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We propose a new Bayesian model for flexible nonlinear regression and
classification using tree ensembles. The model is based on the RuleFit ap-
proach in Friedman and Popescu [Ann. Appl. Stat. 2 (2008) 916–954] where
rules from decision trees and linear terms are used in a L1-regularized regres-
sion. We modify RuleFit by replacing the L1-regularization by a horseshoe
prior, which is well known to give aggressive shrinkage of noise predictors
while leaving the important signal essentially untouched. This is especially
important when a large number of rules are used as predictors as many of
them only contribute noise. Our horseshoe prior has an additional hierarchi-
cal layer that applies more shrinkage a priori to rules with a large number
of splits, and to rules that are only satisfied by a few observations. The ag-
gressive noise shrinkage of our prior also makes it possible to complement
the rules from boosting in RuleFit with an additional set of trees from Ran-
dom Forest, which brings a desirable diversity to the ensemble. We sample
from the posterior distribution using a very efficient and easily implemented
Gibbs sampler. The new model is shown to outperform state-of-the-art meth-
ods like RuleFit, BART and Random Forest on 16 datasets. The model and its
interpretation is demonstrated on the well known Boston housing data, and
on gene expression data for cancer classification. The posterior sampling, pre-
diction and graphical tools for interpreting the model results are implemented
in a publicly available R package.

1. Introduction. Learning and prediction when the mapping between input
and outputs is potentially nonlinear and observed in noise remains a major chal-
lenge. Given a set of N training observations (x, y)i, i = 1, . . . ,N , we are inter-
ested in learning or approximating an unknown function f observed in additive
Gaussian noise

y = f (x) + ε, ε ∼ N
(
0, σ 2)

,

and to use the model for prediction. A popular approach is to use a learning en-
semble [Breiman (1996, 2001), Freund and Schapire (1996), Friedman (2001)]

f (x) =
m∑

l=1

αlfl(x),
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where fl(x) is a basis function (also called a weak learner in the machine learning
literature) for a subset of the predictors. A variety of basis functions fl have been
proposed in the last decades, and we will here focus on decision rules. Decision
rules are defined by simple if-else statements and therefore highly interpretable by
humans. Finding a set of optimal rules is NP hard [Friedman and Popescu (2008)],
and most practical algorithms therefore use a greedy learning procedure. Among
the most powerful are divide and conquer approaches [Cohen (1995), Fürnkranz
(1999)] and boosting [Schapire (1999), Dembczyński, Kotłowski and Słowiński
(2010)].

A new way to learn decision rules is introduced in Friedman and Popescu
(2008) in their RuleFit approach. RuleFit is estimated by a two-step procedure.
The rule generation step extracts decision rules from an ensemble of trees trained
with gradient boosting. The second regularizaton step learns the weights αl for
the generated rules via L1-regularized (Lasso) regression, along with weights on
linear terms included in the model. This is similar to stacking [Wolpert (1992),
Breiman (1996)], with the important difference that the members of the ensemble
are not learned decision trees or other predictors, but individual rules extracted
from trees. As argued in Friedman and Popescu (2008), this makes RuleFit a more
interpretable model and, we argue below, has important consequences for the reg-
ularization part. RuleFit has been successfully applied in particle physics, in med-
ical informatics and in life sciences. Our paper makes the following contributions
to improve and enhance RuleFit.

First, we replace the L1-regularization [Tibshirani (1996)] in RuleFit by a gener-
alized horseshoe regularization prior [Carvalho, Polson and Scott (2010)] tailored
specifically to covariates from a rule generation step. L1-regularization is compu-
tationally attractive, but has the well-known drawback of also shrinking the effect
of the important covariates. This is especially problematic here since the number of
rules from the rule generation step can be very large while potentially only a small
subset is necessary to explain the variation in the response. Another consequence
of the overshrinkage effect of the L1-regularization is that it is hard to choose an
optimal number of rules; increasing the number of rules affects the shrinkage prop-
erties of the Lasso. This makes it very hard to determine the number of rules a pri-
ori, and one has to resort to cross-validation, thereby mitigating the computational
advantage of the Lasso. A horseshoe prior is especially attractive for rule learn-
ing since it shrinks uninformative predictors aggressively while leaving important
ones essentially untouched. Inspired by the prior distribution on the tree depth in
Bayesian Additive Regression Trees (BART) [Chipman, George and McCulloch
(2010)], we design a generalized horseshoe prior that shrinks overly complicated
and specific rules more heavily, thereby mitigating problems with overfitting. This
is diametrically opposed to RuleFit, and to BART and boosting, which all combine
a myriad of rules into a collective where single rules only play a very small part.

Second, we complement the tree ensemble from gradient boosting [Friedman
(2001)] in RuleFit with an additional set of trees generated with Random Forest.
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The error-correcting nature of boosting makes the rules highly dependent on each
other. Trees from Random Forest [Breiman (2001)] are much more random and
adding them to rules from boosting therefore brings a beneficial diversity to the
tree ensemble. Note that it is usually not straightforward to combine individual
trees from different ensemble strategies in a model; our combination of RuleFit
and horseshoe regularization is an ideal setting for mixing ensembles since RuleFit
makes it easy to combine ensembles, and the horseshoe prior can handle a large
number of noise rules without overfitting.

Third, an advantage of our approach compared to many other flexible regres-
sion and classification models is that predictions from our model are based on a
relatively small set of interpretable decision rules. The possibility to include linear
terms also simplifies interpretation since it avoids a common problem with deci-
sion trees that linear relationships need to be approximated with a large number of
rules. To further aid in the interpretation of the model and its predictions, we also
propose graphical tools for analyzing the model output. We also experiment with
post-processing methods for additional pruning of rules to simplify the interpreta-
tion even further using the method in Hahn and Carvalho (2015).

We call the resulting two-step procedure with mixed rule generation followed
by generalized rule structured horseshoe regularization the HorseRule model. We
show that HorseRule’s ability to keep the important rules and aggressively remov-
ing unimportant noise rules leads to both great predictive performance and high
interpretability.

The structure of the paper is as follows. Section 2 describes the decision rule
generation method in HorseRule. Section 3 presents the horseshoe regularization
prior and the MCMC algorithm for posterior inference. Section 4 illustrates as-
pects of the approach on simulated data and evaluates and compares the predictive
performance of HorseRule to several main competing methods on a wide variety
of real datasets. Section 5 concludes.

2. Decision rule generation. This section describes the rule generation step
of HorseRule, which complements the rules from gradient boosting in Friedman
and Popescu (2008) with rules from Random Forest with completely different
properties.

2.1. Decision rules. Let Sk denote the set of possible values of the covariate
xk and let sk,m ⊆ Sk denote a specific subset. A decision rule can then be written
as

(2.1) rm(x) = ∏
k∈Qm

I (xk ∈ sk,m),

where I (x) is the indicator function and Qm is the set of variables used in defin-
ing the mth rule. A decision rule rm ∈ {0,1} takes the value 1 if all of its |Qm|
conditions are fulfilled and 0 otherwise. For orderable covariates sk,m will be an
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FIG. 1. Decision tree for the Boston housing data.

interval or a disjoint union of intervals, while for categorical covariates sk,m are
explicitly enumerated. There is a long tradition in machine learning to use deci-
sion rules as weak learners. Most algorithms learn decision rules directly from
data, such as in Cohen (1995), Dembczyński, Kotłowski and Słowiński (2010).
RuleFit exploits the fact that decision trees can be seen as a set of decision rules.
In a first step a tree ensemble is generated, which is then decomposed into its
defining decision rules. Several efficient (greedy) algorithmic implementations are
available for constructing the tree ensembles. The generated rules typically corre-
spond to interesting subspaces with great predictive power. Each node in a decision
tree is defined by a decision rule. Figure 1 shows an example tree for the Boston
housing dataset and Table 1 its corresponding decision rules. We briefly describe
this dataset here since it will be used as a running example throughout the paper.
The Boston housing data consists of N = 506 observations which are city areas
in Boston and p = 13 covariates are recorded. These variables include ecological

TABLE 1
Corresponding rules, defining the decision tree

Rules Conditions

r1 RM ≥ 6.94
r2 RM < 6.94
r3 RM < 6.94 & LSTAT < 14.4
r4 RM < 6.94 & LSTAT ≥ 14.4
r5 RM < 6.94 & LSTAT < 14.4 & CRIM < 6.9
r6 RM < 6.94 & LSTAT < 14.4 & CRIM ≥ 6.9
r7 RM ≥ 6.94 & LSTAT < 14.4 & DIS < 1.5
r8 RM ≥ 6.94 & LSTAT < 14.4 & DIS ≥ 1.5
r9 6.94 ≤ RM < 7.45
r10 6.94 ≤ RM < 7.45
r11 6.94 ≤ RM < 7.45 & LSTAT < 9.7
r12 6.94 ≤ RM < 7.45 & LSTAT ≥ 9.7
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measures of nitrogen oxides (NOX), particulate concentrations (PART) and prox-
imity to the Charles River (CHAS), the socio-economic variables proportion of
black population (B), property tax rate (TAX), proportion of lower status popula-
tion (LSTAT), crime rate (CRIM), pupil teacher ratio (PTRATIO), proportion of
old buildings (AGE), the average number of rooms (RM), area proportion zoned
with large lots (ZN), the weighted distance to the employment centers (DIS) and
an index of accessibility to key infrastructure (RAD). The dependent variable is
the median housing value in the area.

Using equation (2.1) for example, r11 can be expressed as

r11(x) = ∏
k∈Q11

I (xk ∈ sk,11) = I (6.94 ≤ RM < 7.45)I (LSTAT < 9.7).

This rule is true for areas with relatively large houses with between 6.94 and 7.45
rooms and less than 9.7% lower status population. The mth tree consists of 2(um −
1) rules, where um denotes the number of terminal nodes. Therefore

∑M
m=1 2(um −

1) rules can be extracted from a tree ensemble of size M .

2.2. Collinearity structure of trees. The generated rules will be combined in a
linear model and collinearity is a concern. For example, the two first child nodes in
each tree are perfectly negative correlated. Furthermore, each parent node is per-
fectly collinear with its two child nodes, as it is their union. One common way to
deal with the collinearity problem is to include the terminal nodes only. This ap-
proach also reduces the number of rules and therefore simplifies computations. We
have nevertheless chosen to consider all possible rules including also nonterminal
ones, but to randomly select one of the two child nodes at each split. The reason
for also including nonterminal nodes is three-fold. First, even though each parent
node in a tree can be reconstructed as a linear combination of terminal nodes, when
using regularization this equivalence no longer holds. Second, our complexity pe-
nalizing prior in Section 3.3 is partly based on the number of splits to measure
the complexity of a rule, and will therefore shrink the several complex child nodes
needed to approximate a simpler parent node. Third, the interpretation of the model
is substantially simplified if the model can select a simple parent node instead of
many complex child nodes.

2.3. Generating an informative and diverse rule ensemble. Any tree method
can be used to generate decision rules. Motivated by the experiments in Friedman
and Popescu (2003), Rulefit uses gradient boosting for rule generation [Friedman
and Popescu (2008)]. Gradient boosting [Friedman (2001)] fits each tree iteratively
on the pseudo residuals of the current ensemble in an attempt to correct mistakes
made by the previous ensemble. This procedure introduces a lot of dependence
between the members of the ensemble, and many of the produced rules tend to be
informative only when combined to an ensemble. It might therefore not be possible
to remove a lot of the decision rules without destroying this dependency structure.
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Random Forest on the other hand generates trees independently from all pre-
vious trees [Breiman (2001)]. Each tree tries to find the individually best parti-
tioning, given a random subset of observations and covariates. Random Forest will
often generate rules with very similar splits, and the random selection of covariates
forces it to often generate decision rules based on uninformative predictors. Ran-
dom Forest will therefore produce more redundant and uninformative rules com-
pared to gradient boosting, but the generated rules with strong predictive power
are not as dependent on the rest of the ensemble.

Since the rules from boosting and Random Forest are very different in nature, it
makes sense to use both types of rules to exploit both methods’ advantages. This
naturally leads to a larger number of candidate rules, but the generalized horseshoe
shrinkage proposed in Section 3.2 and 3.3 can very effectively handle redundant
rules. Traditional model combination methods usually use weighting schemes on
the output of different ensemble methods [Rokach (2010)]. In contrast we com-
bine the extracted rules from the individual trees. To the best of our knowledge
this combination of individual weak learners from different ensemble methods is
novel and fits nicely in the RuleFit framework with horseshoe regularization, as
explained in the Introduction.

The tuning parameters used in the tree generation determine the resulting deci-
sion rules. The most impactful is the tree-depth, controlling the complexity of the
resulting rules. We follow Friedman and Popescu (2008) with setting the depth of
tree m to

tdm = 2 + �ϕ�,(2.2)

where �x� is the largest integer less or equal than x and ϕ is a random variable
following the exponential distribution with mean L−2. Setting L = 2 will produce
only tree stumps consisting of one split. With this indirect specification the forest
is composed of trees of varying depth, which allows the model to be more adaptive
to the data and makes the choice of a suitable tree depth less important. We use
this approach for both boosted and random forest trees.

Another important parameter is the minimum number of observations in a node
nmin. A too small nmin gives very specific rules and the model is likely to capture

spurious relationships. Using nmin = N
1
3 as a default setting has worked well in

our experiments, but if prior information about reasonable sizes of subgroups in
the data is available the parameter can be adjusted accordingly. Another choice is
to determine nmin by cross validation.

In the following, all other tuning parameters, for example, the shrinkage param-
eter in gradient boosting or the number of splitting covariates in the Random For-
est, are set to their recommended standard choices implemented in the R-packages
randomForest and gbm.

3. Ensembles and rule based horseshoe regularization. This section dis-
cusses the regularization step of HorseRule and present a new horseshoe shrinkage
prior tailored specifically for covariates in the form of decision rules.
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3.1. The ensemble. Once a suitable set of decision rules is generated, they can
be combined in a linear regression model of the form

y = α0 +
m∑

l=1

αlrl(x) + ε.

As ri(x) ∈ {0,1} they already have the form of dummy variables and can be di-
rectly included in the regression model. A simple but important extension is to
also include linear terms

(3.1) y = α0 +
p∑

j=1

βjxj +
m∑

l=1

αlrl(x) + ε.

This extension addresses the difficulty of rule and tree based methods to approx-
imate linear effects. Splines, polynomials, time effects, spatial effects or random
effects are straightforward extensions of equation (3.1).

Friedman and Popescu (2008) do not standardize the decision rules, which puts
a higher penalty on decision rules with a smaller scale. To avoid this behavior, we
scale the predictors to have zero mean and unit variance.

3.2. Bayesian regularization through the horseshoe prior. A large set of can-
didate decision rules is usually necessary to have a high enough chance of finding
good decision rules. The model in (3.1) will therefore always be high dimensional
and often p + m > n. Many of the rules will be uninformative and correlated with
each other. Regularization is therefore a necessity.

RuleFit uses L1-regularized estimates, which corresponds to an a posterior
mode estimator under a double exponential prior in a Bayesian framework
[Tibshirani (1996)]. As discussed in the Introduction, the global shrinkage effect of
L1-regularization can be problematic for rule covariates. L1-regularization is well
known to lead to both shrinkage and variable selection. There now exist imple-
mentations of RuleFit that use the elastic net instead of L1-Regularization, which
can lead to improved predictive performance [Zou and Hastie (2005)], however
elastic net still only uses one global shrinkage parameter.

Another common Bayesian variable selection approach is based on the spike-
and-slab prior [George and McCulloch (1993), Smith and Kohn (1996)]

(3.2) βj ∼ w · N(
βj ;0, λ2) + (1 − w) · δ0,

where δ0 is the Dirac point mass function, N(βj ;0, λ2) is the normal density with
zero mean and variance λ2, and w is the prior inclusion probability of predictor
xj . Discrete mixture priors enjoy attractive theoretical properties, but need to ex-
plore a model space of size 2(p+m), which can be problematic when either p or m

are large. The horseshoe prior by Carvalho, Polson and Scott (2009, 2010) mim-
ics the behavior of the spike-and-slab but is computationally more attractive. The
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regression model with the original horseshoe prior for linear regression is of the
form

y|X,β, σ 2 ∼ Nn

(
Xβ, σ 2In

)
,(3.3)

βj |λj , τ
2, σ 2 ∼ N

(
0, λj τ

2σ 2)
,(3.4)

σ 2 ∼ σ−2 dσ 2,(3.5)

λj ∼ C+(0,1),(3.6)

τ ∼ C+(0,1),(3.7)

where C+(0,1) denotes the standard half-Cauchy distribution. We use horseshoe
priors on both linear [the β’s in equation (3.1)] and rule terms [the α’s in equation
(3.1)]. The horseshoe shrinkage for βj is determined by a local shrinkage param-
eter λj > 0 and a global shrinkage parameter τ > 0. This is important since it
allows aggressive shrinking of noise covariates through small values of τ , while
allowing individual signals to have large coefficients through large λj . Carvalho,
Polson and Scott (2010) show that the horseshoe is better at recovering signals
than the Lasso, and the models obtained from the horseshoe are shown to be al-
most indistinguishable from the ones obtained by a well defined spike-and-slab
prior.

3.3. Horseshoe regularization with rule structure. The original horseshoe as-
signs the same prior distribution to all regression coefficients, regardless of the
rule’s complexity (number of splits in the tree) and the specificity (number of data
points that fulfill the rule). Similar to the tree structure prior in BART, we therefore
modify the horseshoe prior to express the prior belief that rules with high length
(many conditions) are less likely to reflect a true mechanism. In addition, we also
add the prior information that very specific rules that are satisfied by only a few
data points are also improbable a priori. The rule support s(rl) ∈ (0,1) is given by
s(rj ) = N−1 ∑N

i=1 rj (xi ). Note that a support of 95% can also be interpreted as
5%. Therefore we express the specificity of a rule through min(1 − s(rj ), s(rj ))

instead. These two sources of prior information are incorporated by extending the
prior on λj to

λj ∼ C+(0,Aj ),

with

(3.8) Aj = (2 · min(1 − s(rj ), s(rj )))
μ

(l(rj ))η
,

where l(rj ) denotes the length of rule j defined as its number of conditions. With
increasing number of conditions the prior shrinkage becomes stronger, as well
as with increasing specificity. The hyperparameter μ controls the strength of our
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belief to prefer general rules that cover a lot of observations and η determines how
strongly we prefer simple rules. The response y should be scaled when using the
rule structure prior since the scale of β depends on the scale of y.

The rule structure for Aj in equation (3.8) is designed such that Aj = 1 for
rules with support 0.5 and length 1, as the ideal. Since limμ→0,η→0 Aj = 1, our
rule structure prior approaches the standard horseshoe prior for small μ and η.
The rule structure prior gives a gentle push towards simple and general rules, but
its Cauchy tails put considerable probability mass on nonzero values even for very
small Aj ; the data can therefore overwhelm the prior and keep a complex and
specific rule if needed.

A model with many complex specific rules may drive out linear terms from the
model, thereby creating an unnecessarily complicated model. We therefore use a
standard prior with A = 1 for linear terms, and set the parameters μ and η to values
larger than 0, which has the effect of giving linear effects a higher chance of being
chosen a priori. When p is small it may also be sensible to use no shrinkage at
all on the linear effects, and this is also allowed in our Gibbs sampling algorithm
in Section 3.4. The hyperparameters μ and η can be chosen guided by theoretical
knowledge about what kind of rules and linear effects are reasonable for a problem
by hand, or determined via cross validation. As a default choice (μ,η) = (1,2)

worked well in our experiments, penalizing rule complexity heavily and low rule
support moderately.

3.4. Posterior inference via Gibbs sampling. Posterior samples can be ob-
tained via Gibbs sampling. Sampling from the above hierarchy is expensive, as the
full conditionals of λj and τ do not follow standard distributions and slice sam-
pling has to be used. Makalic and Schmidt (2016) propose an alternative Horse-
shoe hierarchy that exploits the following mixture representation of a half-Cauchy
distributed random variable X ∼ C+(0,Ψ ):

X2|ψ ∼ IG
(

1

2
,

1

ψ

)
,(3.9)

ψ ∼ IG
(

1

2
,

1

Ψ 2

)
,(3.10)

which leads to conjugate conditional posterior distributions. The sampling scheme
in Makalic and Schmidt (2016) samples iteratively from the following set of full
conditional posteriors:

β|· ∼ Np

(
A−1XT y, σ 2A−1)

,

σ 2|· ∼ IG
(

n + p

2
,
(y − Xβ)T (y − Xβ)

2
+ βT �∗−1β

2

)
,

λ2
j |· ∼ IG

(
1,

1

νj

+ βj
2

2τ 2σ 2

)
,
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τ 2|· ∼ IG
(

p + 1

2
,

1

ρ
+ 1

2σ 2

p∑
j=1

βj
2

λj
2

)
,

νj |· ∼ IG
(

1,
1

A2 + 1

λ2
j

)
,

ρ|· ∼ IG
(

1,1 + 1

τ 2

)
,

with A = (XT X + �∗−1), �∗ = τ 2�, � = diag(λ1
2, . . . , λp

2).

3.5. Computational considerations. The computational complexity of
HorseRule can be mainly composed in rule generation and weight learning. The
computational cost will thereby always be higher than using boosting or Ran-
dom Forest alone. This speed disadvantage is partly mitigated by the fact that the
HorseRule performs well also without cross-validation.

We have used the R implementations gbm and randomForest here. These al-
gorithms do not scale well for large N and p and become a bottleneck for
N > 10,000. This can be easily remedied by migrating the rule generation step to
Xtreme Gradient Boosting (XGBoost) [Chen and Guestrin (2016)] or lightGBM
[Ke et al. (2017)] that are magnitudes faster for big datasets.

Compared to Bayesian tree learning procedures such as BART or the re-
cently proposed Dirichlet Adaptive Regression Trees (DART) [Linero (2018)], no
Metropolis–Hastings steps are necessary to learn the tree structure in HorseRule;
HorseRule uses only Gibbs sampling on a regularized linear model with rule
covariates, which scales linearly with the number of observations [Makalic and
Schmidt (2016)]. Sampling 1000 draws from the posterior distribution in the
HorseRule model for the Boston housing data used in Section 4.7 takes about
90 seconds on a standard computer. The complexity of the Horseshoe sam-
pling depends mostly on the number of linear terms and decision rules, and
increases only slowly with N . Li and Yao (2014) suggest a computational short-
cut where a given βj is sampled in a given iteration only if the corresponding
scale (λj · τ ) is higher than a threshold. The λj needs to be sampled in every
iteration to give every covariate the chance of being chosen in the next itera-
tion. We have implemented this approach and seen that it can give tremendous
computational gains, but we have not used it when generating the results here
since the effects it has on the invariant distribution of the MCMC scheme needs
to be explored further. Finally, for very large N (> 10,000) the linear alge-
bra operations in the Gibbs sampling can become time consuming, and GPU
acceleration can be used to speed up sampling [Terenin, Dong and Draper
(2016)].
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3.6. Sampling the splitting points. The BART model can be seen as the sum
of trees with a Gaussian prior on the terminal node values

μj ∼ N
(

0,
0.5

τ
√

k

)
,

where k denotes the number of trees. BART uses a fixed regularization parameter
τ and samples the tree structure, while HorseRule uses a fixed rule structure and
adapts to the data through sampling the shrinkage parameters λj and τ . Using a
fixed tree structure offers dramatic computational advantages, as no Metropolis–
Hastings updating steps are necessary, but the splits are likely to be suboptimal
with respect to the whole ensemble.

As shown in Section 4, both HorseRule and BART achieve great predictive per-
formance through different means, and a combination in which both shrinkage
and tree structure are sampled in a fully Bayesian way could be very powerful, but
computational very demanding. An intermediate position is to keep the splitting
variables fixed in HorseRule, but to sample the splitting points. We have observed
that HorseRule often keeps very similar rules with slightly different splitting points
in the ensemble, which is a discrete approximation to sampling the splitting points.
Hence this could also improve interpretability since a large number of rules with
nearby splitting points can be replaced by a single rule with an estimated splitting
point. It is also possible to replace many similar rules with suitable basis expan-
sions, such as cubic terms or splines.

4. Results. This section starts out with a predictive comparison of HorseRule
against a number of competitors on 16 benchmark datasets. The following sub-
sections explore several different aspects of HorseRule on simulated and real data
to evaluate the influence of different components of the model. Section 4.2 con-
trasts the ability of RuleFit and HorseRule to recover a true linear signal in models
with additional redundant rules. The following subsection uses two real datasets
to demonstrate the effect of having linear effects in HorseRule, and the advan-
tage of using horseshoe instead of L1 for regularization. Section 4.4 addresses that
HorseRule uses the training data both to generate the rules and for learning the
weights. Section 4.5 explores the role of the rule generating process in HorseRule,
and Section 4.6 the sensitivity to the number of rules. Finally in Sections 4.7 and
4.8 we showcase HorseRule’s ability to make interpretable inference from data in
different domains.

4.1. Prediction performance comparison on 16 datasets. We compare the
predictive performance of HorseRule with competing methods on 16 regression
datasets. The datasets are a subset of the datasets used in Chipman, George and
McCulloch (2010). From the 23 datasets that were available to us online we ex-
cluded datasets that lacked a clear description of which variable to use as response,
or which data preprocessing has to be applied to get to the version described in
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TABLE 2
Summary of the 16 regression datasets used in the evaluation. N , Q and C are the number of

observations, quantitative and categorical predictors, respectively

Name N Q C Name N Q C

Abalone 4177 7 1 Diamond 308 1 3
AIS 202 11 1 Hatco 100 6 4
Attend 838 6 3 Heart 200 13 3
Baskball 96 4 0 Fat 252 14 0
Boston 506 13 0 MPG 392 6 1
Budget 1729 10 0 Ozone 330 8 0
CPS 534 7 3 Servo 167 2 2
CPU 209 6 1 Strike 625 4 1

Chipman, George and McCulloch (2010). Since both RuleFit and HorseRule as-
sume Gaussian responses, we also excluded datasets with clearly non-Gaussian
response variables, for example count variables with excessive number of zeros.
HorseRule can be straightforwardly adapted by using a negative-binomial data
augmentation scheme [Makalic and Schmidt (2016)], but we leave this extension
for future work. Table 2 displays the characteristics of the datasets.

We compare HorseRule to RuleFit [Friedman and Popescu (2008)], Random
Forest [Breiman (2001)], Bayesian Additive Regression Trees (BART) [Chipman,
George and McCulloch (2010)], Dirichlet Adaptive Regression Trees (DART)
[Linero (2018)], a recent variant of BART that uses regularization on the input
variables, and XGBoost [Chen and Guestrin (2016)] a highly efficient implemen-
tation of gradient boosting.

We use 10-fold cross validation on each dataset and report the relative RMSE
(RRMSE) in each fold; RRMSE for a fold is the RMSE for a method divided
by the RMSE of the best method on that fold. This allows us to compare perfor-
mance over different datasets with differing scales and problem difficulty. We also
calculate a worst RRMSE (wRRMSE) on the dataset level, as a measure of robust-
ness. wRRMSE is based on the maximal difference across all datasets between a
method’s RRMSE and the RRMSE of the best method for that dataset; hence a
method with low wRRMSE is not far behind the winner on any dataset. We also
calculate the mean RRMSE (mRRMSE) as the relative RMSE on dataset level
averaged over all datasets.

To ensure a fair comparison we use another (nested) five-fold cross validation
in each fold to find good values of the tuning parameters for each method. For
BART and Random Forest the cross-validation settings from Chipman, George and
McCulloch (2010) are used. DART is relatively independent of parameter tuning,
through the usage of hyperpriors, so we only determine the optimal number of
trees. For RuleFit we cross-validate over the number of rules and the depth of
the trees, as those are the potentially most impactful parameters. The shrinkage τ
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TABLE 3
Settings for the compared methods

Method Parameter settings

HR-default Ensemble: GBM+RF; L = 5; (μ,η) = (1,2).
HR-CV Ensemble: GBM+RF; L = (2,5,8); (μ,η) = ((0,0), (0.5,0.5), (1,2)).
RuleFit k = 500,1000, . . . ,5000; L = (2,5,8).
Random Forest Fraction of variables used in each tree = (0.25,0.5,0.75,1,

√
p/p).

BART (γ, q) = ((3,0.9), (3,0.99), (10,0.75)); τ = 2,3,5; number of trees: 50,200.
DART Number of trees: 50,100.
XGBoost Number of trees: 50,100,200,350,500; ν = 0.1,0.05,0.01; tree depth: 4,6,8.

in RuleFit is determined by the model internally. XGBoost has many parameters
that can be optimized, we chose the number of trees, the shrinkage parameter and
the tree depth as the most important. For HorseRule we use cross-validation to
identify suitable hyperparameters (μ,η) as well as the tree depth. We also run a
HorseRule version with the proposed standard settings without cross-validation.
Table 3 summarizes the settings of all methods.

We first compare the three different HorseRule versions. Figure 2 shows the
predictive performance of the HorseRule models over 10 · 16 = 160 dataset and
cross-validation splits. While the (μ,η) = (1,2) already performs better than the
prior without rule structure [(μ,η) = (0,0)], cross-validation of (μ,η) helps to
improve performance further.

FIG. 2. RRMSE comparison of the different HorseRule versions across all folds.
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FIG. 3. RRMSE comparison of HorseRule with competing methods across all folds.

Figure 3 and Table 4 show that HorseRule has very good performance across all
datasets and folds, and the median RRMSE is smaller than its competitors. DART
also performs well and is second best in terms of median RRMSE. HorseRule-
default is the third best method for the median and best for the mean, which is
quite impressive since it does not use cross-validation.

Table 5 summarizes the performance on the dataset level. DART is the best
model on 7/16 datasets and has the best average rank. HorseRule-CV is the best
method on 5/16 datasets and has a slightly worse rank than DART. The last rows
of Table 5 displays the wRRMSE and mRRMSE over all datasets for each method;
it shows that whenever HorseRule is not the best method, it is only marginally be-
hind the winner. This is not true for any of the other methods which all perform
substantially worse than the best method on some datasets. RuleFit performs the

TABLE 4
RRMSE distribution over the 160 crossvalidation folds of the competing methods

25%-Quant Median Mean 75%-Quant

XGBoost 1.02 1.139 1.496 1.509
RuleFit 1.026 1.129 1.426 1.618
RandomForest 1.039 1.137 1.508 1.677
HR-default 1.007 1.101 1.247 1.238
HR-CV 1.004 1.072 1.262 1.198
DART 1.012 1.080 1.376 1.342
BART 1.030 1.131 1.377 1.357



TREE ENSEMBLES WITH HORSESHOE REGULARIZATION 2393

TABLE 5
Cross-validated prediction performance for the 16 regression datasets. Each entry shows the RMSE

and in parentheses the rank on this dataset. The best result is marked in bold

BART RForest RuleFit HorseRule HorseRule-CV DART XGBoost

Abalone 2.150 (7) 2.119 (3) 2.139 (5) 2.115(2) 2.114 (1) 2.129 (4) 2.147 (6)
AIS 1.144 (4) 1.247 (7) 1.207 (6) 0.713 (2) 0.699 (1) 1.061 (3) 1.188 (5)
Attend 394,141 (5) 411,900 (7) 345,177 (1) 398,485 (6) 365,010 (2) 370,006 (4) 367,231 (3)
Baskball 0.087 (3) 0.086 (2) 0.088 (4) 0.088 (4) 0.092 (7) 0.083 (1) 0.089 (6)
Boston 2.867 (2) 3.153 (7) 3.037 (6) 2.940 (4) 2.926 (3) 2.819 (1) 2.97 (5)
Budget 0.039 (2) 0.038 (1) 0.061 (7) 0.041 (4) 0.042 (5) 0.056 (6) 0.039 (2)
CPS 4.356 (3) 4.399 (6) 4.386 (5) 4.348 (1) 4.370 (4) 4.353 (2) 4.448 (7)
CPU 41.52 (4) 54.08 (6) 54.50 (7) 36.03 (1) 37.47 (3) 42.87 (5) 36.75 (2)
Diamond 215.0 (3) 465.9 (7) 233.7 (4) 184.5 (2) 171.27 (1) 245.8 (5) 343.6 (6)
Hacto 0.453 (7) 0.311 (6) 0.297 (5) 0.261 (2) 0.260 (1) 0.264 (3) 0.269 (4)
Heart 8.917 (2) 9.048 (3) 9.349 (7) 9.241 (5) 9.070 (4) 8.869 (1) 9.310 (6)
Fat 1.306 (6) 1.114 (2) 1.173 (3) 1.264 (5) 1.245 (4) 1.072 (1) 1.329 (7)
MPG 2.678 (3) 2.692 (5) 2.672 (2) 2.714 (6) 2.689 (4) 2.642 (1) 2.750 (7)
Ozone 4.074 (3) 4.061 (2) 4.189 (7) 4.120 (4) 4.165 (5) 4.054 (1) 4.174 (6)
Servo 0.588 (5) 0.486 (3) 0.502 (4) 0.409 (2) 0.403 (1) 0.671 (6) 0.719 (7)
Strikes 458.4 (7) 453.7 (5) 447.7 (3) 449.2 (4) 447.2 (2) 447.1 (1) 456.6 (6)

Av. Rank 3.9375 4.5625 4.8750 3.5625 3 2.9375 5.3125
wRRMSE 1.742 2.720 1.726 1.179 1.160 1.666 2.006
mRRMSE 1.128 1.250 1.182 1.051 1.035 1.141 1.201

best on 1/16 datasets, and the median RRMSE is slightly lower than for Random
Forest and XGBoost. XGBoost has the hightest median RRMSE and rank in this
experiment. This is probably due to the fact, that all methods except Random For-
est rely to a certain degree on boosting and improve different aspects of it, making
it a hard competition for XGBoost.

To summarize, the results show that HorseRule is a highly competitive method
with a very stable performance across all datasets. The rule structured prior was
found to improve predictive performance, and performs well also without time-
consuming cross-validation of its hyperparameters.

4.2. Regularization of linear terms and rules—RuleFit vs. HorseRule. This
subsection uses simulated data to analyse the ability of HorseRule and RuleFit
to recover the true signal when the true relationship is linear and observed with
noise. The data is generated with Xi ∼ N (0,1), i = 1, . . . ,100, Y = 5X1 + 3X2 +
X3 + X4 + X5 + ε and ε ∼ N (0,1). The first five predictors thus have a positive
dependency with y of varying magnitude while the remaining 95 covariates are
noise. Table 6 reports the results from 100 simulated datasets. RMSE measures
the discrepancy between the fitted values and the true mean for unseen test data.
RuleFit and HorseRule model use 500 rules in addition to the linear terms. The best
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TABLE 6
Simulation study. The true effect is linear

RMSE �βtrue �βnoise

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

OLS 3.23 1.10 1.06 1.25 0.19 0.14 2302 3.78 2.54
Horseshoe
Regression

1.14 1.01 1.01 0.40 0.18 0.13 1.72 0.70 0.49

HorseRule
α = 0, β = 0

1.54 1.02 1.01 1.99 0.39 0.29 2.74 0.22 0.15

HorseRule
α = 1, β = 2

1.25 1.02 1.01 1.15 0.37 0.28 3.14 0.37 0.24

RuleFit
k = 2000

1.84 1.23 1.15 3.58 1.42 1.05 1.18 0.91 0.99

model in RMSE is as expected the Horseshoe regression without any rules. The
OLS estimates without any regularization struggles to avoid overfitting with all the
unnecessary covariates and does clearly worse than the other methods. HorseRule
without the rule structure prior outperforms RuleFit, but adding a rule structured
prior gives an even better result. The differences between the models diminishes
quickly with the sample size (since the data is rather clean), the exception being
RuleFit which improves at a much lower rate than the other methods. Table 6 also
breaks down the results into the ability to recover the true linear signal, measured
by �βtrue = |(β1, β2, β3, β4, β5) − (5,3,1,1,1)|1, and the ability to remove the
noise covariates, measured by �βnoise = |(β6, . . . , β100)−(0, . . . ,0)|1. We see that
the HorseRule’s horseshoe prior is much better at recovering the true linear signal
compared to RuleFit with its L1-regularization. OLS suffers from its inability to
shrink away the noise.

Even though such clear linear effects are rare in actual applications, the sim-
ulation results in Table 6 shows convincingly that HorseRule will prioritize and
accurately estimate linear terms when they fit the data well. This is in contrast to
RuleFit which shrinks the linear terms too harshly and compensates the lack of fit
with many rules. HorseRule will only try to add nonlinear effects through decision
rules if they are really needed.

4.3. Influence of linear terms in HorseRule, and regularizing by horseshoe in-
stead of L1. In this section we analyze to what extent HorseRule’s good perfor-
mance depends on having linear terms in the model, and how crucial the horseshoe
regularization is for performance. We demonstrate the effect of these model speci-
fication choices on the two datasets Diamonds and Boston. The Diamonds dataset
was selected since HorseRule is much better than its competitors on that dataset.
The Boston data was chosen since it will be used for a more extensive analysis in
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FIG. 4. RMSE on the Diamond (left) and the Boston (right) dataset when linear terms are removed
and when using L1 regularization instead of horseshoe.

Section 4.7. Figure 4 shows the RMSE distribution over the folds used in 10-fold
cross-validation. The results are replicated 10 times using different random seeds.
The results show that the aggressive shrinkage offered of the horseshoe prior is
essential for HorseRule; changing to L1 increases RMSE, especially for the Dia-
mond data. Note that the L1-version is not entirely identical to RuleFit, as RuleFit
uses different preprocessing on rules and only boosting generated rules [Friedman
and Popescu (2008)]. Figure 4 also shows that adding linear terms gives small
decrease of RMSE, but seems less essential for HorseRule’s performance.

4.4. Influence of the two-step procedure. One concern of our two-step proce-
dure is that the same training data is used to find rules and to learn the weights.
This double use of the data can distort the posterior distribution and uncertainty
estimates. It should be noted however that the rule generation uses only random
subsets of data, which mitigates this effect to some extent. It is also important to
point out that the predictive results presented in this paper are always on an unseen
test set so this is not an issue for the performance evaluations.

One way to obtain a more coherent Bayesian interpretation is to split the training
data in two parts: one part for the rule generation and one part for learning the
weights. We can view this as conditionally coherent if the rule learned from the first
part of the data is seen as prior experience of the analyst in analyzing the second
part of the data. An obvious drawback with such an approach is that less data can be
used for learning the model, which will adversely affect predictive performance.
Table 7 displays how predictive performance on the Diamonds (N = 308) and
Boston (N = 506) data deteriorates from a 50/50 split of the training data. Both
these datasets are small and we have also included the moderately large Abalone
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TABLE 7
Median RMSE for different splitting strategies

Diamond Boston Abalone

All data 184.6 2.851 2.115
50/50 split 283.7 3.555 2.136

data (N = 4177); for this dataset the data splitting has essentially no effect on
the performance. Hence, data-splitting may be an attractive option for moderately
large and large data if proper Bayesian uncertainty quantification is of importance.

4.5. Influence of the rule generating process. In this section we analyze the
influence of different rule generating processes on model performance for the Di-
amond dataset with (N = 308 and p = 4) and the Boston housing data (N = 506
and p = 13).

In each setting 1000 trees with an average tree depth of L = 5 are used, using
different ensemble strategies for the rule generation:

1. Random Forest generated rules plus linear terms.
2. Gradient boosting generated rules plus linear terms.
3. A combination of 30% of the trees from Random Forest and 70% from gradient

boosting plus linear terms.

The results are shown in Figure 5. As expected the error-correcting rules found
by gradient boosting outperforms randomly generated rules from Random For-

FIG. 5. RMSE on the Diamond (left) and the Boston (right) dataset for different rule generating
strategies.
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FIG. 6. RMSE depending on the number of trees on the Diamond (left) and Boston (right) dataset
for (μ,η) = (0,0) (red) and (μ,η) = (1,2) (blue).

est. However, combining the two types of rules leads to a lower RMSE on both
datasets. In our experiments it rarely hurts the performance to use both type of
rules, and on some datasets it leads to a dramatically better prediction accuracy.
The mixing proportion for the ensemble methods can also be seen as a tuning
parameter to give a further boost in performance.

4.6. Influence of the number of rules. Another parameter that is potentially
crucial is the number of trees used to generate the decision rules. In gradient boost-
ing limiting the number of trees (iterations) is the most common way to control
overfitting. Also in BART the number of trees has a major impact on the qual-
ity and performance of the resulting ensemble [Chipman, George and McCulloch
(2010)]. The same is expected for RuleFit, as it uses L1-regularization; with an
increasing number of rules the overall shrinkage τ increases, leading to an over-
shrinkage of good rules.

To investigate the sensitivity of HorseRule to the number of trees, we increase
the number of trees successively from 100 to 1500 in the Boston and Diamond
datasets. This corresponds to 500,550, . . . ,5 · 1500 = 7500 decision rules be-
fore removing duplicates. We also test if the rule structured prior interacts with
the effect of the number of trees by running the model with (μ,η) = (0,0) and
(μ,η) = (1,2). Figure 6 shows the performance of HorseRule as a function of the
number of trees used to extract the rules. Both HorseRule models are relatively in-
sensitive to the choice of k, unless the number of trees is very small. Importantly,
no overfitting effect can be observed, even when using an extremely large number
of 1500 trees on relatively small datasets (N = 308 and N = 506 observations,
respectively). We use 1000 trees as a standard choice, but a small number of trees
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TABLE 8
The 10 most important rules in the Boston housing data

Rule 5%I Ī 95%I β̄

1 RM ≤ 6.97 0.96 0.99 1.00 24.1
LSTAT ≤ 14.4

2 RM ≤ 6.97 0.77 0.89 1.00 −21.9
DIS > 1.22
LSTAT ≤ 14.4

3 LSTAT ≤ 4.66 0.00 0.27 0.51 12.35
4 TAX ≤ 416.5 0.00 0.21 0.43 −10.46

LSTAT ≤ 4.65
5 NOX ≤ 0.59 0.00 0.12 0.21 −2.94
6 NOX ≤ 0.67 0.00 0.10 0.33 3.87

RM > 6.94
7 NOX > 0.67 0.00 0.11 0.37 −3.24
8 LSTAT > 19.85 0.00 0.15 0.53 −3.18
9 linear : AGE 0.00 0.09 0.15 −0.03

10 linear : RAD 0.00 0.07 0.19 0.10

can be used if computational complexity is an issue, with little to no expected loss
in accuracy.

4.7. Boston housing. In this section we apply HorseRule to the well known
Boston Housing dataset to showcase its usefulness in getting insights from the
data. For a detailed description of the dataset see Section (2.1). The HorseRule
with default parameter settings is used to fit the model. Table 8 shows the 10 most
important effects. Following Friedman and Popescu (2008), the importance of a
linear term is defined as

I (xj ) = |βj |sd(xj ),

where sd(·) is the standard deviation, and similarly for a predictor from a decision
rule

I (rl) = |αl|sd(rl).

We use the notation Ij when it is not important to distinguish between a linear term
and a decision rule. For better interpretability we normalize the importance to be in
[0,1], so that the most important predictor has an importance of 1. Table 8 reports
the posterior distribution of the normalized importance (obtained from the MCMC
draws) of the 10 most important rules or linear terms. The most important single
variable is LSTAT, which appears in many of the rules, and as a single variable in
the third most important rule. Note also that LSTAT does not appear as a linear
predictor among the most important predictors.
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FIG. 7. RuleHeat for the Boston housing data. See the text for details.

To interpret the more complex decision rules in Table 8 it is important to un-
derstand that decision rules in an ensemble have to be interpreted with respect to
other decision rules, and in relation to the data points covered by a rule. A useful
way to explore the effects of the most important rules is what we call a RuleHeat
plot, see Figure 7 for an example for the Boston housing data. The horizontal axis
lists the most important decision rules and the vertical axis the N observations.
A square is green if rl(x) = 1. The grayscale on the bar to the left indicates the
outcome (darker for higher price) and the colorbar in the top of the figure indicates
the sign of the covariate’s coefficient in the model (sand for positive). RuleHeat
makes it relatively easy to to find groups of similar observations, based on the
rules found in HorseRule, and to assess the role a rule plays in the ensemble.
For example, Figure 7 shows that the two most important rules differ only in a
few observations. The two rules have very large coefficients with opposite signs.
Rule 1 in isolation implies that prices are substantially higher when the proportion
of lower status population is low (LSTAT ≤ 14.4) for all but the very largest houses
(RM ≤ 6.97). However, adding Rule 2 essentially wipes out the effect of Rule 1
(24.1−21.9 = 2.2) except for the six houses very close to the employment centers
(DIS < 1.22) where the effect on the price remains high.

Similarly to the variable importance in Random Forest and RuleFit, we can
calculate a variable input importance for the HorseRule model. The importance of
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FIG. 8. Posterior distribution of the input variable importance for the 13 covariates.

the j th predictor given the data is defined as [Friedman and Popescu (2008)]

J (xj ) = I (xj ) + ∑
l:j∈Ql

I (rl)/|Ql|,

where the sum runs over all rules where xj is one of the predictors used to de-
fine the rule. Note how the importance of the rules are discounted by the number
of variables involved in the rule, |Ql|. Figure 8 shows the posterior distribution
of J (xj ) for the 13 covariates. LSTAT is the most important covariate with me-
dian posterior probability of 1 and very narrow posterior spread, followed by RM
which has a median posterior importance of around 0.75. The importance of some
variables, like NOX and INDUS, has substantial posterior uncertainty whereas for
other covariates, such as AGE, the model is quite certain that the importance is low
(but nonzero).

The overlapping rules, as well as similar rules left in the ensemble in order to
capture model uncertainty about the splitting points make interpretation somewhat
difficult. One way to simplify the output from HorseRule is to use the decoupling
shrinkage and summary (DSS) approach by Hahn and Carvalho (2015). The idea
is to reconstruct the full posterior estimator β̂ with a 1-norm penalized represen-
tation, that sets many of the coefficients to exactly zero and also merges together
highly correlated coefficients. We do not report systematic tests here, but in our
experiments using DSS with a suitable shrinkage parameter did not hurt the pre-
dictive performance, while allowing to set a vast amount of coefficients to zero.
Using HorseRule followed by DSS on the Boston housing data leaves 106 nonzero
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TABLE 9
The ten most important rules in Boston data after DSS

Rule Ī β̄

1 RM ≤ 7.13 1.00 −3.47
2 RM ≤ 6.98 0.97 −2.36

PTRATIO ≤ 18.7
LSTAT > 5.95

3 LSTAT > 18.75 0.81 1.80
4 linear : RAD 0.80 0.10
5 RM ≤ 7.437 0.79 −2.03

LSTAT ≤ 7.81
6 NOX ≤ 0.62 0.70 −1.64

RM ≤ 7.31
7 RM ≤ 7.1 0.68 −2.47

RAD ≤ 4.5
LSTAT ≤ 7.81

8 NOX > 0.59 0.63 −1.47
9 linear : LSTAT 0.58 −0.09

10 linear : AGE 0.58 −0.02

coefficients in the ensemble. The 10 most important rules can be seen in Table 9.
We can see that the new coefficients are now less overlapping. The relatively small
number of rules simplify interpretation. Posterior summary for regression with
shrinkage priors is an active field of research [see, e.g., Nalenz and Villani (2018),
Piironen and Vehtari (2017) and Puelz, Hahn and Carvalho (2017) for interest-
ing approaches] and future developments might help to simplify the rule ensemble
further.

4.8. Logistic regression on gene expression data. Here we analyze how
HorseRule can find interesting pattern in classification problems, specifically in
using gene expression data for finding genes that can signal the presence or ab-
sence of cancer. Such information is extremely important since it can be used
to construct explanations about the underlying biological mechanism that lead to
mutation, usually in the form of gene pathways. Supervised gene expression clas-
sification can also help to design diagnostic tools and patient predictions, that help
to identify the cancer type in early stages of the disease and to decide on suitable
therapy [Van’t Veer et al. (2002)].

Extending HorseRule to classification problems can be easily done using a la-
tent variable formulation of, for example, the logistic regression. We chose to use
the Pólya–Gamma latent variable scheme by Polson, Scott and Windle (2013).
Methodological difficulties arise from the usually small number of available sam-
ples, as well as high number of candidate genes, leading to an extreme p � n
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TABLE 10
Accuracy in training and test set for the prostate cancer data

BART Random Forest RuleFit HorseRule

CV-Accuracy 0.900 0.911 0.831 0.922
CV-AUC 0.923 0.949 0.953 0.976
Test-Accuracy 0.824 0.971 0.941 0.971
Test-AUC 1 0.991 0.995 1

situation. We showcase the ability of HorseRule to make inference in this diffi-
cult domain on the Prostate Cancer dataset, which consists of 52 cancerous and 50
healthy samples (n = 102). In the original data p = 12,600 genetic expressions are
available, which can be reduced to 5966 genes after applying the preprocessing de-
scribed in Singh et al. (2002). Since spurious relationships can easily occur when
using higher order interactions in the p � n situation, we use the hyperparameters
μ = 2 and η = 4 to express our prior belief that higher order interactions are very
unlikely to reflect any true mechanism.

Table 10 shows that HorseRule has higher accuracy and significantly higher
AUC than the competing methods. We also test the methods on an unseen test
dataset containing 34 samples not used in the previous step. All methods have
lower error here, implying that the test data consists of more predictable cases.
The difference is smaller, but HorseRule performs slightly better here as well.

The 10 most important rules for HorseRule are founds in Table 11. It contains
eight rules with one condition and only two with two conditions, implying that
there is not enough evidence in the data for complicated rules to overrule our prior
specification. All of the most important rules still contain 0 in their 5% posterior
importance distribution, implying that they are eliminated by the model in at least
5% of the samples; the small sample size leads to nonconclusive results.

Figure 9 shows the input variable importance of the 50 most important genes.
In this domain the advantage of having estimates of uncertainty can be very ben-
eficial, as biological follow up studies are costly and the probability of spurious
relationships is high. In this data the genes 37,639_at and 556_s_at contain an
importance of 1 in their 75% posterior probability bands. The gene 37,639_at was
found in previous studies to be the single gene most associated with prostate cancer
[Yap et al. (2004)]. However, gene 556_s_at, which makes up the most important
Rule 1, was only found to be the ninth important in previous studies on the same
data using correlation based measures [Yap et al. (2004)]. So, while this gene is
individually not very discriminative (77% accuracy), it becomes important in con-
junction with other rules. This is also borne out in the RuleHeat plot in Figure 10.
The outcome is binary, and the vertical bar to the left is red for cancer and black for
healthy. RuleHeat shows that Rule 1 covers all except one cancer tissue together
with a number of normal tissues, and would therefore probably not be found to be
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TABLE 11
10 most important rules in the cancer data

Rule 5%I Ī 95%I β̄

1 556_s_at ≤ 1.55 0 0.33 1 3.10
2 34,647_at ≤ −1.18 0 0.15 1 −1.78

37,639_at ≤ 1
3 37,478 > −0.32 0 0.18 0.91 1.42
4 38,087_s_at ≤ 0.83 0 0.23 1 1.81
5 34,678_at > 0.38 0 0.19 0.88 −1.58
6 1243_at ≤ 0.35 0 0.15 0.66 1.19
7 37,639_at ≤ 1 0 0.13 0.80 −1.10
8 33,121_g_at ≤ 0.672 0 0.10 0.82 −1.09

960_g_at > 0.378
9 41,706_at ≤ 1.33 0 0.15 0.79 −1.13

10 39,061_at > 0.31 0 0.1 0.52 −1.03

significant using traditional tests in logistic regression. Its importance arises from
the combination with the other rules, especially Rule 2, Rule 7 and Rule 8, that are
able to correct the false positive predictions using Rule 1 alone.

To illustrate HorseRule’s potential for generating important insights from inter-
action rules, we present the subspaces of the two most important interaction rules
in Figure 11 and Figure 12. Again healthy tissues are colored black and cancerous
red. The first interaction looks somewhat unnatural. The gene 37,639_at is individ-

FIG. 9. Posterior distribution of the input variable importance of the 50 most influential covariates.
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FIG. 10. RuleHeat for the prostate cancer data. Cancer tissues are colored in red, healthy in black.

ually seen to be a strong classifier where higher values indicate cancer. This rule
is also individually represented as Rule 7. The second split on 34,647_at < −1.18
corrects three misclassified tissues by the first split alone. This rule probably only
works well in the ensemble but may not reflect a true mechanism. The second in-
teraction effect is more interesting. It seems that healthy tissues have lower values
in the expression of 33,121_g_at and higher values in the expression of 960_g_at.
This rule might reflect a true interaction mechanism and could be worth analysing
further.

Overall, this shows that HorseRules nonlinear approach with interacting rules
complements the results from classical linear approaches with new information.
Decision rules are especially interesting for the construction of gene-pathways
[Glaab, Garibaldi and Krasnogor (2010)], diagnostic tools and identification of
targets for interventions [Slonim (2002)].

5. Conclusions. We propose HorseRule, a new model for flexible nonlinear
regression and classification. The model is based on RuleFit and uses decision
rules from a tree ensemble as predictors in a regularized linear fit. We replace the
L1-regularization in RuleFit with a horseshoe prior with a hierarchical structure es-
pecially tailored for a situation with decision rules as predictors. Our prior shrinks
complex (many splits) and specific (small number of observations satisfy the rule)
rules more heavily a priori, and is shown to be efficient in removing noise without
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FIG. 11. Scatterplot for Genes 37,639_at and 34,647_at. Healthy samples in black and cancerous
samples in red. Rule 2 is defined by the bottom right quadrant.

FIG. 12. Scatterplot for Genes 33,121_g_at and 960_g_at. Healthy samples in black and cancer-
ous samples in red. Rule 8 is defined by the top left quadrant.
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tampering with the signal. The efficient shrinkage properties of the new prior also
makes it possible to complement the rules from boosting used in RuleFit with an
additional set of rules from random forest. The rules from Random Forest are not
as tightly coupled as the ones from boosting, and are shown to improve prediction
performance compared to using only rules from boosting.

HorseRule is shown to outperform state-of-the-art competitors like RuleFit,
BART and Random Forest in an extensive evaluation of predictive performance on
16 widely used datasets. Importantly, HorseRule performs consistently well on all
datasets, whereas the other methods perform quite poorly on some of the datasets.
We explored different aspect of HorseRule to determine the underlying factors
behind its success. We found that the combination of mixing rule from different
tree algorithms and the aggressive but signal-preserving horseshoe shrinkage are
essential, but that the addition of linear terms seems less important. Our experi-
ments also show that the predictive performance of HorseRule is not sensitive to
its prior hyperparameters. We also demonstrate the interpretation of HorseRule in
both a regression and a classification problem. HorseRule’s use of decision rules
as predictors and its ability to keep only the important predictors makes it easy to
interpret its results, and to explore the importance of individual rules and predictor
variables.

Acknowledgements. We are grateful to the two reviewers and the Associate
Editor for constructive comments that helped to improve both the presentation and
the contents of the paper.

SUPPLEMENTARY MATERIAL

The HorseRule R-package (DOI: 10.1214/18-AOAS1157SUPP; .pdf). Exam-
ple code illustrating the basic features of our HorseRule package in R with stan-
dard settings. The package is available on CRAN at https://CRAN.R-project.org/
package=horserule.
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