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Abstract

In this paper we provide necessary and sufficient conditions for the mean square
approximation of a random field by an ortho-martingale. The conditions are formulated
in terms of projective criteria. Applications are given to linear and nonlinear random
fields with independent innovations.
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1 Introduction

A random field consists of multi-indexed random variables (Xu)u∈Zd . An important
class of random fields are ortho-martingales which were introduced by Cairoli (1969)
and have resurfaced in many recent works. The central limit theorem for stationary
ortho-martingales was recently investigated by Volný (2015). It is remarkable that
Volný (2015) imposed the ergodicity condition to only one direction of the stationary
random field. In order to exploit the richness of the martingale techniques, in this paper
we obtain necessary and sufficient conditions for an ortho-martingale approximation
in mean square. These approximations extend to random fields the corresponding
results obtained for sequences of random variables by Dedecker et al. (2007), Zhao and
Woodroofe (2008) and Peligrad (2010). The tools for proving these results consist of
projection decomposition. We present applications of our results to linear and nonlinear
random fields.

We would like to mention several remarkable recent contributions, which provide
interesting sufficient conditions for ortho-martingale approximations, by Gordin (2009),
El Machkouri et al. (2013), Volný and Wang (2014), Cuny et al. (2015), Peligrad and
Zhang (2017), and Giraudo (2017). A special type of ortho-martingale approximation, so
called co-boundary decomposition, was studied by El Machkouri and Giraudo (2017) and
Volný (2017). Other recent results involve interesting mixingale-type conditions in Wang
and Woodroofe (2013), and mixing conditions in Bradley and Tone (2017).

Our results could also be formulated in the language of dynamical systems, leading
to new results in this field.
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Martingale approximations for random fields

2 Results

For the sake of clarity, especially due to the complicated notation, we shall explain
first the results for double indexed random fields and, at the end, we shall formulate
the results for general random fields. No technical difficulties arise when the double
indexed random field is replaced by a multiple indexed one.

We shall introduce a stationary random field adapted to a stationary filtration. In
order to construct a flexible filtration it is customary to start with a stationary real valued
random field (ξn,m)n,m∈Z defined on a probability space (Ω,K, P ) and to introduce
another stationary random field (Xn,m)n,m∈Z defined by

Xn,m = f(ξi,j , i ≤ n, j ≤ m), (2.1)

where f is a measurable function defined on RZ2

. Note that Xn,m is adapted to the
filtration Fn,m = σ(ξi,j , i ≤ n, j ≤ m). Without restricting the generality we shall define

(ξu)u∈Z2 in a canonical way on the probability space Ω = RZ2

, endowed with the σ−field,
B, generated by cylinders. Then, if ω = (xv)v∈Z2 , we define ξ′u(ω) = xu. We construct a
probability measure P ′ on B such that for all B ∈ B and any m and u1, ...,um we have

P ′((xu1 , ..., xum) ∈ B) = P ((ξu1 , ..., ξum) ∈ B).

The new sequence (ξ′u)u∈Z2 is distributed as (ξu)u∈Z2 and re-denoted by (ξu)u∈Z2 . We
shall also re-denote P ′ as P. Now on RZ2

we introduce the operators

Tu((xv)v∈Z2) = (xv+u)v∈Z2 .

Two of them will play an important role in our paper, namely when u =(1, 0) and when
u =(0, 1). By interpreting the indexes as notations for the lines and columns of a matrix,
we shall call

T ((xu,v)(u,v)∈Z2) = (xu+1,v)(u,v)∈Z2

the vertical shift and
S((xu,v)(u,v)∈Z2) = (xu,v+1)(u,v)∈Z2

the horizontal shift. Then define

Xj,k = f(T jSk(ξa,b)a≤0,b≤0). (2.2)

We assume that X0,0 is centered and square integrable. We notice that the variables
are adapted to the filtration (Fn,m)n,m∈Z . To compensate for the fact that, in the context
of random fields, the future and the past do not have a unique interpretation, we shall
consider commuting filtrations, i.e.

E(E(X|Fa,b)|Fu,v) = E(X|Fa∧u,b∧v).

This type of filtration is induced, for instance, by an initial random field (ξn,m)n,m∈Z of
independent random variables, or, more generally can be induced by stationary random
fields (ξn,m)n,m∈Z where only the columns are independent, i.e. η̄m = (ξn,m)n∈Z are
independent. This model often appears in statistical applications when one deals with
repeated realizations of a stationary sequence.

It is interesting to point out that commuting filtrations can be described by the
equivalent formulation: for a ≥ u we have

E(E(X|Fa,b)|Fu,v) = E(X|Fu,b∧v), (2.3)
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Martingale approximations for random fields

where, as usual, a∧b stands for the minimum of a and b. This follows from this Markovian-
type property (see for instance Problem 34.11 in Billingsley, 1995).

Below we use the notations

Sk,j =
∑k,j

u,v=1
Xu,v, E(X|Fa,b) = Ea,b(X).

For an integrable random variable X and (u, v) ∈ Z2, we introduce the projection
operators defined by

Pũ,v(X) = (Eu,v − Eu−1,v)(X),

Pu,ṽ(X) = (Eu,v − Eu,v−1)(X).

Note that, by (2.3), we have

Pu,v(X) := Pũ,v ◦ Pu,ṽ(X) = Pu,ṽ ◦ Pũ,v(X)

and by an easy computation we have that

Pu,v(X) = Eu,v(X)− Eu,v−1(X)− Eu−1,v(X) + Eu−1,v−1(X). (2.4)

We shall introduce the definition of an ortho-martingale, which will be referred to as
a martingale with multiple indexes or simply martingale.

Definition 2.1. Let d be a function and define

Dn,m = d(ξi,j , i ≤ n, j ≤ m). (2.5)

Assume integrability. We say that (Dn,m)n,m∈Z is a martingale differences field if
Ea,b(Dn,m) = 0 for either a < n or b < m.

Set

Mk,j =
∑k,j

u,v=1
Du,v.

In the sequel we shall denote by || · || the norm in L2. By⇒ we denote the convergence
in distribution.

Definition 2.2. We say that a random field (Xn,m)n,m∈Z defined by (2.1) admits a
martingale approximation if there is a sequence of martingale differences (Dn,m)n,m∈Z
defined by (2.5) such that

lim
n∧m→∞

1

nm
||Sn,m −Mn,m||2 = 0. (2.6)

Theorem 2.3. Assume that (2.3) holds. The random field (Xn,m)n,m∈Z defined by (2.1)
admits a martingale approximation if and only if

1

nm

n∑
j=1

m∑
k=1

||P1,1(Sj,k)−D1,1||2 → 0 when n ∧m→∞, (2.7)

and both

1

nm
||E0,m(Sn,m)||2 → 0 and

1

nm
||En,0(Sn,m)||2 → 0 when n ∧m→∞. (2.8)

Remark 2.4. Condition (2.8) in Theorem 2.3 can be replaced by

1

nm
||Sn,m||2 → ||D1,1||2. (2.9)
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Theorem 2.5. Assume that (2.3) holds. The random field (Xn,m)n,m∈Z defined by (2.1)
admits a martingale approximation if and only if

1

nm

n∑
j=1

m∑
k=1

P1,1(Sj,k) converges in L2 to D1,1 when n ∧m→∞ (2.10)

and the condition (2.9) holds.

Corollary 2.6. Assume that the vertical shift T (or horizontal shift S) is ergodic and
either the conditions of Theorem 2.3 or Theorem 2.5 hold. Then

1
√
n1n2

Sn1,n2 ⇒ N(0, c2) when n1 ∧ n2 →∞, (2.11)

where c2 = ||D0,0||2.

3 Proofs

Proof of Theorem 2.3. We start from the following orthogonal representation

Sn,m =

n∑
i=1

m∑
j=1

Pi,j(Sn,m) +Rn,m, (3.1)

with

Rn,m = En,0(Sn,m) + E0,m(Sn,m)− E0,0(Sn,m).

Note that for all 1 ≤ a ≤ i − 1, 1 ≤ b ≤ j − 1 we have Pi,j(Xa,b) = 0; for all a ≥ i,

1 ≤ b ≤ j − 1 we have Pi,j(Xa,b) = 0 and for all 1 ≤ a ≤ i − 1, b ≥ j, Pi,j(Xa,b) = 0.
Whence,

Pi,j(Sn,m) = Pi,j(

n∑
u=i

m∑
v=j

Xu,v).

This shows that for any martingale differences sequence defined by (2.5), by orthogonal-
ity, we obtain

||Sn,m −Mn,m||2 =

n∑
i=1

m∑
j=1

||Pi,j(

n∑
a=i

m∑
b=j

Xa,b)−Di,j ||2 + ||Rn,m||2 (3.2)

=

n∑
i=1

m∑
j=1

||P1,1(

n−i+1∑
a=1

m−j+1∑
b=1

Xa,b)−D1,1||2 + ||Rn,m||2

=

n∑
i=1

m∑
j=1

||P1,1(Si,j)−D1,1||2 + ||Rn,m||2.

A first observation is that we have a martingale approximation if and only if both (2.7) is
satisfied and ||Rn,m||2/nm→ 0 as n ∧m→∞.

Computation, involving the fact that the filtration is commuting, shows that

||Rn,m||2 = ||En,0(Sn,m)||2 + ||E0,m(Sn,m)||2 − ||E0,0(Sn,m)||2, (3.3)

and since ||E0,0(Sn,m)|| ≤ ||E0,m(Sn,m)|| we have that ||Rn,m||2/nm→ 0 as n ∧m→∞ if
and only if (2.8) holds.

Proof of Theorem 2.5. Let us first note that D1,1 defined by (2.10) is a martingale
difference. By using the translation operators we then define the sequence of martingale
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differences (Du,v)u,v∈Z and the sum of martingale differences (Mu,v)u,v∈Z . This time we
evaluate

||Sn,m −Mn,m||2 = E(S2
n,m) + E(M2

n,m)− 2E(Sn,mMn,m).

By using the martingale property, stationarity and simple algebra we obtain

E(Sn,mMn,m) =

n∑
u=1

m∑
v=1

n∑
i≥u

m∑
j≥v

E(Du,vXi,j) =

n∑
u=1

m∑
v=1

E(D1,1Su,v).

A simple computation involving the properties of conditional expectation and the martin-
gale property shows that

E(D1,1Su,v) = E(D1,1P1,1(Su,v)).

By (2.10) this identity gives that

lim
n∧m→∞

1

nm
E(Sn,mMn,m) = E(D2

1,1).

From the above considerations

lim
n∧m→∞

1

nm
||Sn,m −Mn,m||2 = lim

n∧m→∞

1

nm
E(S2

n,m)− E(D2
1,1),

whence the martingale approximation holds by (2.9).
Let us assume now that we have a martingale approximation. According to Theorem

2.3 condition (2.7) is satisfied. In order to show that (2.7) implies (2.10) we apply the
Cauchy-Schwarz inequality twice:

|| 1

nm

n∑
i=1

m∑
j=1

(P1,1(Si,j)−D1,1)||2 ≤ 1

nm2

n∑
i=1

||
m∑
j=1

(P1,1(Si,j)−D1,1)||2

≤ 1

nm

n∑
i=1

m∑
j=1

||P1,1(Si,j)−D1,1)||2.

Also, by the triangular inequality

| 1√
nm
||Sn,m|| − ||D1,1|| | ≤

1√
nm
||Sn,m −Mn,m|| → 0 as n ∧m→∞,

and (2.9) follows.

Proof of Remark 2.4. If we have a martingale decomposition, then by Theorem 2.3 we
have (2.7) and by Theorem 2.5 we have (2.9). Now, in the opposite direction, just note
that (2.7) implies (2.10) and then apply Theorem 2.5.

Proof of Corollary 2.6. This Corollary follows as a combination of Theorem 2.3 (or
Theorem 2.5) with the main result in Volný (2015) via Theorem 25.4 in Billingsley
(1995).

4 Multidimensional index sets

The extensions to random fields indexed by Zd, for d > 2, are straightforward
following the same lines of proofs as for a double indexed random field. By u ≤ n we
understand u =(u1, ..., ud), n =(n1, ..., nd) and 1 ≤ u1≤n1,..., 1 ≤ ud≤nd. We shall start
with a strictly stationary real valued random field ξ = (ξu)u∈Zd , defined on the canonical

probability space RZd

and define the filtrations Fu = σ(ξj : j ≤ u). We shall assume
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that the filtration is commuting if EuEa(X) = Eu∧a(X), where the minimum is taken
coordinate-wise. We define

Xm = f((ξj)j≤m) and set Sk =
∑k

u=1
Xu.

We also define Ti the coordinate-wise translations and then

Xk = f(T k1
1 ◦ ... ◦ T

kd

d (ξu)u≤0).

Let d be a function and define

Dm = d((ξj)j≤m) and set Mk =
∑k

u=1
Du. (4.1)

Assume integrability. We say that (Dm)m∈Zd is a martingale differences field if Ea(Dm) =

0 is at least one coordinate of a is strictly smaller than the corresponding coordinate of
m. We have to introduce the d-dimensional projection operators. By using the fact that
the filtration is commuting, it is convenient to define

Pu(X) = Pu,1 ◦ Pu,2 ◦ ... ◦ Pu,d(X),

where
Pu,j(Y ) = E(Y |Fu)− E(Y |F (j)

u ).

Above, we used the notation: F (j)
u = Fu′ where u′ has all the coordinates of u with the

exception of the j-th coordinate, which is uj − 1. For instance when d = 3, Pu,2(Y ) =

E(Y |Fu1,u2,u2)− E(Y |Fu1,u2−1,u3).

We say that a random field (Xn)n∈Zd admits a martingale approximation if there is a
sequence of martingale differences (Dm)m∈Zd such that

1

|n|
||Sn −Mn||2 → 0 when min

1≤i≤d
ni →∞, (4.2)

where |n| =n1...nd.
Let us introduce the following regularity condition

1

|n|
||Sn||2 → E(D2

1) when min
1≤i≤d

ni →∞. (4.3)

Theorem 4.1. Assume that the filtration is commuting. The following statements are
equivalent:
(a) The random field (Xn)n∈Zd admits a martingale approximation.
(b) The random field satisfies (4.3) and

1

|n|
∑n

j≥1
||P1(Sj)−D1||2 → 0 when min

1≤i≤d
ni →∞. (4.4)

(c) The random field satisfies (4.4) and for all j, 1 ≤ j ≤ d, we have

1

|n|
||Enj (Sn)||2 → 0 when min

1≤i≤d
ni →∞,

where and nj∈Zd has the j − th coordinate 0 and the other coordinates equal to the
coordinates of n.
(d) The random field satisfies (4.3) and

1

|n|

n∑
j=1

P1(Sj) converges in L2 to D1 when min
1≤i≤d

ni →∞. (4.5)
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Corollary 4.2. Assume that one of the shifts (Ti)1≤i≤d is ergodic and either one of the
conditions of Theorem 4.1 holds. Then

1√
|n|

Sn ⇒ N(0, c2) when min
1≤i≤d

ni →∞,

where c2 = ||D0||2.

5 Examples

Let us apply these results to linear and nonlinear random fields with independent
innovations.

Example 5.1. (Linear field) Let (ξn)n∈Zd be a random field of independent, identically
distributed random variables which are centered and have finite second moment, σ2 =

E(ξ20). For k ≥ 0 define

Xk =
∑
j≥0

ajξk−j.

Assume that
∑

j≥0 a
2
j <∞ and denote bj =

∑j−1
k=0 ak. Also assume that

1

|n|

n∑
j=1

bj → c when min
1≤i≤d

ni →∞ (5.1)

and
E(S2

n)

|n|
→ c2σ2 when min

1≤i≤d
ni →∞.

Then the martingale approximation holds.

Proof of Example 5.1. The result follows by simple computations and by applying
Theorem 4.1 (d).

Example 5.2. (Volterra field) Let (ξn)n∈Zd be a random field of independent random
variables identically distributed, centered and with finite second moment, σ2 = E(ξ20).
For k ≥ 1, define

Xk =
∑

(u,v)≥(0,0)

au,vξk−uξk−v,

where au,v are real coefficients with au,u = 0 and
∑

u,v≥0 a
2
u,v <∞. Denote

cn,u,v =
1

|n|

n∑
j=1

j∑
k=1

(ak−u,k−v + ak−v,k−u). (5.2)

Denote A = {u ≤ 1,there is 1 ≤ i ≤ d with ui = 1} and B = {u ≤ 1} and assume that

lim
n>m→∞

∑
(u,v)∈(A,B)

(cn,u,v − cm,u,v)2 = 0. (5.3)

Also assume that
E(S2

n)

|n|
→ σ4c2 when min

1≤i≤d
ni →∞,

where c2 is the limit of

1

|n|
∑

(u,v)∈(A,B)

c2n,u,v when min
1≤i≤d

ni →∞.

Then the martingale approximation holds.
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Proof of Example 5.2. We have

P1(Xk) =
∑

(u,v)≥(0,0)

au,vP1(ξk−uξk−v) =
∑

(u,v)≥(k,k)

ak−u,k−vP1(ξuξv).

Note that P1(ξuξv) 6= 0 if and only if u ∈A and v ∈B or v ∈A and u ∈B. Therefore,

P1(Xk) =
∑

(u,v)∈(A,B)

(ak−u,k−v + ak−v,k−u)ξuξv ,

and

1

|n|

n∑
j=1

P1(Sj) =
1

|n|
∑

(u,v)∈(A,B)

n∑
j=1

j∑
k=1

(ak−u,k−v + ak−v,k−u)ξuξv .

By independence, and with the notation (5.2) this convergence happens if (5.3) holds. It
remains to apply Theorem 4.1 (d).
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