
The Annals of Applied Statistics
2019, Vol. 13, No. 1, 466–491
https://doi.org/10.1214/18-AOAS1202
© Institute of Mathematical Statistics, 2019

DEVELOPMENT OF A COMMON PATIENT ASSESSMENT SCALE
ACROSS THE CONTINUUM OF CARE: A NESTED MULTIPLE

IMPUTATION APPROACH1
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Evaluating and tracking patients’ functional status through the post-acute
care continuum requires a common instrument. However, different post-acute
service providers such as nursing homes, inpatient rehabilitation facilities
and home health agencies rely on different instruments to evaluate patients’
functional status. These instruments assess similar functional status domains,
but they comprise different activities, rating scales and scoring instructions.
These differences hinder the comparison of patients’ assessments across
health care settings. We propose a two-step procedure that combines nested
multiple imputation with the multivariate ordinal probit (MVOP) model to
obtain a common patient assessment scale across the post-acute care contin-
uum. Our procedure imputes the unmeasured assessments at multiple assess-
ment dates and enables evaluation and comparison of the rates of functional
improvement experienced by patients treated in different health care settings
using a common measure. To generate multiple imputations of the unmea-
sured assessments using the MVOP model, a likelihood-based approach that
combines the EM algorithm and the bootstrap method as well as a fully
Bayesian approach using the data augmentation algorithm are developed.
Using a dataset on patients who suffered a stroke, we simulate missing as-
sessments and compare the MVOP model to existing methods for imputing
incomplete multivariate ordinal variables. We show that, for all of the es-
timands considered, and in most of the experimental conditions that were
examined, the MVOP model appears to be superior. The proposed procedure
is then applied to patients who suffered a stroke and were released from re-
habilitation facilities either to skilled nursing facilities or to their homes.

1. Introduction.

1.1. Overview. To track and evaluate patients through the post-acute care con-
tinuum a common standardized evaluation tool is needed. Current evaluation tools
have been largely developed within each type of health care provider, and cannot
be easily compared. In inpatient rehabilitation facilities (IRFs), patients’ functional
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status is evaluated by the Functional Independence Measure (FIM). After being
discharged from IRFs, the functional status of patients who stay in skilled nurs-
ing facilities (SNFs) is collected using the Minimum Data Set (MDS), while the
Outcome and Assessment Information Set (OASIS) is collected for patients who
receive home health care provided by home health agencies. All of these assess-
ments examine similar functional capabilities (e.g., eating, grooming, dressing,
etc.), but the specific instruments, rating scales and instructions for scoring the
different activities vary between these post-acute settings. Thus, it is difficult to
evaluate and compare the rates of functional improvement experienced by patients
treated in the different health care settings.

The Continuity Assessment Record and Evaluation item set is a standardized
evaluation tool that was developed for use at acute hospital discharge and at post-
acute care admission and discharge [Gage et al. (2012)]. This tool is intended to
be a common evaluation tool for evaluating patients across the continuum of post-
acute care, and considerable resources were invested in its development. However,
implementing new instruments in all post-acute care settings may result in addi-
tional investments in administration and training as well as in changes to the reim-
bursement system [Li et al. (2017)]. Moreover, adopting new instruments would re-
quire translating past functional status scores so that comparison to the new scores
is possible.

Equating setting-specific instruments so that functional status scores from one
instrument could be used interchangeably with ones from another instrument is a
possible approach to obtain a common evaluation tool [Kolen and Brennan (2014),
Dorans, Pommerich and Holland (2007), von Davier (2011)]. Linking and equat-
ing scores across different standardized assessments has been a major focus in the
field of educational testing for the past 90 years [see Dorans, Pommerich and Hol-
land (2007), Chapter 2, for details]. Score equating methods have been recently
used in health outcomes research. The conversion table method [Velozo, Byers
and Joseph (2007)] was used to equate FIM assessments with MDS assessments.
Conversion table equates the sum of individual item scores, also referred to as the
total score, by matching on latent functional scores that are estimated from two
different instruments using Item Response Theory models. This method was also
used to equate scores from two physical functioning scales [ten Klooster et al.
(2013)], as well as two depression scales [Fischer et al. (2011)]. Because conver-
sion table ignores the variability from the estimation and the imputation processes,
it may result in statistically invalid estimates when further analysis is performed
using the imputed scores [Gu and Gutman (2017)]. Furthermore, a data set that
comprises contemporaneous MDS and OASIS assessments is required in order to
equate MDS and OASIS instruments. However, MDS and OASIS assessments are
never jointly observed.

We propose a nested multiple imputation procedure [Shen (2000), Harel (2003),
Rubin (2003)] to impute unmeasured assessments across the continuum of care.
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This procedure enables evaluation and comparison of the rates of functional im-
provement across different health care settings, and it consists of an Equating step
and a Translating step. In the Equating step, we impute the unmeasured assess-
ments in MDS or OASIS that are close to the FIM assessment date to obtain a syn-
thetic data set with simultaneous MDS and OASIS assessments. In the Translating
step, we rely on the synthetic data set from the first step to estimate the relation-
ship between MDS and OASIS that will be used to impute multiple unmeasured
assessments in MDS or OASIS at later assessment dates. This two-step procedure
accounts for the uncertainty in both steps, and provides flexibility for researchers
to choose different models in the second step without the need to re-equate the
instruments.

The Equating step imputes the missing instruments that consist of multiple ordi-
nal items. The logistic and probit link functions are commonly used to model single
ordinal variable. These link functions give similar model fit and predictive perfor-
mance. Bayesian inference for these models relies on sampling from complex pos-
terior distributions. However, by introducing auxiliary variables, sampling from
these posterior distributions can become more efficient. Albert and Chib (1993)
described this technique for the probit link function and more recently Holmes
and Held (2006) and Polson, Scott and Windle (2013) proposed two possible ap-
proaches for the logistic link function. The multivariate ordinal probit (MVOP)
model was proposed as an extension of the probit model [Albert and Chib (1993)]
and the multivariate probit model [Ashford and Sowden (1970)] to multivariate or-
dinal responses. Similar extensions for logistic link function with multiple ordinal
outcomes is an area of future research. Using the MVOP model, we can capture
the complex dependence structure and the ordinal nature of the different functional
assessment instruments as well as adjust for observed patients’ covariates.

To generate multiple imputations of the unmeasured functional assessments us-
ing the MVOP model, we develop two computational approaches. The first ap-
proach combines the EM algorithm [Dempster, Laird and Rubin (1977)] for ob-
taining the maximum likelihood estimates of the parameters in the MVOP model
and the bootstrap method to multiply and impute the missing values [Little and
Rubin (2002)]. The second approach relies on the data augmentation (DA) algo-
rithm [Tanner and Wong (1987)] to draw the unknown parameters of the MVOP
model and the missing values from their joint posterior distribution. We compared
the MVOP model to existing methods for imputing incomplete multivariate ordi-
nal variables with respect to the biases, the sampling variances, and the RMSEs
of their point estimates, as well as the widths and coverage rates of their inter-
val estimates. For all of the estimands considered and in most of the experimental
conditions that were examined, the MVOP model appears to be superior. In the
Translating step, different models can be used to estimate the relationship between
MDS and OASIS assessments. We illustrate this flexibility either by imputing the
missing individual items using the MVOP model or by imputing the missing total
scores using a linear regression model.
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The remainder of this section describes the analytical data set, introduces the
basic framework and reviews related work. Section 2 describes the MVOP models
and their estimation methods. Section 3 presents the nested multiple imputation
procedure. Section 4 compares the MVOP models to existing methods using a
simulation study. Section 5 describes the empirical data analysis. Conclusions and
discussions are provided in Section 6.

1.2. Motivating example. The analytical data set includes 72,575 patients who
suffered a stroke and were discharged from IRFs between 2011 and 2014. Of
these patients, 38,629 were released to SNFs, where the MDS assessments were
collected for them. The other 33,946 patients were discharged home, where the
OASIS assessments were used to measure their functional status. Patient assess-
ments were collected on admission and at various time points during their post-
acute stays. The median number of assessments for each patient was 5 for patients
in SNFs and the range was 0 to 91. The median number of assessments for patients
receiving home health care was 3 and the range was 0 to 46. Two assessments for
each patient were included in our analyses. One assessment was collected at ad-
mission within 30 days from the IRF’s discharge date. The other was recorded
approximately 30 days after the first assessment. The primary research objective is
to examine and compare the rates of functional improvement experienced by pa-
tients treated in the different health care settings after being discharged from IRFs.
To describe the functional change for patients who were released to either SNFs or
home, we will use the MDS scale.

1.3. Basic framework. We consider equating setting-specific patient assess-
ments as a missing data problem. We assume that all patients have complete
FIM assessments and complete demographic characteristics. Let M = {Mi}, i =
1, . . . ,N , where Mi is an indicator that is equal to 1 if patient i was discharged
home and 0 otherwise. Let Yfim, Ymds = (Ymds

A ,Ymds
B ), and Yoas = (Yoas

A ,Yoas
B )

denote matrices of item responses in FIM, MDS, and OASIS, respectively, with
rows referring to subjects and columns referring to variables, and where Ymds

A =
(Ymds

A,obs,Ymds
A,mis), Ymds

B = (Ymds
B,obs,Ymds

B,mis), Yoas
A = (Yoas

A,mis,Yoas
A,obs), and Yoas

B =
(Yoas

B,mis,Yoas
B,obs). The subscripts A and B denote the assessments on admission and

at the later date, respectively. The subscripts obs and mis denote the observed and
missing assessments, respectively. In addition, let X denote a set of fully observed
covariates.

The joint posterior distribution of the missing data and the parameters can be
written as

f
(
Ymds

A,mis,Ymds
B,mis,Yoas

A,mis,Yoas
B,mis,ψA,ψB |

Ymds
A,obs,Ymds

B,obs,Yoas
A,obs,Yoas

B,obs,Yfim,X,M
)

= f
(
Ymds

A,mis,Yoas
A,mis,ψA|Ymds

A,obs,Yoas
A,obs,Yfim,X,M

)
(1.1)
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× f
(
Ymds

B,mis,Yoas
B,mis,ψB |

Ymds
A,mis,Yoas

A,mis,Ymds
A,obs,Ymds

B,obs,Yoas
A,obs,Yoas

B,obs,Yfim,X,M
)
,

where ψA and ψB index the imputation models in the Equating and Translating
steps, respectively. The Equating step is performed once, and the Translating step
can be performed multiple times. To reduce the computational complexity and to
provide flexibility to researchers we assumed in equation (1.1) that ψA and ψB are
conditionally independent. The data setting that consists of patients’ covariates,
FIM assessments, and first MDS or OASIS assessments resembles the statistical
matching setup [D’Orazio, Di Zio and Scanu (2006)]. In this setup, the joint distri-
bution of {Yfim,Ymds

A ,Yoas
A ,X} is not identifiable based on observed data, because

MDS and OASIS are never jointly observed.
This setup also arises in the test equating literature when using common-

item nonequivalent groups design [Kolen and Brennan (2014), Dorans, Pom-
merich and Holland (2007)]. This design assumes that different groups of ex-
aminees are assessed using two different test forms that share a common item
set. When used for equating, the common-item set should be representative of
the total test forms in content and statistical characteristics [Kolen and Bren-
nan (2014), Dorans, Pommerich and Holland (2007)]. This is commonly attained
by ensuring that the items are exactly the same in both forms and are at the
same location in the form. Here, Yfim is similar for all patients, and it is ad-
ministered prior to and within a short time frame from the initial MDS and
OASIS assessments. In addition, Yfim includes similar content to the MDS and
OASIS assessments, because it attempts to approximate the same underlying
functional status. Based on these observations, a natural starting point is to ap-
ply the conditional independence assumption, f (Ymds

A ,Yoas
A |Yfim,X,M,ψA) =

f (Ymds
A |Yfim,X,M,ψA)f (Yoas

A |Yfim,X,M,ψA) [D’Orazio, Di Zio and Scanu
(2006)]. This assumption is often implicitly made in test equating applications
using only Yfim. Here, we include other patient characteristics as well.

We further assumed that the unmeasured assessments are missing at random
(MAR) [Little and Rubin (2002)], because a major determinant of patients’ dis-
charge destination from a rehabilitation facility is their functional status, which is
measured using the validated FIM instrument. Under the conditional independence
and the MAR assumptions, we can impute Ymds

A,mis using the posterior distribution

f (Ymds
A,mis|Yfim,Ymds

A,obs,X,ψA) in the Equating step. These two assumptions can-
not be inferred from the data and may not always be plausible. To examine the
plausibility of these assumptions, we conducted a sensitivity analysis to investi-
gate whether our results changed in a substantial way when these assumptions are
violated [Rubin (1986), Heitjan, Landis and Richard (1994)].

The Equating step generates complete synthetic data sets that comprise MDS
and OASIS assessments simultaneously for patients who were discharged home.
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Assuming MAR and that the relationship between contemporary imputed and ob-
served instruments does not change across the continuum of care, we can simplify
the third line of equation (1.1):

f
(
Ymds

B,mis,Yoas
B,mis,ψB |Ymds

A,mis,Yoas
A,mis,Ymds

A,obs,Ymds
B,obs,Yoas

A,obs,Yoas
B,obs,Yfim,X,M

)
= f

(
Ymds

B,mis,ψ
mds
B |Ymds

A,mis,Yoas
A,obs,Yoas

B,obs
)

× f
(
Yoas

B,mis,ψ
oas
B |Yoas

A,mis,Ymds
A,obs,Ymds

B,obs
)
,

where ψB = (ψmds
B ,ψoas

B ), and in the Translating step we impute Ymds
B,mis using

f (Ymds
B,mis|Ymds

A,imp,Yoas
A,obs,Yoas

B,obs,ψ
mds
B ), where Ymds

A,imp denotes the imputed MDS
assessments at admission.

1.4. Related work. The Equating and the Translating steps require methods
that impute multivariate ordinal variables. Multivariate imputation methods can
be classified into two types of methods: fully conditional specification and joint
modeling. Fully conditional specification [van Buuren (2007)] involves a series of
univariate conditional models that impute missing values sequentially with cur-
rent model estimates. In practice, users only include main effects in these mod-
els, because it is challenging to identify and include higher-order interactions and
nonlinear terms at each of the conditional models [Vermunt et al. (2008)]. With
multiple ordinal variables, the default implementation of fully conditional speci-
fication relies on the ordered logit model. Gu and Gutman (2017) noted that this
implementation fails to capture the full correlation structure of the imputed items
when the proportional odds assumption is violated. Recently, a multi-level model
based on the probit link function was proposed as a possible imputation model for
the missing ordinal variable [Enders, Keller and Levy (2018)].

The joint modeling approach [Schafer (1997)] specifies a joint probability
model for all the data. Imputation of missing values is performed from the im-
plied distribution of the missing variables conditional on the observed data. Yucel,
He and Zaslavsky (2011) proposed a method that is based on the multivariate nor-
mal model to impute ordinal variables and supplemented it with a rounding tech-
nique that preserves the observed marginal distribution of the ordinal variables.
When there is a large proportion of missing values, propagation of errors in the
underlying modeling approximation can compound and result in invalid statistical
inferences [Yucel, He and Zaslavsky (2011), Gu and Gutman (2017)].

Imputation by Propensity score matching (IPSM) can be embedded in a joint
modeling approach to define cells within which hot-deck imputations can be drawn
[Andridge and Little (2009)]. The propensity score is defined as the probability of
a unit to have missing values. IPSM imputes missing values with observed values
from units with similar estimated propensity scores. IPSM is a generally valid sta-
tistical method, but its performance is sensitive to the specification of the propen-
sity score model [Gu and Gutman (2017)].
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Latent variable matching (LVM) [Gu and Gutman (2017)] is a recently proposed
procedure that combines IRT models with multiple imputation [Rubin (1987)]
to impute unmeasured assessments. LVM is also a hot-deck imputation method,
which matches units using the underlying functional status estimated from IRT
models. In its original form, LVM ignores patient covariates, which may violate
the MAR assumption [Rubin (1994)]. LVM can be extended to account for a set
of discrete and continuous covariates by applying it within subgroups of the co-
variates; however, this approach may become computationally intensive when the
number of possible covariate values is large.

Among these methods, IPSM and LVM are the strongest candidate methods
in terms of validity and efficiency for imputing the missing assessments in our
datasets [Gu and Gutman (2017)]. Thus, we only compared these two methods
with the newly proposed procedure in Section 4.

2. The multivariate ordinal probit model. Let Y = (Yobs,Ymis) = {yij , i =
1, . . . ,N, j = 1, . . . , J } denote a generic matrix of item responses, where Ymis
and Yobs are the matrices of missing and observed item responses, respectively,
yij ∈ {1, . . . , cj } is the response of patient i to item j , and cj is the number of re-
sponse levels of item j . For example, in the Equating step, Ymis corresponds to the
unmeasured assessments in MDS, Ymds

A,mis, and Yobs corresponds to the observed

assessments in FIM and MDS, Yfim and Ymds
A,obs. The MVOP model introduces

a matrix of latent response variables Z = {zij , i = 1, . . . ,N, j = 1, . . . , J } such
that yij = gj (zij ) = l, if γj,l−1 < zij ≤ γj,l , where −∞ = γj,0 < γj,1 < · · · <

γj,cj−1 < γj,cj
= +∞ are unknown threshold parameters. The MVOP model as-

sumes that zi = (zi1, . . . , ziJ )� ∼ N (βxi ,�), i = 1, . . . ,N , where xi is a P × 1
vector of covariates for patient i, β is a J × P matrix of unknown regression
coefficients and � is an unknown covariance matrix. Statistical inferences for
ψ = (γ ,β,�) are based on the likelihood

L(ψ |Yobs,X) = c

N∏
i=1

∫
f (yi |xi ,ψ) dymis,i

= c

N∏
i=1

∫ ∫
�iJ

· · ·
∫
�i1

NJ (zi;βxi ,�) dzi dymis,i ,

(2.1)

where �ij is the interval (γi,l−1, γi,l] if yij = gj (zij ) = l, and c is a normalizing
constant.

The vector parameter ψ is not identifiable because the likelihood (2.1) is in-
variant to location and scale transformations on Z. Threshold constraints and cor-
relation constraints are two types of identification constraints that are commonly
made with the MVOP model. The threshold constraints fix two threshold param-
eters for each outcome. For example, one could set γj,1 = 0 and either γj,2 = 1
or γj,cj−1 = 1 ∀j . Applying these constraints allows us to sample the covariance
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matrix � from a known probability distribution [Chen and Dey (2000), Jeliazkov,
Graves and Kutzbach (2008)]. The correlation constraints either fix γj,1 = 0 or
βj,1 = 0 ∀j , and restrict � to be a correlation matrix R [Lawrence et al. (2008),
Zhang et al. (2017)]. We refer to the MVOP model under the threshold constraints
and correlation constraints as the MVOPT model and MVOPC model, respectively.

MVOP models have been analyzed using likelihood-based methods, includ-
ing a direct likelihood approach that involves the evaluation of integrals using
Gaussian–Hermite quadrature [Li and Schafer (2008)], an approximate EM algo-
rithm [Guo et al. (2015)], a pseudo-likelihood approach [Varin and Czado (2010)]
and Bayesian approaches [Chen and Dey (2000), Lawrence et al. (2008), Zhang
et al. (2017)]. Of these methods, only Zhang et al. (2017) extended the MVOP
model to handle incomplete correlated ordinal responses. Here, when some of the
outcomes are missing, we propose Monte Carlo EM (MCEM) algorithms [Wei
and Tanner (1990)] for maximum likelihood estimation and DA algorithms for
Bayesian inference under the MVOP models to produce imputed values.

2.1. MCEM algorithm. We first consider the MVOPT model, and fix γj,1 = 0
and γj,cj−1 = 1 ∀j . The complete-data likelihood is

Lcom(ψ |Y,X,Z) ∝ |�|−N
2 exp

{
−1

2
tr

(
�−1

N∑
i=1

(zi − βxi )(zi − βxi )
�

)}

×
N∏

i=1

J∏
j=1

1{zij ∈ �ij }.

The E-step of the EM algorithm, given the current value of the parameter, ψ ,
involves evaluating the expectation

Q
(
ψ∗|ψ) = E

{
logL

(
ψ∗|Y,X,Z

)|Yobs,X,ψ
}

=
∫

logL
(
ψ∗|Y,X,Z

)
f (Z|Yobs,X,ψ) dZ,

which consists of multiple integrations with respect to a truncated multivariate
normal distribution of Z. Q(ψ∗|ψ) cannot be calculated analytically, but Monte
Carlo methods can be used to approximate it. We extend the slice sampler algo-
rithm proposed by Damien and Walker (2001) for bivariate normal distribution to
sample from the truncated multivariate normal distribution. The algorithm intro-
duces a latent variable so that the slice sampler runs on a sequence of conditional
distributions which can all be sampled directly using uniform distributions. This
algorithm has a faster mixing rate than the Gibbs sampling algorithm [Geweke
(1991)]. Details of the algorithm are described in Section 1 of the Supplementary
Material [Gu and Gutman (2019)].
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In the M-step, we rely on conditional maximization [Meng and Rubin (1993)]
to update Q(ψ∗|ψ) in successive steps with respect to β and �:

β̂ =
N∑

i=1

{
1

G

G∑
g=1

z̃(g)
i x�

i

}{
N∑

i=1

xix�
i

}−1

,

�̂ = 1

N

{
N∑

i=1

{
1

G

G∑
g=1

z̃(g)
i z̃(g)�

i

}
− β̂

{
N∑

i=1

xix�
i

}
β̂

�
}
,

where {z̃(g), g = 1, . . . ,G} are G draws from f (Z|Yobs,X,ψ). To decrease the
Monte Carlo errors, Wei and Tanner (1990) suggested using a large G.

To complete the estimation process, we derived a consistent estimator for γ .
The estimator is based on the empirical marginal distribution of the observed and
imputed responses in the absence of threshold constraints [Olsson (1979)],

γ̃j,l = 1

G

G∑
g=1

�−1

{
1

N

N∑
i=1

1
{
ỹ

(g)
ij ∈ (−∞, l)

}}
,

l = 1, . . . , cj − 1, j = 1, . . . , J,

where ỹ
(g)
ij = yobs,ij if Mi = 0, ỹ

(g)
ij = ỹ

(g)
imp,ij and ỹ

(g)
imp,ij is imputed through the

indicator function 1{z̃(g)
ij ∈ �ij } given the current estimate of γ j if Mi = 1, and

�(·) is the cumulative distribution function of the standard Normal distribution.
The estimate of γj,l given the threshold constraints is

γ̂j,l = γ̃j,l − min γ̃ j

max γ̃ j − min γ̃ j

,

where γ̃ j = (γ̃j,1, . . . , γ̃j,cj−1).

2.2. Data augmentation algorithm. For Bayesian inference of the MVOPT
model, we assign a N (0,104 × I) prior distribution for β and a IW(J + 2, (J +
2) × IJ×J ) prior distribution for �, where IW(ν, S0) denotes the inverse-Wishart
distribution with ν degrees of freedom and scale matrix S0. Based on the work
of Albert and Chib (1993), we use a uniform prior distribution over the polytope
T ⊂R

cj for γ j , j = 1, . . . , J . The feasible region for the parameter space of γ j :

T = {
γ j = (γj,2, . . . , γj,cj−1) ∈ R

cj : γj,l > γj,l−1,∀ l = 2, . . . , cj − 1
}
.

The DA algorithm for drawing samples from the posterior distribution of ψ con-
sists of an Imputation step that draws Z from f (Z|Yobs,X,ψ) using the slice sam-
pler algorithm described in Section 2.1, and three Posterior simulation (P) steps:

P-step 1: Draw β̃|Z,�,X ∼ N (μβ,�β), where β̃ = (β1, . . . ,βJ )�, βj is the

j th row of β , X̃i = IJ×J ⊗ xi , �β = (
∑N

i=1 X̃�
i �−1X̃i + 10−4 × IJP×JP )−1 and

μβ = �β

∑N
i=1 X̃�

i �−1zi .
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P-step 2: Draw �|Z,X ∼ IW(N + J + 2,
∑N

i=1(zi − βxi )(zi − βxi )
� + (J +

2) × IJ×J ).
P-step 3: Draw γjl|zj ,yobs,j ∼ U(max{max{zij : yij = l}, γj,l−1},

min{min{zij : yij = l + 1}, γj,l+1}), for l = 2, . . . , cj − 2, and j = 1, . . . , J , where
U(a, b) denotes the uniform distribution with support (a, b).

After each cycle of the algorithm, we impute the missing responses Ymis through
the indicator functions 1{zij ∈ �ij }, for i = 1, . . . ,N and j = 1, . . . , J given the
corresponding latent responses Z and threshold parameters γ .

2.3. Parameter expansion approach. For the MVOPC model, we fix γj,1 = 0
∀j and constrain the covariance matrix � to be a correlation matrix R. In the
MCEM algorithm, the M-step with respect to R does not have a closed form so-
lution [Chib and Greenberg (1998)], and direct maximization of the expectation
of the complete-data likelihood is computationally intensive. For the Bayesian in-
ference, the posterior distribution of R does not follow a known probability dis-
tribution. Thus, we use the parameter expansion (PX) technique [Liu, Rubin and
Wu (1998), Liu and Wu (1999)], and propose a PX-MCEM algorithm to obtain
the maximum likelihood estimates, and a PX-DA algorithm to sample from the
posterior distribution of ψ , respectively. These algorithms are similar to the work
of Zhang, Boscardin and Belin (2006), Lawrence et al. (2008) and Zhang et al.
(2017).

We consider the following transformations:

(2.2) z∗
i = Dzi , β∗ = Dβ, R∗ = DRD, γ ∗

j = djγ j ,

so that R is transformed into a general covariance matrix, where D = diag(d1, . . . ,

dJ ) is a diagonal matrix with diagonal elements dj > 0 ∀j . The PX-MCEM and
the PX-DA algorithms using the transformed parameters (γ ∗,β∗,R∗) and the la-
tent responses Z∗ proceed as the MCEM and DA algorithms described in Sec-
tion 2.1 and Section 2.2, respectively. After each iteration, (Z,γ ,β,R) are updated
via the inverse transformations of identities (2.2).

3. Nested multiple imputation procedure. Let Q = Q(Ymds
A ,Ymds

B ) be a
quantity of interest. We summarize the proposed procedure to multiply impute
(Ymds

A,mis,Ymds
B,mis):

Equating: Impute Ymds
A,mis from the predictive distribution f (Ymds

A,mis|Yfim,

Ymds
A,obs,X).

Step 1: Draw K independent parameters ψ̃A from the posterior distribution
p(ψA|Yfim,Ymds

A,obs,X), or from the asymptotic distribution obtained by applying
the EM algorithm to a bootstrapped sample of the cases.

Step 2: Impute Ymds
A,mis through the indicator functions 1{z̃ij ∈ �ij }, where �ij

is determined by ψ̃A and z̃ij ∼ f (zij |Yfim,Ymds
A,obs,X, ψ̃A), ∀i, j .
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Step 3: Repeat steps 1 and 2 K times to create K imputed datasets Ymds,(k)
A,imp ,

k = 1, . . . ,K .

Translating: For each of the K imputed datasets in Stage 1, impute Ymds
B,mis from

the predictive distribution f (Ymds
B,mis|Ymds

A,imp,Yoas
A,obs,Yoas

B,obs).

Step 4: Draw L independent parameters ψ̃
(k)

B from the posterior distribution
p(ψB |Yoas

A,obs,Ymds,(k)
A,imp ), or from the asymptotic distribution obtained by applying

the EM algorithm to a bootstrapped sample of the cases.
Step 5: Impute Ymds

B,mis through the indicator functions 1{z̃ij ∈ �ij }, where �ij

is determined by ψ̃
(k)

B and z̃ij ∼ f (zij |Ymds,(k)
A,imp ,Yoas

A,obs,Yoas
B,obs, ψ̃

(k)

B ), ∀i, j .

Step 6: Repeat steps 4 and 5 L times to create L imputed datasets Ymds,(k,l)
B,imp ,

l = 1, . . . ,L.

Combining rules: The estimate of Q and its sampling variance are Q̂(k,l) =
Q̂(k,l)(Y(k,l)

com ) and U(k,l) = U(k,l)(Y(k,l)
com ) respectively, where each of the com-

plete datasets Y(k,l)
com = (Ymds

A,obs,Ymds
B,obs,Ymds,(k)

A,imp ,Ymds,(k,l)
B,imp ), for k = 1, . . . ,K , and

l = 1, . . . ,L. The overall estimate of Q and its sampling variance are obtained
using the nested multiple imputation combining rule, confidence intervals and sig-
nificance tests are based on a Student-t reference distribution [Shen (2000), Harel
(2003), Rubin (2003)].

4. Simulation study. We examined the performance of the MVOP model in
comparison to existing methods for imputing incomplete multivariate ordinal vari-
ables using a simulation study.

4.1. Partially simulated data. The simulation study was based on observed
FIM assessments and MDS assessments on admission for patients in SNFs, and
missing MDS assessments were artificially generated. To generate incomplete data
sets, we fitted a logistic regression model to the entire dataset where the explana-
tory variables comprised Yfim, patients’ age and patients’ gender,

(4.1) logit
{
Pr

(
Mi = 1|yfim

i ,xi

)} = α0 +
J1∑

j=1

αjy
fim
ij + αJ1+1xi1 + αJ1+2xi2,

where yfim
i = (yfim

i1 , . . . , yfim
iJ1

), xi = (xi1, xi2), and xi1 and xi2 denote the age and
gender of patient i, respectively. This resulted in estimated regression coefficients
α̂′ = (α̂0, α̂

′
1), where α̂0 is the estimated intercept and α̂1 = (α̂1, . . . , α̂J1+2) is a

vector of estimated regression coefficients for the other predictors. A simple ran-
dom sample of n = 1000 patients was then drawn from the set of patients in SNFs,
and Mi (i = 1, . . . , n) was sampled from a Bernoulli distribution with probability
Pr(Mi = 1|yfim

i ,xi ) = F(α̃0 + ∑J1
j=1 α̂j y

fim
ij + α̂J1+1xi1 + α̂J1+2xi2), where F(·)
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is the c.d.f. of a specified distribution and F−1(·) is the link function [McCullagh
and Nelder (1989)]. We considered three choices of F(·), the logistic distribution,
the Cauchy distribution, which is symmetric but has heavier tails than the logistic
distribution, and the Box–Cox family distributions [Guerrero and Johnson (1982)].
The Box–Cox distribution takes the form

Fλ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < −1

λ
,λ > 0,

(1 + λx)1/λ

(1 + λx)1/λ + 1
, 1 + λx > 0, λ 
= 0,

exp(x)

1 + exp(x)
, λ = 0,

1, x > −1

λ
,λ < 0.

This distribution allows us to assess the effect of skewness in the missing data
mechanism. It is positively skewed for λ > 0 and negatively skewed for λ < 0;
here, λ was fixed at either −0.3 or 0.3. The value of α̃0 was fixed so that pmis =
n1/n is either 20%, 40% or 60%, where n1 is the number of patients who have
missing assessments. MDS assessments for patient i were deleted to create an
incomplete data set when Mi = 1. For each configuration, 1000 replications were
produced.

The methods examined in the simulations were IPSM, LVM and the MVOP
models implemented using both EM and DA algorithms: MVOPT-DA, MVOPT-
EM, MVOPC-DA and MVOPC-EM. For IPSM, we estimated the propensity
score using the logistic regression model: logit{e(yfim

i ,xi)} = ξ0 + ∑J1
j=1 ξjy

fim
ij +

ξJ1+1xi1 + ξJ1+2xi2. For both IPSM and LVM, we used the nearest-neighbor
matching algorithm to find a potential donor. Ten multiple imputations were gen-
erated using each of the methods.

We examined the performance of the different methods on two estimands:
(1) the population mean total score of items in MDS, Q1 ≡ E(Smds), where
Smds

i = ∑
j ymds

ij , i = 1, . . . , n; (2) the pairwise Goodman and Kruskal’s γ rank
correlation coefficients [Goodman and Kruskal (1979)] between Jmds items in
MDS, Q2 ≡ {γ (ymds

j ,ymds
k ),1 ≤ j < k ≤ Jmds}. For each method, at each con-

figuration, and at each of the 1000 replications, we recorded Q̂m, m = 1,2, their
estimated sampling variances, the corresponding root mean square errors (RM-
SEs), the 95% interval estimate widths, and determined whether the intervals cov-
ered or did not cover the true value. Using these values, we calculated for each
approach and each configuration, the average coverage rate, the bias, the mean es-
timated sampling variance, the mean RMSE, and the mean interval width. Because
the simulations are based on 1000 replicates for each configuration, observed cov-
erage of 93.7% or above is not statistically distinguishable from the nominal level.
In addition, we view observed coverage of 90% as indicative of a modest deficit in
coverage.
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For each configuration, we also calculated a loss function based on the nega-
tively oriented interval scores [Gneiting and Raftery (2007), equation (61)]. This
loss function provides flexible assessment of coverage by accounting for the dis-
tance between the interval estimate and the estimand. For estimand Qm, the loss
function for interval estimate I , has the form

(4.2) λ(I) + 2

α
inf
η∈I

|Qm − η|,

where α = 0.05 and λ(I) denotes the Lebesgue measure of the interval estimate I .
The simulations were implemented using R 3.1.0 [R Core Team (2014)]. The

proposed EM and DA algorithms were implemented in C++ for efficiency. For
the EM algorithms, we generated G = 100 samples from f (Z|Yobs,X,ψ) in the
E-step, and calculated the observed-data likelihood using a Monte Carlo method
[Genz (1992)] to monitor the convergence of the MCEM algorithm. For the DA
algorithms, multiple parallel chains of 50,000 iterations with dispersed initial val-
ues were generated. Standard MCMC convergence diagnostics such as Gelman–
Rubin Statistic [Gelman and Rubin (1992)], trace plots and autocorrelation plots
were examined for a small sample of the simulations, and did not indicate failure
to converge.

4.2. Results. Table 1 displays the mean biases, variances, RMSEs, coverages,
interval widths and interval estimate loss function of the population mean total
score of items in MDS, Q1, for configurations, where F(·) is the logistic distri-
bution and pmis = {0.2,0.4,0.6}. Although some methods show modest deficits
in coverage in some scenarios, all of the methods yield coverage that is generally
either at or above the nominal level, statistically indistinguishable from the nom-
inal level, or indicative of only a modest deficit in coverage. Compared to all of
the methods that were examined, MVOP models implemented using the DA algo-
rithms have coverages that are closest to nominal across all configurations. IPSM
has coverages that are slightly smaller than LVM for pmis = 0.2,0.4, and worse
than LVM for pmis = 0.6. When pmis = 0.6, the parametric models underlying
LVM impute the missing values with less bias than the propensity score model
used in IPSM. Similar results were observed when predictive mean matching was
compared to IPSM [Andridge and Little (2009)]. The MVOP models implemented
using the DA algorithms generally have the smallest biases and RMSEs, while the
MVOP models implemented using the EM algorithms and the bootstrap method
have the largest biases, variances, RMSEs and interval widths. Because some
methods have lower coverage but with shorter intervals, and some have higher
coverage with wider intervals, we used the loss function in equation (4.2) to com-
pare the methods on coverage and interval width simultaneously. Generally, the
MVOPT models implemented using the DA algorithms have the smallest interval
score loss followed by LVM.
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TABLE 1
Biases, variances, RMSEs, 95% interval coverages, 95% confidence interval widths and interval
estimate loss function [Equation (4.2)] for the population mean total score of items in MDS, Q1,

given that n = 1000 and F(·) is the logistic distribution

pmis Method Bias Variance RMSE Coverage Width Equation (4.2)

0.2 IPSMa −0.013 0.014 0.124 93.2 0.460 0.607
LVMb −0.047 0.014 0.124 93.9 0.459 0.588
MVOPTc-DAd −0.015 0.014 0.116 95.5 0.472 0.547
MVOPCe-DA −0.012 0.013 0.115 94.3 0.453 0.569
MVOPT-EMf −0.017 0.029 0.133 98.0 0.735 0.678
MVOPC-EM −0.032 0.030 0.130 97.8 0.752 0.677

0.4 IPSM −0.015 0.016 0.147 90.4 0.500 0.752
LVM −0.070 0.020 0.159 91.8 0.565 0.767
MVOPT-DA −0.030 0.025 0.139 96.1 0.641 0.715
MVOPC-DA −0.025 0.020 0.141 94.8 0.564 0.793
MVOPT-EM −0.070 0.039 0.175 97.3 0.885 0.823
MVOPC-EM −0.073 0.039 0.166 97.2 0.886 0.836

0.6 IPSM 0.062 0.034 0.228 89.6 0.748 1.191
LVM −0.050 0.035 0.196 92.2 0.757 1.007
MVOPT-DA −0.027 0.050 0.183 97.9 0.931 0.984
MVOPC-DA −0.007 0.033 0.179 95.3 0.749 0.871
MVOPT-EM −0.180 0.061 0.269 91.7 1.137 1.084
MVOPC-EM −0.167 0.063 0.263 92.4 1.164 1.024

aIPSM: imputation by propensity score matching;
bLVM: latent variable matching;
cMVOPT: multivariate ordinal probit model with threshold constraints;
dDA: data augmentation algorithm;
eMVOPC: multivariate ordinal probit model with correlation constraints;
fEM: expectation-maximization algorithm.

Figure 1 displays the distribution of biases, 95% interval coverages, interval
widths and interval score loss of the pairwise rank correlation coefficients between
items in MDS, Q2, for configurations where F(·) is the logistic distribution and
pmis = 0.6. The MVOP models except for MVOPC-DA have coverages that are
close to nominal, while IPSM and LVM have median coverage that is lower than
85%. However, except for MVOPT-DA, the other MVOP models have biases that
are larger than IPSM and LVM. As with Q1, MVOPT-EM and MVOPC-EM have
the largest biases and interval lengths, but their coverages are closer to nominal
when compared to LVM and IPSM. Lastly, MVOPT-DA has better coverages and
smaller interval score loss than MVOPC-DA. These trends are similar to the ones
observed with pmis = {0.2,0.4} [see Figures 5–6 in Section 2 of the Supplementary
Material [Gu and Gutman (2019)]].
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FIG. 1. Distribution across 1000 simulation replications of (a) biases, (b) coverages of 95% con-
fidence interval, (c) widths of 95% confidence interval and (d) interval score loss for the pairwise
rank correlation coefficients between items in MDS, Q2, given that F(·) is the logistic distribution
and pmis = 0.6.

Because MVOPT-DA generally has the best operating characteristics when F(·)
is the logistic distribution, we only include this method when examining the effects
of propensity score model misspecification. Table 1 in Section 2 of the Supple-
mentary Material [Gu and Gutman (2019)] displays the results for the population
mean total score of items in MDS when F(·) is the Cauchy distribution or the
Box–Cox family distribution with λ = {−0.3,0.3}. The performance of IPSM is
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sensitive to misspecification of the propensity score model. For example, when
pmis = 0.6 and F(·) is the Box–Cox family distribution with λ = −0.3, the cov-
erage of IPSM is only 82% and its interval score loss is larger than LVM and
MVOPT-DA. In contrast, LVM and MVOPT-DA are robust to different link func-
tions. MVOPT-DA has better coverages and smaller biases than LVM across all
of the configurations that were examined, and generally has smaller interval score
loss than LVM. Figures 7–15 in Section 2 of the Supplementary Material [Gu and
Gutman (2019)] display the results for the pairwise rank correlation coefficients
between items in MDS when F(·) is the Cauchy distribution and the Box–Cox
family distribution with λ = {−0.3,0.3}, respectively. IPSM, LVM and MVOPT-
DA have similar point estimates, but MVOPT-DA has better coverages and smaller
interval score loss than LVM and IPSM in most of the examined configurations.
IPSM has the lowest coverages, and the median of its coverages is about 72%
when F(·) is the Box–Cox distribution with λ = −0.3 and pmis = 0.6. When the
percentage of missingness decreases, the coverages of MVOPT-DA are closer to
nominal.

4.3. Sensitivity of the methods to the conditional independence and MAR as-
sumptions. The proposed methods rely on the validity of the conditional indepen-
dence and MAR assumptions (Section 1.3). We conducted an additional simulation
study to examine the plausibility of these assumptions in this analysis.

One clinical variable that is recorded for patients in IRFs is their swal-
lowing status at discharge. Swallowing status is a categorical variable with
three categories: “Regular Food”, “Modified Food Consistency/Supervision” and
“Tube/Parenteral”. Swallowing status is correlated with patients’ self-care func-
tional status as well as patients’ discharge destination. We recoded the swallowing
status using two dummy variables, which were added to equation (4.1). The setup
of the coefficients in equation (4.1) was similar to the one in Section 4.1, and
we also considered the three different link functions and three possible values for
pmis. Because MVOPT-DA has the best operating characteristics, we only exam-
ined the validity of the conditional independence and MAR assumptions with this
model. Swallowing status was not included when fitting the MVOPT-DA model
to address the possibility that physicians may have used unobserved clinical infor-
mation when selecting between the two possible discharge destinations. The fitted
MVOP model potentially violates both the conditional independence and the MAR
assumptions.

Table 2 and Figure 16–19 in Section 2 of the Supplementary Material [Gu and
Gutman (2019)] display the results for the population mean total score of items
in MDS and for the pairwise rank correlation coefficients between items in MDS,
respectively. MVOPT-DA generally provides statistically valid inferences. When
the percentage of missingness decreases, the biases, variances, RMSEs and interval
widths of MVOPT-DA decrease.
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5. Motivating example revisited.

5.1. Data. FIM, MDS and OASIS include similar functional status items, but
they have differences in the rating levels (i.e., “independence” is reflected by a
higher score in FIM but a lower score in MDS). To increase the consistency of
the items in these three instruments, we reversed the rating levels of FIM prior to
the analysis such that in all three instruments lower rating levels represent better
functional status. In addition, we recoded any MDS items with score of 7 or 8 (ac-
tivity occurred only once or twice or activity did not occur) as a score of 4 (totally
dependent) [Wysocki, Thomas and Mor (2015)]. We also combined the scores 3, 4
and 5 in the item “Feeding or Eating” in OASIS due to a small proportion (<1%)
of patients responding at these levels. After recoding, the items in FIM, MDS and
OASIS have seven, five and four rating levels, respectively, except for the item
“bathing” in OASIS that has seven levels.

Patients’ demographic characteristics are summarized in Table 2. Table 3 dis-
plays patients’ functional assessments in the three instruments. Patients who were
discharged home have an average FIM total score of 17.19 (SD = 6.21), while
the average of the total score for patients who were discharged to SNFs is 27.41
(SD = 7.46). This suggests that patients that were released home have better func-
tional status when they were discharged from IRFs. Table 3 also shows that patients
who were either released home or to SNFs have smaller average total scores at the
later assessment date, suggesting that the functional status for most of patients im-
proves over the course of their post-acute stay. The magnitude of improvement
among the subsample of patients who received home health care appears to be
larger than those who stayed in SNFs. 84.5% of the patients who recived home
health improve their functional status, while only 48.2% of the patients in SNFs.

5.2. Imputation model. We illustrate the proposed nested multiple imputation
procedure using the complete data set of 72,575 patients. In the first imputation
stage, we impute the unmeasured assessments in MDS using the MVOPT-DA
method described in Section 2.2. Age, gender, race and marital status are included
in the model. Ten parallel chains of 50,000 iterations with dispersed initial values
are generated, resulting in ten imputed data sets.

TABLE 2
Summary of the observed covariates for patients

Variable SNF Home health Overall

Age 77.17 (9.62) 76.40 (10.05) 76.81 (9.83)
Gender, female (%) 53.0 53.2 53.1
Race, white (%) 81.2 77.0 79.2
Marital status, married (%) 42.2 50.0 45.9
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TABLE 3
Summary of patients’ functional outcomes in three instruments

Instrument Variable SNF Home health Overall

FIM Score 27.41 (7.46) 17.19 (6.21) 22.63 (8.59)

Scorea at time 1 18.38 (2.85) – –
MDS Score at time 2 17.43 (3.66) – –

Differenceb −0.95 (2.41) – –
Improvedc (%) 48.2 – –

Score at time 1 – 15.60 (4.12) –
OASIS Score at time 2 – 10.59 (4.75) –

Difference – −5.01 (4.07) –
Improved (%) – 84.5 –

aScore: the total score of functional assessments in each instrument;
bDifference: the difference in total scores measured on admission and at a later assessment date;
cImproved: the proportion of patients who experience functional improvement.

In the Translating step, we consider two possible models to illustrate the flex-
ibility of the proposed procedure for translating assessments without re-equating
the instruments. The first model is a linear regression model, E(s1|s2) = ξ0 + ξ1s2,
where s1 and s2 denote the total scores of the imputed and observed items in MDS
and OASIS on admission, respectively. The unmeasured total scores in MDS at
the later assessment date are imputed using the estimates of ξ0 and ξ1 and the
observed total scores in OASIS at the later assessment date. The second model
is the MVOPT model, which models the joint distribution of all individual items
in the imputed MDS and the observed OASIS instruments, f (Ymds

A,imp,Yoas
A,obs|ψ).

The unmeasured individual items in MDS at the later assessment date are imputed
using the estimates of ψ and the observed individual items in OASIS at the later
assessment date, Yoas

B,obs. For the MVOPT model, the DA algorithm in Section 2.2
is used to generate multiple imputations. Ten imputed data sets are generated in
the second stage, resulting in 100 complete data sets.

We also examine the conversion table method and LVM to equate the MDS and
OASIS instruments in the Equating step, and the linear regression model to impute
the missing total scores in MDS in the Translating step. For LVM, in order to
accommodate patients’ covariates, we first partition the sample into five subclasses
by sub-classifying at the quintiles of the distributions of the estimated propensity
scores, P̂r(Mi = 1|xi ), and then impute the unmeasured assessments within each
subclass.

5.3. Model diagnostics. As suggested by Gelman et al. (2005) and Abayomi,
Gelman and Levy (2008), we evaluated the imputation model by comparing the
distributions of the observed and the imputed values. Patients who were released
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FIG. 2. Histograms of the observed (gray) and imputed (black) total scores in MDS. The gray
dotted line and black dashed line are the average observed and imputed total scores, respectively.

home have smaller total MDS scores (see Figure 2), and are more likely to be
at lower levels of each item (not shown). These patterns are consistent with the
patterns that are observed in FIM.

We further examined the imputation model using posterior predictive checks
[Gelman, Meng and Stern (1996), Burgette and Reiter (2010), He and Zaslavsky
(2012), Si and Reiter (2013), Si, Reiter and Hillygus (2016)]. We first created
S = 1000 complete data sets D(s) = (Yobs,Y(s)

mis) (s = 1, . . . , S) and replicated

data sets R(s) = Y(s)
rep in which both Yobs and Ymis are simulated from the imputa-

tion model. We then compared each D(s) with its corresponding R(s) on three test
statistics in the first stage imputation: (1) the mean total score of items in MDS,
T1 ≡ ∑

i,j ymds
ij /N ; (2) the proportion of response levels in each of the Jmds items

in MDS, T2 ≡ {nlj /N, l = 1, . . . , cj , j = 1, . . . , Jmds}, where nlj is the number
of responses at level l in item j ; and (3) the pairwise Goodman and Kruskal’s γ

rank correlation coefficients between items in MDS, T3 ≡ {γ (yj ,yk),1 ≤ j < k ≤
Jmds}. Let Tm,D(s) and Tm,R(s) , m = 1,2,3, be the values of Tm computed with
D(s) and R(s), respectively. For each Tm (m = 1,2,3), we computed the two-sided
posterior predictive probability (ppp),

pppm = (2/S) × min

(
S∑

s=1

1(Tm,D(s) > Tm,R(s)),

S∑
s=1

1(Tm,D(s) < Tm,R(s))

)
,

where 1(·) is the indicator function that is equal to 1 if the condition is satisfied
and 0 otherwise. A small ppp indicates that TD(s) and TR(s) deviate from each
other in one direction, which suggests that the imputation model distorts the data
characteristics captured by Tm.

To obtain the pairs (D(s),R(s)), we added a step to the DA algorithm that re-
placed all the values of Yobs and Ymis using the sampled parameter values at each
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FIG. 3. Histograms of the two-sided posterior predictive probabilities (ppp) for T2 (left panel) and
T3 (right panel). The dashed line corresponds to a threshold value of 0.05.

iteration. We calculated the test statistics T1 based on 1000 complete and replicated
data sets, and their differences T1,D(s) − T1,R(s) , s = 1, . . . ,1000. The estimated
two-sided ppp1 = 0.446, which does not indicate a deficiency in the imputation
model for T1. The left and right panel of Figure 3 show the histogram of the two-
sided ppp values for T2 and T3, respectively. None of the ppp2 and ppp3 values are
below 0.05. Thus, we do not observe implausible imputations. Similar model di-
agnostics were performed for the second stage imputation, and no significant lack
of model fit was detected (not shown).

Because posterior predictive checks may not be well calibrated [Hjort, Dahl and
Steinbakk (2006)], we also examined the imputation performance using a sample
partitioning method. Patients in SNFs were partitioned into a training sample that
included 90% of the patients, and the remaining 10% served as a test sample. We fit
the MVOPT model to the training sample and predicted the assessments of the test
sample. We repeated this partitioning and prediction process 10 times, and in each
replication we compared the distributions of the total mean score and the pairwise
rank correlation coefficients of the predicted MDS assessments to the observed
ones. Table 3 of the Supplementary Material [Gu and Gutman (2019)] shows the
results of the 10 replications. No significant lack of model fit is detected.

5.4. Analysis of multiply imputed data. We compared the rates of functional
change experienced by patients treated in SNFs and those treated by home health
agencies using the observed and imputed assessments in MDS.

We define dsnf and dhh to be the average change in total scores of the items in
MDS over two assessments after discharge from IRFs for patients treated in SNFs
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and by home health agencies, respectively:

dsnf = 1

N1

N1∑
i=1

Ssnf
2,i − 1

N1

N1∑
i=1

Ssnf
1,i , and dhh = 1

N2

N2∑
i=1

Shh
2,i − 1

N2

N2∑
i=1

Shh
1,i ,

where Ssnf
1,i = ∑

j ymds
Aij and Ssnf

2,i = ∑
j ymds

Bij are the total scores of the observed
items in MDS for patients in SNFs on admission and at the later assessment, re-
spectively, Shh

1,i = ∑
j ỹmds

Aij and Shh
2,i = ∑

j ỹmds
Bij are the total scores of the imputed

items in MDS for patients receiving home health on admission and at the later as-
sessment, respectively, N1 and N2 are the number of patients treated in SNFs and
by home health agencies, respectively, and N1 + N2 = N . We also define psnf and
phh to be the proportion of patients whose functional status improved during the
course of the post-acute stay in SNFs and home health care, respectively:

psnf = 1

N1

N1∑
i=1

1
{
Ssnf

2,i < Ssnf
1,i

}
, and phh = 1

N2

N2∑
i=1

1
{
Shh

2,i < Shh
1,i

}
,

where 1{A} is an indicator function that is equal to 1 if A is true and 0 otherwise.
We apply the proposed NMI procedure to examine two quantities: (1) the differ-

ence in average change of total scores over the course of post-acute stay between
patients in SNFs and those receiving home health; and (2) the difference in pro-
portions of patients whose functional status improved during the post-acute stay
between patients in SNFs and those receiving home health, phh − psnf.

Table 4 displays the point and interval estimates of dhh − dsnf and phh − psnf.
The point and interval estimates with nested multiple imputation using either the
regression translating model or the MVOPT translating model, as well as with

TABLE 4
Comparison of the estimated differences in average change of total score and estimated differences

in proportion of patients whose functional status improve during the course of post-acute stay
between patients treated in SNFs to those receiving home health care

dhh − dsnf phh − psnf (%)

Estimate SE 95% CI Estimate SE 95% CI

CTa −1.37 0.02 (−1.42, −1.34) 29.00 0.34 (28.32, 29.66)

LVMb −0.01 0.05 (−0.11, 0.10) 12.08 0.53 (11.02, 13.13)

NMI (Reg)c 0.04 0.06 (−0.08, 0.16) 8.21 0.54 (7.15, 9.26)

NMI (MVOPT)d −0.07 0.06 (−0.19, 0.05) 5.93 0.55 (4.84, 7.02)

aCT: conversion table method;
bLVM: latent variable matching;
cNMI (Reg): nested multiple imputation with linear regression translating model;
dNMI (MVOPT): nested multiple imputation with multivariate ordinal probit translating model.
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LVM in the Equating step are similar. The results show that on average patients
who received home health care do not have a significantly larger functional im-
provement than those who stayed in SNFs, but more patients who receive home
health care improve their functional status during the post-acute stay than those
in SNFs. In contrast, the results using the conversion table method suggest that
on average patients who received home health care had a significantly higher rate
of functional improvement than those who stayed in SNFs. In addition, a larger
proportion of patients who received home health care experienced improved func-
tional status in comparison to those who stayed in SNFs. Gu and Gutman (2017)
noted that the conversion table has a poor performance when it is used to equate
MDS and OASIS instruments. Thus, the estimates of the conversion table method
in the Equating step may lead to implausible imputations in the Translating step,
and overestimation of the rate of functional improvement for patients receiving
home health.

The directions of the point estimates of dhh − dsnf are different for the different
translating step methods, but their interval estimates are partially overlapping. The
estimate of phh − psnf for the regression model is larger then that of the MVOPT
model, suggesting that different translating models may result in different func-
tional relationship between MDS and OASIS total scores. The MVOPT translating
model incorporates more information by relying on all of the items in MDS and
OASIS, which should result in a more accurate estimate.

6. Concluding remarks. We proposed a nested multiple imputation proce-
dure to obtain a common patient assessment scale across the continuum of care by
imputing unmeasured assessments at multiple dates in two steps. This procedure
enables researchers to compare the rates of functional improvement experienced
by patients treated in different health care settings using a common measure. This
procedure accounts for the uncertainty in both the Equating and Translating steps,
and it also provides flexibility for researchers to choose different translating mod-
els to impute multiple future assessments without the need to re-equate the in-
struments. The Equating step utilizes the MVOP model to impute the incomplete
instruments that consist of multiple ordinal items. Simulations demonstrated that
models based on MVOP are superior to existing methods for imputing incomplete
multivariate ordinal variables in most of the experimental conditions that were ex-
amined. In addition, including observed covariates improves the point and interval
estimates in the Equating step.

We applied the proposed procedure to analyze patients who had a stroke and
were either released home or to SNFs after rehabilitation. Our analyses suggest
that more patients who were discharged home and received home health care ex-
perience functional improvement in comparison to those who were released to
SNFs, but on average the overall functional status improvement across all patients
is similar across these settings. This analysis does not imply that one setting is
more beneficial to patients than another, because the populations differ in patients’
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characteristics and initial functional status. However, using the proposed proce-
dure, researchers can identify a subgroup of patients with similar characteristics
and initial functional status who were discharged to either of the health care set-
tings, and compare the rates of functional change in this subgroup of patients with
the aim of identifying a setting that is more beneficial to certain patients. The pro-
posed procedure can be further extended to impute unmeasured assessments at all
assessment dates during patients’ post-acute stays.

The newly proposed methods rely on the conditional independence and the
missing at random assumptions. These assumptions are implicitly made in many
educational testing applications with the common-items design. Here, these as-
sumptions are somewhat defensible because all three instruments intend to de-
termine the same underlying functional status, and they are all recorded within a
close time period. In addition, the proposed methods performed well in a limited
simulation analysis in which the two assumptions were violated. Nonetheless, de-
veloping procedures that accommodate departures from these assumptions is an
area for future research.

One computational limitation of the MVOP model is the complexity of sam-
pling from a truncated multivariate normal distribution, and this complexity is ex-
acerbated when the dimension of the ordinal outcome variables is large. Another
computational limitation is sampling the correlation matrix R. Here, we applied
a parameter expansion technique to sample R efficiently. Recent work on using
the prior distribution proposed in Lewandowski, Kurowicka and Joe (2009) and
implemented in Stan [Carpenter et al. (2016)] is another possible solution.

In conclusion, we have proposed a procedure to obtain a common patient as-
sessment scale across the continuum of care. This procedure is flexible and allows
researchers to examine the rate of functional improvement using a single instru-
ment.

SUPPLEMENTARY MATERIAL

Supplement to “Development of a common patient assessment scale across
the continuum of care: A nested multiple imputation approach” (DOI:
10.1214/18-AOAS1202SUPP; .zip). The supplement includes the Slice Sampler
Algorithm for the MVOP model, additional results in the simulation study of Sec-
tion 4, results of posterior predictive checks in Section 5.3 and computer code for
an example to illustrate the proposed procedure.
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