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In this paper, we prove a particle approximation, in the sense of the propagation of
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1 Introduction

In this paper, we construct a particle approximation of the following Lagrangian
stochastic model (X,U) on a finite time interval [0, T ], submitted to specular reflections
at the boundary of a compact smooth domain D of Rd:

Xt = X0 +

∫ t

0

Usds, Ut = U0 +

∫ t

0

B[Xs; ρ(s)]ds+ σWt +Kt,

Kt = −2
∑

0<s≤t

(Us− · nD(Xs))nD(Xs)1{Xs∈∂D},

ρ(t) is the Lebesgue density of the law of (Xt, Ut) for t ∈ (0, T ].

(1.1)

The initial condition (X0, U0) is distributed according to a given probability measure µ0,
and is independent to the Rd-Brownian motion (Wt; t ∈ [0, T ]), nD is the outward normal
unit vector of the smooth boundary ∂D. We are considering Lagrangian stochastic model,
this means that the dependencies in x of the coefficients in the velocity equation (1.1)
are expressed as a conditional expectation with respect to the event {Xt = x}. Here the
drift component B[x; ρ(t)] is a version of the conditional expectation E [b(Ut) |Xt = x].
Thus given a kernel b, B is defined for (x, γ) ∈ D × L1(D ×Rd) as

B[x; γ] =

∫
Rd
b(v)γ(x, v)dv∫
Rd
γ(x, v)dv

1{
∫
Rd
γ(x,v)dv 6=0}. (1.2)

A particle approximation of a Lagrangian stochastic model like (1.1) has been stud-
ied without the confining jump term (Kt; t ∈ [0, T ]) in [4], and in the particular one-
dimensional confinement case in [2]. The existence and uniqueness (in the weak sense)
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Particle approximation for Lagrangian models with specular boundary condition

of a solution to (1.1) has been established in [3] for confined system in a smooth and
compact domain D, with the help of PDE techniques. Furthermore the unique solution
(X,U) satisfies the boundary condition (1.5), and the sequence of jump-times

τn = inf{τn−1 < t ≤ T ;Xt ∈ ∂D} for n ≥ 1, τ0 = 0,

is well-defined and strictly increasing with n up to T , with the convention that inf ∅ = T .
Numerical algorithms for Lagrangian stochastic models are based on particle ap-

proximation methods (see e.g. [1] and the references therein). Here we give a first
convergence result of a particle approximation of (1.1). We study the limit behavior of
the interacting particle system {(Xi,ε,N , U i,ε,N ,Ki,ε,N ), i = 1, . . . , N}, on a given prob-
ability space (Ω,F , (Ft; t ≥ 0),Q) endowed with independent copies {(Xi

0, U
i
0, (W

i
t ; t ∈

[0, T ])), i = 1, . . . , N} of (X0, U0, (Wt; t ∈ [0, T ])), defined as the solution to the following
SDE system:

Xi,ε,N
t = Xi

0 +

∫ t

0

U i,ε,Ns ds,

U i,ε,Nt = U i0 +

∫ t

0

Bε[X
i
s;µ

ε,N
s ]ds+ σW i

t +Ki,ε,N
t ,

Ki,ε,N
t = −2

∑
0<s≤t

(
U i,ε,Ns− · nD(Xi,ε,N

s )
)
nD(Xi,ε,N

s )1{
Xi,ε,N
s ∈ ∂D

}, i = 1, . . . , N,

(1.3)
where µε,Nt = 1

N

∑N
i=1 δ(Xi,ε,Nt ,Ui,ε,Nt ) is the marginal at a given time t of the empirical

measure 1
N

∑N
i=1 δ(Xi,ε,N ,Ui,ε,N ,Ki,ε,N ) of the N -particles system, according to the two first

canonical coordinates (x(t), u(t)). The drift Bε[x; γ] is a smoothed version of B[x; γ] in
(1.2), with the help of a family of mollifiers φε(x) := ε−dφ(xε ), for some φ ∈ C1

c (D) such
that φ ≥ 0 and

∫
D φε(x) dx = 1. Bε[x; γ] is defined for all x ∈ D and all γ in the set of

probability measures on D ×Rd as

(x, γ) 7→ Bε[x; γ] =

∫
D×Rd b(v)βε(y)φε(x− y)γ(dy, dv)∫
D×Rd βε(y)φε(x− y)γ(dy, dv) + ε

(1.4)

where βε(y) = 1{dist(y,∂D)>ε} cutoffs the support of γ from a distance ε to ∂D.
The existence and uniqueness in law for the solution of (1.3) simply follow from

Girsanov’s transformation and from the wellposedness of the confined Langevin process
(i.e. the case b = 0, see Theorem 2.1 in [3]). This step only requires that D has a
C3-boundary and that the support of µ0 is included in D ×Rd.

Our main result is stated in Theorem 2.1 below: as the number of particle grows to
infinity and the mollifiers parameter ε goes to 0, we prove that the system of particles
(1.3) propagate the initial chaos with a limit law given by the solution to (1.1).

Remark 1.1. About the mean no-permeability condition on ∂D: In [3], we prove
that the solution to (1.1) satisfies the so-called mean no-permeability condition: for
x ∈ ∂D,

E [(Ut · nD(Xt))|Xt = x] = 0. (1.5)

Lagrangian stochastic models have been introduced for complex simulation in Computa-
tional Fluid Dynamic (CFD). The mean-Dirichlet boundary condition (1.5) grounds the
stochastic particle algorithm used to downscale simulations in CFD applications (we
refer to [4], [1] and the references therein for further details).

Notice that the particle approximation of (1.5) (with the kernel b(u, x) = u · nD(x))
in a neighborhood of ∂D is still an issue, that seems to require the continuity of the
density of (Xt, Ut) over D. Except in the one-dimensional case studied in [2], and to the
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Particle approximation for Lagrangian models with specular boundary condition

best of our knowledge, such regularity result is unknown in the PDE literature on trace
problems.

Remark 1.2. About the sequence of passage times on ∂D: When D = (0,+∞) ×
Rd−1, σ = 1 and b = 0, the explicit expression of the joint law of (τn, Uτn , n ≥ 1) enables to
control uniformly the confinement process (Ki,ε,N

t ; t ∈ [0, T ]). For more general domain,
we compensate the lack of such control by studying the trace problem for the density ρ.

Notice that the estimate (3.6) in [2] on the upper-bound of P(τn ≤ T ) contains a
mistake, claiming that this probability decreases with n uniformly in T . This shall be
reformulated as follows: when the initial law µ0 has its support in ((0,+∞)×Rd−1)×Rd,
there exists a constant C(T,m0, β

∗) depending on T , m0 :=
∫ √

vµ0(dy, dv) and the
distance β∗ = sup{β > 0; supp(µ0) ⊂ ([β,+∞) × Rd−1) × Rd} of the support of µ0 to
({0} ×Rd−1)×Rd, such that, for all n ≥ 5,

P (τn ≤ T ) ≤ C(T,m0,β
∗)

1

2n
. (1.6)

This clarification of the constant in front of 1/2n in the right hand side does not impact
the results in [2], as we worked with fixed T . For completeness we give a short proof of
(1.6) in Appendix A.2.

Notation. E denotes the set of paths C([0, T ];D)×D([0, T ];Rd)×D([0, T ];Rd). For all
t ∈ (0, T ], we introduce the following sets: Qt := (0, t)×D ×Rd,

Σ+
T :=

{
(t, x, u) ∈ (0, T )× ∂D ×Rd; (u · nD(x)) > 0

}
,

Σ−T :=
{

(t, x, u) ∈ (0, T )× ∂D ×Rd; (u · nD(x)) < 0
}
,

Σ0
T :=

{
(t, x, u) ∈ (0, T )× ∂D ×Rd; (u · nD(x)) = 0

}
.

We set |D| :=
∫
D dx. Denoting by dσ∂D the surface measure on ∂D, the product measure

on ΣT := Σ+
T ∪Σ0

T ∪Σ−T is dλΣT := dt⊗dσ∂D(x)⊗du. For a given positive weight function
ω on Rd, we define the following weighted Sobolev spaces

L2(ω;QT ) := {f : QT → R; ‖f‖2L2(ω;QT ) :=

∫
QT

ω(u)f2(t, x, u) dt dx du < +∞},

V1(ω;QT ) := {f ∈ C([0, T ];L2(ω;D ×Rd));
‖f‖V1(ω;QT ) := max

t∈[0,T ]
‖f(t)‖L2(ω;D×Rd) + ‖∇uf‖L2(ω;QT ) < +∞},

L2(ω; Σ±T ) :=
{
f : Σ±T → R; ‖f‖2

L2(ω;Σ±T )
:=

∫
Σ±T

ω(u)|(u · nD(x))|f2(t, x, u)dλΣT < +∞
}
,

L2(ω;D ×Rd) :=
{
f : D ×Rd → R; ‖f‖2L2(ω;D×Rd) :=

∫
D×Rd

ω(u)f2(x, u)dx du < +∞
}
.

M(E) denotes the set of probability measures on a measurable space E. When this is
not ambiguous, we will use ‖f‖p for ‖f‖Lp(E) with 1 ≤ p ≤ +∞.

2 Main results

Hypotheses. From now on, we assume that the domain D, the distribution µ0 of
(X0, U0) and the kernel b in (1.1) satisfy the following hypotheses (H).

H-(i) ∂D is a compact C3 sub-manifold of Rd. The initial measure µ0 has support in
the interior of D × Rd and

∫
D×Rd |u|

2µ0(dx, du) < +∞. µ0 has a density ρ0 in the

weighted space L2(ω;D ×Rd) with

ω(u) = (1 + |u|2)
α
2 , for some α > (d+ 3).
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H-(ii) b : Rd −→ Rd is a bounded continuous function and σ > 0.

H-(iii) There exist P 0, P 0 : R+ −→ R+ in L1(R+) such that u 7→
√

(1 + |u|)P 0(|u|) +√
P 0(|u|) ∈ L2(ω;Rd), and

0 < P 0(|u|) ≤ ρ0(x, u) ≤ P 0(|u|), a.e. on D ×Rd.

Notice that (H) are slightly more restrictive than the hypotheses in [3] for the existence
of (1.1): here b is assumed continuous to simplify some weak convergence arguments,
and the weight function ω is chosen in order to control

∫
Rd
|u|3/ω(u)du.

Theorem 2.1. Assume (H). Let P be the law on E of (X,U,K) defined in (1.1), and let
Pε,N be the law of {(Xi,ε,N , U i,ε,N ,Ki,ε,N ), 1 ≤ i ≤ N} defined in (1.3). Then Pε,N is
P-chaotic; namely, for all {Fl, 1 ≤ l ≤ k}, k ≥ 2, with Fi ∈ Cb(C([0, T ];D)×D([0, T ];Rd)×
D([0, T ];Rd)), it holds that

lim
ε→0+

lim
N→+∞

〈F1 ⊗ F2 ⊗ · · · ⊗ Fk ⊗ 1⊗ 1⊗ · · · ⊗ 1,Pε,N 〉 =

k∏
l=1

〈Fl,P〉.

Let us clarify the wellposedness of the weak solution to (1.1). We summarize the
results obtained from [3] in the following proposition.

Proposition 2.2. The law of the solution (X,U) to (1.1) is unique in the subset of
M(C([0, T ];D) × D([0, T ];Rd)) that admits time-marginal densities (ρ(t); t ∈ [0, T ]) in
L2(ω;D ×Rd). Moreover, (ρ(t); t ∈ [0, T ]) solves in V1(ω;QT ) the PDE

∂tρ(t, x, u) + u · ∇xρ(t, x, u)− σ2

2
4uρ(t, x, u) = − (B[x; ρ(t)] · ∇uρ(t, x, u)) in QT ,

ρ(0, x, u) = ρ0(x, u) in D ×Rd,
γ−(ρ)(t, x, u) = γ+(ρ)(t, x, u− 2(u · nD(x))nD(x)) in Σ−T ,

(2.1)
where γ+(ρ) and γ−(ρ) are the trace functions of ρ, defined in L2(ω; Σ+

T ) and L2(ω; Σ−T )

respectively, and satisfies the following energy estimate

‖ρ(t)‖2L2(ω;D×Rd) + σ2

∫ t

0

‖∇uρ(s)‖2L2(ω;D×Rd) ds ≤ ‖ρ0‖2L2(ω;D×Rd) (1 + C exp(Ct)) , (2.2)

where C > 0 depends only on d, α and ‖b‖∞ := maxx |b(x)|. In addition, ρ and its traces
γ±(ρ) admit the following Maxwellian bounds: for a.e. (t, x, u) ∈ QT ,

exp(a−t) (Gσ(t) ∗ P 0(| · |))ν− (u) ≤ ρ(t, x, u) ≤ exp(a+t)
(
Gσ(t) ∗ P 0(| · |)

)ν+
(u), (2.3)

and for dλΣT a.e. (t, x, u) ∈ Σ±T ,

exp(a−t) (Gσ(t) ∗ P 0(| · |))ν− (u) ≤ γ±(ρ)(t, x, u) ≤ exp(a+t)
(
Gσ(t) ∗ P 0(| · |)

)ν+
(u),

(2.4)
where Gσ(t) is the centered Gaussian density function with variance σ2t, ∗ stands for
the convolution product, a±, ν± are constants depending only on T, d, α and ‖b‖∞ and
are such that a− < 0, a+ > 0 and ν± > 0.

The solution of Equation (2.1) and the related notion of trace functions stated in
Proposition 2.2 are understood in the weak (distributional) sense and we refer to [3,
Definition 1.1 and Theorem 3.3] for a detailed existence result formulation. For the sake
of completeness, let us mention that the existence of γ+(ρ) and γ−(ρ) on Σ+

T and Σ−T
respectively, is directly related to the notion of trace problems for kinetic equations (see
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references in [3]), and their construction is granted by a density argument related to
the solution space V1(ω,QT ) and the smoothness of ∂D. Proposition 2.2 is clearly also
true when the drift B[x; ·] is replaced by its smoothed version Bε[x; ·], or by a linear and
bounded drift V (t, x). The combination of Proposition 2.2 with the following corollary
allows to conclude on the uniqueness in law of the solution to (1.1).

Corollary 2.3. Assume (H). For V in L∞((0, T )×D), any weak solution (Xt, Ut; t ∈ [0, T ])

to{
Xt = X0 +

∫ t
0
Us ds,

Ut = U0 +
∫ t

0
V (s,Xs) ds+ σWt − 2

∑
0<s≤t(Us− · nD(Xs))nD(Xs)1{Xs∈∂D},

(2.5)

admits time-marginal densities (ρ(t); t ∈ [0, T ]) such that ρ(t) is in L2(ω,D ×Rd) for all
t ∈ [0, T ]. The traces γ+(ρ) and γ−(ρ) are in L2(ω; Σ+

T ) and L2(ω; Σ−T ) respectively, and
such that for all f1 ∈ Cc(Σ+

T ), f2 ∈ Cc(Σ−T ),

E

[∑
n∈N

f1(τn, Xτn , Uτ−n )1{τn≤T}

]
=

∫
Σ+
T

(u · nD(x))f1(t, x, u)γ+(ρ)(t, x, u)dλΣT ,

E

[∑
n∈N

f2(τn, Xτn , Uτn)1{τn≤T}

]
= −

∫
Σ−T

(u · nD(x))f2(t, x, u)γ−(ρ)(t, x, u)dλΣT .

(2.6)

Notice that any solution to (1.1) is also a weak solution to (2.5) for the bounded
drift V (t, x) = B[x; ρ(t)]. Corollary 2.3 ensures that the time-marginal densities are in
L2(ω;QT ) and Proposition 2.2 allows to conclude the uniqueness of P introduced in
Theorem 2.1.

The proof of Corollary 2.3 is postponed in the appendix. The rest of the paper is
devoted to the proof of the propagation of chaos result.

Although we give a particle approximation of the confined Lagrangian model, we
are not able to use such approximation to construct a solution under lighter hypotheses
than (H). In particular, we still have a deep use of the PDE analysis of the Fokker Planck
equation. The main difficulty resides in the uniform integrability result of the density
traces, that we are able to show only with the strong Maxwellian bound tool.

3 Proof of Theorem 2.1

Equipped with the Skorokhod topology, E is a Polish space. We denote by (Bt; t ∈ [0, T ])

the filtration associated to the canonical process (x(t), u(t), k(t); t ∈ [0, T ]) of E .
The proof consists in the study of the double limits, first as N tends to∞, next as ε

tends to 0. Mainly, we will detail the two following steps:

Proposition 3.1. Assume (H) and fix ε > 0. The SDE
Xε
t = X0 +

∫ t

0

U εsds, U εt = U0 +

∫ t

0

Bε[X
ε
s ;µ

ε(s)]ds+ σWt +Kε
t ,

Kε
t = −2

∑
0<s≤t

(U εs− · nD(Xε
s))nD(Xε

s)1{Xεs∈∂D}, µε(t) = Law(Xε
t , U

ε
t ),

(3.1)

has a unique weak solution, and we denote by Pε the law on E of (Xε, U ε,Kε). Then
{Pε,N ; N ≥ 1} is Pε-chaotic; namely for all k ≥ 2 and all (Fl, 1 ≤ l ≤ k) of functions in
Cb(E),

lim
N→+∞

〈F1 ⊗ · · ·Fk ⊗ 1⊗ 1⊗ · · · ⊗ 1,Pε,N 〉 =

k∏
l=1

〈Pε, Fl〉. (3.2)
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Lemma 3.2. For any converging subsequence of {Pε; ε > 0} (that we still denote by Pε),
the sequence of time-marginal densities {ρε(t) = Pε ◦ (x(t), u(t))−1; ε > 0} converges in
L1(QT ) and in L2(ω;QT ) to the time-marginals densities {ρ(t) = Q ◦ (Xt, Ut)

−1} of the
solution to (1.1), when ε tends to 0.

Proposition 3.1 has its analog in [2]. But now, the fact that the jump term is a finite
variation process is not for free in the proof, as it is no more an increasing process.

Notice also that even if we consider constant diffusion process, the mild-equation
tool that we strongly used in [4] and [2] is useless here, as the controls we have on the
semigroup derivative of the Lagrangian process are only for the L2-norm.

3.1 The limit as N tends to ∞
Proof of Proposition 3.1. The wellposedness of Equation (3.1) directly derives from
Proposition 2.2 (replacing B by Bε) combining with Corollary 2.3. We only have to
prove the propagation of chaos result.

The verification of the Aldous’s criterion for the tightness of the family {Pε,N ;N ≥ 1}
is a straightforward adaptation of Lemma 4.4 in [2]. This ensures that the sequence
of measures {πε,N = Law(µε,N ); N ≥ 1}, for µε,N := 1

N

∑N
i=1 δ(Xi,ε,N ,Ui,ε,N ,Ki,ε,N ), is tight

onM(E).
We check that all limit points of {πε,N ; N ≥ 1} have full measure on the set of prob-

ability measures under which the canonical process (x(t), u(t), k(t); t ∈ [0, T ]) satisfies
(3.1). We denote by πε,∞ the limit of a converging subsequence of {πε,N ; N ≥ 1} that we
still index by N for simplicity.

Following Lemma 4.6 in [2], it is not difficult to see that, for πε,∞-a.e. m ∈M(E) with
(m(t) := m ◦ (x(t), u(t))−1; t ∈ [0, T ]), the process

wt :=
1

σ

(
u(t)− u(0)− k(t)−

∫ t

0

Bε[x(s);m(s)] ds

)
, t ∈ (0, T ], (3.3)

is a Rd-Brownian motion under m.
The remaining point is the identification of the jump process k that we detail in the

following lemma.

Lemma 3.3. The three following properties hold true πε,∞-a.e, m ∈M(E), m-a.s.:

(a) For all jump times t ∈ [0, T ] of u, 4u(t) = −2(u(t−) · nD(x(t)))nD(x(t)).

(b) (k(t); t ∈ [0, T ]) is a finite variation process, and the related measure |k| on [0, T ]

satisfies

|k|(t) =

∫ t

0

1{s ≥ 0;x(s) ∈ ∂D} d|k|(s), ∀ t ∈ [0, T ].

(c) The set {t ∈ [0, T ];x(t) ∈ ∂D} is at most countable.

The properties (b) and (c) above imply that (k(t); t ∈ [0, T ]) is a pure jump process.
In addition, since the paths of the process (u(t) − k(t); t ∈ [0, T ]) are continuous by
(3.3), the jump times and the jump length of (k(t); t ∈ [0, T ]) and (u(t); t ∈ [0, T ]) are
a.s. undistinguishable. Therefore (a) ensures that πε,∞-a.e. m ∈ M(E), m-a.s., k(t) =

−2
∑

0<s≤t(u(s−) · nD(x(s)))nD(x(s))1{xs∈∂D} for all t ∈ [0, T ].
The uniqueness in law for the solution of (3.1) ensures that all converging subse-

quences of {πε,N , N ≥ 1} tend to δ{Pε}, and enables us to conclude on the propagation of
chaos property (3.2).

Proof of Lemma 3.3. The proof mainly follows the proof of Lemma 4.8 in [2]. We only
need to take care about the point (b) as in the multi-dimensional case, the jump process
k is no more an increasing process.
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For Pt = {p = {0 ≤ t1 ≤ . . . ≤ tl ≤ t}; l ≥ 1}, the set of all partitions of the interval
[0, t], the total variation process related to k is defined as

|k|(t) := sup
p∈Pt

l−1∑
i=0

|k(ti+1)− k(ti)| .

First we prove that πε,∞-a.e. m ∈ M(E), m-a.s., |k|(T ) < +∞. We replicate some
arguments of Sznitman [8] and introduce the sets

FM :=
{

(x, u, k) ∈ E ; |k|(T ) ≤M,

∫ T

0

dist(x(s), ∂D) d|k|(s) = 0
}
,

GηM := {m ∈M(E);m(FM ) ≥ 1− η} .

Let us show that for all η > 0, limM→+∞ πε,∞(GηM ) = 1. Since FM is a closed subset of
E (see below), GηM is closed for the weak topology on M(E). Therefore, by the weak
convergence of {πε,N ; N ≥ 1} to πε,∞,

πε,∞(GηM ) ≥ lim sup
N→+∞

πε,N (GηM ) = lim sup
N→+∞

Q({µε,N (FM ) ≥ 1− η}).

Denoting F cM the complement of FM on E , we have

Q({µε,N (FM ) ≥ 1− η}) = 1−Q({µε,N (F cM ) > η}).

Then applying two times Chebyshev’s inequality, and using the exchangeability of the
particles,

Q({µε,N (F cM ) > η}) ≤ 1

η
EQ

[
〈1{F cM}, µ

ε,N 〉
]
≤ 1

Mη
EQ
[
|K1,ε,N |T

]
.

Owing to Lebesgue’s monotone convergence theorem, we have

EQ
[
|K1,ε,N |T

]
= sup
PT

l−1∑
m=0

EQ

∣∣∣ ∑
tm<s≤tm+1

−2
(
U1,ε,N
s− · nD(X1,ε,N

s )
)
nD(X1,ε,N

s )1{X1,ε,N
s ∈∂D}

∣∣∣.
And, by the trace representation in Corollary 2.3,

EQ
[
|K1,ε,N |T

]
≤ 2 sup

PT

l−1∑
m=0

∫ tm+1

tm

∫
∂D×Rd

|(u · nD(x))|2γ−(ρ1,ε,N )(s, x, u)dλΣT

=

∫
Σ−T

|(u · nD(x))|2γ−(ρ1,ε,N )(s, x, u)dλΣT .

Since γ−(ρ1,ε,N ) is bounded in L2(ω; Σ−T ) uniformly w.r.t N , and
∫
Rd
|(u·nD(x))|3

ω(u) du ≤∫
Rd
|u|3
ω(u)du < +∞, we have∫

Σ−T

|(u · nD(x))|2γ−(ρ1,ε,N )(s, x, u)dλΣT

≤
√∫

Σ−T

|u|3
ω(u)

dλΣT

√∫
Σ−T

|(u · nD(x))|ω(u)|γ−(ρ1,ε,N )|2(s, x, u)dλΣT < +∞.

It follows that lim supN→+∞EQ
[
|K1,ε,N |T

]
< +∞, so that limM→+∞ πε,∞(GηM ) = 1.

Letting η tends to 0, we also conclude that for πε,∞-a.e. m, m(∪M>0FM ) = 1 which
means that |k|(T ) < +∞ a.s.
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Particle approximation for Lagrangian models with specular boundary condition

We prove now that FM is closed. Let us consider a sequence {ζn = (xn, un, kn), n ∈ N}
in that subset, converging to ζ = (x, u, k) in E according to the Skorokhod topology;
namely (see e.g. [5, Theorem 1.14, Chapter 6]) there exists a sequence {λn, n ∈ N}
of continuous increasing functions on [0, T ] such that for all n, λn(0) = 0, λn(T ) = T ,
limn→+∞ supt∈[0,T ] |λn(t)− t| = 0, and

lim
n→+∞

sup
t∈[0,T ]

|ζn(λn(t))− ζ(t)| = 0, and for all t ∈ [0, T ] lim
n→+∞

|∆ζn(λn(t))−∆ζ(t)| = 0.

(3.4)
As (3.4) implies that kn ◦ λn and 4kn ◦ λn converge respectively to k and 4k uniformly
in [0, T ], it further ensures that the sequence of measures d|kn ◦ λn| converges weakly
to d|k| on [0, T ]. Indeed, λn being a time change, let us first remark that the measure
d|kn◦λn| coincides with the pushforward measure d(λ−1

n ]|kn|), such that for all s, t ∈ [0, T ],
(λ−1
n ]|kn|)([s, t]) = |kn|(λn(s), λn(t)). Since supn |kn|(T ) = supn |kn ◦ λn|(T ) ≤ M , there

exists a converging subsequence {|kn` ◦ λn` |, ` ∈ N}. From this sequence, let us further
extract a subsequence {|knL◦λnL |, L ∈ N} such that sup[0,T ] |knL◦λnL−k| ≤ 1

L2 . Then, for
all continuous function f : [0, T ]→ R, for the partition 0 = t0 ≤ t1 ≤ · · · ≤ tL−1 ≤ tL = T

of [0, T ] such that |tm+1 − tm| ≤ T/L, we have∣∣∣∣∣
∫ T

0

f(s)d|k|(s)−
∫ T

0

f(s)d|knL ◦ λnL |(s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

f(s)d|k|(s)−
L−1∑
m=0

f(tm) |k(tm+1)− k(tm)|

∣∣∣∣∣
+

∣∣∣∣∣
L−1∑
m=0

f(tm) |k(tm+1)− k(tm)| −
L−1∑
m=0

f(tm) |knL(λnL(tm+1))− knL(λnL(tm))|

∣∣∣∣∣
+

∣∣∣∣∣
L−1∑
m=0

f(tm) |knL(λnL(tm+1))− knL(λnL(tm))| −
∫ T

0

f(s)d|knL ◦ λnL |(s)

∣∣∣∣∣ .
The first and third terms in the right hand side tend to 0 as L → +∞ by continuity of
f . Since the second term is bounded from above by 2 maxt∈[0,T ] |f(t)|/L, we conclude
that for any converging subsequence of |kn ◦ λn| we can extract a subsequence which
converges to |k|. This implies the weak convergence of |kn ◦ λn| towards |k|. Next,
since t 7→ ηn(t) := dist(xn(t), ∂D) and t 7→ η(t) := dist(x(t), ∂D) are continuous and∫ T

0
ηn(s)d|kn|(s) = 0,∣∣∣∣∣
∫ T

0

η(s)d|k|(s)

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

η(s)d|k|(s)−
∫ T

0

ηn(s)d|kn|(s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

η(s)d|k|(s)−
∫ T

0

η(s)d|kn ◦ λn|(s)

∣∣∣∣∣+

∣∣∣∣∣
∫ T

0

η(s)d|kn ◦ λn|(s)−
∫ T

0

ηn(s)d|kn|(s)

∣∣∣∣∣ .
The first term tends to 0, by the weak convergence of |kn ◦ λn| to |k|. For the second one,
using the change of variable in the second integral∫ T

0

ηn(s)d|kn|(s) =

∫ T

0

ηn(λn(λ−1
n (s)))d|kn|(s) =

∫ T

0

ηn(λn(s))dλ−1
n ]|kn|(s)

=

∫ T

0

ηn(λn(s))d|kn ◦ λn|(s),

we get ∣∣∣∣∣
∫ T

0

η(s)d|kn ◦ λn|(s)−
∫ T

0

ηn(s)d|kn|(s)

∣∣∣∣∣ ≤
(

sup
s∈[0,T ]

|ηn(λn(s))− η(s)|

)
M
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Particle approximation for Lagrangian models with specular boundary condition

from which we conclude that
∣∣∣∫ T0 η(s)d|k|(s)

∣∣∣ = 0, letting n tend to infinity.

3.2 The limit as ε tends to 0

The tightness of {Pε; ε > 0} can be shown by replicating again the verification of the
Aldous’s criterion given in Lemma 4.4 of [2]. The main concern in that step is for the
identification of the limit points. With Lemma 3.2, we easily check that any limit P0 of a
converging subsequence of {Pε; ε > 0} is a weak solution to the (1.1), as it satisfies the
following martingale problem conditions

(i) P0 ◦ (x(0), u(0), k(0))−1 = µ0 ⊗ δ0, where δ0 denotes the Dirac mass at 0 on Rd.

(ii) For all t ∈ (0, T ], P0 ◦ (x(t), u(t))−1 admits the positive Lebesgue density ρ(t).

(iii) For all f ∈ C2
b (R2d), the process

f(x(t), u(t)− k(t))− f(x(0), u(0))−
∫ t

0

(u(s) · ∇xf(x(s), u(s)− k(s))) ds

−
∫ t

0

[
(B [x(s); ρ(s)] · ∇uf(x(s), u(s)− k(s))) +

σ2

2
4uf(x(s), u(s)− k(s))

]
ds

(3.5)

is a continuous P0-martingale w.r.t. the canonical filtration (Bt; t ∈ [0, T ]).

(Indeed, as observed in [2], (iii) is a direct consequence of the following convergence

lim
|h|,|δ|→0

lim sup
ε→0+

∫
D×Rd

|ρεt(x+ h, u+ δ)− ρεt(x, u)| dx du = 0, ∀ t ∈ (0, T ], (3.6)

that can be immediately deduced from Lemma 3.2.)

(iv) P0-a.s., the set {t ∈ [0, T ];x(t) ∈ ∂D} is at most countable, and for all t ∈ [0, T ],

k(t) = −2
∑

0<s≤t

(u(s−) · nD(x(s)))nD(x(s))1{x(s)∈∂D},

since we can reproduce all the arguments of Lemma 3.3., applying Corollary 2.3 again.

Proof of Lemma 3.2. The existence of the time-marginal densities (ρε(t); t ∈ [0, T ]) in
L2(ω;QT ) follows immediately from Corollary 2.3. Adapting Proposition 2.2 to Bε, ρε

satisfies in V1(ω;QT ) the analog of the Fokker-Planck equation (2.1), replacing B by Bε.
Thus we observe that, for all ε > 0, Rε := ρε − ρ satisfies in V1(ω;QT )

∂tR
ε + u · ∇xRε −

σ2

2
4uRε = −∇u · (Bε[·; ρε]ρε −B[·; ρ]ρ) in QT ,

Rε(0, x, u) = 0 inD ×Rd,
γ+(Rε)(t, x, u) = γ−(Rε)(t, x, u− 2(u · nD(x))nD(x)) in Σ+

T .

Therefore, applying [3, Lemma 3.8] with B = Bε[·; ρε], q(t, x, u) = γ−(Rε)(t, x, u − 2(u ·
nD(x))nD(x)), g = (Bε[·; ρε]−B[·; ρ]) · ∇uρ), for all t ∈ (0, T ],

‖Rε(t)‖2L2(ω;D×Rd) + σ2

∫ t

0

‖∇uRε(s)‖2L2(ω;D×Rd) ds

=

∫
Qt

(Bε[·; ρε]ρε −B[·; ρ]ρ) · (Rε∇uω + ω∇uRε) + σ2

∫
Qt

(4uω)(Rε)2.
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Particle approximation for Lagrangian models with specular boundary condition

Since |4uω(u)|+ |∇uω(u)| ≤ C(α, d)ω(u), using Young Inequality, it follows that

‖Rε(t)‖2L2(ω;D×Rd) +
σ2

2

∫ t

0

‖∇uRε(s)‖2L2(ω;D×Rd) ds

≤
(
C(α, d)‖b‖∞ + σ2C(α, d) +

‖b‖∞
2σ2

)∫ t

0

‖Rε(s)‖2L2(ω;D×Rd) ds

+

(
C(α, d) +

1

2σ2

)∫ t

0

‖ρ(s) (Bε[·; ρε(s)]−B[·; ρ(s)]) ‖2L2(ω;D×Rd) ds.

(3.7)

Now, observe that, according to the Maxwellian bounds in Proposition 2.2, we can define
finite positive constants

M := sup
(t,x)∈(0,T )×D

(∫
Rd
ω(v)|ρ(t, x, v)|2 dv

)
and m := inf

(t,x)∈(0,T )×D

(∫
Rd
ρ(t, x, v) dv

)
,

with m > 0 and M <∞, from the Maxwellian bounds and H-(iii). Then∫ t

0

‖ρ(s) (Bε[·; ρε(s)]−B[·; ρ(s)]) ‖2L2(ω;D×Rd) ds≤M
∫

(0,t)×D
|Bε[x; ρε(s)]−B[x; ρ(s)]|2 dx ds.

By setting ρ(t, x) :=
∫
Rd
ρ(t, x, u) du, bρ(t, x) :=

∫
Rd
b(u)ρ(t, x, u) du, ρε(t, x) :=∫

Rd
ρε(t, x, u) du and bρε(t, x) :=

∫
Rd
b(u)ρε(t, x, u) du and for ∗ the convolution product,

we have

Bε[x; ρε(t)]−B[x; ρ(t)] =
φε ∗

(
βεbρε

)
(t, x)

φε ∗ (βερε)(t, x) + ε
− bρ(t, x)

ρ(t, x)

= φε ∗ (βεbρε)(t, x)

(
ρ(t, x)− φε ∗ (βερε) (t, x)− ε
(φε ∗ (βερε) (t, x) + ε) ρ(t, x)

)
+
φε ∗ βεbρε(t, x)− bρ(t, x)

ρ(t, x)

=
φε ∗

(
βεbρε

)
(t, x)

φε ∗ (βερε)(t, x) + ε

(
φε ∗ (βερ− βερε) (t, x)

ρ(t, x)

)
+

1

ρ(t, x)

(
φε ∗

(
βε
(
bρε − bρ

))
(t, x)

)
+

φε ∗
(
βεbρε

)
(t, x)

φε ∗ (βερε)(t, x) + ε

(
ρ(t, x)− φε ∗ (βερ)(t, x)− ε

ρ(t, x)

)
+
φε ∗ (βεbρ)(t, x)− bρ(t, x)

ρ(t, x)
,

which gives ∫
(0,t)×D

|Bε[x; ρε(s)]−B[x; ρ(s)]|2 dxds

≤ 8‖b‖2∞
m2

[∫
(0,t)×D×Rd

|ρε(s, x, u)− ρ(s, x, u)|2 du dx ds+ Tε

]
,

for Tε := ‖φε ∗ (βερ)−ρ‖2L2((0,t)×D) + 1
‖b‖2∞

‖φε ∗ (βεbρ)− bρ‖2L2((0,t)×D) + t|D|ε. Coming back
to (3.7) and using Gronwall’s inequality, it follows that

‖Rε(t)‖2V1(ω;Qt)
≤ CTε,

for C independent of ε. Since ρ is in L2(ω;QT ) and limε→0 βε = 1 a.e. on D, Tε tends to 0

as ε tends to 0. Hence limε→0 ‖Rε‖V1(ω;QT ) = 0.

A Appendix

A.1 Proof of Corollary 2.3

From the Riesz Representation Theorem, it is sufficient to check that for all t ∈ (0, T ],
there exists some constant C > 0 such that∣∣∣EQ [√ω(Ut)ψ(Xt, Ut)

]∣∣∣ ≤ C‖ψ‖L2(D×Rd), for all ψ ∈ L2(D ×Rd). (A.1)
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Particle approximation for Lagrangian models with specular boundary condition

Without loss of generality, let us assume that ψ is nonnegative. Then

EQ[
√
ω(Ut)ψ(Xt, Ut)] =

∫
D×Rd

EQ

[√
ω(Ut)ψ(Xt, Ut)

∣∣(X0, U0) = (x, u)
]
ρ0(x, u)dxdu

≤ |D|
∫
D×Rd

EQ

[√
ω(Ut)ψ(Xt, Ut)

∣∣(X0, U0) = (x, u)
] 1

|D|
P 0(|u|)dxdu

= ‖P 0‖1|D|EQ
[
Zt
√
ω(vt)ψ(yt, vt)

]
where (y, v) is defined as

yt = Y0 +

∫ t

0

vsds, vt = V0 + σWt − 2
∑

0<s≤t

(vs− · nD(ys))nD(ys)1{ys∈∂D},

with (Y0, V0) distributed according to dx
|D|

P 0(|u|)
‖P 0‖1

du, and where Zt = exp(− 1
σ

∫ t
0
V (s, ys)dWs−

1
2σ2

∫ t
0
|V (s, ys)|2ds). The couple (yt, vt) is then distributed according to the density

law h(t, u)dxdu := dx
|D| (Gσ(t) ∗ P 0(|·|)

‖P 0‖1
)du. Indeed, one can easily check that h is a so-

lution to the Fokker-Planck equation (2.1) in L2((0, T ) × D;H1(Rd)) ∩ V1(ω;QT ) with
B = 0. The combination of Propositions 4.1 and 4.2 in [3] (in the case B = 0) gives
Q ◦ (yt, vt)

−1 = h(t, u)dxdu. Applying the Cauchy-Schwarz inequality, we get

EQ

[√
ω(Ut)ψ(Xt, Ut)

]
≤ |D| exp{‖V ‖

2
∞T

4σ2 }
√
EQ [ω(vt)ψ2(yt, vt)]

≤ C

√∫
D×Rd

ψ2(x, u)ω(u)h(t, u)dx du.

Observing that ω(u) ≤ 2α−1(ω(u− v) + ω(v)), for all u, v ∈ Rd, we get

ω(u)h(t, u) ≤ 2α−1

(∫
Rd
ω(u− v)Gσ(t, u− v)P 0(|v|)dv +

∫
Rd
ω(v)Gσ(t, u− v)P 0(|v|)dv

)
≤ 2α−1C(α)

with C(α) = ‖ωGσ(t, ·)‖∞‖P 0‖1 + ‖Gσ(t, ·)‖∞‖ωP 0‖1, that allows to conclude on (A.1).
Now we prove the probabilistic interpretation of trace integrals in (2.6). We consider

the unique solution ρ in V1(ω;QT ) and γ±(ρ) in L2(ω; Σ±T ), of the following weak Fokker-
Planck equation starting from ρ0: for all t ∈ (0, T ], φ ∈ C∞c ([0, t]×D ×Rd), we have∫

Σ+
t

(u · nD(x)) γ+(ρ)(s, x, u)φ(s, x, u) dλΣT +

∫
Σ−t

(u · nD(x)) γ−(ρ)(s, x, u)φ(s, x, u) dλΣT

= −
∫
D×Rd

φ(t, x, u)ρ(t, x, u) dx du+

∫
D×Rd

φ(0, x, u)ρ0(x, u) dx du

+

∫
Qt

(
∂sφ+ u · ∇xφ+ V · ∇uφ+

σ2

2
4uφ

)
(s, x, u)ρ(s, x, u) ds dx du

(A.2)
and such that γ±(ρ) satisfy the Maxwellian bounds (2.4) (see [3, Proposition 3.14]).
Then it is straightforward to check that ρ(t) is also the density of (Xt, Ut) using the
identification by mild-equation used in [3, Proposition 4.2]. Now applying Itô’s formula
to E[φ(T,XT , UT )], combining with (A.2), one has

E

 ∑
0<s≤t

(φ(s,Xs, Us− − 2(Us− · nD(Xs))nD(Xs))− φ(s,Xs, Us−))1{Xs∈∂D}


=

∫
Σ+
T

(u · nD(x)) γ+(ρ)(s, x, u)φ(s, x, u) dλΣT +

∫
Σ−T

(u · nD(x)) γ−(ρ)(s, x, u)φ(s, x, u) dλΣT .
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Particle approximation for Lagrangian models with specular boundary condition

Using the density between C∞c (D × Rd) and Cc(D × Rd) and the surjectivity of the
application φ ∈ Cc(D ×Rd)→ φ

∣∣
ΣT
∈ Cc(ΣT ), we conclude on (2.6).

A.2 Proof of the P(τn ≤ T )’s upper bound (1.6)

On the probability measure Py,v endowed with a Brownian motion (Bt; t ≥ 0), we
consider the Langevin process

xt = y +

∫ t

0

usds, ut = v +Bt,

with y 6= 0, and the sequence of passage times

τn = inf{τn−1 < t ≤ T ;xt = 0}, for n ≥ 1, τ0 = 0.

From the expression of Py,v(τn ∈ dt, |uτn | ∈ dz) given in Theorem 3, in Lachal [6], we
obtain that, for any n ≥ 2,

Py,v(τn ≤ T )

=

∫ T

0

dt

∫ t

0

ds

s

∫ +∞

0

dz

π2

∫ +∞

0

du g(t− s, y, v; 0, u) exp
(
− 2(z2 + u2)

s

)
×
[∫ +∞

0

γ sinh(πγ)

(2 cosh(πγ3 ))n−1
Kiγ

(4uz

s

)
dγ −

∫ +∞

0

γ sinh(πγ)

(2 cosh(πγ3 ))n
Kiγ

(4uz

s

)
dγ

] (A.3)

where

g(θ, y, v; 0, u) =
2
√

3

πθ2
exp

(
− 6y2

θ3
− 6yv

θ2
− 2(u2 + v2)

θ

)
cosh

(2u

θ2
(3y + θv)

)
and Kiγ(a) =

∫ +∞
0

exp {−a cosh(t)} cos(γt) dt is the modified Bessel function. We then
work with the expression in (A.3), using the following tricky identity, successfully used
for similar computation in Profeta [7]:

sinh(πγ) = sinh(
πγ

3
)
(

4 cosh2(
πγ

3
)− 1

)
. (A.4)

Assuming now that n ≥ 5, for the first integral in (A.3), from (A.4), we have the decom-
position∫ +∞

0

γ sinh(πγ)

(2 cosh(πγ3 ))n−1
Kiγ(

4uz

s
) dγ =

1

2n−3

∫ +∞

0

γKiγ(
4uz

s
)

sinh(πγ3 )

cosh(πγ3 )n−3
dγ

− 1

2n−1

∫ +∞

0

γKiγ(
4uz

s
)

sinh(πγ3 )

cosh(πγ3 )n−1
dγ.

(A.5)

Furthermore, for all k ≥ 2, a ≥ 0, we have (see [7], page 168)∫ +∞

0

γKiγ(a)
sinh(πγ3 )

cosh(πγ3 )k
dγ

=

∫ +∞

0

a sinh(θ) exp
(
− a cosh(θ)

)(∫ +∞

0

sin(γθ)
sinh(πγ3 )

cosh(πγ3 )k
dγ

)
dθ.

Since | sin(γθ) sinh(z)
cosh(z) | ≤ 1, and cosh ≥ 1, assuming k ≥ 2, we have∣∣∣∣∫ +∞

0

sin(γθ)
sinh(πγ3 )

cosh(πγ3 )k
dγ

∣∣∣∣ ≤ ∫ +∞

0

dγ

cosh(πγ3 )
=

3

2
,
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Particle approximation for Lagrangian models with specular boundary condition

and since sinh ≥ 0 on R+,∣∣∣∣∫ +∞

0

γKiγ(a)
sinh(πγ3 )

cosh(πγ3 )k
dγ

∣∣∣∣ ≤ 3

2

∫ +∞

0

a sinh(θ) exp
(
− a cosh(θ)

)
dθ =

3

2
exp(−a).

By taking a = 4uz
s ≥ 0 in the preceding expression and coming back to (A.5), we deduce

that ∣∣∣∣∫ +∞

0

γ sinh(πγ)

(2 cosh(πγ3 ))n−1
Kiγ

(4uz

s

)
dγ

∣∣∣∣ ≤ 8

2n−1
exp

(
− 4uz

s

)
.

Therefore, coming back to (A.3), as∫ +∞

0

exp(− 2(z2+u2)
s ) exp(− 4uz

s ) dz ≤ exp(− 2u2

s )

∫ +∞

u

exp(− 2z2

s ) dz ≤
√
s,

we have

Py,v(τn ≤ T ) ≤ 3

2n−3π2

∫ T

0

dt

∫ t

0

ds√
s

∫ +∞

0

g(t− s, y, v; 0, u) du.

Let us now bound the integrals.∫ +∞

0

g(t− s, y, v; 0, u) du

=

√
3

π(t− s)2
exp

(
− 6y2

(t− s)3
− 6yv

(t− s)2
− 2v2

(t− s)

)
×
∫ +∞

0

exp
(
− 2u2

(t− s)

)(
exp

(2u(3y + (t− s)v)

(t− s)2

)
+ exp

(−2u(3y + (t− s)v)

(t− s)2

))
du

=

√
3√

2π(t− s)3
exp

(
− 6y2

(t− s)3
− 6yv

(t− s)2
− 2v2

(t− s)

)
exp

( (3y + (t− s)v)2

2(t− s)3

)
=

√
3√

2π(t− s)3
exp

(
− 3(y + (t− s)v)2

2(t− s)3

)
,

so that,

Py,v(τn ≤ T ) ≤ 3

2n−3π2

∫ T

0

dt

∫ t

0

ds√
s

√
3√

2π(t− s)3
exp

(
− 3(y + (t− s)v)2

2(t− s)3

)
(

=
3

2n−3π2

∫ T

0

ds√
s

∫ T−s

0

√
3

√
2π
√
t3

exp
(
− 3(y + tv)2

2t3

)
dt

)

≤ 3
√

3
√
T

2n−4π2
√

2π

∫ T

0

1√
t3

exp
(
− 3(y + tv)2

2t3

)
dt.

Since β∗ = sup{β > 0; supp(µ0) ⊂ [β,+∞) × R} > 0, we observe that for t ≤ β∗/2|v|,
y + tv ≥ β∗ − t|v| ≥ β∗

2 > 0 and

∫ T

0

1√
t3

exp
(
− 3(y + tv)2

2t3

)
dt ≤

∫ T∧ β
∗

2|v|

0

1√
t3

exp
(
− 3(β∗)2

8t3

)
dt+

∫ T

T∧ β
∗

2|v|

1√
t3
dt

≤
√

2T√
3β∗

+
1

2

 1√
T ∧ β∗

2|v|

− 1√
T

 ≤ √2T√
3β∗

+

√
|v|
2β∗

.

This estimate implies that, for some constant C > 0,

Py,v(τn ≤ T ) ≤ C

2n

( √
2T√
3β∗

+

√
|v|
2β∗

)
,
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Particle approximation for Lagrangian models with specular boundary condition

and further we obtain the desired upper bound (1.6),

P(τn ≤ T ) =

∫
Py,v(τn ≤ T )µ0(dy, dv) ≤ C(T,m0, β

∗)

2n
.
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