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Abstract

For any discrete target distribution, we exploit the connection between Markov chains
and Stein’s method via the generator approach and express the solution of Stein’s
equation in terms of expected hitting time. This yields new upper bounds of Stein’s
factors in terms of the parameters of the Markov chain, such as mixing time and
the gradient of expected hitting time. We compare the performance of these bounds
with those in the literature, and in particular we consider Stein’s method for discrete
uniform, binomial, geometric and hypergeometric distribution. As another application,
the same methodology applies to bound expected hitting time via Stein’s factors. This
article highlights the interplay between Stein’s method, modern Markov chain theory
and classical fluctuation theory.
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1 Introduction and main results

Stein’s method is well-known to be a powerful method for bounding the error rates
of various distributional approximation, see e.g. Barbour and Chen (2005); Diaconis and
Holmes (2004); Ley et al. (2017); Ross (2011) and the references therein. At the heart of
it lies the Stein’s equation

h(x)− Eh(Z) = Lfh(x) , (1.1)

where Z ∼ π is the target distribution with support on X , L is the Stein operator associ-
ated with π, h belongs to a rich function class such as the class of indicator functions or
Lipschitz continuous functions and fh is the solution of the Stein’s equation. One popular
approach to identify the Stein operator L is the generator approach introduced by Bar-
bour (1990); Götze (1991), where L is the generator of a Markov process X = (Xt)t≥0
with transition semigroup (Pt)t≥0 on the state space X and stationary distribution π.
Writing π(f) =

∫
fdπ, the solution fh can then be related to X via

fh(x) =

∫ ∞
0

Pth(x)− π(h) dt, (1.2)

whenever the above integral exists. The obvious advantage of this approach is the
connection with Markov processes, see e.g. Brown and Xia (2001); Eichelsbacher and
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Hitting time and mixing time bounds of Stein’s factors

Reinert (2008). In addition, the solution form of fh naturally invites spectral techniques
for Stein’s method, which has been the subject of investigation in Schoutens (2001).
We also remark that Döbler et al. (2017) propose an interesting iterative procedure for
bounding fh and its derivative.

Suppose now X = J0, NK with N ∈ N0 ∪ {∞} is a countable set, where we write
Ja, bK = {a, a+1, . . . , b− 1, b} for a, b ∈ Z. In Markov chain theory, the operator appearing
on the right of (1.2)

D :=

∫ ∞
0

Pt − π dt

is commonly known as deviation kernel D = (D(i, j))i,j∈X as in Coolen-Schrijner and
van Doorn (2002); Mao (2004) (also known as fundamental matrix Kemeny et al. (1976),
ergodic potential Syski (1978) or centered resolvent Miclo (2016)). In this paper, we
further exploit this intimate connection between Markov chain theory and Stein’s method,
thereby allowing us to express fh in terms of hitting time of an associated birth-death
chain for any discrete target distribution π as in Eichelsbacher and Reinert (2008), and
from there connects Stein’s method with modern Markov chain literature and offer
universal bounds of Stein’s factors in terms of quantities such as mixing time and
eigentime.

Before we discuss our main results, we fix our notations and revisit various param-
eters of countable Markov chains. We refer readers to Aldous and Fill (2002); Levin
et al. (2009); Montenegro and Tetali (2006) for in-depth account of these topics. For any
probability measure µ, ν with support on X , the total variation distance between µ and
ν is

||µ− ν||TV := sup
A⊂X

|µ(A)− ν(A)| = 1

2

∑
j∈X
|µ(j)− ν(j)|.

For f on X , we write ||f ||∞ := supx |f(x)|, the sup-norm of f . In this paper, we are
primarily interested in the following parameters associated with an ergodic countable
Markov chain X = (Xt)t≥0:

• Worst-case mixing time: for any ε > 0,

tmix(ε) := inf

{
t; sup

i
||Pt(i, ·)− π||TV < ε

}
.

• Average hitting time and relaxation time:

tav :=
∑
i,j∈X

Ei(τj)π(i)π(j),

where τA := inf {t; Xt ∈ A} is the first hitting time of A by X, and as usual we write
τj = τ{j}. Note that for uniformly ergodic Markov chain, the eigentime identity
Aldous and Fill (2002); Cui and Mao (2010); Mao (2004) is given by

tav =

N∑
i=1

1

λi
<∞,

where λ0 = 0 < λ1 ≤ λ2 ≤ . . . are eigenvalues of −L. A closely related parameter
is the relaxation time

trel := 1/λ1,

and for finite reversible Markov chains we have tmix(ε) ≤ trel log(1/επmin) with
πmin := mini π(i), see e.g. (Levin et al., 2009, Theorem 20.6).
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• Worst-case expected strong stationary time Aldous (1982):

tsst := sup
i

inf{Ei(Ti) : Pi(XTi
= j) = π(j) ∀j ∈ X}.

• Worst-case expected hitting time of large set Oliveira (2012); Peres and Sousi
(2015): for 0 < α < 1/2,

thit(α) := sup
x,A⊂X ,π(A)≥α

Ex(τA).

• Worst-case expected deviation of hitting time to a single state Aldous (1982):

tdev := sup
i,k

∑
j∈X
|Ei(τj)− Ek(τj)|π(j).

Note that Oliveira (2012); Peres and Sousi (2015) show that for finite Markov chains
tmix(1/4) and thit(α) are equivalent up to a constant depending on α, while Aldous (1982)
proves the equivalence (up to some universal constants) between tmix(1/4), tsst, tdev for
reversible finite Markov chains. With the above notations in mind, we are now ready to
state the main result of this paper:

Theorem 1.1 (Hitting time as Stein’s factors). Suppose that π is a discrete target distri-
bution on X = J0, NK with N ∈ N0 ∪ {∞}. The deviation kernel D associated with L and
π exists and is finite if and only if ∑

i∈X
π(i)Ei(τ0) <∞.

In such case, if L is reversible, i, j ∈ X and for any h such that π(|h|) <∞,∑
i∈X

π(i)|h|(i)Ei(τj) <∞,

we can write

D(j, j) = π(j)
∑
i∈X

π(i)Ei(τj), (1.3)

D(i, j) = D(j, j)− π(j)Ei(τj), (1.4)

fh(i) = Dh(i) =
∑
j∈X

h(j)D(i, j), (1.5)

Ofh(i) := fh(i+ 1)− fh(i) =
∑
j∈X

h(j)π(j) (Ei(τj)− Ei+1(τj)) . (1.6)

In particular, if h = δj , the Dirac mass at j, the sup-norm of the Stein factors are

||fδj ||∞ ≤ 2tav,

||Ofδj ||∞ = π(j) sup
i∈X
|Ei(τj)− Ei+1(τj)| ≤ tdev.

Note that we can always pick L to be a birth-death process, and in such case the
expected hitting time Ei(τj) is readily computable and is expressed solely in terms of π,
see Remark 1.2.

Remark 1.2. For any discrete distribution π on X , it is shown in Eichelsbacher and
Reinert (2008) that we can always pick L to be the generator of a birth-death process
with birth rate bi := L(i, i + 1) = (i + 1)π(i + 1)/π(i) for i ∈ J0, N − 1K and death rate
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di := L(i, i− 1) = i for i ∈ J1, NK. According to Coolen-Schrijner and van Doorn (2002);
Kijima (1997); Mao (2004), for i, j ∈ X = J0, NK,

Ei(τj) =

j−1∑
k=i

1

bkπ(k)
π(J0, kK)1i<j +

i−1∑
k=j

1

bkπ(k)
π(Jk + 1, NK)1i≥j ,

and so the discrete forward gradient Ofδj can be written as

Ofδj (i) = π(j)

(
1

biπ(i)
π(J0, iK)1i<j +

1

biπ(i)
π(Ji+ 1, NK)1i≥j

)
.

Another formula of Ei(τj) involves differences in summation of eigenvalues, which is
given by, for example for i < j,

Ei(τj) =

j−1∑
k=0

1

λ
J0,j−1K
k

−
i−1∑
k=0

1

λ
J0,i−1K
k

,

where (λ
J0,i−1K
k )i−1k=0 are the non-zero eigenvalues of −L restricted to J0, i−1K, see e.g. Fill

(2009); Gong et al. (2012) and the references therein. In any case all these expressions
are expressed in terms of a given target π.

Remark 1.3. It is tempting to think that ||fδj ||∞ equals to D(j, j). Yet, while D(i, j) ≤
D(j, j) for any i, j, it is unclear to the author whether |D(i, j)| is less than or equal to
D(j, j).

Theorem 1.1 reveals that hitting time and other Markov chain parameters as de-
scribed are closely related to the structure and properties of fh. In particular, ||Ofδj ||∞ ≤
tdev. This upper bound allows us to bound the Stein factors using various parameters:

Corollary 1.4 (Bounding Stein’s factors via hitting and mixing time). Suppose that π is a
discrete distribution with finite support on X = J0, NK and N <∞, and L is a reversible
generator. Let H = {h : X 7→ [0, 1]} and i ∈ X , then

sup
h∈H
|fh(i)| ≤

∑
j∈X
|D(i, j)| ≤ 2tav,

sup
h∈H
|Ofh(i)| ≤

∑
j∈X

π(j)|Ei(τj)− Ei+1(τj)| ≤ tdev ≤


10tsst,

5tmix(1/4),

5trel log(4/πmin),

5Cαthit(α),

where 0 < α < 1/2 and Cα > 0 is an universal constant depending only on α.

Remark 1.5. In practice, we argue that the relaxation time bound is perhaps the most
useful of all as exact expressions or bounds on spectral gap trel = 1/λ1 are readily
available for many models. As a side note, we can also offer upper bounds involving log-
Sobolev constant by bounding the mixing time with that, see Diaconis and Saloff-Coste
(1996). This may perhaps yield tighter upper bound due to the double logarithm.

The rest of this paper is organized as follows. In Section 2, we present the proofs of
Theorem 1.1 and Corollary 1.4. In Section 3, we illustrate our main results by detailing a
few examples involving common distributions. As another application, we demonstrate a
way to bound expected hitting time via Stein’s factor in Section 4.
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2 Proofs of the main results

2.1 Proof of Theorem 1.1

Coolen-Schrijner and van Doorn (2002); Mao (2004) show that D exists and is finite
if and only if ∑

i∈X
π(i)Ei(τj) <∞.

for some j and then for all j by irreducibility. The expressions of D(i, j) and D(j, j)

follow readily from (Coolen-Schrijner and van Doorn, 2002, equation 5.5, 5.7). Define the
α-potential kernel Dα = (Dα(i, j))i,j∈X by

Dα(i, j) :=

∫ ∞
0

e−αt (Pt(i, j)− πj) dt.

Note that by dominated convergence theorem,

Dαh(i) =

∫ ∞
0

e−αt (Pth(i)− π(h)) dt.

Under the proposed assumptions on h and reversibility of L, we use (Coolen-Schrijner
and van Doorn, 2002, Lemma 5.1) to arrive at

fh(i) =

∫ ∞
0

(Pth(i)− π(h)) dt = lim
α→0

Dαh(i) = Dh(i) =
∑
j∈X

h(j)D(i, j).

To prove (1.6), we see that

Ofh(i) =
∑
j∈X

h(j) (D(i+ 1, j)−D(i, j)) =
∑
j∈X

h(j)π(j) (Ei(τj)− Ei+1(τj)) .

Now, we take h = δj and fδj (i) = D(i, j). Using triangle inequality, we have

|fδj (i)| = |D(i, j)| ≤ D(j, j) + π(j)Ei(τj) ≤
∑
j∈X

D(j, j) +
∑
j∈X

π(j)Ei(τj) = tav + tav = 2tav,

where we use the fact that
∑
j D(j, j) = tav and the random target lemma (Levin et al.,

2009, Lemma 10.1) for the second term. As for the gradient of fδj , it is straight forward
from (1.6) that

||Ofδj ||∞ = π(j) sup
i∈X
|Ei(τj)− Ei+1(τj)| ≤ tdev.

2.2 Proof of Corollary 1.4

To arrive at the first equation, we make use of (1.5), ||h||∞ ≤ 1 and triangle inequality
to arrive at

|fh(i)| ≤
∑
j∈X
|D(i, j)| ≤

∑
j∈X

D(j, j) +
∑
j∈X

π(j)Ei(τj) = tav +
∑
j∈X

π(j)Ei(τj).

Note that by the random target lemma (Levin et al., 2009, Lemma 10.1), the second term
is independent of i which implies

∑
j∈X π(j)Ei(τj) = tav, and desired result follows. For

the second set of equation, we apply (1.6) and ||h||∞ ≤ 1 to yield

|Ofh(i)| ≤
∑
j∈X

π(j)|Ei(τj)− Ei+1(τj)| ≤ sup
k

∑
j∈X

π(j)|Ei(τj)− Ek(τj)| ≤ tdev.

tdev ≤ 10tsst follows from (Aldous, 1982, Lemma 16), and making use of that together
with (Aldous, 1982, Lemma 12) give

tdev ≤ 10tsst ≤ 5tmix(1/4).
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Utilizing the above and (Levin et al., 2009, Theorem 20.6) leads to

tdev ≤ 5tmix(1/4) ≤ 5trel log(4/πmin).

Finally, the main result in Oliveira (2012); Peres and Sousi (2015) gives

tdev ≤ 5tmix(1/4) ≤ 5Cαthit(α).

3 Bounding Stein’s factors via hitting and mixing time - examples

In this section, we will discuss in detail several examples to illustrate both Theorem
1.1 and Corollary 1.4, and compare with existing bounds in the literature. Our primary
comparison is the bounds in Eichelsbacher and Reinert (2008). Notable results of this
section are the O(log n) bound in Example 3.2, and bounds in Example 3.3.

Example 3.1 (discrete uniform on J0, n− 1K with n <∞). In our first example, we look
at X = J0, n− 1K and π(i) = 1/n for i ∈ X , and we take L to be the uniform chain with
L(i, j) = 1 for all i 6= j as in (Aldous, 1982, Example 48), which is reversible. The nice
feature about this chain is that

Ei(τj) =

{
n− 1 if i 6= j,

0 if i = j.

Also, note that the eigenvalues of −L are 0 with multiplicity 1 and 1/n with multiplicities
n− 1. As a result, Theorem 1.1 now reads, for any i, j ∈ X ,

D(j, j) =

(
n− 1

n

)2

,

D(i, j) = −n− 1

n2
,

tav =
n− 1

n
,

||fδj ||∞ =

(
n− 1

n

)2

≤ 2tav,

||Ofδj ||∞ =
n− 1

n
.

As for Corollary 1.4, since tav = O(1/n),

sup
h∈H
||fh||∞ = O(1/n).

In addition, note that the relaxation time bound yields a crude upper bound of size
O(n log n) for the gradient of Stein’s solution:

sup
h∈H
|Ofh(i)| ≤

2(n− 1)

n
≤ 5

λ1
log(4/πmin) = 5n log(4n).

Note that Stein’s method for discrete uniform distribution has first been considered
in Diaconis and Holmes (2004, Chapter 2). In particular, in Theorem 2.2.1 of Diaconis
and Holmes (2004), it is shown in the proof that, in our notations, for odd n and h = δS ,
||fh||∞ ≤ (n − 1)/2, so our uniform bound of size O(1/n) seems to be tighter in this
setting.

Example 3.2 (Binomial distribution on J0, nK with parameters n and 0 < p < 1). In the
second example, we consider π(i) = Cni p

i(1 − p)n−i for i ∈ X = J0, nK. Stein’s method
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for binomial distribution has also been considered in Ehm (1991). We take L to be a
birth-death process with birth rate bi = p(n− i) and death rate di = (1−p)i. The non-zero
eigenvalues of −L are λk = k for k ∈ J1, nK (see e.g. Schoutens (2000)), and it follows
from Corollary 1.4 that

tav =

n∑
k=1

1

k
= O(log n),

sup
h∈H
||fh||∞ = O(log n).

As for the relaxation time bound, we have

sup
h∈H
||Ofh||∞ ≤ 5nmin

{
log

(
4

1− p

)
, log

(
4

p

)}
.

This O(n) bound does not seem to be useful at all when compared with the O(1) uniform
bound of suph∈H ||Ofh||∞ ≤ min{1/(1− p), 1/p} as in Eichelsbacher and Reinert (2008).

Example 3.3 (Hypergeometric distribution on J0, rK with parameters n, r and 0 < 2r ≤ n).
In this example, we study the hypergeometric distribution

π(i) =
Cri C

n−r
r−i

Cnr

for i ∈ J0, rK, and pick L to be the generator of the Bernoulli-Laplace model, that is, it is
a birth-death chain with birth rate bi and death rate di to be respectively

bi =
(r − i)(n− r − i)

r(n− r)
, di =

i2

r(n− r)
.

The eigenvalues of −L are

λi =
i(n− i+ 1)

r(n− r)
,

so Corollary 1.4 now reads

sup
h∈H
|fh(i)| ≤ 2r(n− r)

r∑
i=1

1

i(n− i+ 1)
=

2r(n− r)
n

(log r +O(1)) ,

sup
h∈H
|Ofh(i)| ≤

5r(n− r)
n

log

(
max
i∈J0,rK

4Cnr
Cri C

n−r
r−i

)
,

where the equality follows from (Diaconis and Saloff-Coste, 2006, Page 2114). Existing
work on Stein’s method for hypergeometric distribution include Reinert and Schoutens
(1998), Reinert (2005, Section 4) and Schoutens (2000, Section 4 Example 5), however
in these work bounds for the Stein’s factors cannot be found. We also adapt a different
Stein’s equation, namely the generator of the Bernoulli-Laplace model, than the one in
existing literature.

Example 3.4 (Geometric distribution with success probability 0 < p < 1). In this example,
we use only estimates and information on hitting time to bound the Stein’s factors for
geometric distribution. More specifically, we look at π(i) = (1− p)ip for i ∈ X = N0, and
choose L with unit per capita death rate and birth rate bi = (i+ 1)(1− p). It follows from
Remark 1.2 that for any fixed j ∈ X , if i < j then

Ei(τj) ≤ E0(τj) =

j−1∑
k=0

1− (1− p)k+1

(k + 1)(1− p)k+1p
≤

j−1∑
k=0

1

(1− p)k+1p
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For any i, j ∈ X , and using Remark 1.2, we have

|Ei(τj)− Ei+1(τj)| ≤
1

biπ(i)
π(J0, iK)1i<j +

1

biπ(i)
π(Ji+ 1,∞K)1i≥j .

Specializing into the case of geometric distribution leads to

π(j)|Ei(τj)− Ei+1(τj)| ≤ (1− p)j−i−1 1− (1− p)i+1

i+ 1
1i<j +

(1− p)j

i+ 1
1i≥j .

Now, using Corollary 1.4 and summing over all possible j gives

sup
h∈H
|Ofh(i)| ≤

1− (1− p)i+1

p(i+ 1)
+

1− (1− p)i+1

p(i+ 1)
=

2(1− (1− p)i+1)

p(i+ 1)
≤ 2

p
,

and so suph∈H ||Ofh||∞ ≤ 2/p. Note that in Eichelsbacher and Reinert (2008) they obtain

sup
h∈H
|Ofh(i)| ≤ min

{
1

i
,
1 + p

i+ 1

}
,

sup
h∈H
||Ofh||∞ ≤ min{1, 1 + p} ≤ 2

p
,

so our bound is looser than existing bound.

4 Bounding expected hitting time via Stein’s factors

In the previous section, we have illustrated how we can use information of hitting
time and mixing time to give bounds on Stein’s factors. We aim at achieving the opposite
in this section and illustrate how we can obtain estimate on the expected hitting time to
0 of a Galton-Watson with immigration (GWI) process.

Recall that the generator L of GWI is a birth-death chain with bi = p(r+ i), di = i and
π being the negative binomial distribution with parameters 0 < p < 1 and r > 0. Taking
h = δ0 in Theorem 1.1, for i ∈ N0 we have

Ofδ0(i) = π(0) (Ei(τ0)− Ei+1(τ0)) = (1− p)r (Ei(τ0)− Ei+1(τ0)) .

Next, we bound the above expression using the Stein’s factor bound in Barbour et al.
(2015) to arrive at

(1− p)r |Ei(τ0)− Ei+1(τ0)| ≤
1

1− p
=: C,

and the above yields the following linear bound:

Ei(τ0) ≤ C(1− p)−ri.

This bound can perhaps be refined by adapting non-uniform bounds of Stein’s factor.
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