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Abstract. We introduce a two-parameter discrete distribution that may have
a zero vertex and can be useful for modeling overdispersion. The discrete
Nielsen distribution generalizes the Fisher logarithmic (i.e., logarithmic se-
ries) and Stirling type I distributions in the sense that both can be consid-
ered displacements of the Nielsen distribution. We provide a comprehensive
account of the structural properties of the new discrete distribution. We also
show that the Nielsen distribution is infinitely divisible. We discuss maximum
likelihood estimation of the model parameters and provide a simple method
to find them numerically. The usefulness of the proposed distribution is il-
lustrated by means of three real data sets to prove its versatility in practical
applications.

1 Introduction

Count data occur in many practical problems as, for example, the number of occurrences
of thunderstorms in a calendar year, the number of accidents, the number of absences, the
number of days lost, the number of insurance claims, the number of kinds of species in ecol-
ogy, and so on. Discrete distributions, which describe count phenomena, have been proposed
in the statistical literature in recent years, due perhaps to advances in computational meth-
ods which enable us to compute, straightforwardly, the numerical value of special functions
such as hypergeometric series. To mention a few, but not limited to, the readers are referred
to Roy (2004), Inusah and Kozubowski (2006), Kozubowski and Inusah (2006), Krishna
and Pundir (2009), Jazi, Lai and Alamatsaz (2010), Nooghabi, Roknabadi and Borzadaran
(2011), Englehardt and Li (2011), Nekoukhou, Alamatsaz and Bidram (2013), Barbiero
(2014), among many others.

It is well known that the classical Poisson distribution is applied in many scientific fields
involving count data, mainly because of its simplicity. As pointed out by Gómez-Déniz, Sara-
bia and Calderin-Ojeda (2011), most frequencies of event occurrence can be described ini-
tially by a Poisson distribution. However, a major drawback of this distribution is the fact that
the variance is restricted to be equal to the mean, a situation that may not be consistent with
observation. So, alternative discrete probability distributions, such as the negative binomial
distribution, are preferred for modeling the phenomena under study. Additionally, many of
these phenomena, such as individual automobile insurance claims, are characterized by two
features: (i) overdispersion, that is, the variance is greater than the mean; (ii) zero-inflated (or
zero vertex), that is, the presence of a high percentage of zero values in the empirical distri-
bution. In view of this, many attempts have been made in the statistical literature to propose
new discrete family of distributions for the distribution of the number of counts.

It is worth emphasizing that the majority of the new discrete distributions proposed re-
cently in the statistical literature are obtained by discretizing a known continuous distribution
(see the above references). Instead, we will introduce a new two-parameter discrete distri-
bution on the basis of a series expansion presented in Nielsen (1906). As we will see latter,
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the new distribution is very simple to deal with, since its probability mass function does not
contain any complicated function. Further, it is very flexible and it also presents the twofold
characteristic stated above: it can have a zero vertex, and it is overdispersed. Therefore, it may
be a natural candidate for fitting phenomena of this nature. The real data examples provided
here, and the comparison with the Negative Binomial (NB) distribution (the most important
and popular two-parameter discrete distribution for overdispersed data), show that the pro-
posed distribution has an outstanding performance. In addition to the NB distribution, we
also consider the Zero-Inflated Poisson (ZIP) and Zero-Inflated NB (ZINB) distributions in
the real data applications for the sake of comparison.

The main aim of this paper is to introduce a new two-parameter discrete family of distri-
butions with the hope that the new distribution may have a ‘better fit’ compared to the NB
distribution (and other ones) in certain practical situations. Additionally, we will provide a
comprehensive account of the mathematical properties of the proposed new family of dis-
tributions. As we will see later, the formulas related with the new distribution are simple
and manageable, and with the use of modern computer resources and its numerical capabil-
ities, the proposed distribution may prove to be an useful addition to the arsenal of applied
statisticians in discrete data analysis.

In order to introduce the new discrete distribution, we consider the following series expan-
sion provided by Nielsen (1906)[

− log(1 − z)

z

]α
= 1 + αz

∞∑
n=0

ψn(n + α)zn, α ∈ R, |z| < 1, (1)

where the coefficients ψn(·) are Stirling polynomials. According to Ward (1934), these coef-
ficients can be expressed in the form

ψn−1(w) = (−1)n−1

(n + 1)!
[
Hn−1

n − w + 2

n + 2
Hn−2

n + (w + 2)(w + 3)

(n + 2)(n + 3)
Hn−3

n − · · ·

+ (−1)n−1 (w + 2)(w + 3) · · · (w + n)

(n + 2)(n + 3) · · · (2n)
H 0

n

]
,

(2)

where Hm
n are positive integers defined recursively by Hm

n+1 = (2n + 1 − m)Hm
n + (n −

m + 1)Hm−1
n , with H 0

0 = 1, H 0
n+1 = 1 × 3 × 5 × · · · × (2n + 1), Hn

n+1 = 1. The first six
polynomials are ψ0(w) = 1/2, ψ1(w) = (2 + 3w)/24, ψ2(w) = (w + w2)/48, ψ3(w) =
(−8−10w+15w2 +15w3)/5760, ψ4(w) = (−6w−7w2 +2w3 +3w4)/11520 and ψ5(w) =
(96 + 140w − 224w2 − 315w3 + 63w5)/2,903,040.

We would like to point out that according to another definition,1 the polynomials S0(w) =
1 and Sn(w) = n!(w + 1)ψn−1(w), for n ≥ 1, are also known as Stirling polynomials. In this
paper, we use this terminology to refer to the polynomials ψn(w) in accordance with Nielsen
(1906) and Ward (1934).

We have the following propositions.

Proposition 1. The expansion (1) is absolutely convergent.

Proof. The proof can be found in Flajonet and Sedgewick (2009, p. 385). �

Proposition 2. The expansion (1) can be rewritten as

1 = zα

[− log(1 − z)]α
∞∑

m=0

ρm(α)zm, 0 < z < 1, (3)

where ρ0(α) = 1 and ρm(α) = αψm−1(α + m − 1) for m ≥ 1.

1See, for example, http://mathworld.wolfram.com/StirlingPolynomial.html.

http://mathworld.wolfram.com/StirlingPolynomial.html
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Proof. We can express[
− log(1 − z)

z

]α
= 1 + α

∞∑
n=1

ψn−1(n − 1 + α)zn

=
∞∑

n=0

ρn(α)zn,

where ρ0(α) = 1, and ρn(α) = αψn−1(α + n − 1) for n ≥ 1. It then follows that

1 = zα

[− log(1 − z)]α
∞∑

m=0

ρm(α)zm, 0 < z < 1.
�

Proposition 3. The coefficients ρm(α) in (3) satisfy

ρm(α) = αψm−1(m + α − 1) > 0,

for m ≥ 1 and α > 0.

Proof. In order to proof that ψm−1(m + α − 1) > 0 for m ≥ 1 and α > 0, we shall use the
representation of Stirling polynomials given by Graham, Knuth and Patashnik (1994). The
Nielsen expansion in (1) can be rewritten as[

− log(1 − z)

z

]α
= 1 + α

∞∑
n=1

σn(n + α)zn, α > 0, |z| < 1,

where the polynomials σn(·) are defined as (Graham, Knuth and Patashnik, 1994)

σn(n + α) =
∑n−1

k=0

〈〈n
k

〉〉(n+k+α
2n

)
α(α + 1) · · · (α + n)

.

Here,
〈〈n
k

〉〉
are the Eulerian numbers of the second kind, which satisfy the recurrence relation〈〈

n

m

〉〉
= (2n − m − 1)

〈〈
n − 1

m − 1

〉〉
+ (m + 1)

〈〈
n − 1

m

〉〉
, n,m ∈ N,

with initial condition 〈〈
0

0

〉〉
= 1,

〈〈
0

m

〉〉
= 1, m �= 0.

The Eulerian numbers of the second kind are not negative (Graham, Knuth and Patashnik,
1994, p. 271). From definition of σn(α + n), we have that σn(α + n) > 0 for all α > 0 and
n ∈N. Hence, by noting that

ψn−1(n + α − 1) = σn(n + α) > 0, n ≥ 1,∀α > 0,

the result holds. �

The rest of this paper is organized as follows. In Section 2, we introduce the new discrete
distribution. Structural properties related to the new distribution are provided in Section 3.
Estimation of model parameters is discussed in Section 4. Section 5 deals with applications
to real data sets. The Section 6 ends up the paper with some final comments.
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2 The new discrete distribution

By considering Propositions 2 and 3, we define the two-parameter discrete distribution named
as the discrete Nielsen (‘dN’ for short) distribution. We have the following definition.

Definition 1. The probability mass function of X with dN distribution is given by

Pr(X = x) = pθ+xρx(θ)

[− log(1 − p)]θ , x = 0,1,2, . . . , (4)

where p ∈ (0,1), θ > 0, ρ0(θ) = 1,

ρx(θ) = θψx−1(θ + x − 1), x = 1,2, . . . ,

and the coefficients ψx(·) are the Stirling polynomials given in (2).

If X follows a dN distribution, then the notation used is X ∼ dN(p, θ). The dN probability
mass function in (4) is very simple and does not involve any complicated function. Addition-
ally, there is no functional relationship between the parameters p ∈ (0,1) and θ > 0, and they
vary freely in the parameter space. We have that

Pr(X = 0) = pθ

[− log(1 − p)]θ , Pr(X = 1) = θpθ+1

2[− log(1 − p)]θ ,

and the other probabilities can be easily computed. For fixed p ∈ (0,1), it follows that Pr(X =
0) → 1 as θ → 0+, which means that the dN model can have a zero vertex. However, all zeros
must be interpreted as observational zeros from the dN distribution, that is, the proposed dN
model does not act a zero-inflated model. Figure 1 displays some possible shapes of the dN
probability mass function given by expression (4). Note that the mode moves away from zero
with increasing θ , for p fixed, indicating that the new discrete distribution is very versatile.

From Nielsen expansion (1) and when α = 1, it follows that[
− log(1 − z)

z

]
= 1 + z

∞∑
n=0

ψn(n + 1)zn, 0 < z < 1.

Figure 1 The dN probability mass functions for different values of parameters.
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Additionally, we have that

− log(1 − z) = z + z2

2
+ z3

3
+ · · · , 0 < z < 1.

After some algebra, we obtain[
− log(1 − z)

z

]
= 1 + z

2
+ z2

3
+ · · ·

= 1 + z

[
1

2
+ z

3
+ · · ·

]

= 1 + z

∞∑
n=0

zn

n + 2
.

Since ψn(n + 1) = 1/(n + 2), we have that

1 = z

[− log(1 − z)] +
∞∑

n=0

zn+2

(n + 2)[− log(1 − z)]

=
∞∑

n=1

zn

n[− log(1 − z)] .

Hence, for θ = 1, the dN distribution can be reduced to the Fisher logarithmic distribution
(Fisher, Corbet and Williams, 1943) given by

Pr(X = x) = px

x[− log(1 − p)] , x = 1,2, . . . ,

where p ∈ (0,1); that is, the Fisher logarithmic distribution can be considered a displacement
of the dN distribution from 1 (one).

As noted early, the proposed dN distribution has a very simple form. Tractability of the
probability mass function may be a great advantage in computing the probabilities as well
as structural properties from that equation. As pointed out recently by Jones (2015), “it can
certainly be argued that in an age of fast computers, mathematical tractability is not an issue
of overwhelming importance. However, straightforward mathematical formulae describing
features of distributions remain a springboard to insight, interpretation and clarity of expo-
sition, as well as improving computational speed and convenience. All other things being
equal—which they never are!—tractability is still to be preferred to non-tractability.” In view
of this, the tractability of the two-parameter dN distribution is very welcome and, as a conse-
quence, all properties derived in the next section (Section 3) have very simple forms. Again,
as pointed out recently by Jones (2015), “the role of parsimony in statistical modelling, to
aid interpretation (that word again!), to facilitate estimation and particularly prediction, af-
fording generalisability of results by avoiding overfitting, is clear. In developing families of
distributions, however, the watchword has usually been flexibility, and parsimony is little
mentioned.” We have that the dN distribution has only two parameters (p ∈ (0,1) and θ > 0)
which has facilitated the estimation of these parameters by the maximum likelihood method
(see Section 4). In short, we have proposed a very simple discrete distribution with only two
parameters and which is very flexible.

3 Properties

In what follows, we study several structural properties of the two-parameter dN distribution.
We have the following propositions.
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Proposition 4. Let X ∼ dN(p, θ). Then, the probability generating function is

GX(s) = E
(
sX)= [

log(1 − ps)

s log(1 − p)

]θ
, 0 < s <

1

p
, θ �= 1.

For θ = 1, it follows that

GX(s) = E
(
sX)= log(1 − ps)

log(1 − p)
, 0 < s <

1

p
.

Proof. For θ �= 1, we have that

GX(s) = E
(
sX)= ∞∑

x=0

sx pθ+xρx(θ)

[− log(1 − p)]θ .

After some algebra, we obtain

GX(s) =
[

log(1 − ps)

s log(1 − p)

]θ ∞∑
x=0

(sp)x+θρx(θ)

[− log(1 − sp)]θ =
[

log(1 − ps)

s log(1 − p)

]θ
,

where
∞∑

x=0

(sp)x+θρx(θ)

[− log(1 − sp)]θ = 1, 0 < s <
1

p
.

For θ = 1, we have that

GX(s) = E
(
sX)= ∞∑

x=1

sx px

x[− log(1 − p)]

= log(1 − ps)

log(1 − p)

∞∑
x=1

(sp)x

x[− log(1 − sp)]

= log(1 − ps)

log(1 − p)
,

where
∞∑

x=1

(sp)x

x[− log(1 − sp)] = 1, 0 < s <
1

p
.

�

Proposition 5. Let X ∼ dN(p, θ). Then, the moment generating function is

MX(t) = E
(
etX)= e−θt

[
log(1 − pet )

log(1 − p)

]θ
, t < − log(p), θ �= 1.

For θ = 1, it follows that

MX(t) = E
(
etX)= log(1 − pet )

log(1 − p)
, t < − log(p).

Proof. For θ �= 1, we have that

MX(t) = E
(
etX)= ∞∑

x=0

etx pθ+xρx(θ)

[− log(1 − p)]θ .
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After some algebra, we obtain

MX(t) =
[

log(1 − pet )

et log(1 − p)

]θ ∞∑
x=0

(pet )x+θρx(θ)

[− log(1 − pet )]θ

= e−θt

[
log(1 − pet )

log(1 − p)

]θ
,

where
∞∑

x=0

(pet )x+θρx(θ)

[− log(1 − pet )]θ = 1, t < − log(p).

For θ = 1, we have

MX(t) = E
(
etX)= ∞∑

x=1

etx px

x[− log(1 − p)]

= log(1 − pet )

log(1 − p)

∞∑
x=1

(pet )x

x[− log(1 − pet )]

= log(1 − pet )

log(1 − p)
,

where
∞∑

x=1

(pet )x

x[− log(1 − pet )] = 1, t < − log(p).
�

Proposition 6. Let X ∼ dN(p, θ). Then, the cumulant generating function is

KX(t) = log
[
MX(t)

]= −θt + θ
{
log
[− log

(
1 − pet )]− log

[− log(1 − p)
]}

,

where t < − log(p) and θ �= 1. For θ = 1, it follows that

KX(t) = log
[
MX(t)

]= log
[− log

(
1 − pet )]− log

[− log(1 − p)
]
,

where t < − log(p).

Proof. The result follows directly from Proposition 5. �

Proposition 7. Let X ∼ dN(p, θ). Then, the characteristic function is given by

φX(t) = E
(
eitX)= e−iθt

[
log(1 − peit )

log(1 − p)

]θ
, t ∈ R, θ �= 1.

For θ = 1, it follows that

φX(t) = E
(
eitX)= log(1 − peit )

log(1 − p)
, t ∈R.

where i = √−1 is the imaginary number.

Proof. The proof is similar to that of Proposition 5 just considering the logarithm function
for complex variables. �
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It follows from Proposition 5 that the ordinary moments of X ∼ dN(p, θ), for θ �= 1, are
given by

μ′
r = E

(
Xr)= {

dr

dtr
e−θt

[
log(1 − pet )

log(1 − p)

]θ}
t=0

.

For example, the mean (i.e., μ′
1) and variance are

E(X) = θ

(
p

(1 − p)[− log(1 − p)] − 1
)
,

VAR(X) = θ
p[− log(1 − p) − p]
[(1 − p) log(1 − p)]2 .

We have that the mean and variance increase as the values of p ∈ (0,1) and θ > 0 increase.
Table 1 lists the values of the mean and variance with varying values of p and θ . The skew-
ness and kurtosis of X can be calculated from the ordinary moments using well-known re-
lationships. Figure 2 shows how these measures vary with respect to p and θ . Note that the
skewness and kurtosis of the dN distribution can be quite pronounced, and the values of both
measures decrease as the values of p ∈ (0,1) and θ > 0 increase.

Table 1 Mean (above) and variance (below) of the dN distribution

θ \ p 0.1 0.3 0.5 0.7 0.9

0.2 0.011 0.040 0.089 0.188 0.582
0.012 0.055 0.161 0.541 4.762

0.5 0.027 0.101 0.221 0.469 1.454
0.030 0.136 0.402 1.352 11.904

0.8 0.044 0.161 0.354 0.750 2.327
0.048 0.218 0.643 2.163 19.047

1.2 0.065 0.242 0.531 1.126 3.490
0.072 0.327 0.965 3.245 28.571

1.6 0.087 0.323 0.708 1.501 4.654
0.095 0.436 1.286 4.327 38.094

2.5 0.136 0.504 1.107 2.345 7.272
0.149 0.682 2.010 6.760 59.522

4.0 0.218 0.806 1.771 3.752 11.635
0.238 1.091 3.216 10.817 95.236

Figure 2 Skewness (a) and kurtosis (b) of the dN distribution as functions of p and θ .
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The index of dispersion (a normalized measure of the dispersion of a probability distribu-
tion) of the dN distribution, defined as Id = VAR(X)/E(X), takes the form

Id = p[− log(1 − p) − p]
[(1 − p) log(1 − p)]2

(
p

(1 − p)[− log(1 − p)] − 1
)−1

,

which is independent of the parameter θ . It follows that Id > 1 for p ∈ (0,1), and
limp→0+ Id = 1 and limp→1− Id = ∞, which implies that the dN distribution is suitable for
modeling count data with overdispersion, like the NB distribution.

Proposition 8. Let X1 ∼ dN(p, θ1) and X2 ∼ dN(p, θ2) be two independent random vari-
ables. Define Z = X1 + X2. The probability mass function (convolution) of Z is given by

Pr(Z = z) = pθ1+θ2+zρz(θ1 + θ2)

[− log(1 − p)]θ1+θ2
, z = 0,1,2, . . . ,

where p ∈ (0,1), θ1 > 0 (with θ1 �= 1), θ2 > 0 (with θ2 �= 1), ρ0(θ1 + θ2) = 1, and

ρz(θ1 + θ2) = (θ1 + θ2)ψz−1(θ1 + θ2 + z − 1), z = 1,2, . . . .

For θ1 = θ2 = 1, we have that

Pr(Z = z) = 2!pz

z![− log(1 − p)]2

⌊
z

2

⌋
, z = 2,3, . . . ,

where
⌊n

k

⌋
(for n ∈ N and k ∈ N) are Stirling numbers of the first kind, and they can be

calculated by the recurrence relation⌊
n + 1

k

⌋
= n

⌊
n

k

⌋
+
⌊

n

k − 1

⌋
,

with the initial conditions ⌊
0

0

⌋
= 1,

⌊
n

0

⌋
=
⌊

0

n

⌋
= 0.

Proof. By using Pr(Z = z) =∑z
x=0 Pr(X1 = x)Pr(X2 = z − x) for θ1 �= 1 and θ2 �= 1, we

obtain

Pr(Z = z) =
z∑

x=0

[
p

[− log(1 − p)]
]θ1

pxρx(θ1)

[
p

[− log(1 − p)]
]θ2

pz−xρz−x(θ2).

After some algebra, we have

Pr(Z = z) =
[

p

[− log(1 − p)]
]θ1+θ2

pz
z∑

x=0

ρx(θ1)ρz−x(θ2).

The convolution of Stirling polynomials has the form (Graham, Knuth and Patashnik, 1994,
Cap. 6)

n∑
k=0

rσk(k + r)sσn−k

(
s + [n − k])= (r + s)σn

(
n + [r + s]).

From this expression, we have

z∑
x=0

θ1σx(x + θ1)θ2σz−x

(
θ2 + [z − x])= (θ1 + θ2)σz

(
z + [θ1 + θ2])= ρz(θ1 + θ2),
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by using ρ0(α) =: ασ0(α) = 1, and ρx(α) = αψx−1(α + x − 1) = ασx(x + α) with α > 0
and x = 1,2, . . . . Hence, it follows that

Pr(Z = z) =
[

p

[− log(1 − p)]
]θ1+θ2

ρz(θ1 + θ2)p
z, z = 0,1,2, . . . .

For θ1 = θ2 = 1, we have that

Pr(Z = z) =
z∑

x=0

[
1

[− log(1 − p)]
]
px

x

[
1

[− log(1 − p)]
]

pz−x

(z − x)
.

After some algebra, we obtain

Pr(Z = z) =
[

1

[− log(1 − p)]
]2 pz

z

z−1∑
x=1

z

x(z − x)

=
[

1

[− log(1 − p)]
]2

pz 2

z

z−1∑
x=1

1

x
.

The nth partial sum of the divergent harmonic series, given by

Mn =
n∑

k=1

1

k
,

is called the nth harmonic number. We have that⌊
n

2

⌋
= (n − 1)!Mn−1,

and hence

2

z

z−1∑
x=1

1

x
= 2!

z! (z − 1)!Mz−1 = 2!
z!
⌊
n

2

⌋
.

From the above expression, we obtain

Pr(Z = z) =
[

1

[− log(1 − p)]
]2 2!

z!
⌊

z

2

⌋
pz, z = 2,3,4 . . . ,

which concludes the proof. �

The generalization of Proposition 8 is provided in the following proposition.

Proposition 9. Let X1,X2, . . . ,Xn be n independent random variables, where Xk ∼
dN(p, θk) for k = 1,2, . . . , n. Define Z = X1 + · · · + Xn. If θk �= 1 for k = 1,2, . . . , n, then

Z ∼ dN(p, θ1 + · · · + θn).

If θk = 1 for k = 1,2, . . . , n, then

Pr(Z = z) = pz

[− log(1 − p)]n
n!
z!
⌊

z

n

⌋
, z = n,n + 1, n + 2, . . . .

Proof. The case θk = 1 for k = 1,2, . . . , n can be found in Patil (1963). If θk �= 1 for k =
1, . . . , n, we consider the inversion theorem (Feller, 1971, p. 511). The characteristic function
of Z is given by

φZ(t) = E
(
eitZ)= n∏

k=1

φXk
(t).
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Additionally, we have that

φXk
(t) = E

(
eitXk

)= e−itθk

[
log(1 − peit )

log(1 − p)

]θk

, t ∈ R, θk �= 1,

and hence we obtain

φZ(t) =
[

p

log(1 − p)

]θ1+···+θn
[

log(1 − peit )

peit

]θ1+···+θn

.

Let θ = θ1 + · · · + θn. We have

φZ(t) =
[

p

log(1 − p)

]θ ∞∑
m=0

ρm(θ)pmeitm, 0 < p < 1.

By using the inversion theorem, there exists a probability function of the form

Pr(Z = z) = 1

2π

∫ π

−π
φZ(t)e−izt dt,

which is given by

Pr(Z = z) =
[

p

log(1 − p)

]θ ∞∑
m=0

ρm(θ)pm 1

2π

∫ π

−π
ei(m−z)t dt,

where

1

2π

∫ π

−π
ei(m−z)t dt =

{
1, m = z,

0, m �= z.

Hence, it follows that

Pr(Z = z) =
[

p

log(1 − p)

]θ
ρz(θ)pz, z = 0,1, . . . ,

which concludes the proof. �

Proposition 10. Let X ∼ dN(p, θ), where p ∈ (0,1) and θ = n ∈ N. Then, the probability
mass function of X takes the form

Pr(X = x) = pn+x

[− log(1 − p)]n
n!

(n + x)!
⌊
x + n

n

⌋
, x = 0,1,2, . . . . (5)

Proof. From Graham, Knuth and Patashnik (1994, Cap. 7), we have that[− log(1 − p)

p

]n
= 1 +

∞∑
x=1

n!
(n + x)!

⌊
x + n

n

⌋
px.

Additionally, for x = 0,1,2, . . . and n = 1,2, . . . , it follows that

ψx(x + n) = (n − 1)!
(n + 1 + x)!

⌊
n + 1 + x

n

⌋
,

which completes the proof. �

Let Z be a random variable with probability mass function given by

Pr(Z = z) = pz

[− log(1 − p)]n
n!
z!
⌊

z

n

⌋
, z = n,n + 1, n + 2, . . . .
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We will name the above distribution as the discrete Stirling type I (‘dS’ for short) distribution
with parameters p ∈ (0,1) and n ∈ N, say Z ∼ dS(p,n). The dS distribution appeared for
the first time in Patil (1963) as a convolution of n random variables with Fisher logarithmic
distribution; see also Patil and Wani (1965). We have the following proposition.

Proposition 11. Let X ∼ dN(p,n) and Z ∼ dS(p,n), where n ∈ N and 0 < p < 1. Then,
the dS distribution is a displacement of the dN distribution from n ∈ N and, additionally, is
fulfilled Z = X + n.

Proof. The proof follows from equation (5) and by defining Z = X + n. �

Finally, we have the following proposition.

Proposition 12. Let X ∼ dN(p, θ), where p ∈ (0,1) and θ > 0 with θ �= 1. Then, the dN
distribution is infinitely divisible.

Proof. Let Xk,n ∼ dN(p, θ/n) be independent and identically distributed random variables
for all k, and n fixed. Define X = X1,n + X2,n + · · · + Xn,n. Then, we have that

φX(t) =
n∏

k=1

φXk,n
(t) = [

φX1,n
(t)
]n

.

It then follows that

φX(t) =
{

e−itθ/n

[
log(1 − peit )

log(1 − p)

]θ/n}n

= e−itθ
[

log(1 − peit )

log(1 − p)

]θ
,

which concludes the proof. �

The infinitely divisible distribution plays an important role in many areas of statistics, for
example, in stochastic processes and in actuarial statistics. When a distribution G is infinitely
divisible, then for any integer j ≥ 2, there exists a distribution Gj such that G is the j -

fold convolution of Gj , namely, G = G
∗j
j . Additionally, since the new two-parameter dN

distribution is infinitely divisible, an upper bound for its variance can be obtained when θ �= 1,
which is given by

VAR(X) ≥ Pr(X = 1)

Pr(X = 0)
= pθ

2
;

see, for example, Johnson and Kotz (1982, p. 75).

4 Parameter estimation

In the following, we address the problem of estimating the dN parameters. We consider the
maximum likelihood (ML) method to estimate the unknown parameters p ∈ (0,1) and θ > 0.
Let x1, . . . , xn be a sample of size n obtained from X ∼ dN(p, θ). The log-likelihood function
for the model parameters can be expressed as

	(p, θ) = nθ log
[

p

− log(1 − p)

]
+ log(p)

n∑
i=1

xi +
n∑

i=1

log
[
ρxi

(θ)
]
, (6)

where

ρxi
(θ) =

{
1, xi = 0,

θψxi−1(θ + xi − 1), xi = 1,2, . . . .
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The ML estimates p̂ and θ̂ of p and θ , respectively, can be obtained by maximizing the
log-likelihood function 	(p, θ) with respect to p and θ . However, we can show from the
likelihood equations that, for given p, the ML estimate of θ becomes

θ̂ (p) = − x̄

p

[
1

p
+ (1 − p)−1

log(1 − p)

]−1
, (7)

where x̄ = n−1∑n
i=1 xi . By replacing θ by θ̂ (p) in the log-likelihood function in (6), we

obtain the profile log-likelihood function for p as

	∗(p) = nθ̂(p) log
[

p

− log(1 − p)

]
+ log(p)

n∑
i=1

xi +
n∑

i=1

log
[
ρxi

(
θ̂ (p)

)]
.

Let 
n(p) be the geometric mean given by


n(p) =
(

n∏
i=1

pθ̂(p)+xi ρxi
(θ̂ (p))

[− log(1 − p)]θ̂ (p)

)1/n

.

Hence, the profile log-likelihood function for p reduces simply to

	∗(p) = n log
[

n(p)

]
. (8)

The profile log-likelihood function 	∗(p) in equation (8) plotted against p for a trial series of
values determines numerically the value of the ML estimate of p which maximizes (8). We
only need to find the value p̂ such that

p̂ = arg max
p

{

n(p)

}
, p ∈ (0,1).

Once the ML estimate p̂ is obtained from the plot, it can be substituted into equation (7)
to produce the unrestricted ML estimate θ̂ = θ̂ (p̂). It should be mentioned that the above
procedure is very simple to deal with and therefore it can be easily considered in any statistical
computing program.

Since the new parametric dN model corresponds to a regular ML problem, we have that the
standard asymptotics apply; that is, the ML estimators of the model parameters are asymp-
totically normal, asymptotically unbiased and have asymptotic variance-covariance matrix
given by the inverse of the expected Fisher information matrix. Let K(p, θ) be the unit (per
observation) expected Fisher information matrix for the parameter vector (p, θ). So, when n

is large and under some mild regularity conditions, we have that

√
n

(
p̂ − p

θ̂ − θ

)
a∼N2

((
0
0

)
,K(p, θ)−1

)
,

where “
a∼” means approximately distributed, and K(p, θ)−1 is the inverse of K(p, θ). Unfor-

tunately, there is no closed-form expression for the matrix K(p, θ). However, the asymptotic
behavior remains valid if the expected information matrix K(p, θ) is approximated by the
average matrix evaluated at (p̂, θ̂ ), say n−1J n(p̂, θ̂ ), where J n(p, θ) is the observed Fisher
information matrix. So, it is useful to obtain an expression for J n(p, θ), which can be used
to obtain asymptotic standard errors for the ML estimates. We have that

J n(p, θ) =
[
Jpp Jpθ

Jpθ Jθθ

]
,

whose elements are provided in Appendix A. The above asymptotic normal distribution can
be used to construct approximate confidence intervals for the parameters; that is, we have
the asymptotic confidence intervals p̂ ± �−1(1 − α/2) se(p̂) and θ̂ ± �−1(1 − α/2) se(θ̂)
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Table 2 Descriptive statistics

Automobile claim Accident proneness Chromatid aberrations

n 4000 165 400
Mean 0.0865 1.3450 0.5475
Variance 0.1225 4.3958 1.1256
Skewness 5.3180 2.9674 3.1222
Kurtosis 41.007 15.243 15.683
CV 4.0470 1.5636 1.9378
ID 1.4164 3.2672 2.0507

CV: Coefficient of variation (= s/x̄); ID: Index of dispersion (= s2/x̄).

for p and θ , respectively, both with asymptotic coverage of 100(1 − α)%. Here, se(·) is the
square root of the diagonal element of J n(p̂, θ̂)−1 corresponding to each parameter (i.e., the
asymptotic standard error), and �−1(·) denotes the standard normal quantile function.

Next, we conduct some Monte Carlo simulation experiments to evaluate the performance
of the ML estimators p̂ and θ̂ in estimating p and θ , respectively. In order to gener-
ate random values from X ∼ dN(p, θ), the usual method for discrete distributions can be
used (see, for example, Ross, 2013, Ch. 4); that is, generate u ∼ U(0,1) and set X = j if∑j

k=0 Pk < u <
∑j+1

k=0 Pk , where j = 0,1,2, . . . , and Pk = Pr(X = k) is the probability mass
function given in (4). The simulation was performed using the R program (R Core Team,
2016), and the number of Monte Carlo replications was 10,000. The evaluation of point esti-
mation was performed based on the following quantities for each sample size: the mean, the
bias and the root mean squared error (RMSE), which are computed from 10,000 Monte Carlo
replications. We also consider the coverage probability (CP) of the 90% and 95% intervals
of the dN model parameters. We set the sample size at n = 150, 250 and 400, and consider
p = 0.4 and 0.7, and θ = 1.5, 2.5, 3.5 and 5.0. The simulation results are provided in the
Appendix B. These results reveal interesting information. The ML estimators p̂ and θ̂ have
negative and positive biases, respectively, in all cases considered; that is, it seems that the
parameters p and θ are underestimated and overestimated, respectively. However, the ML
estimates are stable and, in general, are close to the true values of the parameters for the
sample sizes considered. Additionally, as the sample size increases, the bias and RMSE de-
crease, as expected. Regarding interval estimation, it is clear that the asymptotic CIs for the
dN model parameters have very good empirical coverages, presenting CP near the respective
nominal levels in all cases.

5 Empirical illustrations

We illustrate the usefulness of the two-parameter dN distribution by considering three real
data sets. All computations were done using the R program, which is a free software environ-
ment for statistical computing and graphics. The first data set corresponds to the number of
automobile insurance claims per policy over a fixed period of time (Gossiaux and Lemaire,
1981); the second data set represents the number of accidents of workers in a particular divi-
sion of a large steel corporation in an observational period of six months (Sichel, 1951); and
the third data set represents the number of chromatid aberrations in 24 hours (Catcheside,
Lea and Thoday, 1946a, 1946b). Table 2 gives a descriptive summary for the data sets. From
this table, we have that the sample index of dispersion is greater than 1, which indicates that
the dN distribution may be suitable to fit these data sets.
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Figure 3 The profile log-likelihood curve for p.

Table 3 Parameter estimates; dN model

Automobile claim

Parameter ML estimate SE 90% CI

p 0.3309 0.0416 (0.2627; 0.3991)
θ 0.3749 0.0618 (0.2735; 0.4763)

Accident proneness

Parameter ML estimate SE 90% CI

p 0.7164 0.0532 (0.6292; 0.8035)
θ 1.3394 0.2580 (0.9166; 1.7627)

Chromatid aberrations

Parameter ML estimate SE 90% CI

p 0.5301 0.0601 (0.4315; 0.6286)
θ 1.1089 0.2179 (0.7517; 1.4665)

The parameter p of the dN model was estimated using the profile log-likelihood func-
tion in (8). Figure 3 displays the profile log-likelihood curves plotted against the parameter
p ∈ (0,1), where their respective maximum occur near p = 0.33087 for the automobile claim
data, near p = 0.71640 for the accident proneness data, and near p = 0.53010 for the chro-
matid aberrations data. Table 3 lists the ML estimates, asymptotic standard errors (SE), and
the 90% confindence intervals (CI) for the model parameters.

Table 4 lists the observed and expected frequencies, log-likelihood function values eval-
uated at the ML estimates, Pearson goodness-of-fit chi-squared statistics (χ2) and the cor-
responding p-values. From the values of this table we have that the dN distribution seems
to give a satisfactory fit on the basis of the χ2 statistics and the corresponding p-values.
It worth emphasizing that some classes were combined in the calculation of the Pearson
statistic. Groupings were done in order that the expected frequencies are large so that the
chi-squared approximation to the Pearson statistic is tenable.

From Table 2, we have that the sample index of dispersion is greater than 1 (one) for the
data sets, which indicates some evidence of overdispersion. Undoubtedly, the most useful and
important two-parameter distribution for modeling count data with overdispersion is the NB
distribution. Hence, the natural question is how the NB distribution fits these data. The NB
probability mass function, specified in terms of its mean, μ say, is given by

Pr(Y = y) =
(

φ

φ + μ

)φ( μ

φ + μ

)y 
(y + φ)


(φ)
(y + 1)
, y = 0,1,2, . . . ,
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Table 4 Fit of the data sets; dN model

Automobile claim Accident proneness Chromatid aberrations

Count Observed Expected Count Observed Expected Count Observed Expected

0 3719 3719.17 0 77 77.44 0 268 270.14
1 232 230.67 1 36 37.15 1 87 79.40
2 38 38.95 2 24 20.00 2 26 29.21
3 7 8.43 3 13 11.51 3 9 11.88
4 3 2.05 4 4 6.91 4 4 5.11
5 1 0.53 5 3 4.27 5 2 2.28

6 2 2.69 6 1 1.05
7 1 1.72 7 3 0.49
8 2 1.12
9 2 0.73
10 0 0.48
15 1 0.07

Maximum log-likelihood −1183.432 −262.30 −399.41
χ2 1.055 2.257 1.924
Degrees of freedom 2 3 2
p-value 0.590 0.521 0.382

Table 5 Fit of the data sets; NB model

Automobile claim Accident proneness Chromatid aberrations

Count Observed Expected Count Observed Expected Count Observed Expected

0 3719 3719.22 0 77 77.94 0 268 270.18
1 232 229.90 1 36 35.84 1 87 78.55
2 38 39.91 2 24 20.04 2 26 29.84
3 7 8.42 3 13 11.86 3 9 12.22
4 3 1.93 4 4 7.22 4 4 5.19
5 1 0.46 5 3 4.47 5 2 2.25

6 2 2.79 6 1 0.99
7 1 1.76 7 3 0.44
8 2 1.11
9 2 0.71
10 0 0.45
15 1 0.05

Maximum log-likelihood −1183.55 −262.60 −399.86
μ̂ 0.0865 1.3455 0.5475

(0.0260) (0.3869) (0.1539)

φ̂ 0.2166 0.6986 0.6200
(0.0364) (0.1430) (0.1270)

χ2 1.4168 2.350 2.4159
Degrees of freedom 2 3 2
p-value 0.492 0.503 0.299

where μ > 0 and φ > 0. It can be shown that the variance can be written as μ + μ2/φ

and hence the parameter φ is referred to as the “dispersion parameter”. Table 5 presents
the observed and expected frequencies, log-likelihood function values evaluated at the ML
estimates, ML estimates, asymptotic SEs (between parentheses), χ2 statistics and the corre-
sponding p-values. From this table we have that the NB distribution provides a good fit for
these data sets on the basis of the χ2 statistics and the corresponding p-values. However,
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by comparing the Tables 4 and 5, we may conclude that the new two-parameter dN distri-
bution is slightly better than the NB distribution for modeling these data sets; that is, the dN
distribution provides a slight improvement over to the BN distribution to fit these data sets.

It is also interesting to consider some zero-inflated models to fit the data sets. In short,
these models are designed to deal with situations where there is an “excessive” number of
individuals with a count of 0 (zero). On this regard, we shall consider the ZIP and ZINB
distributions. The ZIP probability mass function is given by

Pr(Y = y) =
⎧⎪⎨⎪⎩

ω + (1 − ω)e−λ, y = 0,

(1 − ω)
e−λλy

y! , y = 1,2, . . . ,

where λ > 0, whereas the ZINB probability mass function takes the form

Pr(Y = y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω + (1 − ω)

(
φ

φ + μ

)φ

, y = 0,

(1 − ω)

(
φ

φ + μ

)φ( μ

φ + μ

)y 
(y + φ)


(φ)
(y + 1)
, y = 1,2, . . . .

Here, ω ∈ (0,1) is the probability of extra zeros. The ZIP and ZINB distributions tend to the
Poisson and NB distributions, respectively, as ω → 0. Tables 6 and 7 present, for the ZIP
and ZINB models, respectively, the observed and expected frequencies, log-likelihood func-
tion values evaluated at the ML estimates, ML estimates, asymptotic SEs (between paren-
theses), χ2 statistics and the corresponding p-values. On the basis of the χ2 statistics and
the corresponding p-values, we have that the ZIP model is not suitable to fit the data sets
(see Table 6). Table 7 indicates that the ZINB model is adequate to fit the data sets (see the
χ2 statistics and the corresponding p-values), however, note that the ML estimates of ω are
near zero and hence the NB should be preferable since it has less parameters to be estimated

Table 6 Fit of the data sets; ZIP model

Automobile claim Accident proneness Chromatid aberrations

Count Observed Expected Count Observed Expected Count Observed Expected

0 3719 3719.03 0 77 77.01 0 268 268.02
1 232 224.67 1 36 23.18 1 87 71.79
2 38 48.50 2 24 26.19 2 26 40.03
3 7 6.98 3 13 19.72 3 9 14.88
4 3 0.75 4 4 11.14 4 4 4.15
5 1 0.07 5 3 5.03 5 2 0.93

6 2 1.89 6 1 0.17
7 1 0.61 7 3 0.03
8 2 0.17
9 2 0.04
10 0 0.01
15 1 0.00

Maximum log-likelihood −1187.78 −285.57 −413.15
λ̂ 0.4318 2.2591 1.1153

(0.0518) (0.1767) (0.1116)

ω̂ 0.7997 0.4045 0.5091
(0.0224) (0.0451) (0.0440)

χ2 14.845 15.492 4.709
Degrees of freedom 2 3 2
p-value <0.001 <0.001 <0.001
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Table 7 Fit of the data sets; ZINB model

Automobile claim Accident proneness Chromatid aberrations

Count Observed Expected Count Observed Expected Count Observed Expected

0 3719 3719.22 0 77 77.94 0 268 270.18
1 232 229.90 1 36 35.84 1 87 78.55
2 38 39.91 2 24 20.04 2 26 29.84
3 7 8.42 3 13 11.86 3 9 12.22
4 3 1.93 4 4 7.22 4 4 5.19
5 1 0.46 5 3 4.47 5 2 2.25

6 2 2.79 6 1 0.99
7 1 1.76 7 3 0.44
8 2 1.11
9 2 0.71
10 0 0.45
15 1 0.05

Maximum log-likelihood −1183.55 −262.60 −399.86
μ̂ 0.0865 1.3455 0.5475

(0.1046) (0.3649) (0.1701)

φ̂ 0.2166 0.6986 0.6200
(0.3258) (0.3732) (0.3383)

ω̂ 0.0008 0.0002 0.00008
(1.2072) (0.2487) (0.2989)

χ2 1.417 2.350 2.4159
Degrees of freedom 1 2 1
p-value 0.234 0.309 0.120

(i.e., simpler model). In summary, the above analysis indicates that having a lot of zeros does
not necessarily mean that you need a zero-inflated model; see, for example, Allison (2012,
Ch. 9).

Finally, it worth emphasizing that we have proposed a two-parameter discrete distribution
which seems to give a satisfactory fit (at least) in the three cases considered, on the basis of
the χ2 statistics and the corresponding p-values. So, the dN may be a good alternative to
the popular NB distribution (as well as some zero-inflated models) in practice. Therefore, we
believe the two-parameter dN distribution may be an excellent means of fitting an empirical
distribution that presents too many zeros and/or overdispersion.

6 Concluding remarks

In this paper, we have introduced a new discrete distribution, so-called the discrete Nielsen
(dN) distribution. The new class of discrete distributions was obtained from a series expan-
sion provided by Nielsen (1906). The proposed dN distribution is indexed by two parameters
and it has a very simple form for its probability mass function. Additionally, it can have a zero
vertex, and it is overdispersed. We have provided a comprehensive account of the structural
properties of the new discrete distribution, including explicit expressions for the probability
generating function, moment generating function, characteristic function, etc. The estimation
of the unknown parameters of the dN distribution was approached by the method of maxi-
mum likelihood, and a very simple way of computing them numerically was provided. We
derive an expression for the observed Fisher information matrix that can be used to com-
pute asymptotic standard errors for the maximum likelihood estimates. From Monte Carlo
simulation experiments we verify that the method of maximum likelihood is very effective in
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estimating the dN model parameters. Applications of the new discrete distribution to real data
sets were given to demonstrate that it can be used quite effectively for modeling count data
which present too many zeros and/or overdispersion. In conclusion, the dN distribution may
provide a rather flexible mechanism for fitting a wide spectrum of discrete real world data sets
which may have a lot of zeros and/or overdispersion. We hope that the new discrete distri-
bution may serve as an alternative distribution (among many others) to the negative binomial
distribution for modeling count data in several areas.

Finally, note that we can also consider regression structures for the dN model parameters.
Let Y1, . . . , Yn be n independent random variables, where each Yi (i = 1, . . . , n) follows the
dN distribution with parameters pi and θi ; that is, Yi ∼ dN(pi, θi). Suppose the following
functional relations:

g1(pi) = η1i = x�
i β,

g2(θi) = η2i = s�
i τ ,

where β = (β1, . . . , βr)
� and τ = (τ1, . . . , τs)

� are vectors of unknown regression coeffi-
cients which are assumed to be functionally independent, β ∈R

r and τ ∈ R
s with r + s < n,

η1i and η2i are the linear predictors, and x�
i = (xi1, . . . , xin) and s�

i = (si1, . . . , sin) are
observations on r and s known covariates (or independent variables or regressors). Addi-
tionally, the functions g1 and g2 here play a similar role to the link functions of general-
ized linear models, in the sense that they specifically define how the parameters are linked
to linear combinations of the covariates. It is important for the link functions to be injec-
tive and the covariates to be linearly independent, so that, with these two conditions, the
regression parameters are identifiable. So, the functions g1 : (0,1) → R and g2 : (0,∞) → R

are assumed to be strictly monotonic and twice differentiable. There are several possible
choices for the link functions g1(·) and g2(·). For instance: logit g1(p) = log(p/(1 − p));
probit g1(p) = �−1(p); and logarithmic g2(θ) = log(θ). Note that, from the relations given
in the previous section between the parameters and moments of the dN distribution, the
covariates of the above regression model affect not only the mean but also the variance
of the distribution of the observations. An in-depth investigation of such regression model
is beyond the scope of the present paper, but certainly is an interesting topic for future
work.

Appendix A: Elements of Jn(p, θ)

The observed information matrix J n(p, θ) is given by

J n(p, θ) =
[
Jpp Jpθ

Jpθ Jθθ

]
,

whose elements are

Jpp = − nθ [1 + log(1 − p)]
[(1 − p) log(1 − p)]2 + n(θ + x̄)

p2 ,

Jpθ = −n[(1 − p) log(1 − p) + p]
p(1 − p) log(1 − p)

,

Jθθ = n

θ2 −
n∑

i=1

xi∑
k=0

1

(θ + k)2 −
n∑

i=1

�i,
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where

�i =
⎧⎪⎨⎪⎩

0, xi = 0,

Ai(1)

Ai(3)

−
(

Ai(2)

Ai(3)

)2
, xi = 1,2, . . . ,

with

Ai(1) =
xi−1∑
k=0

〈〈xi

k

〉〉
(2xi)!


(θ + k + xi + 1)


(θ + k − xi + 1)

× {[
�(θ + k + xi + 1) − �(θ + k − xi + 1)

]2
+ � ′(θ + k + xi + 1) − � ′(θ + k − xi + 1)

}
,

Ai(2) =
xi−1∑
k=0

〈〈xi

k

〉〉
(2xi)!


(θ + k + xi + 1)


(θ + k − xi + 1)

× {
�(θ + k + xi + 1) − �(θ + k − xi + 1)

}
,

Ai(3) =
xi−1∑
k=0

〈〈xi

k

〉〉
(2xi)!


(θ + k + xi + 1)


(θ + k − xi + 1)
,

where 
(·), �(·) and � ′(·) are the gamma, digamma and trigamma functions, respectively.

Appendix B: Simulation results

The Monte Carlo simulation results are provided in Tables 8 and 9.

Table 8 Simulation results; p = 0.4

θ = 1.5 θ = 2.5 θ = 3.5 θ = 5.0

p̂ θ̂ p̂ θ̂ p̂ θ̂ p̂ θ̂

n = 150
Mean 0.3726 2.2656 0.3864 3.1270 0.3769 4.4530 0.3820 6.0282
Bias −0.0274 0.7656 −0.0136 0.6270 −0.0231 0.9530 −0.0180 1.0282
RMSE 0.1281 1.7923 0.1065 2.3963 0.1047 3.2097 0.0959 3.3565
CP(90%) 87.2 90.8 89.3 90.0 89.8 91.2 91.3 92.3
CP(95%) 94.0 94.3 95.0 93.2 94.7 93.5 96.3 94.5

n = 250
Mean 0.3823 1.7762 0.3906 2.7558 0.3893 3.8884 0.3918 5.4957
Bias −0.0177 0.2762 −0.0094 0.2558 −0.0107 0.3884 −0.0082 0.4957
RMSE 0.0920 0.8986 0.0802 1.0315 0.0768 1.4762 0.0744 2.0900
CP(90%) 90.0 93.8 89.3 91.3 90.5 91.8 89.5 90.5
CP(95%) 94.8 95.3 94.0 93.2 94.5 94.0 94.8 93.3

n = 400
Mean 0.3873 1.6516 0.3946 2.6642 0.3967 3.6996 0.3900 5.3646
Bias −0.0127 0.1516 −0.0054 0.1642 −0.0033 0.1996 −0.0100 0.3646
RMSE 0.0696 0.5230 0.0642 0.8254 0.0627 1.0114 0.0600 1.4032
CP(90%) 91.2 92.5 91.2 93.3 89.3 89.8 89.2 91.8
CP(95%) 96.3 95.5 95.5 95.8 94.8 93.8 94.3 94.7
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Table 9 Simulation results; p = 0.7

θ = 1.5 θ = 2.5 θ = 3.5 θ = 5.0

p̂ θ̂ p̂ θ̂ p̂ θ̂ p̂ θ̂

n = 250
Mean 0.6902 1.5761 0.6930 2.5869 0.6939 3.6129 0.6898 5.2688
Bias −0.0098 0.0761 −0.0070 0.0869 −0.0061 0.1129 −0.0102 0.2688
RMSE 0.0610 0.3766 0.0508 0.5141 0.0465 0.6425 0.0493 1.0487
CP(90%) 89.8 92.3 90.0 90.8 91.8 93.0 89.2 91.2
CP(95%) 95.7 95.7 94.8 94.3 96.3 96.0 94.2 95.2

n = 250
Mean 0.6934 1.5423 0.6944 2.5658 0.6962 3.5689 0.694 5.1330
Bias −0.0066 0.0423 −0.0056 0.0658 −0.0038 0.0689 −0.0060 0.1330
RMSE 0.0458 0.2585 0.0400 0.3875 0.0361 0.4990 0.0364 0.7258
CP(90%) 89.7 90.3 89.7 90.5 91.2 91.7 87.5 88.2
CP(95%) 95.7 95.2 95.2 95.8 95.8 95.0 93.2 94.2

n = 400
Mean 0.6968 1.5166 0.6978 2.5423 0.6960 3.5606 0.6974 5.0616
Bias −0.0032 0.0166 −0.0022 0.0423 −0.0040 0.0606 −0.0026 0.0616
RMSE 0.0349 0.1913 0.0333 0.3142 0.0289 0.3976 0.0269 0.5275
CP(90%) 91.5 90.7 88.2 88.0 91.3 90.2 90.0 91.5
CP(95%) 96.7 95.0 93.5 93.3 94.7 95.3 95.2 96.2
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