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ON A WASSERSTEIN-TYPE DISTANCE BETWEEN SOLUTIONS TO
STOCHASTIC DIFFERENTIAL EQUATIONS

BY JOCELYNE BION–NADAL1 AND DENIS TALAY

École Polytechnique and INRIA

In this paper, we introduce a Wasserstein-type distance on the set of the
probability distributions of strong solutions to stochastic differential equa-
tions. This new distance is defined by restricting the set of possible coupling
measures. We prove that it may also be defined by means of the value func-
tion of a stochastic control problem whose Hamilton–Jacobi–Bellman equa-
tion has a smooth solution, which allows one to deduce a priori estimates or
to obtain numerical evaluations. We exhibit an optimal coupling measure and
characterize it as a weak solution to an explicit stochastic differential equa-
tion, and we finally describe procedures to approximate this optimal coupling
measure.

A notable application concerns the following modeling issue: given an ex-
act diffusion model, how to select a simplified diffusion model within a class
of admissible models under the constraint that the probability distribution of
the exact model is preserved as much as possible?

0. Introduction. In this paper, we propose a Wasserstein-type distance on the
set of probability distributions which are solutions to martingale problems. This
distance is defined as the solution to a stochastic control problem which allows a
priori estimates and numerical approximations.

Our motivation comes from modeling issues. In many situations where stochas-
tic modeling is used, one desires to choose the coefficients of a stochastic differen-
tial equation which represents the reality as simply as possible. This typically is the
case in physics when the analytical structure of the model is imposed by physical
laws and, therefore, may present singularities or have a large algebraic complexity
which makes the analysis or the simulation extremely difficult. Different methods
may be used to this end such as smoothing techniques, homogenization, projection
of the coefficients on a space of suitable functions, etc.

The choice of a “good” simplified model should be related to the objective of
the modeling process. In this paper, we consider the case where a diffusion model
with high complexity coefficients is relevant and one desires to simplify it in order
to be able to get theoretical estimates on its probability distribution or to develop
accurate numerical approximation methods with low computational cost.
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A natural way to set the present problem up consists in minimizing a distance
between the probability distributions of a given class of simplified models and the
probability distribution of the “perfect” model. This distance should be small when
the simplified model captures the essential of the target probability distribution.
One therefore needs to consider distances which metrize the weak convergence
topology, for example, the Wasserstein W2 distance defined as follows. Consider

the map d2(ω,ω) := (
∫ T

0 |ωu − ωu|2 du)
1
2 and the set of probability measures on

the Polish space (L2([0, T ],Rd), d2). The Wasserstein distance

(0.1) W2(P;P) :=
{

inf
π∈�(P;P)

∫
�

∫ T

0
|ωs − ωs |2 dsπ(dω,dω)

} 1
2
,

where �(P;P) is the set of all the probability distributions π on L2([0, T ],R2d)

with marginal distributions P and P. This distance metrizes the weak topol-
ogy on the set of probability measures π on (L2([0, T ],Rd), d2) such that
E

π
∫ T

0 |ωs |2 ds < ∞. Unfortunately, the numerical computation of W2 or any
other Wasserstein distance on an infinite dimensional space is impossible. To over-
come this difficulty, we here introduce a Wasserstein-type distance on the set of the
probability distributions of strong solutions to stochastic differential equations. We
show that this new distance has the advantage to be characterized as the value func-
tion of a stochastic control problem, and thus can be computed by discretizing the
related Hamilton–Jacobi–Bellman equation. We emphasize that, for the sake of
simplicity, we limit ourselves to handle with a distance which is a variant of W2.
One can easily extend our result to many variants of other Wasserstein distances
provided that the Hamilton–Jacobi–Bellman equation (2.3) below admits a smooth
enough solution.

The organization of the paper is as follows. In Section 1, we define the met-
ric W̃ 2 and prove first properties of it. In Section 2, we prove that it may also
be defined by means of the value function of a stochastic control problem whose
Hamilton–Jacobi–Bellman equation has a smooth solution. We also exhibit an op-
timal coupling measure solution to a martingale problem. In Section 3, we prove
that the optimal coupling measure can be approximated by means of continuous
or smooth feedback controls. In the Appendix, we prove a few elementary convex
analysis results which are used in the preceding sections.

Notation. In the sequel, Md denotes the space of d ×d matrices and Idd denotes
the d × d Identity matrix. We denote by Cd the set of d-dimensional correlation
matrices:

Cd := {
C ∈ Md; there exist Rd valued centered random variables

X and Y s.t.

E
(
XXᵀ) = E

(
YY ᵀ) = Idd,C = E

(
XY ᵀ)}

.(0.2)
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We denote by Od the set of orthogonal matrices in Md , and we set

SOd := {
O ∈ Od,det(O) = 1

}
.

For any T > 0 and 0 < α < 1, the Hölder space C0,α([0, T ] ×R
d) is the set of

bounded continuous functions such that φ(t, ·) is Hölder continuous of order α for
every t in [0, T ] equipped with the norm

‖φ‖0,α := sup
t∈[0,T ]

∥∥φ(t, ·)∥∥α

:= sup
t∈[0,T ]

(∥∥φ(t, ·)∥∥∞ + sup
x,y∈Rd ,x �=y

|φ(t, x) − φ(t, y)|
|x − y|α

)
.

Similarly, the Hölder space Cα/2,0([0, T ] × R
d) is the set of bounded continuous

functions such that φ(·, x) is Hölder continuous of order α
2 for every x in R

d . We
equip the space

C α
2 ,α([0, T ] ×R

d) := Cα/2,0([0, T ] ×R
d) ∩ C0,α([0, T ] ×R

d)
with the norm

‖φ‖ α
2 ,α := ‖φ‖α/2,0 + ‖φ‖0,α.

Finally, C1+ α
2 ,2+α([0, T ] × R

d) is the set of continuous bounded functions φ of
class C1,2([0, T ] × R

d) with bounded derivatives such that ∂tφ and ∂2
xi ,xj

φ are in

C α
2 ,α([0, T ] ×R

d) for all 1 ≤ i, j,≤ d . We equip this space with the norm

‖φ‖1+ α
2 ,2+α := ‖φ‖∞ +

d∑
i=1

‖∂xi
φ‖∞ + ‖∂tφ‖ α

2 ,α +
d∑

i,j=1

∥∥∂2
xi ,xj

φ
∥∥

α
2 ,α.

1. The ˜W2 distance.

1.1. Definition of W̃2. Denote by � := C(0, T ;Rd) the d-dimensional canon-
ical space of continuous functions from [0, T ] to R

d . Equipped with the locally
uniform convergence metric, this space is Polish. The canonical filtration is de-
noted by (Fs,0 ≤ s ≤ T ) and its Borel σ -field is denoted by F := ∨

0≤s≤T Fs .

DEFINITION 1.1. Let P be the set of probability measures P on the d-
dimensional canonical space which satisfy: there exist x0 in R

d and bounded Lip-
schitz functions μ and σ with σ being uniformly strongly elliptic in the following
sense:

∃λ > 0,∀0 ≤ s ≤ T ,∀ξ ∈R
d,∀x ∈ R

d,

d∑
i,j=1

(
σ(x)σ (x)ᵀ

)ij
ξ iξ j ≥ λ|ξ |2,

such that P ≡ P
μ,σ
x0 is the probability distribution of the unique strong solution to

the stochastic differential equation with coefficients μ and σ and initial condition
x0.
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The definition of the following Wasserstein-type distance on the set P results
from the obvious but important observation that not any coupling measure of
two probability distributions in P can be represented as the solution of a 2d-
dimensional martingale problem. We thus modify the definition of the standard
W2 distance by restricting the set of possible coupling measures.

DEFINITION 1.2. Given two probability measures P
μ,σ
x0 and P

μ,σ
x0

belonging

to P, let �̃(Pμ,σ ;Pμ,σ ) be the set of the probability laws P̃ on (�⊗2,F⊗2) which
enjoy the following properties:

(i) On some probability space equipped with a pair (W,W) of independent
Brownian motions and some filtration G, there exist G-predictable processes (Ct )

and (Dt ) taking values in the space of correlation matrices Cd and a G-adapted
solution (XC,X) to the following system of SDEs:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
XC

t = x0 +
∫ t

0
μ

(
XC

s

)
ds +

∫ t

0
σ

(
XC

s

)
(Cs dWs +Ds dWs),

Xt = x0 +
∫ t

0
μ(Xs) ds + σ(Xs) dWs,

where DsDᵀ
s + CsCᵀ

s = Idd for any 0 ≤ s ≤ T .
(ii) P̃ is the joint probability law of (XC,X) and, therefore, the first and second

marginal distributions of P̃ respectively are P
μ,σ
x0 and P

μ,σ
x0

.

We define the map W̃2 on P × P as follows: Given P
μ,σ
x0 and P

μ,σ
x0

,

(1.2) W̃2(
P

μ,σ
x0

;Pμ,σ
x0

) :=
{

inf
P̃∈�̃(P

μ,σ
x0 ;Pμ,σ

x0
)

∫
�⊗2

∫ T

0
|ωs − ωs |2 dsP̃(dω, dω)

} 1
2
.

REMARK 1.3. If the process (Ct ) in (1.1) is predictable w.r.t the (non com-
pleted) filtration of the Brownian motion (W,W), there exists a F -predictable
map � such that

(1.3) ∀0 ≤ s ≤ T , Cs = �
(
s,

{
(Wθ,Wθ),0 ≤ θ ≤ s

})
(see, e.g., Claisse et al. [2], Proposition 10).

REMARK 1.4. When the coefficients μ, σ , μ and σ are Lipschitz, it is easy to
prove that for every (Ct ) the system (1.1) has a pathwise unique square integrable
strong solution (see, e.g., Fleming and Soner [4], Appendix D).

We below prove that W̃2 is a distance on P which has the following desirable
property for modeling and calibration purposes: it metrizes the weak convergence
on the space of probability distributions of solutions to SDEs with coefficients
sharing the same L∞-norm and Lipschitz constant. Theorem 2.2 shows that W̃2
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can be interpreted in terms of a stochastic control problem whose corresponding
Hamilton–Jacobi–Bellman equation admits a unique smooth solution.

We will need the following elementary property of W̃2. Recall that W2 was
defined in (0.1).

PROPOSITION 1.5. One has

(1.4) W2(
P

μ,σ
x0

,P
μ,σ
x0

) ≤ W̃2(
P

μ,σ
x0

,P
μ,σ
x0

)
.

PROOF. The process ∫ t

0
Cs dWs +

∫ t

0
Ds dWs

is a Brownian motion. In view of (1.1), for every P̃ in �̃(P
μ,σ
x0 ,P

μ,σ
x0

) the first (resp.,

second) marginal distribution of P̃ is P
μ,σ
x0 (resp., Pμ,σ

x0
)). Thus �̃(P

μ,σ
x0 ,P

μ,σ
x0

) ⊂
�(P

μ,σ
x0 ,P

μ,σ
x0

). �

1.2. W̃2 defines a metric on P.

PROPOSITION 1.6. The map W̃2 defines a distance on P.

PROOF. We have to prove the triangle inequality

(1.5) ∀P,P,P ∈ P, W̃2(P;P) ≤ W̃2(P;P) + W̃2(P;P).

Consider a probability space which supports three independent Brownian mo-
tions (Wt ,W t ,W t). Let P̃ ∈ �̃(P;P)).

Let μ and σ be the coefficients of the SDE satisfied by the process (Xt) with
probability distribution P. Consider the new system of SDEs

(1.6)

⎧⎪⎪⎨⎪⎪⎩
dXs = μ(Xs) ds + σ(Xs)(Cs dWs +Ds dWs),

dXs = μ(Xs) ds + σ(Xs) dWs,

dXs = μ(Xs) ds + σ(Xs)(Cs dWs +Ds dWs),

where DsD
ᵀ
s + CsC

ᵀ
s = Idd . Denote by E the expectation under the underlying

probability. We obviously have{
E

∫ T

0
|Xs − Xs |2 ds

}1/2
≤

{
E

∫ T

0
|Xs − Xs |2 ds

}1/2

+
{
E

∫ T

0
|Xs − Xs |2 ds

}1/2
.(1.7)

Notice that the process W�

W� :=
(∫ t

0
Cs dWs +

∫ t

0
Ds dWs,0 ≤ t ≤ T

)
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is a Brownian motion independent of W . The process

W� :=
(∫ t

0
Cs dWs +

∫ t

0
Ds dWs,0 ≤ t ≤ T

)
is also a Brownian motion. Thus on a possibly extended probability space there
exist a Brownian motion B independent of W� and a predictable process C� such
that

W� :=
(∫ t

0
C�

s dW�
s +

∫ t

0
D�

s dBs,0 ≤ t ≤ T

)
with D�

s (D�
s )

ᵀ + C�
s (C�

s )
ᵀ = Idd . We thus have{

dXs = μ(Xs) ds + σ(Xs)
(
C�

s dW�
s +D�

s dBs

)
,

dXs = μ(Xs) ds + σ(Xs) dW�
s .

Successively minimizing the right-hand side of (1.7) w.r.t. (Cs) and (Cs), and its
left-hand side w.r.t. (C

�
s ), allows us to deduce (1.5). �

1.3. Weak topology metrization with W̃2. In this subsection, we need the
notion of a martingale problem. Given a probability P on �, let F denote the
augmented and P-completed Borel filtration of �. As Karatzas and Shreve [7],
Chapter 5, Definition 4.5, we here consider that the definition of a solution P to
a martingale problem involves the P-completed canonical filtration denoted by
(FP

s ,0 ≤ s ≤ T ).

DEFINITION 1.7. A probability measure P on (�,F) is the unique solution
to the martingale problem with Borel measurable drift coefficient μ, Borel measur-
able diffusion coefficient σ and initial condition x0 if for every real valued function
f of class C∞([0, T ] ×R

d) with compact support,

f (t, xt ) − f (0, x0) −
∫ t

0

(
n∑

i=1

μi(xs)
∂f

∂xi

(s, xs)

)
ds

− 1

2

∑
i,j

(
σ(xs)σ (xs)

ᵀ)ij ∂2f

∂xi ∂xj

(s, xs)(1.8)

is a (P, (FP
t )) martingale null at time 0, and if there is no other probability measure

on (�,F) satisfying that property.

Given positive numbers � and A, let AA,� be the set of functions μ and σ ,
respectively from R

d to R
d and from R

d to Md , which satisfy

(1.9)

{∣∣μ(x)
∣∣ ≤ A,

∣∣σ(x)
∣∣ ≤ A, ∀x ∈ R

d,∣∣μ(x) − μ(y)
∣∣ + ∣∣σ(x) − σ(y)

∣∣ ≤ �|x − y|, ∀x, y ∈ R
d .
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Denote by PA,� the set of the probability distributions Pμ,σ
x0 of pathwise unique

solutions to SDEs with coefficients in AA,� and initial condition x0 in a given
compact subset K of Rd .

Equipped with the uniform norm topology ‖ω‖∞ := sup0≤t≤T |ω(t)|, the d-
dimensional canonical space is a Polish space. In all of the following, the weak
topology on the set of probability measures on this space is called the weak topol-
ogy for the L∞-norm.

We will also consider the weak topology for the L2-norm ‖ω‖2 :=
{∫ T

0 |ω(s)|2 ds}1/2.

PROPOSITION 1.8. Given A and �, the set PA,� is a compact subset of the
set of probability measures on the d-dimensional canonical space for the weak
topology for the L∞-norm and also for the weak topology for the L2 norm.

PROOF. To simplify the notation, we here limit ourselves to the case where
the compact set K in the definition of PA,� is reduced to the single point {x0}.
• The first step of the proof consists in proving that the set AA,� is compact in the

set of continuous functions for the topology of uniform convergence on com-
pact subsets. The topology of uniform convergence on compact subsets of Rd

is metrizable. From Bolzano–Weierstrass’ theorem, it is thus enough to prove
that every sequence in AA,� admits a convergent subsequence. Let (μk, σk) be
a sequence in AA,�. The maps in AA,� are uniformly bounded and uniformly
equicontinuous. It follows from Ascoli’s theorem that the restriction of AA,� to
every compact subset of Rd is compact for the uniform convergence. Proceed-
ing then by induction, for every n, one can construct a subsequence (μn

k, σ
n
k )

of (μk, σk) such that for all n, (μn
k, σ

n
k ) is a subsequence of (μn−1

k , σ n−1
k ) and

(μn
k, σ

n
k ) is uniformly convergent on {(t, x)t ≤ T , |x| ≤ n}. It follows that the

diagonal sequence (μn
n, σ

n
n ) admits a limit for the topology of uniform conver-

gence on compact sets of Rd . Denote (μ,σ ) its limit. It is then easy to see that
(μ,σ ) ∈ AA,�.

• The set of probability measures on the d-dimensional canonical space endowed
with the weak topology for the L∞-norm is metrizable and once again we can
apply Bolzano–Weierstrass’ theorem. Let (Pk) be a sequence in PA,�. Such a
family of probability measures (Pk) is obviously tight for the weak topology for
the L∞-norm (see, e.g., [7], Chapter 2, Problem 4.11). Therefore, there exists
a subsequence (Pϕ(k)) of (Pk) converging to some probability measure P for
the weak topology for the L∞-norm. For all k, Pϕ(k) = P

μk,σk with (μk, σk) ∈
AA,�. It follows from the first step of the proof that there exists a subsequence
(μ̃k, σ̃k) of (μk, σk) converging to (μ,σ ) ∈ AA,� uniformly on compact sets.

For every k, one has that Pϕ(k) is the probability distribution of the SDE
with coefficients μk and σk and initial condition x0. Choose a subsequence of
(μ̃k, σ̃k) with limit (μ,σ ) and pass to the limit in (1.8) for every function f in
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C∞(Rd) with compact support. It results that P is a solution to the martingale
problem with coefficients μ and σ and initial condition x0. From the uniqueness
of the solution, we get P = P

μ,σ . This proves the compactness of PA,� for the
weak topology for the L∞-norm.

• By definition of the weak topology, for every bounded continuous function ψ on
(C([0, T ],Rd), ||∞), EP(ψ) = limE

Pϕ(k)(ψ). For all paths ω,ω′, |ω − ω′|L2 ≤
T |ω − ω′|L∞ . It follows that the restriction to C([0, T ],Rd) of every continu-
ous function ψ on L2([0, T ],Rd) is also continuous on C([0, T ],Rd) for the
uniform norm topology. This proves that Pϕ(k) converges to P for the weak
topology for the L2 norm. �

PROPOSITION 1.9. W̃2 metrizes the weak topology on PA,� for the L2-norm.

PROOF. In all this proof, we will shortly write “weak topology” instead of
“weak topology for the L2-norm.” To simplify the notation, we again limit our-
selves to the case where the compact set K in the definition of PA,� is reduced to
the single point {x0}.

The set of probability measures on L2([0, T ],Rd) endowed with the weak
topology is a Polish space, thus the subset PA,� is metrizable separable for the
weak topology. Therefore, it is enough to prove that for all (Pk)k∈N,P in PA,�, P
is the limit of Pk for the weak topology if and only if W̃2(Pk,P) → 0.

• Step 1.
Let Pk ∈ PA,� converging to P for the weak topology. It follows from Propo-

sition 1.8 that the probability measure P belongs to PA,�. We will prove by
contradiction that W̃2(Pk,P) tends to 0.

Assume that this is false. It follows from the proof of Proposition 1.8 that
there is η > 0 and a subsequence P̃k = P

μk,σk of Pk such that (μk, σk) is con-
verging to (μ,σ ) ∈ AA,� uniformly on compact sets, P = P

μ,σ and such that
infk W̃2(P̃k,P) = η > 0. For every k, let Y k and Y be the stochastic processes
taking values in R

d , respectively, solutions to

(1.10)

⎧⎪⎪⎨⎪⎪⎩
Y k

t = x0 +
∫ t

r
μk

(
Y k

s

)
ds +

∫ t

r
σk

(
Y k

s

)
dWs,

Yt = x0 +
∫ t

r
μ(Ys) ds +

∫ t

r
σ (Ys) dWs.

Using Cauchy–Schwarz and Burkholder–Davis–Gundy’s inequalities, we get

E sup
r≤s≤t

∣∣Y k
s − Ys

∣∣2 ≤ 2(t − r)E

∫ t

r

∣∣μk

(
Y k

s

) − μ(Ys)
∣∣2 ds

+ 8E
∫ t

r

∣∣σk

(
Y k

s

) − σ(Ys)
∣∣2 ds.(1.11)
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As μk and σk belong to AA,�, it follows from (1.11) that

E

(
sup

r≤s≤t

∣∣Y k
s − Ys

∣∣2)
≤ (

4(t − r) + 16
)
�2

E

∫ t

r

∣∣Y k
s − Ys

∣∣2 ds

+ 4(t − r)E

∫ t

r

∣∣μk(Ys) − μ(Ys)
∣∣2 ds

+ 16E
∫ t

r

∣∣σk(Ys) − σ(Ys)
∣∣2 ds.(1.12)

We have limK→∞E{sups≤T |Ys | ≥ K} → 0. On the other hand, the functions
μk , respectively σk , converge uniformly to μ, respectively σ , on every com-
pact set of Rd and are uniformly bounded on R

d . It follows that for all ε > 0
there is k0 such that for all k ≥ k0, Fk(t) ≤ ε + M

∫ t
r Fk(s) ds with Fk(s) =

E supu≤s |Y k
u − Yu|2. By Gronwall’s lemma, it comes that Fk(t) ≤ ε exp(M(t −

r)). From the definition (1.2) of W̃2, it follows that W̃2(P̃k,P) → 0. This proves
the desired result by contradiction.

• Step 2.
Let Pk,P in PA,� such that W̃2(Pk,P) → 0. It follows from (1.4) that

W2(Pk,P) → 0. The distance W2 metrizes the weak topology, therefore, P is
the limit of Pk for the weak topology. �

2. Interpretation of ˜W2(P
μ,σ
x ;Pμ,σ

x ) in terms of stochastic control. This

section is aimed to prove that the value of W̃2(P
μ,σ
x ;Pμ,σ

x ) can be obtained by
solving the following stochastic control problem.

Recall that Cd (resp., Od ) denotes the space of d × d correlation (resp., or-
thogonal) matrices. For every 0 ≤ t ≤ T , let Ad(t,T) denote the set of admissible
controls between t and T , that is, the set of G-predictable processes on [t, T ] which
take values in Cd and are independent of Gt .

Given a time origin 0 ≤ t ≤ T and a control process (Cθ ) in Ad(t, T ) depending
in a Borel measurable way on the initial conditions x and x, in view of Remark 1.4
the hypotheses made below (see Theorem 2.1) ensure that there exists a pathwise
unique solution (XC

θ (t, x, x),Xθ(t, x)) to

(2.1) ∀t ≤ θ ≤ T ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

XC
θ = x +

∫ θ

t
μ

(
XC

s

)
ds

+
∫ θ

t
σ

(
XC

s

)
(Cs dWs +Ds dWs),

Xθ = x +
∫ θ

t
μ(Xs) ds +

∫ θ

t
σ (Xs) dWs,

where DsDᵀ
s + CsCᵀ

s = Idd for any t ≤ s ≤ T . Choosing the time origin t = 0, we
consider the objective function

(2.2) min
(Cθ )∈Ad(0,T)

E

∫ T

0

∣∣XC
θ (0, x, x) − Xθ(0, x)

∣∣2 dθ.
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The corresponding Hamilton–Jacobi–Bellman equation is the following:

(2.3)

⎧⎪⎪⎨⎪⎪⎩
∂tV (t, x, x) +LV (t, x, x) + H(t, x, x,V ) = −|x − x|2,

0 ≤ t < T ,

V (T , x, x) = 0,

where

LV (t, x, x) :=
d∑

i=1

μi(x)∂xi
V (t, x, x) +

d∑
i=1

μi(x)∂xi
V (t, x, x)

+ 1

2

d∑
i,j=1

(
σσ ᵀ(x)

)ij
∂2
xi ,xj

V (t, x, x)

+ 1

2

d∑
i,j=1

(
σ(x)σ (x)ᵀ

)ij
∂2
xi ,xj

V (t, x, x)(2.4)

and

H(t, x, x,V ) := min
C∈Cd

d∑
i,j=1

(
σ(x)Cσ(x)ᵀ

)ij
∂2
xi ,xj

V (t, x, x).

In view of (A.4) below we have

(2.5) H(t, x, x,V ) = min
C∈Od

d∑
i,j=1

(
σ(x)Cσ(x)ᵀ

)ij
∂2
xi ,xj

V (t, x, x).

We aim to prove: V (0, x, x) coincides with the objective function (2.2) and
with (W̃2(Pμ,σ ;Pμ,σ ))2 and there exists an optimal admissible control. As ex-
plained in the Introduction, this result can be used to get the numerical value of
W̃2(Pμ,σ ;Pμ,σ ) by numerically solving the PDE (2.3), and thus is relevant for the
selection of a simplified model which approximates a given exact model Pμ,σ in P.

The two main results are the following.

THEOREM 2.1. Suppose:

(i) The functions μ, μ, σ and σ are in the Hölder space Cα(Rd) with
0 < α < 1.

(ii) The matrix-valued functions a(x) := σ(x)σ (x)ᵀ and a(x) := σ(x)σ (x)ᵀ

satisfy the strong ellipticity condition

∃λ > 0,∀(ξ, ξ, x) ∈R
3d,

d∑
i,j=1

aij (x)ξ iξ j +
d∑

i,j=1

aij (x)ξ
i
ξ

j ≥ λ|(ξ |2 +|ξ |2)
.
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Then there exists a solution V (t, x, x) to (2.3) in C1,2([0, T ] × R
d) such that

V (t,x,x)

1+|x|2|+|x|2 is in C1+ α
2 ,2+α([0, T ] ×R

2d).

To prove the preceding theorem, we have to face several technical difficulties.
We cannot apply classical results such as, for example, Fleming and Soner [4],
Theorem IV-4-2, because the control is involved in the diffusion coefficient and,
which is a much more critical issue, this coefficient is possibly degenerate (e.g.,
in the 1D-case the optimal control is C∗

t ≡ 1; see Section 2.1 below). We will
circumvent the degeneracy by considering that the ∂2

xi ,xj
part is a perturbation of a

strongly elliptic operator.
The next theorem shows that V (t, x, x) is the value function of a stochastic

control problem for which an optimal control exists.

THEOREM 2.2. Under the hypotheses of Theorem 2.1, there exist a filtered
probability space equipped with two independent standard Brownian motions W

and W and a predictable process (C∗,D∗) such that there exists an adapted and
continuous solution (X∗(t, x, x),X(t, x)) on [t, T ] to the system

∀t ≤ θ ≤ T ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X∗
θ = x +

∫ θ

t
μ

(
X∗

s

)
ds +

∫ θ

t
σ

(
X∗

s

)
C∗

s dWs

+
∫ θ

t
σ

(
X∗

s

)
D∗

s dWs,

Xθ = x +
∫ θ

t
μ(Xs) ds +

∫ θ

t
σ (Xs) dWs,

C∗
s ∈ arg min

C∈Cd

d∑
i,j=1

(
σ

(
X∗

s

)
Cσ(X)ᵀs

)ij
∂2
xixj

V
(
s,X∗

s ,Xs

)
),

C∗
s

(
C∗

s

)ᵀ +D∗
s

(
D∗

s

)ᵀ = Idd,

(2.6)

which satisfies

V (0, x, x) = E

∫ T

0

∣∣X∗
θ (0, x, x) − Xθ(0, x)

∣∣2 dθ = (
W̃2(

P
μ,σ
x ;Pμ,σ

x

))2
.

In addition, there exists a sequence (Pμm,σm
) of solutions to martingale prob-

lems with bounded continuous coefficients μm and σm such that∫
�

∫ T

0
|ωs − ωs |2 dsPμm,σm

(dω,dω)

converges to (W̃2(Pμ,σ ;Pμ,σ ))2.

We start with examining the one-dimensional case d = 1 which allows simple
arguments and permits to see the difficulties to overcome to obtain the general
statement of Theorem 2.2.
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2.1. The one-dimensional case. Suppose that the functions μ, σ , a, μ, σ and
a satisfy the hypotheses of Theorem 2.1. Consider the family of stochastic differ-
ential equations

∀t ≤ θ ≤ T , X∗
θ = x +

∫ θ

t
μ

(
X∗

s

)
ds +

∫ θ

t
σ

(
X∗

s

)
dWs.

Denote by (X∗
θ (t, x)) the corresponding pathwise unique stochastic flows. Under

our assumptions, it is well known (see Kunita [9]) that a.s. the map x �→ X∗
θ (t, x)

is differentiable for any θ and for any t ≤ θ ≤ T one has

d

dx
X∗

θ (t, x)

= exp
(∫ θ

t

(
μ′ + 1

2

(
σ ′)2

)(
X∗

s (t, x)
)
ds +

∫ θ

t
σ ′(X∗

s (t, x)
)
dWs

)
.

(2.7)

Of course, a similar result holds true for the flows (Xθ(t, x), t ≤ θ ≤ T ) solutions
to

∀t ≤ θ ≤ T , Xθ = x +
∫ θ

t
μ(Xs) ds +

∫ θ

t
σ (Xs) dWs.

Now consider the function

V ∗(t, x, x) := E

∫ T

t

(
X∗

θ (t, x) − Xθ(t, x)
)2

dθ.

Under our hypotheses, this function is the unique classical solution to the following
parabolic PDE on [0, T ] ×R

2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V ∗

∂t
(t, x, x) + μ(x)

∂V ∗

∂x
(t, x, x) + μ(x)

∂V ∗

∂x
(t, x, x) + 1

2
σ 2(x)

∂2V ∗

∂x2 (t, x, x)

+ 1

2
σ 2(x)

∂2V ∗

∂x2 (t, x, x)

+ σ(x)σ (x)
∂2V ∗

∂x ∂x
(t, x, x) = −(x − x)2, t < T ,

V ∗(T , x, x) = 0.

Notice that

∂2V ∗

∂x ∂x
(t, x, x) = −2

∫ T

t
E

[
d

dx
X∗

s (t, x)
d

dx
Xs(x)

]
ds.

In view of (2.7), we thus have

(2.8) ∀t, x, x,
∂2V ∗

∂x ∂x
(t, x, x) < 0.
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Therefore, we have exhibited a classical solution V ∗(t, x, x) to the following
Hamilton–Jacobi–Bellman equation on [0, T ] ×R

2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
(t, x, x) + μ(x)

∂V

∂x
(t, x, x) + μ(x)

∂V

∂x
(t, x, x) + 1

2
σ 2(x)

∂2V

∂x2 (t, x, x)

+ 1

2
σ 2(x)

∂2V

∂x2 (t, x, x)

+ min
C∈[−1,1]

(
Cσ(x)σ (x)

∂2V

∂x∂x
(t, x, x)

)
= −(x − x)2, t < T ,

V (T , x, x) = 0.

Observe that here the admissible controls in Ad(t,T) are valued in [−1,1].
Thus the constant correlation process C∗

t ≡ 1 (0 ≤ t ≤ T ) is admissible. There-
fore, standard verification theorems in stochastic control theory (see, for example,
Fleming and Soner [4], Theorem IV.3.1) lead to

V ∗(t, x, x) = min
(Cθ )∈A d(t,T)

E

∫ T

t

(
XC

θ (t, x) − Xθ(t, x)
)2

dθ.

Since XC∗
θ (t, x) = X∗

θ (t, x) for all t, θ, x, the function V ∗ also satisfies

V ∗(t, x, x) = E

∫ T

t

(
XC∗

θ (t, x) − Xθ(t, x)
)2

dθ.

Notice that the probability distribution of (XC∗
θ (t, x)) solves a martingale problem

with coefficients μ and σ and, therefore, belongs to P. In view of the definition
(1.2), we deduce that

V ∗(0, x0, x0) = (
W̃2(

P
μ,σ ;Pμ,σ ))2

.

In the preceding, we have exhibited an optimal control which does not depend
on the solution to the Hamilton–Jacobi–Bellman equation, and for which the cost
function V ∗ is smooth. In the multidimensional case, the situation is not so simple
as we now see.

2.2. The multidimensional case: Preliminaries. For the reader’s convenience,
we recall a classical result in PDE analysis (see, e.g., Ladyzenskaja et al. [10],
Chapter IV, Theorem 5.1, or Lunardi [11], Theorem 5.1.8).

THEOREM 2.3. If the elliptic operator

A :=
d∑

i=1

bi(x)∂xi
+ 1

2

d∑
i=1

γ ij (x)∂2
xixj

+ c(x)

with coefficients in Cα(Rd) (0 < α < 2, α �= 1) is uniformly strongly elliptic, the
source term f is in C α

2 ,α(Rd) and the initial condition ψ is in C2+α(Rd), then the
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parabolic problem on [0, T ] ×R
d ,

(2.9)

{
∂tu = Au + f in [0, T ] ×R

d,

u(0, ·) = ψ(·) in R
d,

has a unique solution in C1+ α
2 ,2+α([0, T ] × R

d). Furthermore, denoting by
‖ · ‖ α

2 ,α(s) the Hölder norm of C α
2 ,α([0, s] ×R

d), we have

∀0 ≤ t < T ,

‖u‖1+ α
2 ,2+α(t) ≤ K(T )‖ψ‖2+α + K(T )

∫ t

0
‖f ‖ α

2 ,α(s) ds,(2.10)

where the positive increasing function K depends on the coefficients of A only.

We easily deduce the following corollary.

COROLLARY 2.4. Suppose that the coefficients of A satisfy the hypotheses
of Theorem 2.3. Suppose that the function f satisfies: there exist C > 0, r ≥ 1,
0 < α < 1 such that

(2.11)

⎧⎪⎪⎨⎪⎪⎩
∀x, x′ ∈ R

d,∀0 ≤ t, t ′ ≤ T ,∣∣f (t, x)
∣∣ ≤ C

(
1 + |x|2)r

,∣∣f (t, x) − f
(
t ′, x′)∣∣ ≤ C

(∣∣t − t ′
∣∣ α

2 + ∣∣x − x′∣∣α)(
1 + |x|2 + ∣∣x′∣∣2)r

.

Then there exists a unique function u(t, x) which satisfies (2.9) and is such that
ũ(t, x) := u(t,x)

(1+|x|2)r is in C1+ α
2 ,2+α([0, T ] ×R

d). In addition,

∀0 ≤ t < T ,

‖ũ‖1+ α
2 ,2+α(t) ≤ K̃(T )‖ψ̃‖2+α + K̃(T )

∫ t

0
‖f̃ ‖ α

2 ,α(s) ds,(2.12)

where the positive increasing function K̃ depends on the coefficients of A only and
the functions ψ̃ and f̃ are respectively defined as ψ̃(x) := ψ(x)

(1+|x|2)r and f̃ (t, x) :=
f (t,x)

(1+|x|2)r .

PROOF. Define the differential operator Ã by

Ãφ(x) := 1

(1 + |x|2)r A
(
φ(x)

(
1 + |x|2)r)

.

For some functions b̃i and c̃ which can easily be explicited in terms of the coeffi-
cients of A one has

Ã :=
d∑

i=1

b̃i (x)∂xi
+ 1

2

d∑
i=1

γ ij (x)∂2
xixj

+ c̃(x).
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Notice that the leading coefficients of Ã are identical to those of A, and thus Ã is
strongly uniformly elliptic. Now consider the parabolic equation:

(2.13)

⎧⎪⎪⎨⎪⎪⎩
∂t ũ(t, x) = Ãũ(t, x) + f (t, x)

(1 + |x|2)r in [0, T ] ×R
d,

ũ(0, x) = ψ(x)

(1 + |x|2)r in R
d .

In order to be in a position to apply Theorem 2.3, it clearly suffices to prove
that the coefficients b̃i and c̃ are in Cα(Rd) (0 < α < 2, α �= 1) and the function

f (t,x)

(1+|x|2)r is in C α
2 ,α(Rd). We only consider the last function since similar arguments

apply to the other ones.
W.l.o.g. we may and do suppose that |x| ≤ |x′|. Denoting by C any constant

independent of x, x′, t , t ′, one has∣∣f̃ (t, x) − f̃
(
t, x′)∣∣

≤ |f (t, x) − f (t, x′)|
(1 + |x′|2)r + (1 + |x′|2)r − (1 + |x|2)r

(1 + |x|2)r (1 + |x′|2)r
∣∣f (t, x)

∣∣
≤ C

∣∣x′ − x
∣∣α + C

∣∣x′ − x
∣∣α |x′ − x|1−α(|x′| + |x|)(1 + |x′|2)r−1

(1 + |x′|2)r
≤ C

∣∣x′ − x
∣∣α.

We also obviously have ∣∣f̃ (
t ′, x

) − f̃ (t, x)
∣∣ ≤ C

∣∣t ′ − t
∣∣ α

2 .

Setting ũ(t, x) := u(t,x)

(1+|x|2)r , we have obtained the desired existence and uniqueness
result. �

REMARK 2.5. It is well known (see, e.g., Friedman [5], Chapter 1, Section 7,
equation (7.6)) that, under the hypotheses of Theorem 2.3, one has

(2.14) u(t, x) =
∫
Rd

�(t, x;0, ξ)ψ(ξ) dξ −
∫ t

0

∫
Rd

�(t, x; s, ξ)f (s, ξ) dξ ds,

where � is the fundamental solution associated to the operator A. By using clas-
sical properties of � (see Friedman [5], Chapter 9, Section 4, Theorem 2 and in-
equality (4.19) and Ladyzenskaja et al. [10], Chapter IV, Section 13) one can check
that this representation also holds true under the hypotheses of Corollary 2.4. We
will not need this property.

2.3. Proof of Theorem 2.1. Let ṽ be a function in C1+ α
2 ,2+α([0, T ]×R

2d). De-
fine the function v as v(t, x, x) := ṽ(T − t, x, x)(1 + |x|2 + |x|2). Notice that then
v necessarily satisfies (2.11). The functions ∂2

xi ,xj
v(t, x, x) satisfy the inequalities
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(2.11). Apply Proposition A.8 in our Appendix. It follows that H(t, x, x, v) satis-
fies the inequalities (2.11). In addition, there exists C̃1 > 0 depending on Hölder
norms of σ and σ only such that

∀0 ≤ t ≤ T ,

∥∥∥∥H(t, x, x, (1 + |x|2 + |x|2)ṽ)

1 + |x|2 + |x|2
∥∥∥∥

α
2 ,α

(t) ≤ C̃1‖ṽ‖1+ α
2 ,2+α(t).

To transform the equation (2.3) into a time forward equation similar to (2.9),
one changes t into T − t . Observe that

H
(
t, x, x,

(
1 + |x|2 + |x|2)

ṽ
) = H(T − t, x, x, v).

This leads one to consider the following PDE:

(2.15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂t Ṽ (t, x, x) = L̃Ṽ (t, x, x) + H(t, x, x, (1 + |x|2 + |x|2)ṽ)

1 + |x|2 + |x|2
+ |x − x|2

1 + |x|2 + |x|2 , 0 < t ≤ T ,

Ṽ (0, x, x) = 0,

where the coefficients of the differential operator L̃ can be explicited in terms of
those of L by proceeding as in the proof of Corollary 2.4. Set

C̃0 :=
∥∥∥∥ |x − x|2

1 + |x|2 + |x|2
∥∥∥∥
α

.

Corollary 2.4 shows that (2.15) has a unique solution denoted by ψ̃(ṽ) such that

∥∥ψ̃(ṽ)
∥∥

1+ α
2 ,2+α(t) ≤ K̃(T )

∫ t

0

∥∥∥∥H(s, x, x, x, (1 + |x|2 + |x|2)ṽ)

1 + |x|2 + |x|2
∥∥∥∥

α
2 ,α

(s) ds

+ K̃(T )C̃0t

≤ K̃(T )C̃1

∫ t

0
‖ṽ‖1+ α

2 ,2+α(s) ds + K̃(T )C̃0t,(2.16)

where K̃(T ) depends on T and the coefficients of L only.
Let

K :=
{
g̃ ∈ C1+ α

2 ,2+α([0, T ] ×R
d);

∀0 ≤ t ≤ T ,‖g̃‖1+ α
2 ,2+α(t) ≤ C̃0

C̃1

(
exp

(
K̃(T )C̃1t

) − 1
)}

.

Let ṽ belong to K. In view of (2.16), we get that ψ̃(ṽ) belongs to K.
Let us now prove that the map ψ̃ is continuous on K. Let ṽn and ṽ in K

such that ‖ṽn − ṽ‖1+ α
2 ,2+α tends to 0 when n goes to infinity. Let us show that



ON A WASSERSTEIN-TYPE DISTANCE 1625

ψ(ṽ) is the unique accumulation point of (ψ(ṽn)). Consider a converging subse-
quence (w̃n) of (ψ(ṽn)) (such a subsequence exists since K is a compact subset
of C1+ α

2 ,2+α([0, T ] × R
2d)) and let w̃ be such that ‖w̃ − w̃n)‖1+ α

2 ,2+α tends to 0
when n goes to infinity. Observe that ∂t w̃n, respectively Lw̃n, converges to ∂t w̃,
respectively Lw̃, uniformly on compact sets. In addition, Proposition A.8 implies
that H(t, x, x, ṽn(1 + |x|2 + |x|2))) converges to H(t, x, x, ṽ(1 + |x|2 + |x|2)))
uniformly on compact sets. It therefore holds that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t w̃(t, x, x) = L̃w̃(t, x, x) + H(t, x, x, (1 + |x|2 + |x|2)ṽ)

1 + |x|2 + |x|2 + |x − x|2
1 + |x|2 + |x|2 ,

0 < t ≤ T ,

w̃(0, x, x) = 0.

By uniqueness of the solution to the preceding PDE, we deduce that w̃ = ψ(ṽ),
which provides the desired continuity of the mapping ψ .

As the set K is convex and compact, we are in a position to apply the Kakutani–
Fan–Glicksberg theorem (see, e.g., Aliprantis and Border [1], Theorem 16.51), and
thus get that the map ψ̃ admits a fixed point Ṽ in K.

We conclude by observing that the function V (t, x, x) := Ṽ (T − t, x, x)(1 +
|x|2 + |x|2) is a smooth solution to the PDE (2.3).

2.4. Proof of Theorem 2.2. In view of (2.5), one can choose a Borel measur-
able selection C∗(s, x, x) such that

(2.17) C∗(s, x, x) ∈ arg min
C∈Od

d∑
i,j=1

(
σ(x)Cσ(x)ᵀ

)ij
∂2
xixj

V (s, x, x))

(see, e.g., Fleming and Rishel [3], Appendix B). The map C∗(t, x,

x) is uniquely defined and continuous if and only if for every t , x and x, the
matrix (∂2

xixj
V (t, x, x))i,j is invertible; see Proposition A.7 below. Proposition

A.7 also shows that then one can explicitly construct the optimal feedback control
(C∗

s ) taking values in the set of orthogonal matrices. In addition, D∗
s = 0 for every

s.
Unfortunately, it seems unlikely that this property holds true except in the one-

dimensional case (see (2.8)) and possibly in very particular multi-dimensional sit-
uations (e.g., when σ(x)σ (x) = σ(x)σ (x) for all x, x).

In our next section (see Corollary 3.2), we will show that for every m > 0 there
exists a continuous map Cm with values in the set of correlation matrices such that

H(s, x, x,V ) ≤
d∑

i,j=1

(
σ(x)Cm(s, x, x)σ (x)ᵀ

)ij
∂2
xi ,xj

V (s, x, x)

≤ H(s, x, x,V ) + 1

m
(2.18)
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for all s, x, x. We then consider a continuous function Dm(s, x, x) such that

Cm(s, x, x)Cm(s, x, x)ᵀ + Dm(s, x, x)Dm(s, x, x)ᵀ = Idd .

From now on, to simplify the notation we fix the time origin at t = 0 and the
initial conditions at x and x. It follows from the continuity of Cm and Stroock and
Varadhan’s results [13] that there is a weak solution (Ym

θ ,Y θ , B̃
m
θ ,Bθ ,Bθ ,0 ≤ θ ≤

T ) to

(2.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ym
θ = x +

∫ θ

0
μ

(
Ym

s

)
ds

+
∫ θ

0
σ

(
Ym

s

)[
Cm(

s, Ym
s , Y s

)
dBs + Dm(

s, Ym
s , Y s

)
dBs

]
,

Y θ = x +
∫ θ

0
μ(Y s) ds +

∫ θ

0
σ(Y s) dBs,

B̃m
θ =

∫ θ

0

[
Cm(

s, Ym
s , Y s

)
dBs + Dm(

s, Ym
s , Y s

)
dBs

]
,

where (B,B) are independent standard Brownian motions. (The process B̃m will
be needed in a convergence argument below.)

As the coefficients are bounded, one easily gets that the family indexed by m

of the probability distribution of the vector (Ym,Y ,B,B, B̃m) is tight, and any
component Zm of this vector satisfies

∃C,∀m ≥ 1,∀0 ≤ t ≤ θ ≤ r ≤ T , E
∣∣Zm

r − Zm
θ

∣∣2 ≤ C(r − θ).

We apply two celebrated results due to Skorokhod (see Krylov [8], Chapter 2, Sec-
tion 6, Lemma 2 and Lemma 3) which assert that there exists a filtered probability
space, a sequence of numbers n, a process

ξ := (
X∗,X,W,W, W̃

)
,

and a sequence ξn := (Xn,X
n
,W

n
,Wn, W̃n) defined on this probability space,

such that all the finite-dimensional distributions of ξn coincide with the corre-
sponding finite-dimensional distributions of (Y n,Y ,B,B, B̃n) and ξn

θ converges
in probability to ξθ for every 0 ≤ θ ≤ T . In addition,∫ θ

0
σ

(
Xn

s

)[
Cn(

s,Xn
s ,X

n

s

)
dW

n

s + Dn(
s,Xn

s ,X
n

s

)
dWn

s

]
converges in probability to

∫ θ
0 σ(X∗

s ) dW̃s as n tends to infinity for every 0 ≤ θ ≤
T . We emphasize that the process (W̃ ,W) is a possibly correlated Brownian mo-
tion.
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Reasoning as in Krylov [8], Chapter 2, Section 6, one easily gets that a.s. for
any 0 ≤ θ ≤ T ,

(2.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xn
θ = x +

∫ θ

0
μ

(
Xn

s

)
ds +

∫ θ

0
σ

(
Xn

s

)[
Cn(

s,Xn
s ,X

n

s

)
dW

n

s

+ Dn(
s,Xn

s ,X
n

s

)
dWn

s

]
,

X
n

θ = x +
∫ θ

0
μ

(
X

n

s

)
ds +

∫ θ

0
σ

(
X

n

s

)
dW

n

s ,

W̃ n
θ =

∫ θ

0

[
Cn(

s,Xn
s ,X

n

s

)
dW

n

s + Dn(
s,Xn

s ,X
n

s

)
dWn

s

]
,

from which

(2.21) ∀0 ≤ θ ≤ T ,

⎧⎪⎪⎨⎪⎪⎩
X∗

θ = x +
∫ θ

0
μ

(
X∗

s

)
ds +

∫ θ

0
σ

(
X∗

s

)
dW̃s,

Xθ = x +
∫ θ

0
μ(Xs) ds +

∫ θ

0
σ(Xs) dWs.

Now, choose a subsequence of (ξn) (still denoted by (ξn)) which converges a.s.
and apply Itô’s formula to V (θ,Xn

θ ,X
n

θ ):

V
(
θ,Xn

θ ,X
n

θ

) − V (0, x, x)

=
∫ θ

0

(
∂V

∂s
+LV

)(
s,Xn

s ,X
n

s

)
ds

+
d∑

i,j=1

∫ θ

0

(
σ

(
Xn

s

)
Cn(

s,Xn
s ,X

n

s

)
σ

(
X

n

s

))ij
∂2
xixj

V
(
s,Xn

s ,X
n

s

)
ds

+
∫ θ

0
∇xV

(
s,Xn

s ,X
n

s

) · σ (
Xn

s

)[
Cn(

s,Xn
s ,X

n

s

)
dW

n

s

+ Dn(
s,Xn

s ,X
n

s

)
dWn

s

]
+

∫ θ

0
∇xV

(
s,Xn

s ,X
n

s

) · σ (
Xn

s

)
dW

n

s

=: an + bn + cn + dn.

Every function Cn satisfies inequality (2.18). Thus we have∣∣∣∣bn −
∫ θ

0
H

(
s,Xn

s ,X
n

s ,V
)
ds

∣∣∣∣ ≤ θ

n
,

from which

an + bn = −
∫ θ

0

∣∣Xn
s − Xs

∣∣2 ds + o

(
1

n

)
.
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Let n tend to infinity. In view of the Skorokhod lemma in [8], Chapter 2, Section 6,
Lemma 3, the sequence of stochastic integrals∫ θ

0
∇xV

(
s,Xn

s ,X
n

s

) · σ (
Xn

s

)[
Cn(

s,Xn
s ,X

n

s

)
dW

n

s + Dn(
s,Xn

s ,X
n

s

)
dWn

s

]
converges to ∫ θ

0
∇xV

(
s,X∗

s ,Xs

) · σ (
X∗

s

)
dW̃s.

We deduce that

V
(
θ,X∗

θ ,Xθ

) − V (0, x, x) +
∫ θ

0

∣∣X∗
s − Xs

∣∣2 ds

=
∫ θ

0
∇xV

(
s,X∗

s ,Xs

) · σ (
X∗

s

)
dW̃s +

∫ θ

0
∇xV

(
s,X∗

s ,Xs

) · σ (
X∗

s

)
dWs,

so that the left-hand side is a martingale.
In view of the proof of the predictable representation theorem (see, e.g.,

Karatzas and Shreve [7], Chapter 3, Theorem 4.2, or Revuz and Yor [12], Chap-
ter V, Theorem 3.9) there exists a correlation matrix-valued predictable process
(C∗

t ) such that

d

dt

〈
X∗,X

〉
t = σ

(
X∗

t

)
C∗

t σ
(
X

∗
t

)
.

Now apply Itô’s formula to the martingale

V
(
θ,X∗

θ ,X
∗
θ

) +
∫ θ

0

∣∣X∗
s − X

∗
s

∣∣2 ds.

The finite variation part is equal to

−
∫ θ

0
H

(
s,X∗

s ,X
∗
s , V

)
ds +

d∑
i,j=1

∫ θ

0

(
σ

(
X∗

s

)
C∗

s σ
(
X

∗
s

))ij
∂2
xixj

V
(
s,X∗

s ,X
∗
s

)
ds,

which, in view of (2.5), shows that

C∗
s ∈ arg min

C∈Cd

d∑
i,j=1

(
σ

(
X∗

s

)
Cσ(X)ᵀs

)ij
∂2
xixj

V
(
s,X∗

s ,Xs

)
).

Finally, similarly as at the end of the proof of Proposition 1.6, we extend our
probability space to construct a Brownian motion W independent of W such that

W̃ =
(∫ t

0
C∗

s dWs +
∫ t

0
D∗

s dWs,0 ≤ t ≤ T

)
with D∗

s (D∗
s )

ᵀ + C∗
s (C∗

s )ᵀ = Idd and (C∗
s ,D∗

s ) is predictable. We thus have shown
the existence of a solution to (2.6) and are in a position to apply the verification
theorem IV.3.1 in Fleming and Soner [4] to get

V (0, x, x) = (
W̃2(

P
μ,σ
x ;Pμ,σ

x

))2
.
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2.5. When is a weak solution to (2.6) unique? When the function C∗(t, x, x)

is uniquely determined (see the discussion at the beginning of Section 2.4) and, in
addition, is Hölder continuous, then C∗

s = C∗(s,Xs,Xs) and one gets the unique-
ness of the weak solution to (2.6) with the following standard argument. Let ψ be
an arbitrary C∞([0, T ]×R

2d) function with compact support. Apply Theorem 2.3
with A equal to the infinitesimal generator of (X∗,X) and f ≡ 0 and denote by
u the unique smooth solution to the corresponding equation (2.9). Itô’s formula
shows that

u(t, x, x) = Eψ
(
X∗

T (t, x, x),XT (t, x)
)
,

which implies the desired weak uniqueness.

3. On ε-optimal feedback controls. The objective of this section is two-fold.
First, we show that for every ε > 0 there exists a continuous control Cε(s, x, x)

taking values in the set of correlation matrices which is pointwise ε-optimal:

∀s, x, x,

d∑
i,j=1

(
σ(x)Cε(s, x, x)σ (x)ᵀ

)ij
∂2
xi ,xj

V (t, x, x) ≤ H(t, x, x,V ) + ε.

(3.1)

Second, under an additional hypothesis on σ and σ , we exhibit a family Uε(s, x, x)

of infinitely differentiable maps taking values in the set of orthogonal matrices and
converging in Lp-norm to C∗(s, x, x) defined as in (2.17).

PROPOSITION 3.1. Let A be a continuous map defined on a paracompact
space E with values in Md . For all ε > 0 and x ∈ E, let

(3.2) Cε(x) :=
{
O ∈ Cd,Tr

(
OA(x)

) ≤ inf
C∈Cd

Tr
(
CA(x)

) + ε
}
.

The correspondence Cε is lower hemicontinuous and admits a continuous selector.

PROOF. Let x0 ∈ E. To prove that the correspondence Cε is lower hemicon-
tinuous at x0, we have to show that the lower inverse image C�

ε (U) is a neigh-
borhood of x0 (cf. [1], Section 16.2), that is, for every open set U in Cd with
U ∩ Cε(x0) �= ∅, there exists a neighborhood U(x0) of x0 such that for any x in
U(x0) one has U ∩Cε(x) �= ∅, that is, there exists a correlation matrix C(x) which
belongs to U and satisfies

Tr
(
C(x)A(x)

) ≤ inf
C∈Cd

Tr
(
CA(x)

) + ε.

To this end, set S(x) := infC∈Cd
Tr(CA(x)) and choose C(ε

2 , x0) in Cd such that

Tr
(
C

(
ε

2
, x0

)
A(x0)

)
< S(x0) + ε

2
.

We also choose an arbitrary matrix C(U, x0) in the set U ∩ Cε(x0).
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The set of correlation matrices is convex and U is open, thus there exists η > 0
such that for every 0 < α < η one has that (1 − α)C(U, x0) + αC(ε

2 , x0) belongs
to U ∩ Cd . Choose any 0 < α < η and then consider the neighborhood U(x0) of
x0 defined by

U(x0) :=
{
x ∈ E;

∣∣∣∣Tr(C
(

ε

2
, x0

)(
A(x) − A(x0)

)∣∣∣∣ <
εα

4
,

∣∣Tr(C(U, x0)
(
A(x) − A(x0)

)∣∣ <
εα

4
,
∣∣S(x) − S(x0)

∣∣ <
εα

4

}
.

Finally, set C(x) := C� := (1 − α)C(U, x0) + αC(ε
2 , x0). Notice that C� is in U .

It is easy to obtain that

Tr
(
C�A(x)

) ≤ S(x0) + ε − εα

4
≤ S(x) + ε,

which is the desired property.
Furthermore, for every x ∈ E the set Cε(x) is nonempty, convex and closed. By

using the Michael selection theorem (see, e.g., [1], Theorem 16.61), we conclude
that the correspondence Cε admits a continuous selector. �

COROLLARY 3.2. For every ε > 0, there is a continuous map Cε(s, x, x) such
that (3.1) is satisfied.

We now show that, under an additional hypothesis on σ and σ (see Corollary
3.10 below), for any Borel measurable selection C∗(s, x, x) satisfying (2.17) there
exists a family Uε(s, x, x) of infinitely differentiable controls which take values
in the set of orthogonal matrices and converges to C∗(s, x, x) in Lp-norm. The
results below do not bring further information, either to the distance W̃ 2, or to
its stochastic control representation. However, it may be interesting for numerical
purposes, notably if one is interested in simulating a simplified model by using
a standard discretization method such as the Euler scheme whose convergence
requires the coefficients are at least continuous.

LEMMA 3.3. Let K be a compact subset of R
d . Let p ∈ [1,∞). Let O :

[0, T ] × R
d → Od be a measurable map. For every ε > 0, there is a simple

map S : [0, T ] × R
d → Od , S = ∑N

j=1 Oj IAj
where (Aj )1≤j≤N is a partition

of [0, T ] ×R
d , such that |S − O|Lp([0,T ]×K) < ε.

PROOF. Let ε′ = ε
m([0,T ]×K)

, where m is the Lebesgue measure on [0, T ] ×
R

d . Od is a compact set, thus there is a finite number of Oj ∈ Od such that Od ⊂⋃
j≤N−1 B(Oj , ε

′). The map

S :=
N−1∑
j=1

Oj IAj
+ IddI[�,T ]×Kc



ON A WASSERSTEIN-TYPE DISTANCE 1631

with

A1 := {
(s, x) ∈ [[0, T ] ×K|O(s, x) ∈ B

(
O1, ε

′)}
and

Aj :=
{
(s, x) ∈ [[0, T ] ×K− ⋃

1≤k≤j−1

Ak|O(s, x) ∈ B
(
Oj, ε

′)}
, 1 < j < N,

satisfies the required condition. �

Recall the following result.

LEMMA 3.4. Every O ∈ Od admits the following block diagonalization: there
is U ∈ Od such that O = U · D(r, l, θ1, . . . , θj ) · Uᵀ, where for all r, l ∈ N and
θi ∈R we have set

D(r, l, θ1, . . . , θj ) =

⎛⎜⎜⎜⎜⎜⎝
Idr 0 0 · · · 0
0 −Idl 0 · · · 0
0 0 Rθ1 · · · 0
· · ·
0 0 0 · · · Rθj

⎞⎟⎟⎟⎟⎟⎠ ,

Rθ :=
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

LEMMA 3.5. Assume that d is even. For any O ∈ SOd , there are V ∈ Od and
(θi)1≤ d

2
such that 0 = V D(0,0, θ1, . . . , θ d

2
)V ᵀ.

PROOF. It follows from Lemma 3.4 that O = UD(r, l, θ1, . . . , θj )U
ᵀ. The

matrix O is in SOd , thus l is even, from which r is also even. Notice that
−Id2 = Rπ and Id2 = R0. The result follows. �

Similarly, we get the following result.

LEMMA 3.6. Assume that d is odd. For every O ∈ SOd , there is V ∈ Od and
(θi)1≤ d

2
such that 0 = V D(1,0, θ1, . . . , θ d−1

2
)V ᵀ.

A simple computation leads to the next lemma.

LEMMA 3.7. Every rotation matrix Rθ can be written

Rθ = J

(
eiθ 0
0 e−iθ

)
J ᵀ,

where J is the following unitary matrix:

J := 1√
2

(
i 1
1 i

)
.
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PROPOSITION 3.8. Let S : [0, T ] × R
d → SOd be a simple map. For

every ε > 0, there is a continuous map T : [0, T ] × R
d → SOd such that

m({(s, x), S(s, x) �= T (s, x)} < ε.

PROOF. The case where d is even.
Denote by Jd ∈ SOd the block diagonal matrix

Jd :=
⎛⎝ J 0 · · · 0

· · ·
0 · · · 0 J

⎞⎠
Set

D0(θ1, . . . , θ d
2
) :=

⎛⎜⎜⎜⎜⎜⎜⎝
θ1 0 · · · 0
0 −θ1 · · · 0
· · ·
0 · · · θd

2
0

0 · · · 0 −θd
2

⎞⎟⎟⎟⎟⎟⎟⎠ .

It follows from Lemmas 3.4 and 3.5 that

Oj = VjJd exp
{
iD0(θj,1, . . . , θj, d

2
)
}
J

ᵀ
d V

ᵀ
j

= exp
{
VjJd

{
iD0(θj,1, . . . , θj, d

2
)
}
J

ᵀ
d V

ᵀ
j

}
,

where exp(M) := ∑
0≤n

Mn

n! .
By hypothesis, the map S can be written as S = ∑N

j=1 0j IAj
, where (Aj )1≤j≤N

is a partition of [0, T ] ×R
d . It follows that

S =
N∑

j=1

0j IAj
=

N∑
j=1

exp
{
VjJd

{
iD0(θj,1, . . . , θj, d

2
)
}
J

ᵀ
d V

ᵀ
j

}
IAj

= S1S2 · · ·SN,(3.3)

where Sj = exp{VjJd{iD0(θj,1IAj
, . . . , θ

j, d
2
IAj

)}J ᵀ
d V

ᵀ
j }. For every measurable

set Aj , there exist a compact set Kj and an open set Wj such that Kj ⊂ Aj ⊂ Wj

and m(Wj − Kj) < ε
N

. It therefore exists a continuous function fj with compact
support, 0 ≤ fj ≤ 1, such that fj = 1 on Kj and fj = 0 on Wc

j .
Let T := T1T2 · · ·TN , with

Tj := exp
{
VjJd

{
iD0(θj,1fj , . . . , θj, d

2
fj )

}
J

ᵀ
d V

ᵀ
j

}
.

For (s, x) /∈ ⋃
1≤j≤N(Wj − Kj), one has T (s, x) = S(s, x). Furthermore, for any

(s, x) ∈ [0, T ] × R
d , Hj(s, x) = VjJd{iD0(θj,1fj (s, x), . . . , θ

j, d
2
fj (s, x))}J ᵀ

d V
ᵀ
j

is an anti-Hermitian matrix (H
ᵀ
j (s, x) = −Hj(s, x)). It follows that Tj (s, x) =
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exp(Hj (s, x)) is a unitary matrix and T (s, x) is also a unitary matrix for all (s, x).
Note that the matrices (Sj )1≤j≤N commute but the matrices Tj do not commute.

Moreover, for any (s, x) one has

Jd exp
{
iD0

(
θj,1fj (s, x), . . . , θ

j, d
2
fj (s, x)

)}
J

ᵀ
d

= D
(
0,0, θj,1fj (s, x), . . . , θ

j, d
2
fj (s, x)

)
,

where we have used the same notation as in Lemma 3.4. Thus this matrix belongs
to Md(R). It follows that the continuous maps Tj and T take values in Od . Fur-
thermore, det(Tj (s, x)) = 1 if (s, x) /∈ Wj . This proves that Tj and then T take
values in SOd .

The case where d is odd. The proof proceeds similarly as above by using Lem-
mas 3.4 and 3.6. �

We now are in a position to show that any measurable selection C∗(s, x, x) in
SOd can be approximated in Lp-norm by smooth functions taking values in Od .

PROPOSITION 3.9. Let K be a compact subset of Rd . Let p ∈ [1,∞). Let
O : [0, T ] ×R

n → SOd be a measurable map. For every ε > 0, there is a C∞ map
U : [0, T ] ×R

d → Od such that |U − O|Lp([0,T ]×K) < ε.

PROOF. It follows from Lemma 3.3 and Proposition 3.8 that there is a contin-
uous map T = T1T2 · · ·TN with

Tj (s, x) := exp
{
VjJd

{
iD0

(
θj,1fj (s, x), . . . , θ

j, d
2
fj (s, x)

)}
J

ᵀ
d V

ᵀ
j

}
such that |T − O|Lp([0,T ]×K) < ε

2 . Every fj is continuous with compact support
and therefore is the uniform limit of a sequence fj,n = fj ∗ φεn of C∞(Rd) func-
tions, where φεn is a sequence of standard smooth mollifiers. Therefore, for any
large enough nj the map U = U1U2 · · ·UN with

Uj := exp
{
VjJd

{
iD0(θj,1fj,nj

, . . . , θ
j, d

2
fj,nj

)
}
J

ᵀ
d V

ᵀ
j

}
satisfies all the required conditions. �

We now are in a position to get the desired approximation by smooth controls
result.

COROLLARY 3.10. Suppose that σ and σ are such that one can choose
C∗(s, x, x) in SOd satisfying (2.17) for all s, x, x. Then there exists a family
Uε(s, x, x) of infinitely differentiable maps which take values in the set of orthog-
onal matrices and converge to C∗(s, x, x) in Lp-norm.
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4. Conclusion and perspectives. We here have proposed a Wasserstein-type
distance on the set of the probability distributions of pathwise unique solutions to
stochastic differential equations. We have proven that this distance is characterized
as the value function of a stochastic control problem, and thus can be computed by
discretizing the related Hamilton–Jacobi–Bellman equation or by approximating
optimal feedback controls.

For the sake of simplicity, we have limited ourselves to handle with a distance
which is a variant of W2. One can easily extend our approach to many variants of
other Wasserstein distances provided that the Hamilton–Jacobi–Bellman equation
(2.3) admits a smooth enough solution. For example, the function |x − x|2 can be
replaced with a function ρ such that for some integer p the map ρ(x,x)

1+|x|p+|x|p is of

class C2+α(Rd).
Our result opens the way to design practical methods to optimally choose a sim-

plified diffusion model within a wide class of diffusion models close to a perfect
but complex one, that is, to choose a model which minimizes the W̃ 2 distance to
the probability distribution of the complex one. We plan to address this issue in a
future work.

APPENDIX: EXTREME POINTS IN THE SET OF CORRELATION
MATRICES AND AN OPTIMIZATION PROBLEM OVER ORTHOGONAL

MATRICES

The goal of this section is to prove the linear algebra results we needed in the
preceding sections, notably the convexity of the set Cd and the characterization
of its extreme points, and regularity properties of our optimization problem over
orthogonal matrices. The first proposition is classical.

PROPOSITION A.1. The set Cd is convex.

PROOF. Let C1 and C2 be in Cd , and let C = αC1 +(1−α)C2 with 0 ≤ α ≤ 1.
Let X1, Y1 be Rd valued random variables as in (0.2) such that C1 = E(X1Y

ᵀ
1 ). Let

(X2, Y2) independent of (X1, Y1) as in (0.2) such that C2 = E(X2Y
ᵀ
2 ). Finally, let

Xα := √
αX1 + √

1 − αX2 and Yα := √
αY1 + √

1 − αY2. We have E(XαY
ᵀ
α ) =

αC1 + (1 − α)C2 = and E(XαX
ᵀ
α) = E(YαY

ᵀ
α ) = I . �

Now let us recall the definition of extreme points.

DEFINITION A.2. A point C in a convex set C is extreme if

∃α ∈ [0,1],∃C1,C2 ∈ C,

C = αC1 + (1 − α)C2 ⇒ C = C1 or C = C2.

Before characterizing the extreme points in Cd , we need to prove several tech-
nical lemmas.
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LEMMA A.3. Let U be an orthogonal matrix. The matrix C belongs to Cd if
and only if CU (resp., UC) belongs to Cd .

PROOF. Let C ∈ Cd . Let X,Y be R
d valued random variables as in (0.2).

Let Ỹ = UᵀY , CU = E(XỸ ᵀ). From (0.2), it follows that E(Ỹ Ỹ ᵀ) = UᵀU = Idd .
Thus CU and UC belong to Cd . The converse implications follow from the equal-
ity UUᵀ = Idd . �

LEMMA A.4. For every matrix C in Cd , there is a matrix R in Cd such that
Idd = CᵀC + RᵀR.

PROOF. Let C be in Cd and X = (Xi)1≤i≤d , Y = (Yj )1≤j≤d be as in (0.2).
Let V be a 2d dimensional vector subspace of the set of real valued random vari-
ables containing the random variables Xi and Yj , 1 ≤ i, j ≤ d . The orthonor-
mal set (Xi)1≤i≤d (for the scalar product 〈x, y〉 := E(x · y)) can be extended
into an orthonormal basis (ei)1≤i≤2d of V with ei = Xi for all 1 ≤ i ≤ d . Thus
Ckj = 〈ek, Yj 〉 for all 1 ≤ k, j ≤ d . Let R := (Rk,j ) with Rk,j := 〈ed+k, Yj 〉
for all 1 ≤ k, j ≤ d . Thus Yj = ∑

1≤k≤d Ck,j ek + Rk,j ed+k . From the equality
E(YY ᵀ) = Idd , it results that Idd = CᵀC + RᵀR. �

LEMMA A.5. The unit matrix Idd is an extreme point in Cd .

PROOF. Let C1 and C2 be in Cd . Let 0 < α < 1 be such that

(A.1) Idd = αC1 + (1 − α)C2,

from which

(A.2) d = α2 Tr
(
C

ᵀ
1 C1

) + (1 − α)2 Tr
(
C

ᵀ
2 C2

) + 2α(1 − α)Tr
(
C

ᵀ
1 C2

)
.

For any β ∈ R, the second-order polynomial function

β �→ Tr
(
(βC1 + C2)

ᵀ(βC1 + C2)
)

is positive. Therefore,(
Tr

(
C

ᵀ
1 C2 + C

ᵀ
2 C1

))2 ≤ 4 Tr
(
C

ᵀ
1 C1

)
Tr

(
C

ᵀ
2 C2

)
.

Notice that the left-hand side is equal to 4(Tr(Cᵀ
1 C2))

2. We thus have shown that

(A.3)
(
Tr

(
C

ᵀ
1 C2

))2 ≤ Tr
(
C

ᵀ
1 C1

)
Tr

(
C

ᵀ
2 C2

)
.

Now observe that Lemma A.4 implies that Tr(CᵀC) ≤ d for all C in Cd . It thus
follows from (A.3) that the above equality (A.2) holds true only if Tr(Cᵀ

1 C2) =
Tr(Cᵀ

1 C1) = Tr(Cᵀ
2 C2) = d . Again applying Lemma A.4, we get C

ᵀ
1 C1 = C

ᵀ
2 C2 =

Idd . In view of (A.1), we also have

Idd = (
αC1 + (1 − α)C2

)(
αC1 + (1 − α)C2

)ᵀ
,

from which C
ᵀ
1 C2 + C

ᵀ
2 C1 = 2Idd . Thus (C

ᵀ
1 − C

ᵀ
2 )(C1 − C2) = 0, which implies

that C1 = C2, from which we get C1 = C2 = Idd by again using (A.1). �
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PROPOSITION A.6. The extreme points in Cd are in Od .

PROOF. Let C be an extreme point in Cd .
Step 1: Reduction to the case of diagonal matrices CᵀC. The matrix CᵀC is

symmetric, and thus there exists an orthogonal matrix U such that UᵀCᵀCU is
diagonal. It follows from Lemma A.3 that C is an extreme point in Cd if and only
if CU is an extreme point in Cd . Thus without loss of generality, one can assume
that CᵀC is a diagonal matrix.

Step 2. The eigenvalues of CᵀC are all between 0 and 1. From Lemma A.4,
there is a matrix R such that Idd = CᵀC + RᵀR. As we now suppose that CᵀC
is diagonal, the matrix RᵀR is also diagonal. Furthermore, both matrices are non-
negative. Therefore, the eigenvalues of CᵀC are all between 0 and 1.

Step 3. The largest eigenvalue of D := CᵀC is equal to 1. Permutation matrices
are orthogonal matrices. Possibly replacing C by CP where P is a permutation
matrix (which is allowed by Lemma A.3), one can thus assume D1,1 ≥ Di,i for
all i. As it is easily seen that the null matrix is not an extreme point in Cd , it
suffices to assume that 0 < D1,1 < 1 and exhibit a contradiction.

Let α := √
D1,1. Let X,Y be as in (0.2). Let (ei) and R be as in the proof of

Lemma A.4. Set

Ỹj := ∑
1≤i≤d

[〈ei, Yj 〉
α

ei + γj 〈ed+i , Yj 〉ed+i

]
,

where γj ≥ 0 is chosen such that

(CᵀC)jj

α2 + γ 2
j

(
RᵀR

)jj = 1.

As (E(Ỹ Ỹ ᵀ))j,k =
∑

i CijCik

α2 + γjγk

∑
i R

ijRik and the matrices CᵀC, RᵀR are

diagonal, we get (E(Ỹ Ỹ ᵀ)) = Idd . It follows that the matrix C̃ = E(XỸ ) = C
α

belongs to Cd . Thus C is a nontrivial convex combination of C̃ and the null matrix.
Step 4: Induction. The matrix C being an extreme point in Cd , all the eigenval-

ues of the matrix CᵀC are equal to 1. We proceed inductively w.r.t. the dimension
of C. Notice that it follows from Step 3 that CᵀC = I1 for d = 1.

Assume that C is an extreme point in Cd for d ≥ 2. In view of Step 3 and 1 =
D1,1 = (CᵀC)1,1, one has that 1 = ∑

1≤i≤d〈ei, Y1〉2. From E(Y1Y
ᵀ
1 ) = 1, it follows

that Y1 belongs to the d-dimensional vector space Ed spanned by (ei)1≤i≤d . Let
(êi) be an orthonormal basis of Ed such that ê1 := Y1. Let X̂ := (êi) and Ĉ :=
E(X̂Y ᵀ). The matrix Ĉ is equal to UC where U is the orthogonal matrix associated
to the change of basis from (ei)1≤i≤n to (êi)1≤i≤n, thus Ĉ is an extreme point in
Cd . As ê1 = Y1, we have

Ĉ =
(

1 0
0 M

)
,
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where the matrix M necessarily is an extreme point in Cd−1. It then remains to
apply the inductive hypothesis. �

We now characterize the solutions to the minimization problem we are inter-
ested in.

PROPOSITION A.7. For any A ∈ Md , one has

(A.4) inf
O∈Cd

Tr(OA) = inf
O∈Od

Tr(OA).

In addition, the minimization problem

(A.5) inf
O∈Od

Tr(OA)

admits a solution O∗ = −Q−1 where Q is an orthogonal matrix such that A =
(AAᵀ)

1
2 Q. Furthermore, the solution is unique and equal to −A−1(AAᵀ)

1
2 if and

only if A is invertible.

PROOF. The preceding proposition combined with Proposition A.1 and a clas-
sical result in convex optimization (see, e.g., Hiriart-Urruty and Lemaréchal [6],
Chapter III, Proposition 2.4.6) implies (A.4).

We now turn to the second part of the statement and start with examining the
case where A is invertible. It then exists a unique representation A = SQ with
S symmetric definite positive and Q orthogonal. This representation is given by

S = (AAᵀ)
1
2 and Q := S−1A = (AAᵀ)− 1

2 A. Thus A = SQ. The matrix S is sym-
metric definite positive, and thus there is a diagonal matrix D with strictly positive
diagonal terms (λi)1≤i≤d and an orthogonal matrix U such that S = UDU−1

Thus Tr(OA) = Tr(OUDU−1Q) = Tr(DU−1QOU). The map O →
U−1QOU is a one-to-one map from Od to Od . Thus the problem is reduced to
compute minO∈Od

Tr(OD), where D is the diagonal matrix with strictly positive
diagonal terms (λi)1≤i≤d .

Notice that Tr(OD) = ∑
1≤i≤n λiO

ii . As the matrix O is orthogonal, we have

∣∣Oii
∣∣ ≤

(∑
j

∣∣Oij
∣∣2) 1

2 ≤ 1.

It follows that Tr(OD) ≥ −∑
i λi . Furthermore, the equality is satisfied if and only

if O = −Idd . Thus O∗ is a solution to the minimization problem (A.5) if and only

if U−1QO∗U = −Idd , that is, if O∗ = −Q−1 = −A−1(AAᵀ)
1
2 .

We now treat the case of noninvertible matrices A. Then the decomposition
A = SQ with S symmetric semidefinite positive and Q orthogonal exists but is not
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unique. The matrix S is nonnegative but nondefinite and we have λi ≥ 0. There-
fore, O∗ = −Q−1 is a solution but is not the only one. Indeed, observe that S can
be written as

S = U

(
D 0
0 0

)
U−1

for some d − k diagonal matrix D and orthogonal matrix U . Let V be a k × k

orthogonal matrix different from Idk . Set

Q := U

(
Idd−k 0

0 V

)
U−1Q.

We both have A = SQ and Q �= Q. �

PROPOSITION A.8. Assume that the d × d matrix-valued function A on R
d

satisfies

∃0 < γ ≤ 1,∀x, y ∈ R
d,

∥∥A(x) − A(y)
∥∥ ≤ K(x,y)|x − y|γ ,

where ‖M‖ := (Tr(MMᵀ))1/2 and K(x,y) is a given symmetric function.
Given any nonempty subset M of the unit ball of Md , the map TA(x) :=
infO∈M Tr(OA(x)) satisfies∣∣TA(x) − TA(y)

∣∣ ≤ K(x,y)|x − y|γ .

PROOF. For all O in M and x, y in R
d , it obviously holds∣∣Tr

(
OA(x)

) − Tr
(
OA(y)

)∣∣ ≤ K(x,y)|x − y|γ ,

from which

inf
U∈MTr

(
UA(x)

) ≤ Tr
(
OA(y)

) + K(x,y)|x − y|γ .

We deduce

inf
U∈MTr

(
UA(x)

) ≤ inf
O∈MTr

(
OA(y)

) + K(x,y)|x − y|γ .

We then get the desired result by exchanging x and y. �
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