

Using (2.22) we obtain

Lα = sup
t∈[0,T ]

‖uα(t)‖X

≤ mew2T ‖u0α‖X +
m

w2
ew2T

∑
0<γ<α

sup
t∈[0,T ]

‖uα−γ(t)‖X sup
t∈[0,T ]

‖uγ(t)‖X

+
m

w2
ew2T sup

s∈[0,t]
‖f(s)‖X

≤ m2e
w2TK(2N)pα +

m

w2
ew2T

∑
0<γ<α

Lα−γLγ ,

where again m2 = m+ m
w2
. Since m2 ≥ m

w2
, one easily obtains

Lα ≤ m2e
w2T

(
K(2N)pα +

∑
0<γ<α

Lα−γLγ

)
. (2.24)

Let L̃α, α > 0, α ∈ I∗, be given by

L̃α := 2m2e
w2T

( Lα√
K(2N)pα

+ 1
)
, α > 0, α ∈ I∗.
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Thus, from (2.23) we have that for all k ∈ N

L̃εk = 2m2e
w2T

( Lεk√
K(2N)pεk

+ 1
)
≤ 2m2e

w2T
(m2e

w2TK(2N)pεk√
K(2N)pεk

+ 1
)

(2.25)

= 2m2e
w2T (m2e

w2T
√
K + 1).

We proceed with the estimation of the term
∑

0<γ<α L̃γL̃α−γ for given |α| > 1, α ∈ I∗.∑
0<γ<α

L̃γL̃α−γ =
∑

0<γ<α

(2m2e
w2T )2

( Lγ√
K(2N)pγ

+ 1
)( Lα−γ√

K(2N)p(α−γ)
+ 1
)

≥ (2m2e
w2T )2

( ∑
0<γ<α

LγLα−γ
K(2N)pα

+ 1
)

=
(2m2e

w2T )2

K(2N)pα

∑
0<γ<α

LγLα−γ + (2m2e
w2T )2.

Using inequality (2.24) we obtain∑
0<γ<α

L̃γL̃α−γ ≥
(2m2e

w2T )2

K(2N)pα

( Lα
m2ew2T

−K(2N)pα
)

+ (2m2e
w2T )2 =

4m2e
w2T

K(2N)pα
Lα.

Now since Lα >
√
K(2N)pα for α ∈ I∗ and since K < 1 we obtain

∑
0<γ<α

L̃γL̃α−γ ≥
4m2e

w2T

√
K(2N)pα

Lα =
2m2e

w2T

√
K(2N)pα

Lα +
2m2e

w2T

√
K(2N)pα

Lα

≥ 2m2e
w2T

( Lα√
K(2N)pα

+ 1
)

= L̃α.

Hence, for all α ∈ I∗, |α| > 1, we have obtained∑
0<γ<α

L̃γL̃α−γ ≥ L̃α.

Let Rα, α > 0, be defined as follows:

Rεk = L̃εk , k ∈ N,

Rα =
∑

0<γ<α

RγRα−γ , |α| > 1.

It is a direct consequence of the definition of the numbers Rα, α > 0, and it can be shown
by induction with respect to the length of the multi-index α > 0 that (see [11, Section 5])

L̃α ≤ Rα, α > 0. (2.26)

Lemma 2.7 shows that the numbers Rα, α > 0 satisfy

Rα =
1

|α|

(
2|α| − 2

|α| − 1

)
|α|!
α!

∞∏
i=1

Rαiεi , α > 0.

Further on, by (2.25),

∞∏
i=1

Rαiεi =

∞∏
i=1

L̃αiεi ≤
∞∏
i=1

(2m2e
w2T (m2e

w2T
√
K + 1))αi .
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Stochastic evolution equations with nonlinearities

Let c = 2m2e
w2T (m2e

w2T
√
K + 1). Then

Rα ≤ c|α|−1
|α|!
α!

c|α|, α > 0, (2.27)

where cn = 1
n+1

(
2n
n

)
, n ≥ 0 denotes the nth Catalan number (more information on

Catalan numbers is provided in Lemma 2.6). Using Lemma 2.4, (2.26), (2.27) and (2.14)
we obtain that for α ∈ I∗, |α| > 1 the estimation

L̃α ≤ Rα ≤ 4|α|−1(2N)2αc|α|

holds. Finally, from the definition of L̃α, α > 0 we obtain

Lα ≤
(4|α|−1(2N)2αc|α|

2m2ew2T
− 1
)√

K(2N)pα ≤
√
K

8m2ew2T
(4c)|α|(2N)(p+2)α.

Notice that the upper estimate also holds for |α| > 1, α ∈ I \ I∗. Indeed, if Lα <√
K(2N)pα then also Lα <

√
K

8m2ew2T
(4c)|α|(2N)(p+2)α, so we obtain

Lα ≤
√
K

8m2ew2T
(4c)|α|(2N)(p+2)α, for all α ∈ I, |α| > 1.

Now we can prove that u(t, ω) =
∑
α∈I uα(t)Hα(ω) ∈ C([0, T ], X) ⊗ (S)−1. Denote by

H =
√
K

8m2ew2T
. Then∑

α∈I
sup
t∈[0,T ]

‖uα(t)‖2X(2N)−qα = sup
t∈[0,T ]

‖u0(t)‖2X +
∑
α>0

sup
t∈[0,T ]

‖uα(t)‖2X(2N)−qα

= M2
2 +

∑
k∈N

L2
εk

(2N)−qεk +
∑
|α|>1

L2
α(2N)−qα

≤M2
2 + (m2e

w2TK)2
∑
k∈N

(2N)(2p−q)εk +H2
∑
|α|>1

(
(4c)|α|(2N)(p+2)α

)2
(2N)−qα

= M2
2 + (m2e

w2TK)2
∑
k∈N

(2N)(2p−q)εk +H2
∑
|α|>1

(16c2)|α|(2N)(2p+4−q)α.

Taking that s > 0 is such that 2s ≥ 16c2, according to Lemma 2.5, we obtain∑
α∈I

sup
t∈[0,T ]

‖uα(t)‖2X(2N)−qα ≤M2
2 + (m2e

w2TK)2
∑
k∈N

(2N)(2p−q)εk

+H2
∑
|α|>1

(2N)(2p+4+s−q)α <∞

for q > 2p+ s+ 5.

In the sequel we prove the existence of the almost classical solution of the Cauchy
problem

ut(t, ω) = Au(t, ω) + u♦3(t, ω) + f(t, ω), t ∈ [0, T ] (2.28)

u(0, ω) = u0(ω),

Note that

u♦3(t, ω) = u♦2(t, ω)♦u(t, ω) =
∑
α∈I

∑
β≤α

∑
γ≤β

uα−β(t)uβ−γ(t)uγ(t)Hα(ω)

= u30(t)H0(ω)

+
∑
|α|>0

(
3u20uα(t) + 3u0

∑
0<β<α

uα−β(t)uβ(t) +
∑

0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t)
)
Hα(ω),

(2.29)
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for t ∈ [0, T ], ω ∈ Ω. Applying the Wiener-Itô chaos expansion method to the nonlinear
stochastic equation (2.28) reduces to the system of infinitely many deterministic Cauchy
problems:

1◦ for α = 0
d

dt
u0(t) = A0u0(t) + u30(t) + f0(t), u0(0) = u00, and

2◦ for α > 0

d

dt
uα(t) =

(
Aα + 3u20(t)Id

)
uα(t) + 3u0

∑
0<β<α

uα−β(t)uβ(t)+

+
∑

0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t) + fα(t),

uα(0) = u0α.

(2.30)

with t ∈ (0, T ] and ω ∈ Ω.

Let

Bα,3(t) = Aα + 3u20(t) Id and

gα,3(t) = 3u0
∑

0<β<α

uα−β(t)uβ(t) +
∑

0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t) + fα(t), t ∈ [0, T ]

(2.31)

for all α > 0, then, the system (2.30) can be written in the form

d

dt
uα(t) = Bα,3(t)uα(t) + gα,3(t), t ∈ (0, T ]; uα(0) = u0α. (2.32)

Theorem 2.10. Let the assumptions (A1) − (A4 − 3) be fulfilled. Then, there exists a
unique almost classical solution u ∈ C([0, T ], X)⊗ (S)−1 to (2.28).

Proof. According to Lemma 2.3 for every α > 0 the evolution equation (2.32) has
an unique classical solution uα ∈ C1([0, T ], X) given in the form (2.12). Thus, the
generalized stochastic process u(t, ω), represented in the chaos expansion form (2.2), has
coefficients that are all classical solutions to the corresponding deterministic equation
(2.32). Hence, in order to show that u is an almost classical solution to (2.28), one has to
prove that u ∈ C([0, T ], X)⊗ (S)−1.

We assume that the initial condition u0 ∈ X ⊗ (S)−1 satisfies assumption (A2),
i.e. the estimate (2.19) holds true. The inhomogeneous part f ∈ C1([0, T ], X) ⊗ (S)−1
satisfies assumption (A3), i.e. the estimate (2.20) is true for some p ≥ 0. Moreover, the
coefficients uα, α ∈ I, α > 0 of the solution u are given by (2.11) and (2.12) for n = 3.

Now, for all α ∈ I we are going to estimate

Lα = sup
t∈[0,T ]

‖uα(t)‖X .

It is clear that for α = 0 , by (A4− 3) we have L0 = supt∈[0,T ] ‖u0(t)‖ = M3.
For, |α| = 1, i.e. for α = εk, k ∈ N by (2.11) we have that

‖uεk(t)‖X ≤ ‖Sεk,3(t, 0)‖‖u0εk‖X +

∫ t

0

‖Sεk,3(t, s)‖‖fεk(s)‖Xds, t ∈ [0, T ].

From (2.10) we obtain that∫ t

0

‖Sα,3(t, s)‖ds ≤
∫ t

0

mew3(t−s)ds ≤ m

w3
ew3T , t ∈ [0, T ], α > 0. (2.33)
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By (2.19), (2.20), (2.10) and (2.33) we obtain

Lεk = sup
t∈[0,T ]

‖uεk(t)‖X ≤ sup
t∈[0,T ]

{
‖Sεk,3(t, 0)‖‖u0εk‖X + sup

s∈[0,t]
‖fεk(s)‖X

∫ t

0

‖Sα,3(t, s)‖ds
}

≤ mew3TK(2N)pεk +
m

w3
ew3TK(2N)pεk ,

which leads to the estimate

Lεk ≤ m3e
w3TK(2N)pεk , k ∈ N, (2.34)

where m3 = m+ m
w3
.

For |α| = 2 we have two different forms of the multiindex. First, for α = 2εk, k ∈ N
from (2.31) we obtain the form of the inhomogeneous part g2εk,3(t) = 3u0(t)u2εk(t) +

f2εk(t), where

sup
s∈[0,t]

‖g2εk,3(s)‖X ≤ 3M3L
2
εk

+ sup
s∈[0,t]

‖f2εk(s)‖X

≤ 3M3m
2
3e

2w3TK2(2N)2pεk +K(2N)2pεk

≤ (3M3m
2
3e

2w3TK2 +K) (2N)2pεk .

Then, together with (2.12) we obtain

L2εk = sup
t∈[0,T ]

‖u2εk(t)‖X

≤ sup
t∈[0,T ]

{
‖S2εk,3(t, 0)‖‖u02εk‖X + sup

s∈[0,t]
‖g2εk,3(s)‖X

∫ t

0

‖S2εk,3(t, s)‖ds
}

≤ mew3TK(2N)2pεk +
m

w3
ew3T (3M3m

2
3e

2w3TK2 +K) (2N)2pεk .

Thus,
L2εk ≤ a1 ew3TK (2N)2pεk , k ∈ N, (2.35)

where a1 = m+ m
w3

(3M3m
2
3e

2w3TK + 1).
In the second case, for α = εk + εj , k 6= j, k, j ∈ N from (2.31) we obtain the

form gεk+εj ,3(t) = 6u0(t)uεk(t)uεj (t) + fεk+εj (t) of the inhomogeneous part of (2.12). By
applying (2.34) and (2.20) it can be estimated as

sup
s∈[0,t]

‖gεk+εj ,3(s)‖X ≤ 6M3LεkLεj + sup
s∈[0,t]

‖fεk+εj (s)‖X

≤ 6M3m
2
3e

2w3TK2(2N)pεk(2N)pεj +K(2N)pεk+pεj

≤ (6M3m
2
3e

2w3TK2 +K) (2N)p(εk+εj).

Then, (2.12) combined with the previous estimate lead to

Lεk+εj = sup
t∈[0,T ]

‖uεk+εj (t)‖X

≤ sup
t∈[0,T ]

{
‖Sεk+εj ,3(t, 0)‖‖u0εk+εj‖X + sup

s∈[0,t]
‖gεk+εj ,3(s)‖X

∫ t

0

‖Sεk+εj ,3(t, s)‖ds
}

≤ mew3TK(2N)p(εk+εj) +
m

w3
ew3T (6M3m

2
3e

2w3TK2 +K) (2N)p(εk+εj).

Then, we obtained

Lεk+εj ≤ a2 ew3TK (2N)p(εk+εj), k, j ∈ N, k 6= j, (2.36)
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where a2 = m + m
w3

(6M3m
2
3e

2w3TK + 1). Finaly, from (2.35) and (2.36) we obtain the
estimate for all |α| = 2

Lα ≤ a2 ew3TK (2N)pα.

For |α| > 2 we deal with general form of the inhomogeneous part of (2.32)

gα,3(t) = 3u0
∑

0<β<α

uα−β(t)uβ(t) +
∑

0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t) + fα(t), t ∈ [0, T ].

The solution to (2.32) is of the form

uα(t) = Sα,3(t, 0)u0α

+

∫ t

0

Sα,3(t, s)
(

3u0
∑

0<β<α

uα−β(t)uβ(t)+
∑

0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t) + fα(t)
)
ds.

We underline that in the previous inductive steps, we obtained the estimates of Lα−θ =

supt∈[0,T ] ‖uα−θ(t)‖ for all 0 < θ < α. Then,

Lα = sup
t∈[0,T ]

‖uα(t)‖ ≤ meω3TK(2N)pα

+
m

w3

(
3M3

∑
0<β<α

Lα−βLβ +
∑

0<β<α

∑
0<γ<β

Lα−βLβ−γLγ +K(2N)pα
)

≤ m3e
ω3T
(
K(2N)pα + 3M3

∑
0<β<α

Lα−βLβ +
∑

0<β<α

Lα−β
∑

0<γ<β

Lβ−γ Lγ

)
,

(2.37)

where m3 = m+ m
w3

.
In order to estimate Lα for |α| > 2 we consider two possibilities: (a) Lα ≤

∑
0<β<α

Lα−β Lβ ,

|α| > 2 and (b) Lα >
∑

0<β<α

Lα−β Lβ , |α| > 2.

(a) Define Rα for |α| ≥ 1 in the following inductive way

Rεk = Lεk

Rα =
∑

0<β<α

Rα−β Rβ , |α| ≥ 2,

then, using Lemma 2.7, we obtain the estimate

Lα ≤ Rα =
1

|α|

(
2|α| − 2

|α| − 1

)
|α|!
α!

( ∞∏
i=1

Rαiεi
)
.

Moreover, by (2.34) we get

∞∏
i=1

Rαiεi =

∞∏
i=1

Lαiεi ≤
∞∏
i=1

(
m3e

ω3TK (2N)pεk
)αi

=
(
m3e

ω3TK
)|α| ∞∏

i=1

(2i)pαi

=
(
m3e

ω3TK
)|α|

(2N)pα = c
|α|
3 (2N)pα,

where c3 = m3e
ω3TK. We also used

∏∞
i=1 (2i)pαi = (2N)pα and (2N)εi = 2i. We

recall the form of the Catalan numbers c|α| = 1
|α|
(
2|α|−2
|α|−1

)
, |α| ≥ 2. Then, by Lemma

2.4 we obtain

Lα ≤
1

|α|

(
2|α| − 2

|α| − 1

)
|α|!
α!

c
|α|
3 (2N)pα ≤ 4|α|−1 (2N)2α c

|α|
3 (2N)pα

≤ (2N)p3α(2N)(2+p)α,
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where we used that 4|α|−1 c
|α|
3 ≤ (2N)p3α for some positive p3. Thus, we conclude

Lα ≤ (2N)(p3+p+2)α.

Finally, for q > 2p3 + 2p+ 5 the statement of the theorem follows from∑
α∈I

sup
t∈[0,T ]

‖uα(t)‖2X(2N)−qα =
∑
α∈I

L2
α(2N)−qα

= L2
0 +

∑
k∈N

L2
εk

(2N)−qεk +
∑
|α|>1

L2
α(2N)−qα

≤M2
3 + (m3e

w3TK)2
∑
k∈N

(2N)(2p−q)εk

+
∑
|α|>1

(2N)(2(p3+p+2)−q)α <∞, (2.38)

i.e. u ∈ C([0, T ], X) ⊗ (S)−1,−q. Note that in (2.38) the term
∑
k∈N(2N)(2p−q)εk is

finite since q > 2p+ 1 when q > 2p3 + 2p+ 5.

(b) We assume, in the second case, that there exists α ∈ I, |α| ≥ 2 such that

Lα >
∑

0<β<α

Lα−β Lβ . (2.39)

Consider the most complicated case. Then, we would have that the inequality
(2.39) is fulfilled for all α ∈ I. Then, (2.37) reduces to

Lα ≤ m3e
w3T

K(2N)pα + (3M3 + 1)
∑

0<β<α

Lα−β Lβ

 ,

where we used inequality Lβ >
∑

0<γ<β

Lβ−γ Lγ for β < α. Further, we have

Lα ≤ (3M3 + 1)m3e
w3T

( K

3M3 + 1
(2N)pα +

∑
0<β<α

Lα−β Lβ

)
, |α| ≥ 2.

At this point, we can repeat the proof of Theorem 2.9. Particularly, using the
notation m′3 = (3M3 + 1)m3 and K ′ = K

3M3+1 , the following inequality

Lα ≤ m′3ew3T
(
K ′(2N)pα +

∑
0<β<α

Lα−βLβ

)
corresponds to the inequality (2.24), since K ′ < 1, and the proof continues in the
same manner as the one from Theorem 2.9, i.e. the proof of solvability of the
equation (2.15) with the Wick-square nonlinearity.

Remark 2.11. Note here that if the almost classical solution u to (2.1) satisfies u ∈ D =

DomA then u is a classical solution to (2.1).

2.2 The linear nonautonomous case

Our analysis provides a downright observation for the linear nonautonomous equation

ut(t, ω) = A(t)u(t, ω) + f(t, ω), t ∈ (0, T ] (2.40)

u(0, ω) = u0(ω), ω ∈ Ω.

We assume the following:
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(B1) The operator A(t) : D′ ⊂ X ⊗ (S)−1 → X ⊗ (S)−1, t ∈ [0, T ] is a coordinatewise
operator depending on t that corresponds to a family of deterministic operators
Aα(t) : D(Aα) ⊂ X → X, α ∈ I. For every α ∈ I the operator family {Aα(t)}t∈[0,T ]

is a stable family of infinitesimal generators of C0−semigroups on X with stability
constants m > 1 and w ∈ R not depending on α, therefore the corresponding
evolution systems Sα(t, s) satisfy

‖Sα(t, s)‖ ≤ mew(t−s) ≤ mewT , 0 ≤ s < t ≤ T, α ∈ I.

The domain D(Aα(t)) = D is independent of t ∈ [0, T ] and α ∈ I. For every x ∈ D
the function Aα(t)x, t ∈ [0, T ] is continuously differentiable in X for each α ∈ I.
The action of A(t), t ∈ [0, T ] is given by

A(t)(u) =
∑
α∈I

Aα(t)(uα)Hα,

for u ∈ D′ ⊆ D ⊗ (S)−1 of the form (2.2), where

D′ =
{
u =

∑
α∈I

uαHα ∈ D⊗(S)−1 : ∃p0 ≥ 0,
∑
α∈I

sup
t∈[0,T ]

‖Aα(t)(uα)‖2X(2N)−p0α <∞
}
.

(B2) The initial value u0 =
∑
α∈I u

0
αHα ∈ D′, i.e. u0α ∈ D for every α ∈ I and there exists

p ≥ 0 such that ∑
α∈I
‖u0α‖2X(2N)−pα <∞,

∑
α∈I

sup
t∈[0,T ]

‖Aα(t)u0α‖2X(2N)−pα <∞.

For the inhomogeneous part f(t, ω), ω ∈ Ω, t ∈ [0, T ] we assume (A3).

Theorem 2.12. Let the assumptions (B1), (B2) and (A3) be fulfilled. Then there exists
a unique almost classical solution u ∈ C([0, T ], X)⊗ (S)−1 to (2.40).

Proof. Applying the Wiener-Itô chaos expansion method to (2.40) we obtain the system
of infinitely many deterministic Cauchy problems

d

dt
uα(t) = Aα(t)uα(t) + fα(t), t ∈ (0, T ] (2.41)

uα(0) = u0α, α ∈ I.

By virtue of (B1), (B2) and (A3) the Cauchy problem (2.41) fulfills all the assumptions of
[20, Theorem 5.3, p. 147] so there exists a unique classical solution uα ∈ C1([0, T ], X)

given by

uα(t) = Sα(t, 0)u0α +

∫ t

0

Sα(t, s)fα(s)ds, t ∈ [0, T ]

for all α ∈ I.
It remains to show that u =

∑
α∈I uαHα ∈ C([0, T ], X)⊗ (S)−1, i.e. that there exists

q > 0 such that
∑
α∈I supt∈[0,T ] ‖uα(t)‖2X(2N)−qα <∞.

Without loss of generality, we may assume that the constants K, p > 0 are such that
for all α ∈ I

‖u0α‖X ≤ K(2N)pα

sup
t∈[0,T ]

‖fα(t)‖X ≤ K(2N)pα.
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Now, for all α ∈ I, we obtain

sup
t∈[0,T ]

‖uα(t)‖X ≤ sup
t∈[0,T ]

{
‖Sα(t, 0)‖‖u0α‖X +

∫ t

0

‖Sα(t, s)‖‖fα(s)‖Xds
}

≤ sup
t∈[0,T ]

{
‖Sα(t, 0)‖‖u0α‖X + sup

s∈[0,t]
‖Sα(t, s)‖‖fα(s)‖X

∫ t

0

ds

}
≤ sup
t∈[0,T ]

{
mewtK(2N)pα +mewtK(2N)pαt

}
≤ (1 + T )mewTK(2N)pα.

Finally, for q > 2p+ 1 we obtain∑
α∈I

sup
t∈[0,T ]

‖uα(t)‖2X(2N)−qα ≤
(
(1 + T )mewTK

)2∑
α∈I

(2N)(2p−q)α <∞.

3 Extensions and applications

Our results can be extended to a far more general case of stochastic evolution
equation of the form

ut(t, ω) = Au(t, ω) + p♦n(u(t, ω)) + f(t, ω), t ∈ (0, T ]

u(0, ω) = u0(ω), ω ∈ Ω,
(3.1)

with a Wick-polynomial type of nonlinearity

p♦n(u) =

n∑
k=0

ak u
♦k = a0 + a1 u+ a2 u

♦2 + a3 u
♦3 + . . . an u

♦n, (3.2)

where an 6= 0 and ak, 0 ≤ k ≤ n are either constants or deterministic functions. Equation
(3.1) generalizes equation (2.1) and it can be solved by the very same method presented
in the paper, provided that one stipulates that the corresponding deterministic version
of (3.1) has a solution and modifies assumption (A4 − n) correspondingly. Hence, we
replace (A4− n) with the following assumption:

(A4-pol-n) The Cauchy problem

d

dt
u0(t) = A0u0(t) + pn(u0(t)) + f0(t), t ∈ (0, T ]; u0(0) = u00,

has a classical solution u0 ∈ C1([0, T ], X), where

pn(u) =

n∑
k=0

ak u
k = a0 + a1 u+ a2 u

2 + a3 u
3 + . . . an u

n, (3.3)

is a classical polynomial of degree n corresponding to the Wick-polynomial (3.2).

We extend Theorem 2.8, and for the sake of technical simplicity, present only a
procedure for solving (3.1) for n = 3, but note that the general case may be done mutatis
mutandis.

First we note that from the form of the process (2.2) and from the form of its Wick-
powers (2.3), as well as from (2.29) we obtain the expansion of the Wick-polynomial
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nonlinearity

p♦3 (u) = a0 + a1 u+ a2 u
♦2 + a3 u

♦3

= a0H0 + a1

(
u0H0 +

∑
|α|>0

uαHα

)
+ a2

(
u20H0 +

∑
|α|>0

(
2u0uα +

∑
0<β<α

uβuα−β

)
Hα

)
+

+ a3

(
u30H0 +

∑
|α|>0

(
3u20uα + 3u0

∑
0<β<α

uα−βuβ +
∑

0<β<α

∑
0<γ<β

uα−βuβ−γuγ(t)
)
Hα

)
.

(3.4)

When summing up the corresponding coefficients, the expression (3.4) transforms to

p♦3 (u) = (a0 + a1u0 + a2 u
2
0 + a3 u

3
0)H0

+
∑
α>0

(
(3a3u

2
0 + 2a2u0 + a1)uα + (3a3u0 + a2)

∑
0<β<α

uα−βuβ

+ a3
∑

0<β<α

∑
0<γ<β

uα−βuβ−γuγ

)
Hα

= p3(u0) +
∑
α>0

(
p′3(u0)uα +

1

2!
· p′′3(u0)

∑
0<β<α

uα−βuβ

+
1

3!
· p′′′3 (u0)

∑
0<β<α

∑
0<γ<β

uα−βuβ−γuγ

)
Hα,

where p′3, p′′3 and p′′′3 denote the first, the second and the third derivative of the polynomial
(3.3), respectively.
Thus, by applying the Wiener-Itô chaos expansion method to the nonlinear stochastic
problem (3.1) we obtain the system of infinitely many deterministic Cauchy problems:

1◦ for α = 0
d

dt
u0(t) = A0u0(t) + p3(u0(t)) + f0(t), u0(0) = u00, (3.5)

and

2◦ for α > 0

d

dt
uα(t) =

(
Aα + p′3(u0(t))Id

)
uα(t) +

1

2
p′′3(u0(t))

∑
0<β<α

uα−β(t)uβ(t)+

+
1

6
p′′′3 (u0(t))

∑
0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t) + fα(t),

uα(0) = u0α.

(3.6)

with t ∈ (0, T ] and ω ∈ Ω.

We denote by

Bα,p3(t) = Aα + p′3(u0(t))Id and

gα,p3(t) =
1

2
· p′′3(u0)

∑
0<β<α

uα−β(t)uβ(t)

+
1

6
· p′′′3 (u0)

∑
0<β<α

∑
0<γ<β

uα−β(t)uβ−γ(t)uγ(t) + fα(t),
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for t ∈ (0, T ] and all α > 0. Hence, the problems (3.6) for α > 0 can be written in the
form

d

dt
uα(t) = Bα,p3(t)uα(t) + gα,p3(t), t ∈ (0, T ]

uα(0) = u0α.
(3.7)

Theorem 3.1. Let the assumptions (A1) − (A3) and (A4 − pol − 3) be fulfilled. Then,
there exists a unique almost classical solution u ∈ C([0, T ], X)⊗ (S)−1 to (3.1).

Proof. Under the assumptions (A1)− (A2) and the assumption (A4− pol − 3) that (3.5)
has a classical solution in C1([0, T ], X), it can be proven (similarly as it was done in
Lemma 2.3) that for every α > 0 the evolution system (3.7) has a unique classical solution
uα ∈ C1([0, T ], X). Then, in order to show that u is an almost classical solution to (3.1),
one has to prove that u ∈ C([0, T ], X)⊗ (S)−1. Indeed, this can be done in an analogue
way as in the proof of Theorem 2.10, with L0 = supt∈[0,T ] ‖u0(t)‖ and

M3 = max{ sup
t∈[0,T ]

‖p3(u0(t))‖, sup
t∈[0,T ]

‖p′3(u0(t))‖, sup
t∈[0,T ]

‖p′′3(u0(t))‖, sup
t∈[0,T ]

‖p′′′3 (u0(t))‖}.

3.1 Examples

We present two classes of stochasic reaction-diffusion equations that belong to the
class of problems (3.1).

3.1.1 Stochastic generalized FitzHugh-Nagumo equation

The nonlinear stochastic evolution equation

ut(t, ω) = Au(t, ω) + u♦2(t, ω)− u♦3(t, ω) + f(t, ω), t ∈ (0, T ]

u(0, ω) = u0(ω), ω ∈ Ω,
(3.8)

which belongs to the class of generalized FitzHugh-Nagumo equations is an equation of
type (3.1). Particularly, for A = 4, the corresponding reaction-diffusion deterministic
equation

ut = 4u(t) + F (u(t)), u(0) = u0, (3.9)

with a nonlinearity of the form F (u) = −u(a − u)(b − u) is the celebrated FitzHugh-
Nagumo equation, which arises in various models of neurophysiology. The equation (3.9)
has been introduced by FitzHugh and Nagumo [5, 17] in order to model the conduction
of electrical impulses in a nerve axon. A stochastic version of the FitzHugh-Nagumo
equation (3.9) was studied in [1], while a control problem for the FitzHugh-Nagumo
equation perturbed by coloured Gaussian noise was solved in [3]. Clearly, the equation
(3.8) is generalizing (3.9) if we choose a = 0 and b = 1 in the form of F (u). For the choice
of a = b = 0 the equation (3.8) reduces to the Fujita type equation (2.1).

Here, by appying Theorem 3.1, we obtain a unique almost classical solution of the
equation (3.8).

3.1.2 Stochastic generalized Fisher-KPP equation

The deterministic nonlinear equation of the form (3.9) with F (u) = au(1 − u) is called
the Fisher equation (also known as the Kolmogorov-Petrovsky-Piskunov equation). Such
equations occur in phase transition problems arising in biology, ecology, plasma physics
[4, 13] etc. Particularly, such an equation provides a deterministic model for the density
of a population living in an environment with a limited carrying capacity. It also describes
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the wave progression of an epidemic outbreak or the spread of an advantageous gene
within a population. Other applications in medicine involve the modeling of cellular
reactions to the introduction of toxins, voltage propagation through a nerve axon, and
the process of epidermal wound healing [2]. In other research areas it has been also
used to study flame propagation of fire outbreaks, and neutron flux in nuclear reactors.

Stochastic models that include random effects due to some external (enviromental)
noise were studied in the framework of white noise analysis [10], where the authors
proved the existence of the traveling wave solution. In the same setting, the stochastic
KPP equation, i.e. heat equations with semilinear potential and perturbation by a
multiplicative noise were considered in [19]. Under suitable assumptions, by applying
the Itô calculus, existence of a unique strong traveling wave solution was proven, and an
implicit Feyman-Kac-like formula for the solution was presented. Here we consider a
generalized Wick-version of the stochastic Fisher-KPP equation

ut(t, ω) = Au(t, ω) + u(t, ω)− u♦2(t, ω) + f(t, ω), t ∈ (0, T ]

u(0, ω) = u0(ω), ω ∈ Ω,

which can be solved by applying Theorem 3.1.

3.2 Conclusion

In this paper we have presented a methodology for solving stochastic evolution
equations involving nonlinearities of Wick-polynomial type. However, the applications
and extensions of the theory do not stop here. In place of the nonlinearity u♦2, one might
consider u♦ux and with appropriate modifications solve the stochastic Burgers-type
equation ut = uxx + u♦ux + f or the stochastic KdV equation ut = uxxx + u♦ux + f ,
coalesced into the form ut = Au+ u♦ux + f . One can also replace the nonlinearity u♦n

by u♦|u|n−1, where the modulus of a complex-valued stochastic process is understood as
|u| =

∑
α∈I |uα|Hα, and find explicit solutions to the stochastic nonlinear Schrödinger

equation (i~)ut = ∆u+ u♦|u|n−1 + f .
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