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Abstract

A completely elementary and self-contained proof of convergence of Gaussian mul-
tiplicative chaos is given. The argument shows further that the limiting random
measure is nontrivial in the entire subcritical phase (γ <

√
2d) and that the limit

is universal (i.e., the limiting measure is independent of the regularisation of the
underlying field).
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1 Introduction

Gaussian multiplicative chaos is a theory initiated by Kahane [11], whose goal (in a
slightly updated language) is the definition and study of random measures of the form

µ(dx) = eγh(x)− 1
2γ

2E(h(x)2)σ(dx) (1.1)

where h is a centred Gaussian generalised random field subject to certain assumptions,
γ > 0, and σ is a given reference measure on a domain D of Euclidean space. Since h is
not defined pointwise but exists only as a distribution, it is not clear what meaning to give
to (1.1) a priori. In fact, some regularisation of the field and a suitable renormalisation
have to be performed in order to construct µ. The theory has generated considerable
renewed interest notably because of its connection with two-dimensional Liouville
Quantum Gravity and the KPZ relations. This is the particular case of the theory when
d = 2 and h is the massless Gaussian free field or GFF (see [15, 2]) with appropriate
boundary conditions. The paper by Duplantier and Sheffield [4] constructed the volume
measure µ in this particular case using arguments restriced to the case of the GFF such as
the domain Markov property and obtained a version of the KPZ relations. Simultaneously,
Rhodes and Vargas, [12], among other things, showed that Gaussian multiplicative chaos
can be used directly to construct the same object. They also gave a simpler and more
general proof of a stronger version of the KPZ relation. We refer the reader to [6] for an
excellent introduction to this area. See also [2] for a more detailed exposition.

Kahane’s original work assumes that the covariance kernel K of h is σ-positive,
meaning that K(x, y) may be written as the pointwise sum K(x, y) =

∑
kKk(x, y) where
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the summandsKk are nonnegative symmetric definite continuous functions and, crucially,
Kk(x, y) ≥ 0 pointwise. Under this assumption (which is somewhat restrictive as it is
hard to check in practice), he was able to show that a truncation of h associated with
the σ-positive decomposition of K gives rise to a well-defined measure µ as in (1.1) and
characterised the values of γ for which it is nontrivial for a given reference measure
σ. He also studied fine properties of the resulting random measure µ and showed that
its law does not depend on the decomposition of the σ-positive kernel K into positive
summands.

Much more recently, Robert and Vargas [13] (motivated by applications to three-
dimensional turbulence) obtained a significant generalisation of this theory. They were
able to show that, without assuming σ-positivity, regularising the field with a general
mollifier function θ subject to mild assumptions, gives rise to a sequence of measures
µε such that µε(S) converges in law and the law of the limit does not depend on the
regularising function θ. Even more recently, Shamov [14] showed in a very general
setting that convergence holds in probability and the limit does not depend on the
regularisation. In particular the measure µ is measurable with respect to h. (Conversely,
by a result of [3], h is measurable with respect to µ, at least in the case of the two-
dimensional GFF and σ(dz) = dz being the Lebesgue measure). This was also the subject
of a recent preprint by Junnila and Saksman [10] whose results, remarkably, cover the
critical case.

The purpose of this short note is to provide an elementary and completely self-
contained proof of Kahane’s theory together with some of the important developments
above. Eventually we are able to reprove convergence in probability (and in L1) and show
nontriviality in the entire subcritical phase (γ <

√
2d), together with the universality

result showing uniqueness of the limit (independence with respect to the regularisation
function θ). While the setup is slightly less general than Shamov [14], we feel that the
result and its proof are nevertheless interesting because of the completely elementary
nature of the arguments, and the fact that they cover the most interesting cases with-
out significant assumptions on the covariance kernel K (in particular, no σ-positivity
assumption is made).

Assumptions: Let D ⊂ Rk be a domain. Consider a nonnegative definite kernel K(x, y)

of the form
K(x, y) = log(|x− y|−1) + g(x, y) (1.2)

where g is continuous over D̄ × D̄. Set

M+ = {ρ nonnegative measure in D such that:

∫∫
|K(x, y)|ρ(dx)ρ(dy) <∞},

and set M be the set of signed measures of the form ρ = ρ+ − ρ−, where ρ± ∈ M+,
and note that M contains all smooth compactly supported functions in D. Let h be
the centered Gaussian generalised function with covariance K. That is, we view h as
a stochastic process indexed byM, characterised by the two properties that: (h, ρ) is
linear in ρ ∈M in the sense that (h, αρ1 + βρ2) = α(h, ρ1) + β(h, ρ2) almost surely; and
for any ρ ∈M,

(h, ρ) is a centered Gaussian random variable with variance

∫∫
K(x, y)ρ(dx)ρ(dy).

We will write
∫
h(x)ρ(dx) for the random variable (h, ρ) with an abuse of notation. Note

that this setup covers the case of a Gaussian free field in two dimensions with say
Dirichlet boundary conditions (but also the case of free or Neumann boundary conditions,
by changing if necessary γ into 2γ). See [2] (which takes a similar viewpoint) for more
details on this. We extend the definition of h outside of D by setting h|Dc = 0, so for any
measure ρ such that ρ|D ∈M, by definition (h, ρ) = (h, ρ|D).
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Let σ be a Radon measure on D̄ of dimension at least d (where 0 ≤ d ≤ k), i.e.,∫∫
D̄×D̄

1

|x− y|d−ε
σ(dx)σ(dy) <∞ (1.3)

for all ε > 0. In particular σ is a finite measure since D̄ is bounded. Let S ⊂ D and let
θ be a fixed nonnegative Radon measure on Rk supported in the unit ball B(0, 1), such
that θ(Rd) = 1 and ∫

| log(1/|x− y|)|θ(dy) ≤ C <∞ (1.4)

where C does not depend on x ∈ B(0, 5). It is easy to check that the condition (1.4) is
satisfied whenever θ has a Lebesgue density in Lp for some p > 1 supported in B(0, 1),
and also in many other cases, e.g. the uniform distribution on the unit circle. Set θε(·)
to be the image of the measure θ under x 7→ εx, i.e. θε(A) = θ(A/ε) for all Borel sets A,
which we view as an approximation of the identity based on θ (we will sometimes write
θε(x)dx for the measure θε(dx) with an abuse of notations). We will also write θx,ε(·) for
the measure θε translated by x. For x ∈ S, note that1 by (1.4), the translated measure
θx,ε ∈M, so we can define an ε-regularisation of the field h by setting for ε small,

hε(x) = h ∗ θε(x) =

∫
h(y)θε(x− y)dy =

∫
h(y)θx,ε(dy), x ∈ S. (1.5)

One can check that Var(hε(x)− hε(x′))→ 0 as |x− x′| → 0 for a fixed ε, so there exists a
version of the stochastic process h such that hε(x) is almost surely a Borel measurable
function of x ∈ S (see e.g. Proposition 2.1.12 in [8]). Hence let

µε(S) = Iε =

∫
S

eγhε(z)−
γ2

2 E(hε(z)
2)σ(dz).

In the case of 2d Liouville quantum gravity, the natural choice for σ is often σ(dz) =

R(z,D)γ
2/2dz where R(z,D) denotes the conformal radius of the point z in D, and the

natural choice for the measure θ is often the uniform distribution on the unit circle
(so hε(z) is the usual circle average process of h). However, the case where σ is the
occupation measure of an (independent) planar Brownian motion is also of interest as it
is used for defining the Liouville Brownian motion [7, 1], the canonical diffusion process
in Liouville quantum gravity. In this example, σ is singular with respect to Lebesgue
measure, yet σ is of dimension two in the sense of (1.3).

Theorem 1.1. Assume that γ <
√

2d. Then µε(S) converges in probability and in L1(P)

to a limit µ(S). Furthermore the random variable µ(S) does not depend on the choice of
the regularising kernel θ subject to the above assumptions. Furthermore, µ defines a
Borel measure on D and µε converges in probability towards µ for the topology of weak
convergence of measures on D.

Acknowledgements: The idea for this work emerged while preparing a presentation
for a reading group at the Newton institute during the semester on Random Geometry. I
thank the participants of the reading group for their questions. I am particularly grateful
to Juhan Aru and Stéphane Benoîst for some useful discussions and comments on a
preliminary draft. Thanks also to Ofer Zeitouni for some comments on the Karhunen–
Loève expansion of Gaussian fields, to Pascal Maillard for pointing out some typos in an

1It is tempting to only use θ ∈ M instead of (1.4) as an assumption on θ. However this leads to problems in
the proofs below, as pointed out by an anonymous referee, even if we assume θ has a density. Consider the
following instructive example in dimension d = 1. Take f(x) = (c/|x|)(1 + log+(1/|x|))−2 for x ∈ (−1, 1) and
f(x) = 0 else. Then if θ(dx) = f(x)dx, we have θ ∈M. However, it is not the case that (3.4) holds. In fact even
the basic fact (3.2) does not hold, as the left hand side is unbounded as t→∞ (since

∫
log(1/|x|)f(x)dx =∞).
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early version of the paper, and to Ellen Powell for useful comments while preparing the
final version. An anonymous referee provided very useful suggestions which improved
the presentation of the paper and made a number of interesting observations, some of
which I chose to include in footnote 1; I am very grateful for this.

2 Main idea

It is well known and relatively easy to see that for γ sufficiently small (namely γ <
√
d),

the multiplicative measure µε are uniformly integrable: indeed the quantity µε(S) is then
bounded in L2, hence any limit must be nontrivial.

Therefore difficulties mainly arise in the phase where γ ∈ [
√
d,
√

2d). (In Liouville
Quantum Gravity, this is the phase of principal interest as this is precisely the measures
which are thought to arise as scaling limits of FK-weighted planar maps). The main idea
for this work is the following very elementary observation. Any limiting measure µ must
be supported on the so-called γ-thick points of the field h: that is, on points x such that

lim
ε→0

hε(x)

log(1/ε)
= γ. (2.1)

Such points were studied in detail in the case of the two-dimensional Gaussian Free
Field by [9] but a related notion was already apparent in the early work of Kahane [11]
who pointed to its importance. That any limiting measure would have to be supported
by γ-thick points is apparent from the definition of µε and Girsanov’s lemma (or rather
the Cameron–Martin formula). Indeed this implies that, when biasing the law of the
field by a factor proportional to eγhε(x), the mean value of hε(x) is shifted from 0 to
γVar(hε(x)) = γ log(1/ε) +O(1).

Therefore, one can pick α > γ and call a point x bad if its thickness is greater than α,
and good otherwise (in fact the key will be to take a slightly more restrictive definition of
good points). We then consider the normalised measure eγhε(x)dx, but restricted to good
points. As it turns out, the L1 contribution of bad points is easily shown to be negligible
(essentially by the above Cameron–Martin–Girsanov observation), while the remaining
part is shown to remain bounded in L2(P). We will see that our definition of good points
allows one to make the relevant L2 computation very simple.

Convergence is then shown to be a consequence of the L2 boundedness of the good
part (roughly, the good part is a Cauchy sequence in L2(P)), while the bad part is small
in L1(P). Uniqueness comes from the fact that once uniform integrability is established
for the regularisations of the field such as (1.5), we can also get uniform integrability for
another approximation of the field, this time arising from the Karhunen–Loeve expansion
of h. This gives another approximation of the measure which turns out to be a martingale,
and hence also has a limit. We then show that the two measures must agree, thereby
deducing uniqueness.

3 Uniform integrability

The goal of this section will be to prove:

Proposition 3.1. Iε is uniformly integrable.

Proof. Let α > 0 be fixed (it will be chosen > γ and very close to γ soon). We will use
the following notation in the rest of the article: for r > 0 we define

r̄ = edlog re = inf{ek : k ∈ Z, ek > r} (3.1)

to be the closest upper e-adic approximation of r. We define a good event

Gαε (x) = {hr̄(x) ≤ α log(1/r̄) for all r ∈ [ε, ε0]}
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with ε0 ≤ 1 for instance. This is the good event that the point x is never too thick up to
scale ε. Further let h̄ε(x) = γhε(x)− (γ2/2)E(hε(x)2) to ease notations.

Lemma 3.2 (Ordinary points are not thick). For any α > 0, we have that uniformly over
x ∈ S, P(Gαε (x)) ≥ 1− p(ε0) where the function p may depend on α and for a fixed α > γ,
p(ε0)→ 0 as ε0 → 0.

Remark 3.3. The proof of this lemma is trivial in the case of the two-dimensional GFF
(in particular no general machinery about Gaussian processes is needed in this case).

Proof. Set Xt = hε(x) for ε = e−t. Then a direct computation from (1.2) (see below in
Lemma 3.5, and more precisely (3.4)), implies that

|Cov(Xs, Xt)− s ∧ t| ≤ O(1), (3.2)

where the implicit constant is uniform. In particular Var(Xt) = t+O(1).
Note that for each k ≥ 1, P(Xk ≥ αk/2) ≤ e−α

2k2/(8 Var(Xk)) which decays exponen-
tially in k by the above, and so is smaller than Ce−λk for some λ > 0. Hence

P(∃k ≥ k0 : |Xk| ≥ αk) ≤
∑
k≥k0

Ce−λk

We call p(ε0) to be the right hand side of the above for k0 = d− log(1/ε0)e which can be
made arbitrarily small by picking ε0 small enough. This proves the lemma.

Lemma 3.4 (Liouville points are no more than γ-thick). For α > γ we have

E(eh̄ε(x)1Gαε (x)) ≥ 1− p(ε0).

Proof. Note that

E(eh̄ε(x)1{Gαε (x)}) = P̃(Gαε (x)), where
dP̃

dP
= eh̄ε(x).

By the Cameron–Martin–Girsanov lemma, under P̃, the process (Xs)− log ε0≤s≤t has the
same covariance structure as under P and its mean is now γ Cov(Xs, Xt) = γs+O(1) for
s ≤ t. Hence

P̃(Gαε (x)) ≥ P(Gα−γε (x)) ≥ 1− p(ε0)

by Lemma 3.2 since α > γ.

We therefore see that points which are more than γ-thick do not contribute signifi-
cantly to Iε in expectation and can therefore be safely removed. We therefore fix α > γ

and introduce:

Jε =

∫
S

eh̄ε(z)1{Gε(z)}σ(dz) (3.3)

with Gε(x) = Gαε (x). We will show that Jε is uniformly integrable from which the result
follows.

Before we embark on the main argument of the proof, we record here for ease of
reference an elementary estimate on the covariance structure of hε(x). Roughly speaking,
the role of the first estimate (3.4) is to bound from above (up to an unimportant constant
of the form eO(1)) the contribution to E(J2

ε ) coming from points x, y that are close to
each other. That will suffice to prove uniform integrability. The role of the finer estimate
(3.5) is to get a more precise estimate to the contribution to E(J2

ε ) coming from points
x, y which are macroscopically far away, which we will be able to assume thanks to (3.4).
This time the error in the covariance up to an additive term o(1) will translate into an
error up to a factor eo(1) = 1 + o(1) in the estimation of this contribution. In turn this will
imply convergence.
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Lemma 3.5. We have the following estimate:

Cov(hε(x), hr(y)) = log 1/(|x− y| ∨ r ∨ ε) +O(1). (3.4)

Moreover, if η > 0 and |x− y| ≥ η, then

Cov(hε(x), hδ(y)) = log(1/|x− y|) + g(x, y) + o(1) (3.5)

where o(1) tends to 0 as δ, ε→ 0, uniformly in |x− y| ≥ η.

Proof. We start with the proof of (3.4). Assume without loss of generality that ε ≤ r.
Note that

Cov(hε(x), hr(y)) =

∫∫
K(z, w)θx,ε(dw)θy,r(dz)

=

∫∫
− log(|w − z|)θx,ε(dw)θy,r(dz) +O(1) (3.6)

We consider the following cases: (a) r ≤ |x− y|/3, and (b) r ≥ |x− y|/3.
In case (a), |x−y| ≤ ε+ |w−z|+r ≤ 2r+ |w−z| ≤ (2/3)|x−y|+ |w−z| by the triangle

inequality, so |w − z| ≥ (1/3)|x− y| and we get

Cov(hε(x), hr(y)) ≤ − log |x− y|+O(1)

as desired in this case.
The second case (b) is when r ≥ |x − y|/3. Then by translation and scaling so that

B(y, r) becomes B(0, 1), the right hand side of (3.6) is equal to

log(1/r) +

∫∫
− log |w − z|θ x−y

r , εr
(dw)θ(dz)

Conditioning on w (which is necessarily in B̄(0, 4) under the assumptions of case (b)), we
see that by the assumption (1.4) on θ, the second term is bounded by O(1), uniformly, so
that

Cov(hε(x), hr(y)) ≤ − log r +O(1)

as desired in this case. This proves (3.4).
The proof of (3.5) is similar but simpler. Indeed, we get (as in (3.6)),

Cov(hε(x), hδ(y)) =

∫∫
− log |w − z|θx,ε(dw)θy,δ(dz) + g(x, y) + o(1) (3.7)

where the o(1) term tends to 0 as ε, δ → 0, coming from the continuity of g, and hence is
uniform in x, y (not even assuming |x− y| ≥ η). Now note that∣∣ log |w − z| − log |x− y|

∣∣ ≤ 4 max(ε, δ)

|x− y|

as soon as max(ε, δ) ≤ η/4 ≤ |x− y|/4. Therefore the right hand side of (3.7) is − log |x−
y|+ g(x, y) +O(max(ε, δ)) + o(1) when |x− y| ≥ η, which proves the claim (3.5).

Lemma 3.6. For α > γ sufficiently close to γ, Jε is bounded in L2(P) and hence uniformly
integrable.

Proof. By Fubini’s theorem,

E(J2
ε ) =

∫
S×S

E(eh̄ε(x)+h̄ε(y)1{Gε(x)∩Gε(y)})σ(dx)σ(dy)

=

∫
S×S

eγ
2 Cov(hε(x),hε(y))P̃(Gε(x) ∩Gε(y))σ(dx)σ(dy)
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where P̃ is a new probability measure obtained by the Radon-Nikodyn derivative

dP̃

dP
=

eh̄ε(x)+h̄ε(y)

E(eh̄ε(x)+h̄ε(y))
.

By Lemma 3.5 (more precisely by (3.4))

Cov(hε(x), hε(y)) = − log(|x− y| ∨ ε) + g(x, y) +O(1). (3.8)

Also, if and ε ≤ e−1ε0 and |x− y| ≤ e−1ε0 (else we bound the probability below by one),
we have

P̃(Gε(x) ∩Gε(y)) ≤ P̃(hr(x) ≤ α log 1/r)

where
r = ε ∨ |x− y| (3.9)

(recall our notation for r̄ = inf{ek : k ∈ Z, ek > r}, see (3.1).) Furthermore, by Cameron–
Martin–Girsanov, under P̃ we have that hr(x) has the same variance as before (therefore
log 1/r +O(1)) and a mean given by

CovP(hr(x), γhε(x) + γhε(y)) = 2γ log 1/r +O(1), (3.10)

again by Lemma 3.5 (more precisely, by (3.4)). Consequently,

P̃(hr(x) ≤ α log 1/r) = P(N (2γ log(1/r), log 1/r) ≤ α log(1/r) +O(1))

≤ exp(−1

2
(2γ − α)2(log(1/r) +O(1))) = O(1)r(2γ−α)2/2. (3.11)

We deduce

E(J2
ε ) ≤ O(1)

∫
S×S
|(x− y) ∨ ε|(2γ−α)2/2−γ2

σ(dx)σ(dy). (3.12)

(We will get a better approximation in the next section). Clearly by (1.3) this is bounded
if

(2γ − α)2/2− γ2 > −d
and since α can be chosen arbitrarily close to γ this is possible if

d− γ2/2 > 0 or γ <
√

2d. (3.13)

This proves the lemma.

To finish the proof of Proposition 3.1, observe that Iε = Jε+J ′ε. We have E(J ′ε) ≤ p(ε0)

by Lemma 3.4, and for a fixed ε0, Jε is bounded in L2 (uniformly in ε). Hence Iε is
uniformly integrable.

4 Convergence

As before, since E(J ′ε) can be made arbitrarily small by choosing ε0 sufficiently small,
it suffices to show that Jε converges in probability and in L1. In fact we will show that it
converges in L2, from which convergence will follow. To do this we will show that (Jε)

forms a Cauchy sequence in L2, and we start by writing

E((Jε − Jδ)2) = E(J2
ε ) + E(J2

δ )− 2E(JεJδ) (4.1)

Our basic approach is thus to estimate better than before E(J2
ε ) from above and

E(JεJδ) from below. Essentially, the idea is that for x, y which are at a small but
macroscopic distance, we can identify the limiting distribution of (hr(x), hr(y))r≤ε0 under
the distribution P biased by eh̄ε(x)+h̄δ(y). On the other hand when x, y are closer than
that we know from the previous section that the contribution is essentially negligible.
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Lemma 4.1. We have

lim sup
ε→0

E(J2
ε ) ≤

∫
S×S

eγ
2g(x,y) 1

|x− y|γ2 gα(x, y)dxdy

where gα(x, y) is a nonnegative function depending on α, ε0 and γ such that the above
integral is finite.

Proof. Recall that from (3.8) we already know

E(J2
ε ) =

∫
S2

eγ
2 Cov(hε(x),hε(y))P̃(Gε(x) ∩Gε(y))dxdy.

We simply have to estimate better P̃(Gε(x) ∩ Gε(y)). We fix η > 0 arbitrarily small (in
particular, η may and will be smaller than e−1ε0). If |x− y| ≤ η we use the same bound
as in (3.12). The contribution coming from the part |x − y| ≤ η can thus be bounded,
uniformly in ε, by f(η) (where f(η) → 0 as η → 0 and the precise order of magnitude
of f(η) is determined by (1.3), and is at most polynomial in η). We thus focus on the
contribution coming from |x− y| ≥ η.

Then observe that for any fixed ε1 ≤ ε0, as ε → 0, and uniformly over x ∈ S and
r ≥ ε1,

Cov(hr(x), hε(x))→
∫
D

K(x, z)θr(x− z)dz (4.2)

and likewise, uniformly over x, y ∈ S such that |x− y| ≥ η, and over r ≥ ε1, as ε→ 0:

Cov(hr(x), hε(y))→
∫
D

K(z, y)θr(x− z)dz (4.3)

(Note that both right hand sides of (4.2) and (4.3) are finite by (3.4).) Consequently,
by Cameron–Martin–Girsanov, the joint law of the processes (hr(x), hr(y))r≤ε0 under P̃
converges to a joint distribution (h̃r(x), h̃r(y))r≤ε0 whose covariance is unchanged and
whose mean is given by the sum of (4.2) and (4.3) times γ. This convergence is for the
weak convergence on compacts of r ∈ (0, ε0], and is uniformly in |x− y| ≥ η. Let G̃(x) be
the event that h̃r(x) ≤ α log(1/r) for all r ≤ ε0. Then it is not hard to deduce, uniformly
in |x− y| ≥ η,

P̃(Gε(x) ∩Gε(y))→ gα(x, y) := P(G̃(x) ∩ G̃(y)) (ε→ 0). (4.4)

Indeed, by (3.4), under P̃, the drifts of hr(x) and of hr(y) (with r ≥ ε) are each γ log(1/r)+

O(1) where the O(1) term is uniform in |x− y| ≥ η. Because of this, up to an error in P̃
probability that is arbitrarily small (uniformly in |x− y| ≥ η), the events Gε(x), Gε(y) as
well as G̃(x), G̃(y) depend only on the “macroscopic” behaviour of hr(x) and hr(y); that
is, depend only on (hr(x), hr(y))r≥ε1 for some ε1. Consequently, as ε→ 0, after applying
Lemma 3.5 (and more specifically (3.5)), we deduce (using (3.12) to justify the use of
dominated convergence):∫

S2;|x−y|≥η
eγ

2 Cov(hε(x),hε(y))P̃(Gε(x), Gε(y))dxdy →
∫
S2;|x−y|≥η

eγ
2g(x,y)

|x− y|γ2 gα(x, y)dxdy.

(4.5)
Since we already know that the piece of the integral coming from |x− y| ≤ η contributes
at most f(η)→ 0 when η → 0, it remains to check that the integral on the right hand side
of (4.5) remains finite as η → 0. But we have already seen in (3.11) that for |x−y| ≤ ε0/3,
P̃(Gε(x) ∩ Gε(y)) ≤ O(1)|x − y|(2γ−α)2/2−γ2

; hence this inequality must also hold for
gα(x, y). Hence the result follows as in (3.13).
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Lemma 4.2. We have

lim inf
ε,δ→0

E(JεJδ) ≥
∫
S×S

eγ
2g(x,y) 1

|x− y|γ2 gα(x, y)dxdy

Proof. In fact, the proof is almost exactly the same as in Lemma 4.1, except that P̃ is now
weighted by eh̄ε(x)+h̄δ(y) instead of eh̄ε(x)+h̄ε(y). But this changes nothing to the argument
leading up to (4.4) and hence (4.5) still holds. Since we get a lower bound by restricting
ourselves to |x− y| ≥ η, we deduce immediately that

lim inf
ε,δ→0

E(JεJδ) ≥
∫
S2;|x−y|≥η

eγ
2g(x,y) 1

|x− y|γ2 gα(x, y)dxdy.

Since η is arbitrary, the result follows.

Proof of convergence in Theorem 1.1. Using (4.1) together with Lemmas 4.1, 4.2, we
see that Jε is a Cauchy sequence in L2 for any ε0 > 0. Combining with Lemma 3.4, it
therefore follows that Iε is a Cauchy sequence in L1 and hence converges in L1 (and also
in probability) to a limit I = µ(S).

Remark 4.3. Note that limε→0E(J2
ε ) depends on the regularisation θ, even though, as

we will see next, limε→0 Iε does not.

5 Uniqueness of the limit

For the proof of independence of the limit with respect to the regularising kernel θ
we may assume without loss of generality that D is bounded.

Lemma 5.1. We may write h =
∑∞
n=0 hn where the hn are independent continuous Gaus-

sian fields, in the sense that for an arbitrary fixed function f ∈ L2(D, dx),
∑∞
n=0(hn, f)

converges almost surely and the limit agrees with (h, f) almost surely.

Remark 5.2. In the case of the Gaussian free field, we can write h =
∑
iXifi, where fi

is an orthonormal basis of the Sobolev space H1
0 (D), and Xi are i.i.d. standard normal

random variables, hence we can take hn = Xnfn in this case.

Proof. This is basically the Karhunen-Loeve expansion of h (see [16]). Since h is only
a stochastic process indexed byM we do it carefully. Introduce the Fredholm integral
operator

Tf(x) =

∫
D

K(x, y)f(y)dy, f ∈ L2(D; dy).

Note that T is well defined on L2(D, dy) and maps L2(D, dy) into continuous functions
on D̄ by Lebesgue’s dominated convergence theorem and Cauchy–Schwarz. Since
D is bounded, we deduce that T : L2(D, dy) → L2(D, dy). Note further that since
K(x, y) = K(y, x) by assumption, T is symmetric with respect to the (Lebesgue) inner
product on L2(D). Observe also that since K(x, y) ∈ L2(D ×D, dxdy), we have that T
is a compact operator on L2(D, dy) (follows from equicontinuity and Arzela–Ascoli). By
the spectral theorem for compact symmetric operators, we deduce that there exists an
orthonormal basis of L2(D, dy) consisting of eigenfunctions {fk}k≥0 of T (Theorem 7 in
Appendix D.5 of [5]). Let λk denote the corresponding eigenvalue. We have that λk > 0

and λk → 0 as k →∞ by the same theorem. Observe that trivially fk must be continuous
since Tfk = λkfk and fk ∈ L2 so Tfk is continuous.

Now consider our field h. Observe that ξk = (h, fk)/
√
λk is well defined (by Cauchy–

Schwarz, since fk ∈ L2(D)) and forms an i.i.d. sequence of standard Gaussian random
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variables:

E(ξkξj) =
1√
λkλj

∫∫
K(x, y)fk(x)fj(y)dxdy =

1√
λkλj

∫
fk(x)Tfj(x)dx

=
λj√
λkλj

(fk, fj) = 1{j=k}.

Set hk(x) :=
√
λkξkfk(x). Note that hk is then a.s. continuous and in L2(D; dx). Ob-

serve that for an arbitrary test function f ∈ L2(D, dy), the sequenceMn(f) =
∑n
k=0(hk, f)

defines a martingale in the filtration generated by (ξ1, . . .). Note that by independence of
the (ξk)k≥0, and by Parseval’s identity, as n→∞,

VarMn(f) =

n∑
k=0

λk(f, fk)2 →
∞∑
k=0

λk(f, fk) · (f, fk) =

∞∑
k=0

(Tf, fk)(f, fk) = (Tf, f)

= Var(h, f) <∞

Hence Mn(f) converges a.s. and in L2(P). Moreover the same calculation shows that in
fact Var[(h, f)−

∑n
k=0(hk, f)] converges to 0: indeed, as n→∞,

Cov[(h, f);

n∑
k=0

(hk, f)] =
n∑
k=0

Cov
(

(h, k);

∫
D

hk(x)f(x)dx
)

=

n∑
k=0

∫
D

f(x) Cov
(

(h, f); (h, fk)fk(x)
)
dx

=

n∑
k=0

∫
D

f(x)fk(x)(f, Tfk)dx =

n∑
k=0

λk(f, fk)2 → Var(h, f).

Hence the almost sure limit of Mn(f) agrees with (h, f), as desired.

Now define hn(z) =
∑n
k=0 hk(z) and set

µn(S) =

∫
S

exp

(
γhn(z)− γ2

2
Var(hn(z))

)
σ(dz).

Then µn(S) is a positive martingale with respect to the filtration Fn = σ(ξ1, . . . , ξn) so
converges to a limit which we will call µ′(S).

Proof of Theorem 1.1; uniqueness. It suffices to show that µ(S) = µ′(S). This will show
that µ(S) does not depend on the regularisation kernel. Observe that

E(µε(S)|Fn) = µnε (S)

where µnε is defined as µn except with hn replaced by its regularisation hnε = hn ∗ θε.
[This follows from writing h = hn +X where X is independent from hn.] When n is finite
and ε → 0 there is no problem in showing that the right hand side converges almost
surely to µn(S), by continuity of hn. Hence the left hand side also converges a.s. to some
limit as ε→ 0, and we have

µn(S) = lim
ε→0

E(µε(S)|Fn). (5.1)

However, we have shown that µε(S) converges in L1(P) to µ(S), and hence the above
right hand side is in fact equal to µ(S), almost surely (convergence in L1 of a sequence
of random variables implies convergence in L1 of its conditional expectations against a
fixed σ-algebra). We deduce

µn(S) = E(µ(S)|Fn),

almost surely, and hence µ′(S) = µ(S), as desired.
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6 Weak convergence

We now finish the proof of Theorem 1.1 by showing that the sequence of measures
µε converges in probability for the weak topology towards a measure µ defined by
the limits of quantities of the form µε(S), where S is a cube such that S̄ ⊂ D. As the
arguments are relatively standard we will be brief. We start by proving that the total
mass of the measures µε converge in probability. Let Dn be an increasing sequence
of domains such that ∪nDn = D. Let ` = supn µ(Dn). Let us show that µε(D) → `

in probability as ε → 0. Note first that ` < ∞ a.s., since by monotone convergence
E(`) = supnE(µ(Dn)) = σ(D) <∞ by our assumptions on σ.

Let δ > 0. Then we can write µε(D) = µε(Dn) + µε(D \ Dn) for any n ≥ 1. The
first term converges in probability as ε → 0 to µ(Dn) by the part of the theorem
already proved, and for the second term, E(µε(D \Dn)) = σ(D \Dn) ≤ δ2 for some n
sufficiently large depending only on δ. Fixing that value of n, by Markov’s inequality,
P(µε(D \Dn) > δ) ≤ δ, and for the same reason, P(|` − µ(Dn)| > δ) ≤ δ as well. Then
for ε small enough (depending only on on n and δ, and thus only on δ) we see that
|µε(Dn)− µ(Dn)| ≤ δ with probability at least 1− δ. Altogether, P(µε(D)− `| ≥ 2δ) ≤ 3δ.
So µε(D)→ ` in probability as ε→ 0.

Now let us prove weak convergence. Let A denote the π-system of subsets of Rd of
the form A = [x1, y1)× . . .× [xd, yd) where xi, yi ∈ Q, 1 ≤ i ≤ d and such that Ā ⊂ D, and
note that the σ-algebra generated by A is the Borel σ-field on D. We aim to check that for
every deterministic sequence εk tending to zero, one can find a further (deterministic)
subsequence ε′k such that µε′k converges almost surely for the weak topology on D.
Observe that µε(A) converges in probability to µ(A) for any A ∈ A, by the part of the
theorem which is already proved. Let εk be any sequence tending to zero. Fix any
subsequence ε′k such that µε′k(A) converges to µ(A) almost surely for all A ∈ A (which is
possible since A is countable).

Let A = [x1, y1)× . . .× [xd, yd) ∈ A. We first claim that

µ(A) = sup
zi

{µ([x1, z1)× . . .× [xd, zd))} (6.1)

where the sup is over all zi < yi, zi ∈ Q, 1 ≤ i ≤ d. Indeed, clearly the left hand side is
a.s. greater or equal to the right hand side, but both sides have the same expectation (if
the Radon measure σ(dx) is absolutely continuous with respect to Lebesgue measure
– if not, it may be necessary to translate all the cubes by a fixed independent random
variable, say standard Gaussian in Rd). Likewise, it is easy to check that

µ(A) = inf
zi
{µ([x1, z1)× . . .× [xd, zd))} (6.2)

where now the inf is over all zi > yi, zi ∈ Q, 1 ≤ i ≤ d.
Now, since µε(D) converges in probability, we can assume without loss of generality

that our subsequence ε′k is such that µε′k(D) converges a.s. as ε′k → 0. Hence the
measures µε′k are tight in the space of Borel measures on D with the topology of weak
convergence. Let µ̃ be any weak limit.

Then by the portmanteau theorem together with (6.1) and (6.2) it is easy to check that
µ̃(A) = µ(A) for any A ∈ A. (The portmanteau is more classically stated for probability
measures, but there is no problem in using the theorem here since we already know
convergence of the total mass, so we can equivalently work with the normalised measures
µε/µε(D)). This identifies uniquely the limit µ̃, and so in fact µε′k converges a.s. weakly
on D. As discussed already, this implies the weak convergence in probability of the
measures µε on D.
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