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Abstract. We consider a problem of checking whether the coefficient of
the scale and location function is a constant. Both the scale and location
functions are modeled as single-index models. Two test statistics based on
Kolmogorov–Smirnov and Cramér–von Mises type functionals of the differ-
ence of the empirical residual processes are proposed. The asymptotic dis-
tribution of the estimator for single-index parameter is derived, and the em-
pirical distribution function of residuals is shown to converge to a Gaussian
process. Moreover, the proposed test statistics can be able to detect local al-
ternatives that converge to zero at a parametric convergence rate. A bootstrap
procedure is further proposed to calculate critical values. Simulation studies
and a real data analysis are conducted to demonstrate the performance of the
proposed methods.

1 Introduction

Single-index models, a generalization of multivariate linear regression models with
an unknown link function, have been paid great attention because they gain more
flexibility and relax restrictive assumptions imposed on parametric models of con-
ditional mean functions. There have been many papers to consider the consistency
estimation of the single-index parameter and the nonparametric link function. See,
for example, Wang, Xu and Zhu (2012), Xia et al. (2002), Ichimura (1993), Wang
and Zhu (2015), Feng et al. (2013), Guo, Wang and Zhu (2016), Härdle, Hall
and Ichimura (1993), Peng and Huang (2011), Li et al. (2014), Wang, Xu and
Zhu (2015). In this paper, we consider a single-index heteroscedasticity regression
model:

Y = g
(
βτ

0X
) + σ

(
βτ

0X
)
ε, (1.1)

where “τ” denotes the transpose operator on a vector or a matrix throughout this
paper. In model (1.1), Y is the response variable and X is a p-dimensional co-
variate vector. g(·) and σ(·) are two unknown univariate smooth functions, and
throughout this paper we assume that the function σ(·) in the model (1.1) is pos-
itive. The error term ε satisfies E(ε) = 0 and E(ε2) = 1. The last condition for
ε is assumed for identifiability of the model. The parameter β0 is an unknown
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index vector which belongs to the parameter space B = {β = (β1, β2, . . . , βp)τ ,

‖β‖ = 1, β1 > 0,β ∈ R
p}.

Amongst the various methods of estimation, we are interested in testing whether
a constant coefficient of variation exists in a dataset, that is,

H0 : g(·) = cσ(·), (1.2)

for some nonzero constant c. Carroll and Ruppert (1988) investigated a parametric
model with a constant coefficient of variation as a special case of the hypothe-
sis (1.2). Eagleson and Müller (1997) considered the problem of nonparametric
estimation of the mean regression function where the standard deviation func-
tion is proportional to the mean regression function. Model (1.1) generalizes the
models considered by Dette, Marchlewski and Wagener (2012), Dette and Wiec-
zorek (2009) who focused on the one dimensional case of X. Dette and Wieczorek
(2009) proposed an estimate of the L2-distance between the variance and squared
regression function. As claimed in Dette, Marchlewski and Wagener (2012), the
test statistic proposed by Dette and Wieczorek (2009) is not able to detect alter-
natives converging to the null hypothesis at the rate of n−1/2, while the empirical
process statistic proposed by Dette, Marchlewski and Wagener (2012) succeeds.
Moreover, the Kolmogorov–Smirnov and Cramér–von Mises statistics by using
the empirical process constructed from the residuals-based empirical distribution
functions to test model assumptions also have the the advantage of detecting local
alternatives that converge to zero at the rate of n−1/2, independent of the dimension
of X (Neumeyer and Van Keilegom (2010)). However, the estimation and test pro-
cedures for g(·) and σ(·) proposed in Dette and Wieczorek (2009), Dette, March-
lewski and Wagener (2012), Dette, Pardo-Fernández and Van Keilegom (2009) can
not be directly extended to the case of multivariate X due to the “curse of dimen-
sionality”. This motivates us to investigate the estimation method for model (1.1)
and test procedure for the constant coefficient of variation hypothesis (1.2) with a
single-index structure.

In this article, the first goal is to estimate the unknown single-index parame-
ter β0 and unknown g(·) and σ(·). The profile estimation equation is proposed
to estimate β0, and the large sample properties of the estimator is obtained. The
second goal is to check whether the constant coefficient of variation hypothesis
(1.2) is true or not. Under the null hypothesis (1.2), the estimator of distribution
function Fε(s) of model error ε is obtained from the residuals based on the er-
ror ε = Y

σ(βτ
0X)

− E[Y ]
E[σ(βτ

0X)] . At the same time, the estimator of Fε(s) under the

full model (1.1) can be also obtained by using the residuals based on
Y−g(βτ

0X)

σ (βτ
0X)

.

Then, we obtain the asymptotic expressions for the estimators of Fε(s) under the
full model (1.1) and under the null hypothesis (1.2). Two test statistics, namely,
Kolmogorov–Smirnov test statistic and Cramér–von Mises test statistic are used
to check whether the null hypothesis (1.2) is true or not. The limiting distributions
of these two test statistics are also derived. To mimic the null distributions of the
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test statistics, a bootstrap procedure is proposed to define p-values. We conduct
Monte Carlo simulation experiments to examine the performance of the proposed
procedures. Our simulation results show that the proposed methods perform well
both in estimation and hypothesis testing.

This paper is organized as follows. In Section 2, we propose the estimation
procedure for β0, g(·) and σ(·). In Section 3, we provide the estimators of error
distribution function, and two test statistics for the testing problem. A bootstrap
procedure is also proposed to mimic the null distribution of test statistics. In Sec-
tion 4, we report the results of simulation studies. In Section 5, a real data is ana-
lyzed as an illustration. All the technical proofs of the asymptotic results are given
in Appendix.

2 Estimation method for β0, g(·) and σ(·)
Suppose that we have an i.i.d. sample {Xi , Yi}ni=1, Xi = (X1i , . . . ,Xpi)

τ from
the model (1.1). We now employ the profile least squares estimation procedure
proposed in Cui, Härdle and Zhu (2011), Liang et al. (2010), Liang and Wang
(2005).

(1) A local linear smoothing technique is used to estimate g(·). We approxi-
mate g(u) by g(u∗) + g′(u∗)(u − u∗) in a neighborhood of u∗. Given β , the local
linear estimators of g(u) and its derivative g′(u) are obtained by minimizing (2.1)
with respect to a0 and a1,

n∑
i=1

{
Yi − a0 − a1

(
βτXi − u

)}2
Kh

(
βτXi − u

)
, (2.1)

where Kh(β
τXi − u) = h−1K(

βτ Xi−u
h

) with K(·) being a kernel function
and h being a bandwidth. Let (â0, â1) be the minimizer of (2.1), denoted as
(ĝ(u,β), ĝ′(u,β)). Then, the estimator of g(u) is obtained as

ĝ(u,β) = â0 = Tn,20(u,β)Tn,01(u,β) − Tn,10(u,β)Tn,11(u,β)

Tn,00(u,β)Tn,20(u,β) − T 2
n,10(u,β)

, (2.2)

where Tn,l1l2(u,β) = ∑n
i=1 Kh(β

τXi − u)(βτXi − u)l1Y
l2
i for l1 = 0,1,2, l2 =

0,1.
(2) The local linear smoothing technique is used to estimate the variance func-

tion σ 2(·). Similar to (2.1) and (2.2), we estimate σ 2(u) as:

σ̂ 2(u,β) = Sn,20(u,β)Sn,01(u,β) − Sn,10(u,β)Sn,11(u,β)

Sn,00(u,β)Sn,20(u,β) − S2
n,10(u,β)

, (2.3)

Sn,l1l2(u,β) = ∑n
i=1 Kh(β

τXi − u)(βτXi − u)l1[(Yi − ĝ(βτXi ,β))2]l2 for l1 =
0,1,2, l2 = 0,1.
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(3) A noted in Zhu et al. (2010), the restriction of ‖β‖ = 1 leads to a non-
differential problem at the point β lying on the boundary of a unit ball. To solve it,
we transform the boundary of a unit ball in R

p to the interior of a unit ball in R
p−1.

We now proceed to estimate β0 by using the profile estimation function (Liang et
al. (2010), Liang and Wang (2005)) and the “leave-one-component” procedure
(Cui, Härdle and Zhu (2011), Zhu et al. (2010)),

Wn

(
β(1)) def=

n∑
i=1

J τ
β ĝ′(βτXi ,β

)[
Xi − V̂

(
βτXi

)]
σ̂−2(

βτXi ,β
)

(2.4)
× [

Yi − ĝ
(
βτXi ,β

)]
,

in which, ĝ′(u,β) = ∂ĝ(u,β)
∂u

, Jβ = ∂β/∂β(1) is the Jacobian matrix of size d ×
(p − 1) with

Jβ =
(
−β(1)τ /

√
1 − ∥∥β(1)

∥∥2

Ip−1

)
, (2.5)

where Ip−1 = diag(1, . . . ,1), an identity matrix of size p − 1. Moreover, V̂ (t)

is the local linear estimator of V (u) = E(X|βτX = u) = (V1(u), . . . , Vp(u))τ ,

defined as V̂ (u) =
∑n

i=1 bn,i (u)Xi∑n
i=1 bn,i (u)

, where bn,i(u) = Kh(β
τXi − u)[Tn,20(u,β) −

(βτXi − u)Tn,10(u,β)]. To solve (2.4), an consistent initial estimate of β
(1)
0 will

speed up to obtain its final estimator. We suggest to use more stable, more robust
and widely used dimension reduction methods for this initial estimator in practice.
For example, Xia et al. (2002), Xia and Härdle (2006).

Denote that β̂
(1)

0 is the solution of the estimation equation Wn(β̂
(1)

0 ) = 0p−1.

Then, we apply the equation β0,1 =
√

1 − ‖β(1)
0 ‖2 to estimate β0,1 by β̂0,1 =√

1 − ‖β̂(1)

0 ‖2, and the estimator of β0 is obtained as β̂0 = (β̂0,1, β̂
(1)τ

0 )τ . Finally,

the estimators of g(u) and σ 2(u) are obtained by substituting β with β̂0 in (2.1)
and (2.3), respectively.

It is noted that the model (1.1) is different from the generalized single-index pro-
posed in Cui, Härdle and Zhu (2011). Cui, Härdle and Zhu (2011) assumed that
E(Y |X) = μ(g(βτ

0X)) and Var(Y |X) = V (g(βτ
0X))σ 2, where μ(·) is a known

monotonic function, V (·) is a known covariance function. Cui, Härdle and Zhu
(2011) assumed that the variance function Var(Y |X) is linked with the mean func-
tion E(Y |X). Our model (1.1) is different with Cui, Härdle and Zhu (2011) be-
cause we assume that the variance function Var(Y |X) = σ 2(βτ

0X) does not need
to involve the mean function E(Y |X) = g(βτ

0X). Next, when the null hypothe-
sis H0 holds, the model (1.1) becomes to Y = cσ(βτ

0X) + σ(βτ
0X)ε, and also

E(Y |X) = cσ(βτ
0X), Var(Y |X) = σ 2(βτ

0X). Thus, our model (1.1) is a special
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one proposed in Cui, Härdle and Zhu (2011) under the null hypothesis H0. How-
ever, if the null hypothesis H0 fails, our model (1.1) is different from Cui, Härdle
and Zhu (2011). It is also noted that the profile estimation function (2.5) is differ-
ent from EFM method proposed in Cui, Härdle and Zhu (2011). It is seen that if
the null hypothesis H0 holds, we can use both the estimation equation (2.4) and
also the EFM approach proposed in Cui, Härdle and Zhu (2011) to estimate the
single-index parameter β0.

In what follows, A⊗2 = AAτ for any matrix or vector A. We list the conditions
needed in our asymptotic results.

(C1) E[|Xr |3] < ∞ for r = 1, . . . , p, and the covariance matrix �0 defined in
Theorem 2.1 is a positive definite matrix and finite.

(C2) The functions g(u), σ(u), V (u) = E(X|βτX = u) and the density func-
tion fβτ X(u) of the random variable βτX are twice continuously differentiable
with respect u. Their second derivatives are uniformly Lipschitz continuous on
C = {u = βτ x : x ∈ X ⊂ R

p,β ∈ B}, where X is a compact support set. Further-
more, infu∈Cfβτ X(u) ≥ c0 > 0, infu∈Cσ(u) ≥ c0 > 0 for some positive constant
c0, and

∫
σ 2(u)fβτ X(u) du < ∞.

(C3) The kernel function K(·) is a symmetric bounded density function sup-
ported on [−A,A] and satisfies a Lipschitz condition. Moreover, the kernel func-
tion K(·) has twice continuous bounded derivatives, satisfying K(j)(±A) = 0 for
j = 0,1 and

∫
s2K(s) ds 
= 0.

(C4) As n → ∞, the bandwidth h satisfies nh4 → 0 and (logn)1+s

nh2 → 0 for some
s > 0.

(C5) The model error ε satisfies E[ε4] < ∞. The distribution function Fε(s)

of ε is twice continuously differentiable, and the density function fε(s) of ε satis-
fies

∫
f 2

ε (s) dFε(s) < ∞, sup−∞<s<∞fε(s) < ∞, sup−∞<s<∞|s|fε(s) < ∞ and
sup−∞<s<∞s2|f ′

ε(s)| < ∞.

We now present the asymptotic properties of β̂
(1)

0 and β̂0.

Theorem 2.1. Under the conditions (C1)–(C4), we have
√

n
(
β̂

(1)

0 − β
(1)
0

) L−→ N
(
0p−1,�

−1
0

)
,

where �0 = J τ
β0

E[g′2(βτ
0X)σ−2(βτ

0X)[X−V (βτ
0X)]⊗2]Jβ0

. Moreover, by a sim-
ple application of the multivariate delta-method, we also have

√
n
(
β̂0 − β0

) L−→ N
(
0p, Jβ0

�−1
0 J τ

β0

)
.

Remark 1. A population version of (2.4) when β(1) = β
(1)
0 is defined as

W∗
n

(
β

(1)
0

) =
n∑

i=1

J τ
β0

g′(βτ
0Xi

)[
Xi − V

(
βτ

0Xi

)]
σ−2(

βτ
0Xi

)[
Yi − g

(
βτ

0Xi

)]
.
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The function W∗
n(β

(1)
0 ) entails the second Bartlett identity as Cui, Härdle and Zhu

(2011) claimed, that is,

E
[
W∗

n

(
β

(1)
0

)
W∗τ

n

(
β

(1)
0

)] = −E

[
∂W∗

n(β
(1)
0 )

∂β
(1)
0

]
= �0. (2.6)

The second Bartlett identity (2.6) makes the estimator β̂
(1)

0 obtained from (2.4) is
possible semiparametric efficiency (Cui, Härdle and Zhu (2011)).

3 The test statistics and their asymptotic properties

The idea for testing the hypothesis (1.2) is to compare the estimated error distri-
bution F̂ε(s) obtained under the full model (1.1) with the estimated error distri-
bution function F̂0ε(s) obtained under the null hypothesis (1.2). That is, we adopt
Kolmogorov–Smirnov or Cramer-von Mises test statistics based on the difference
between F̂ε(s) and F̂0ε(s) by using the process

√
n
(
F̂0ε(s) − F̂ε(s)

)
. (3.1)

In the following, we introduce the estimators F̂ε(s), F̂0ε(s) and the test statistics,
and present the associated theoretical results.

3.1 Test statistics

After obtaining β̂0, we define the estimator of the error distribution Fε(s) under
the full model (1.1) as

F̂ε(s) = 1

n

n∑
i=1

I {ε̂i ≤ s}, where ε̂i = Yi − ĝ(β̂
τ

0Xi , β̂0)

σ̂ (β̂
τ

0Xi , β̂0)
, (3.2)

where, ĝ(β̂
τ

0Xi , β̂0), σ̂ (β̂
τ

0Xi , β̂0) are obtained from (2.2) and (2.3) respectively.
If the null hypothesis H0 is true, it is easily seen that E[Y ] = cE[σ(βτ

0X)],
c = E[Y ]

E[σ(βτ
0X)] , and εi = Yi

σ (βτ Xi )
− E[Y ]

E[σ(βτ
0X)] . This motivates us to estimate the

error distribution Fε(s) as

F̂0ε(s) = 1

n

n∑
i=1

I {ε̂0i ≤ s}, (3.3)

ε̂0i = Yi

σ̂ (β̂
τ

0Xi , β̂0)
− Ȳ

1
n

∑n
i=1 σ̂ (β̂

τ

0Xi , β̂0)
, (3.4)

and Ȳ = 1
n

∑n
i=1 Yi . Then the test statistics based on Kolmogorov–Smirnov and

Cramér–von Mises type functionals of the process
√

n(F̂0ε(s)− F̂ε(s)) are defined
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as

Tn,KS = sup
−∞<s<+∞

n1/2∣∣F̂0ε(s) − F̂ε(s)
∣∣,

Tn,CM = n

∫ (
F̂0ε(s) − F̂ε(s)

)2
dF̂ε(s).

3.2 Theoretical results

We now present some asymptotic properties of the proposed estimators and test
statistics. In this subsection, Theorems 3.1–3.2 present the asymptotic normalities
of F̂ε(s) and F̂0ε(s), respectively. Theorem 3.3 is the asymptotic result for the
difference of process F̂ε(s) − F̂0ε(s) and the test statistics Tn,KS and Tn,CM. The-
orems 3.4–3.5 reveal the properties when the local alternatives converge to zero at
an n−1/2 rate.

Theorem 3.1. Assumed that the conditions of Theorem 2.1 and condition (C5) are
satisfied, we have

F̂ε(s) − Fε(s) = 1

n

n∑
i=1

[
I {εi ≤ s} − Fε(s) + fε(s)

(
εi + s

2

(
ε2
i − 1

))]

+ oP

(
n−1/2)

,

uniformly in s ∈R
1.

Remark 2. The process
√

n(F̂ε(s)−Fε(s)) (−∞ < s < ∞) converges weakly to
a zero-mean Gaussian process N (s) with covariance function

Fε

(
min{s1, s2}) − Fε(s1)Fε(s2) + fε(s1)fε(s2)

+ fε(s1)E
[
εI {ε ≤ s2}] + fε(s2)E

[
εI {ε ≤ s1}]

+ 1

2

{
s1fε(s1)E

[
ε2I {ε ≤ s2}] + s2fε(s2)E

[
ε2I {ε ≤ s1}]}

+ 1

4
fε(s1)fε(s2)

{
2(s1 + s2)E

[
ε3] + s1s2E

[
ε4] − s1s2

}

− 1

2

{
s1fε(s1)Fε(s2) + s2fε(s2)Fε(s1)

}
.

Next, we present the asymptotic expansion for the estimator F̂0ε(s). Define mc =
E[g(βτ

0X)]
E[σ(βτ

0X)] and

F ∗
ε (s) = E

[
Fε

(
s + mc − g(βτ

0X)

σ (βτ
0X)

)]
,

mfε,c(s) = E

[
fε

(
s + mc − g(βτ

0X)

σ (βτ
0X)

)]
.
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Theorem 3.2. Under the conditions of Theorem 3.1, we have

F̂0ε(s) − F ∗
ε (s) = 1

n

n∑
i=1

I

{
εi + g(βτ

0Xi )

σ (βτ
0Xi )

− mc ≤ s

}
− F ∗

ε (s)

+ mfε,c(s)
1

n

n∑
i=1

Yi − mcσ(βτ
0Xi )

E[σ(βτ
0X)]

(3.5)

+ 1

n

n∑
i=1

s + mc

2
fε

(
s + mc − g(βτ

0Xi )

σ (βτ
0Xi )

)(
ε2
i − 1

)

−1

n

n∑
i=1

mfε,c(s)mc

2E[σ(βτ
0X)]σ

(
βτ

0Xi

)(
ε2
i − 1

) + oP

(
n−1/2)

uniformly in s ∈ R
1.

Under H0,
g(βτ

0x)

σ (βτ
0x)

= c, mc = c, then fε(s + mc − g(βτ
0x)

σ (βτ
0x)

) = fε(s), F ∗
ε (s) =

Fε(s), mfε,c(s) = fε(s). From Theorem 3.1 and Theorem 3.2, we have the follow-
ing theorem.

Theorem 3.3. Under the conditions of Theorem 3.1, if the null hypothesis H0
holds, we have

F̂0ε(s) − F̂ε(s) = fε(s)

n

n∑
i=1

(
σ(βτ

0Xi )

E[σ(βτ
0X)] − 1

)[
εi − c

2

(
ε2
i − 1

)] + oP

(
n−1/2)

.

Moreover, n1/2(F̂0ε(s) − F̂ε(s)), s ∈ R
1, converges weakly to a zero-mean Gaus-

sian process fε(s)N, where N is a zero-mean normal random variable with the
variance

Var(N) =
(

1 + c2

4

(
E

[
ε4] − 1

) − cE
[
ε3]) Var(σ (βτ

0X))

(E[σ(βτ
0X)])2 .

The continuous mapping theorem further entails that

Tn,KS
L−→ sup

−∞<s<+∞
fε(s)|N|, Tn,CM

L−→
∫

f 2
ε (s) dFε(s)N

2.

We now investigate the asymptotic properties of the test statistics by considering
the local alternative hypothesis:

H1n : g(
βτ

0x
) = cσ

(
βτ

0x
) + n−1/2γ (x), (3.6)

where γ (·) 
≡ 0. Under H1n, the estimators β̂
(1)

0 and β̂0 are still
√

n-consistent.



Single-index variation 65

Theorem 3.4. Under the conditions of Theorem 3.1, if the local alternative hy-
pothesis H1n holds, we have

√
n
(
β̂

(1)

0 − β
(1)
0

) L−→ N
(
�−1

c,0Bc,0,�
−1
c,0

)
,

where,

Bc,0 = cJ τ
β0

E

[
σ ′(βτ

0X)

σ 2(βτ
0X)

(
X − V

(
βτ

0X
))

γ (X)

]
,

�c,0 = c2J τ
β0

E

[
σ ′2(βτ

0X)

σ 2(βτ
0X)

[
X − V

(
βτ

0X
)]⊗2

]
Jβ0

.

Moreover, we have
√

n(β̂0 − β0)
L−→ N(Jβ0

�−1
c,0Bc,0, Jβ0

�−1
c,0J

τ
β0

).

Remark 3. From the definition of Bc,0, it is easily seen that if γ (x) = ω(βτ
0x)

such that E[ω2(βτ
0x)] < ∞ or γ (x) is a constant function, the biased term Bc,0

equals to zero by using the fact of that E[X − V (βτ
0X)|βτ

0X] = 0p .

Theorem 3.5. Under the conditions of Theorem 3.1, if the local alternative hy-
pothesis H1n holds, we have

F̂0ε(s) − F̂ε(s) = fε(s)

n

n∑
i=1

(
σ(βτ

0Xi )

E[σ(βτ
0X)] − 1

)[
εi − c

2

(
ε2
i − 1

)] + fε(s)√
n

δ

+ oP

(
n−1/2)

,

where δ = E[γ (X)]
E[σ(βτ

0X)] − E[ γ (X)
σ (βτ

0X)
]. Then, under the local hypothesis H1n, the con-

tinuous mapping theorem entails that

Tn,KS
L−→ sup

−∞<s<+∞
fε(s)|N+ δ|, Tn,CM

L−→
∫

f 2
ε (s) dFε(s)(N+ δ)2.

Remark 4. This theorem tells us the test statistics Tn,KS and Tn,CM detect the
local alternative hypothesises converging to null hypothesis at an n−1/2 rate when
γ (x) satisfies {γ (x) : E[γ (X)]

E[σ(βτ
0X)] 
= E[ γ (X)

σ (βτ
0X)

]}.

3.3 A wild bootstrap procedure

We use the smooth residual bootstrap (Neumeyer and Van Keilegom (2010),
Neumeyer (2009)) to mimic the distributions of the test statistics Tn,KS and Tn,CM.
The procedure is summarized as follows:

Step 1: Compute Tn,KS, Tn,CM.
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Step 2: Generate N times i.i.d. variables ςib, i = 1, . . . , n, b = 1, . . . ,B from
a standard normal distribution N(0,1). They are independent from the original

sample {Yi,Xi}ni=1. Let ε̂i = Yi−ĝ(β̂
τ

0Xi ,β̂0)

σ̂ (β̂
τ

0Xi ,β̂0)
, i = 1, . . . , n, and define

ε̂∗
ib = ε̃i + anςib, ε̃i = ε̂i − 1

n

∑n
i=1 ε̂i

( 1
n

∑n
i=1[ε̂i − 1

n

∑n
i=1 ε̂i]2)1/2

,

(3.7)
Y ∗

ib = ĝ
(
β̂

τ

0Xi , β̂0
) + σ̂

(
β̂

τ

0Xi , β̂0
)
ε̂∗
ib.

Step 3: For each b, using bootstraps {Y ∗
ib,Xi}ni=1, we re-calculate the bootstrap

estimators β̂
[b]
0 and ĝ[b](u, β̂

[b]
0 ), σ̂ [b](u, β̂

[b]
0 ). Let

ε̂0i,b = Y ∗
ib

σ̂ [b](β[b]τ
0 Xi ,β

[b]
0 )

−
1
n

∑n
i=1 Y ∗

ib

1
n

∑n
i=1 σ̂ [b](β[b]τ

0 Xi ,β
[b]
0 )

,

and

ε̂i,b = Y ∗
ib − ĝ[b](β[b]τ

0 Xi ,β
[b]
0 )

σ̂ [b](β[b]τ
0 Xi ,β

[b]
0 )

.

Then, define

F̂
[b]
0ε (s) = 1

n

n∑
i=1

I {ε̂0i,b ≤ s}, F̂ [b]
ε (s) = 1

n

n∑
i=1

I {ε̂i,b ≤ s},

and the bootstrap statistics

T
[b]
n,KS = sup

−∞<s<+∞
n1/2∣∣F̂ [b]

0ε (s) − F̂ [b]
ε (s)

∣∣,
T

[b]
n,CM = n

∫ (
F̂

[b]
0ε (s) − F̂ [b]

ε (s)
)2

dF̂ [b]
ε (s).

Step 4: We calculate the 1 − κ quantile of the bootstrap test statistics T [b]
n,KS,

T [b]
n,CM, b = 1, . . .N as the κ-level critical value.

4 Implementation

In this section, we report simulation results to evaluate the performance of the
proposed estimators and test statistics. In the following simulations, the Epanech-
nikov kernel K(t) = 0.75(1 − t2)+ is used. It is worthwhile to point out that un-
dersmoothing is necessary as condition (C4) requires that nh4 → 0. To meet this
requirement, we follow Carroll et al. (1997)’s suggestion by using the order of
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O(n−1/5) × n−2/15 = O(n−1/3) for the bandwidth h. Define the cross-validation
score as

CV(h) = n−1
n∑

i=1

{
Yi − ĝ−i

(
β̂

τ

0,−iXi , β̂0,−i

)}2
,

where β̂0,−i and ĝ−i (β̂
τ

0,−iXi , β̂0,−i ) are computed analogous to (2.2)–(2.4) from
the data with the ith observation deleted. Let h1 = arg minh CV(h). Then the final
choice for h is defined as h = n−2/15 ∗h1. For the choice of an in (3.7), Neumeyer
(2009), Neumeyer and Van Keilegom (2010) suggested to use an = c1n

−1/4 for
some positive constant c1. We used an = n−1/4 in the following simulations and
the numerical results were stable when we shifted several values around the se-
lected values.

Example 1. We generate 500 realizations and choose the sample size to be n =
300,500,1000 from model:

Y = 2 exp
(
βτ

0X
) + exp

(
βτ

0X
)
ε.

Here, β0 = (1,0,3,−2,1)τ /
√

15, X ∼ N5(μ,�) with μ = (2, . . . ,2)τ , � =
(σij ), σij = 0.5|i−j |. For the model error ε, we consider two cases: ε ∼ N(0,1),
and ε ∼ 2(Exp(2)− 1/2), where Exp(2) is an exponential distribution with expec-
tation 1/2.

The performance of estimators F̂ε(s) and F̂0ε(s) are evaluated using the average
squared error (ASE) and the average absolute error (AAE)

ASE = n−1
0

n0∑
v=1

[
F̂ε(sv) − Fε(sv)

]2
, AAE = n−1

0

n0∑
s=1

∣∣F̂ε(sv) − Fε(sv)
∣∣,

where {s1, . . . , sn0} are the given grid points, and n0 = 400 is the number of grid
points.

The simulation results for β̂0 are reported in Table 1 and Table 2. The values
of β̂0 are close to the true value of β0, and the values of MSE(β̂0,β0) become
smaller as the sample size n increases to 1000. Moreover, the angles (in radians)
of arccos(β̂0,β0) become closer to zero when the sample size n increases to 1000.
In Table 3 and Table 4, we also report the numerical results of ASE and AAE
for the estimators F̂ε(s) and F̂0ε(s). Both estimators perform better as the sample
size n increases. The performance of F̂ε(s) is better than F̂0ε(s) in this simula-

tion study. It is seen that ε̂0i = ε̂i + ĝ(β̂
τ
Xi )

σ̂ (β̂
τ
Xi )

− Ȳ
1
n

∑n
i=1 σ̂ (β̂

τ
Xi )

. From this equation,

the performance of estimator F̂0ε(s) involves both ε̂i and ĝ(β̂
τ
Xi )

σ̂ (β̂
τ
Xi )

− Ȳ
1
n

∑n
i=1 σ̂ (β̂

τ
Xi )

.

Under the null hypothesis, Ȳ
1
n

∑n
i=1 σ̂ (β̂

τ
Xi )

P→ c with root-n convergence rate, and
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Table 1 The Mean (M), Standard Errors (SD) and Mean Squared Errors (MSE) of β̂0 when ε ∼
N(0,1)a

β̂0,1 β̂0,2 β̂0,3 β̂0,4 β̂0,5 arccos(β̂0,β0)

n = 300
M 0.2633 0.0015 0.7768 −0.5044 0.2590 0.0525
SD 0.0260 0.0294 0.0178 0.0230 0.0261 0.0218
MSE 6.8593 9.5309 3.1337 5.6836 7.0219 32.2438

n = 500
M 0.2582 0.0078 0.7776 −0.5077 0.2596 0.0389
SD 0.0206 0.0214 0.0131 0.0197 0.0183 0.0175
MSE 4.1818 4.5705 1.7471 4.2543 3.4318 18.1908

n = 1000
M 0.2574 0.0027 0.7759 −0.5067 0.2603 0.0301
SD 0.0149 0.0131 0.0095 0.0097 0.0110 0.0126
MSE 2.4792 3.4727 0.9085 1.5780 2.1688 10.6087

aNote: MSE is in the scale of ×10−4.

Table 2 The Mean (M), Standard Errors (SD) and Mean Squared Errors (MSE) of β̂0 when ε ∼
2(Exp(2) − 1/2)a

β̂0,1 β̂0,2 β̂0,3 β̂0,4 β̂0,5 arccos(β̂0,β0)

n = 300
M 0.2588 0.0077 0.7761 −0.5078 0.2652 0.0494
SD 0.0251 0.0263 0.0146 0.0229 0.0226 0.0173
MSE 6.2339 7.4574 2.1391 5.9357 5.5536 27.3290

n = 500
M 0.2611 0.0059 0.7752 −0.5114 0.2602 0.0372
SD 0.0183 0.0191 0.0140 0.0165 0.0208 0.0166
MSE 3.4077 3.9480 1.9557 2.9528 4.3063 16.5743

n = 1000
M 0.2611 0.0040 0.7753 −0.5131 0.2577 0.0287
SD 0.0143 0.0172 0.0101 0.0113 0.0143 0.0118
MSE 2.1145 3.0960 1.0081 1.3707 2.0369 9.6275

aNote: MSE is in the scale of ×10−4.

ĝ(β̂
τ
Xi )

σ̂ (β̂
τ
Xi )

P→ c with root-(nh) convergence rate, slowly then the former one. More-

over, the variance function estimator σ̂ (β̂
τ
Xi ) performs not as well as the mean

function estimator ĝ(β̂
τ
Xi ) because the variance function are usually more diffi-

cult to estimate than the mean function. So the estimator F̂0ε(s) performs not better



Single-index variation 69

Table 3 The Mean (M) and Standard Errors (SD) for ASE and AAE when ε ∼ N(0,1)a

F̂ε(s) F̂0ε(s)

ASE AAE ASE AAE

n = 300
M 4.8929 0.0171 21.9599 0.0363
SD 3.6795 0.0064 22.0420 0.0203

n = 500
M 6.2402 0.0142 8.2263 0.0222
SD 7.6969 0.0173 9.1560 0.0114

n = 1000
M 1.4782 0.0094 4.5914 0.0159
SD 1.1630 0.0037 6.4110 0.0110

aNote: ASE is in the scale of ×10−4.

Table 4 The Mean (M) and Standard Errors (SD) for ASE and AAE when ε ∼ 2(Exp(2) − 1/2)a

F̂ε(s) F̂0ε(s)

ASE AAE ASE AAE

n = 300
M 5.7764 0.0181 18.3054 0.0303
SD 8.9399 0.0128 39.9751 0.0278

n = 500
M 10.0468 0.0145 10.0037 0.0228
SD 57.6307 0.0274 20.4832 0.0195

n = 1000
M 1.0768 0.0083 3.0179 0.0137
SD 0.9591 0.0040 3.4882 0.0087

aNote: ASE is in the scale of ×10−4.

than F̂ε(s). Figure 1 presents fours plots for the estimators ĝ(t), σ̂(t), F̂ε(s) and
F̂0ε(s) against their true values when ε ∼ N(0,1) with the sample size n = 1000.
From Figure 1, we see that those estimators perform well.

Example 2. In this example, we investigate the performances of test statistics
Tn,KS and Tn,CM. 500 data sets consisting of n = 300,500,1000 observations are
generated, and 1000 bootstrap samples are generated in each simulation for power
calculation. We consider the data generating process (DGP) as follows:

g(X) = 2 exp
(
βτ

0X
) + Co

(
βτ

0x
)2 + exp

(
βτ

0X
)
ε. (4.1)
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Figure 1 (a) The plots of estimator ĝ(t) (dashed line) against g(t) (solid line). (b) The plots of
estimator σ̂ (t) (dashed line) against σ(t) (solid line). (c) The plots of estimator F̂ε(s) (dashed line)
against Fε(s) (solid line). (d) The plots of estimator F̂0ε(s) (dashed line) against Fε(s) (solid line).

The parameter β0, covariate X and model error ε are the same as Example 1. The
null hypothesis H0 considered in (1.2) is true if and only is Co = 0. The simula-
tion results are reported in Table 5 and Table 6. All empirical levels obtained by the
bootstrap test statistics are close to four nominal levels when the null hypothesis
H0 is true, which indicates that the bootstrap method provides proper Type I errors.
That is, when Co = 0, the percentages of H0 being rejected are close to the corre-
sponding nominal level for all four nominal levels, and they are much closer to the
significance levels when n = 1000. As the value of C0 increases, the power func-
tions increase rapidly and approach to one when the sample size n increases. In
this example, the Cramér–von Mises test statistic Tn,CM performs more powerful
than the Kolmogorov–Smirnov test statistic Tn,KM . This phenomenon is the same
as the simulation results obtained in Neumeyer and Van Keilegom (2010), they
also found that the performances of Tn,CM show larger values of power functions
than that of Tn,KM in testing additivity of a multivariate regression function.
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Table 5 The simulation results for power calculations in Example 2 when ε ∼ N(0,1)

TKS TCM

Significant level 0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10

n = 300
C0 = 0.00 0.0091 0.0239 0.0489 0.0967 0.0113 0.0251 0.0491 0.1079
C0 = 0.05 0.6423 0.6585 0.6829 0.6911 0.7723 0.7845 0.8247 0.8423
C0 = 0.10 0.7154 0.7317 0.7449 0.7723 0.8011 0.8247 0.8754 0.9011
C0 = 0.15 0.8537 0.9024 0.9357 0.9768 0.9277 0.9545 0.9689 0.9912
C0 = 0.20 0.9423 0.9524 0.9632 0.9814 0.9872 0.9948 1.0000 1.0000

n = 500
C0 = 0.00 0.0091 0.0251 0.0487 0.1108 0.0112 0.0253 0.0561 0.1011
C0 = 0.05 0.7317 0.7967 0.8211 0.8780 0.8456 0.8823 0.9131 0.9277
C0 = 0.10 0.8211 0.8943 0.9105 0.9512 0.8999 0.9345 0.9620 1.0000
C0 = 0.15 0.9023 0.9468 0.9749 1.0000 0.9367 0.9825 0.9933 1.0000
C0 = 0.20 0.9857 0.9946 1.0000 1.0000 0.9978 0.9997 1.0000 1.0000

n = 1000
C0 = 0.00 0.0101 0.0247 0.0489 0.0979 0.0107 0.0251 0.0511 0.0989
C0 = 0.05 0.8834 0.9011 0.9578 0.9923 0.9315 0.9559 0.9733 0.9821
C0 = 0.10 0.9457 0.9722 0.9978 1.0000 0.9850 0.9979 1.0000 1.0000
C0 = 0.15 0.9837 0.9921 1.0000 1.0000 0.9919 1.0000 1.0000 1.0000
C0 = 0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6 The simulation results for power calculations in Example 2 when ε ∼ 2(Exp(2) − 1/2)

TKS TCM

Significant level 0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10

n = 300
C0 = 0.00 0.0082 0.0227 0.0467 0.0925 0.0101 0.0246 0.0476 0.0990
C0 = 0.05 0.6122 0.6367 0.6589 0.6724 0.7319 0.7622 0.7935 0.8117
C0 = 0.10 0.6926 0.7166 0.7287 0.7569 0.7878 0.8166 0.8572 0.8989
C0 = 0.15 0.8269 0.8917 0.9155 0.9614 0.9159 0.9360 0.9521 0.9844
C0 = 0.20 0.9115 0.9269 0.9332 0.9711 0.9799 0.9821 0.9974 1.0000

n = 500
C0 = 0.00 0.0088 0.0248 0.0491 0.1024 0.0101 0.0257 0.0535 0.1100
C0 = 0.05 0.7126 0.7790 0.8087 0.8692 0.8334 0.8769 0.9099 0.9197
C0 = 0.10 0.8154 0.8845 0.9027 0.9316 0.8879 0.9165 0.9528 0.9897
C0 = 0.15 0.8911 0.9275 0.9613 0.9829 0.9289 0.9739 0.9821 0.9997
C0 = 0.20 0.9788 0.9822 0.9990 1.0000 0.9914 0.9979 1.0000 1.0000

n = 1000
C0 = 0.00 0.0098 0.0263 0.0482 0.0996 0.0101 0.0249 0.0508 0.1019
C0 = 0.05 0.8721 0.8934 0.9299 0.9819 0.9217 0.9431 0.9655 0.9939
C0 = 0.10 0.9320 0.9658 0.9819 0.9930 0.9769 0.9894 0.9930 1.0000
C0 = 0.15 0.9621 0.9857 0.9933 1.0000 0.9822 0.9929 1.0000 1.0000
C0 = 0.20 0.9870 0.9940 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000
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5 A real data analysis

In this example,we analyze the Boston housing price dataset (available from the
Machine Learning Repository at the University of California-Irvine) to illustrate
our proposed method. In the Boston Housing dataset, there are 506 instances and
variables about environment of the property as well as its selling price and other
relevant variables. For this dataset, we consider to use the values of NOX (the
nitric oxide concentration per 10 million) which are greater or equal to the median
of NOX. Eight attributes are included in the model (1.1): MEDV (Y ) – the median
value of owner-occupied homes in $ 1000’s, RM (X1) – the average number of
rooms per dwelling, AGE (X2) – the proportion of owner-occupied units built prior
to 1940, DIS (X3) – the weighted distances to five Boston employment centres,
RAD (X4) – the index of accessibility to radial highways, TAX (X5) – the full-
value property-tax rate per $10,000, PTRATIO (X6) – the pupil-teacher ratio by
town, BLACKS (X7) – the transformed proportion of Blacks which is calculated
by 1000(Bk − 0.63)2 and Bk is the proportion of blacks by town.

Corresponding to covariates (X1,X2, . . . ,X7)
τ , parameters β0 and the associ-

ated p-values (p
β̂0

) are obtained as follows:(
β̂0
p

β̂0

)

=
(

0.852, −0.510, −0.085, 0.066, −0.003, −0.016, 0.049
0.000, 0.000, 0.246, 0.205, 0.122, 0.821, 0.000

)
.

The p-values are calculated by estimating the asymptotic variances of β̂0 obtained
in Theorem 2.1. When the significance level is set at 0.05, we find that RM-X1,
Age-X2 and BLACKS-X7 are significant. Note that the high-values of NOX is
reasonably highly related to life quality and then house price. The significance of
these indices RM and Age are very reasonable. Next, we used the test statistic pro-
posed by Stute and Zhu (2005) to check whether the single-index model g(βτ

0X)

is appropriate for this dataset. The associated value of the test statistics is 1.8941
with a p-value of 0.2131. This indicates that the single-index model g(βτ

0X) is
not a constant function, see also Figure 2. We conducted 1000 bootstraps to test
g(u) = cσ(u) for some constant c, and the corresponding Tn,KS, Tn,CM are both
larger than the 99% quantile of 1000 bootstraps, and this suggests a rejection of
the null hypothesis H0. The estimators ĝ(u), along with its 95% pointwise con-
fidence bands, are presented in Figure 2. We also present the estimated figure for

the error function ĉσ̂ (u) in Figure 2, where ĉ is obtained as ĉ = 1
n

∑n
i=1

ĝ(β̂
τ
Xi )

σ̂ (β̂
τ
Xi )

. In

this figure, the estimated function ĉσ̂ (u) is not a constant function, which indicates
that the heteroscedasticity exists in this dataset. Moreover, it is seen that ĉσ̂ (u) is
not encapsulated in the 95% pointwise confidence bands. This indicates that the
null hypothesis H0 is not true, although ĝ(u) and ĉσ̂ (u) has a similar variation
tendency in Figure 2.
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Figure 2 The plot for the estimator ĝ(u) (solid line) against estimated single-index β̂
τ
0X, along

with the associated 95% pointwise confidence intervals (dotted lines); The plot for estimator ĉσ̂ (u)

(thick longdash line) against estimated single-index β̂
τ
0X.

Appendix

A.1 Proof of Theorem 2.1

Lemma A.1. Suppose that Xi , i = 1, . . . , n are i.i.d. random vector, and
E[m(X)|βτX = u] have a continuous bounded second derivative on u, satisfying
E[m2(X)] < ∞. Let K(·) be a bounded positive function with a bounded support
satisfying the Lipschitz condition: there exits a neighbourhood of the origin, say
ϒ , and a constant c > 0 such that for any ε ∈ ϒ : |K(u+ ε)−K(u)| < c|ε|. Given
that h = n−d for some d < 1, we have, for s > 0, j = 0,1,2,

sup
(x,β)∈X×�

∣∣∣∣∣1

n

n∑
i=1

Kh

(
βτXi − βτ x

)(βτXi − βτ x

h

)j

m(Xi )

− fβτ
0X

(
βτ

0x
)
E

[
m(X)|βτ

0X = βτ
0x

]
μK,j − hS

(
βτ

0x
)
μK,j+1

∣∣∣∣∣
= OP (cn1),

where � = {β ∈ �,‖β − β0‖ ≤ Cn−1/2} for some positive constant C, μK,l =∫
t lK(t) dt , S(βτ

0x) = d
du

{fβτ
0X(u)E[m(X)|βτ

0X = u]}|u=βτ
0x , and cn1 =

{ (logn)1+s

nh
}1/2 + h2.



74 J. Zhang, C. Niu and G. Li

Proof. This proof is completed by the Lemma A6.1 in Xia (2006). �

Proof of Theorem 2.1. Note that Wn(β̂
(1)

) = 0. Taylor expansion entails that

− 1√
n
Wn

(
β

(1)
0

) =
[

1

n

∂Wn(β
(1))

∂β(1)

∣∣∣∣
β(1)=β̃

(1)

0

][√
n
(
β̂

(1) − β
(1)
0

)]
, (A.1)

where β̃
(1)

0 is between β̂
(1)

and β
(1)
0 .

Step 1. In this sub-step, we analyze n−1/2Wn(β
(1)
0 ). Directly using Lemma A.1

we have that ĝ(βτ
0Xi ,β0) = g(βτ

0Xi ) + OP (cn1), V̂ (βτ
0Xi ,β0) = V (βτ

0Xi ) +
OP (cn1). Moreover,

1

n
Sn,l11

(
βτ

0Xi ,β0
)

= 1

n

n∑
j=1

Kh

(
βτ

0Xj − βτ
0Xi

)(
βτ

0Xj − βτ
0Xi

)l1σ 2(
βτ

0Xj

)
ε2
j

+ 2

n

n∑
j=1

Kh

(
βτ

0Xj − βτ
0Xi

)(
βτ

0Xj − βτ
0Xi

)l1
× [

g
(
βτ

0Xj

) − ĝ
(
βτ

0Xj ,β0
)]

σ
(
βτ

0Xj

)
εj (A.2)

+ 1

n

n∑
j=1

Kh

(
βτ

0Xj − βτ
0Xi

)(
βτ

0Xj − βτ
0Xi

)l1

× [
g
(
βτ

0Xj

) − ĝ
(
βτ

0Xj ,β0
)]2

= hl1fβτ
0X

(
βτ

0Xi

)
σ 2(

βτ
0Xi

)
μKl1 + OP

(
hl1cn1 + hl1c2

n1
)
,

for l1 = 0,1,2. Directly using (A.2), we obtain σ̂ 2(βτ
0Xi ,β0) = σ 2(βτ

0Xi ) +
OP (cn1).

Define

Gn2(u,β0)

= 1

nh2 Tn,20(u,β0)
1

n
Tn,00(u,β0) − 1

n2h2 T 2
n,10(u,β0),

Gn1(u,β0)

= 1

nh2 Tn,20(u,β0)
1

n
Tn,01(u,β0) − 1

nh
Tn,10(u,β0)

1

nh
Tn,11(u,β0).

Then, ĝ(u,β0) = Gn1(u,β0)

Gn2(u,β0)
, ĝ′(u,β0) = ∂Gn1(u,β0)/∂u

Gn2(u,β0)
− Gn1(u,β0)∂Gn2(u,β0)/∂u

G2
n2(u,β0)

. Us-

ing Lemma A.1, we have that ĝ′(u,β0) = g′(u) + OP (h2 +
√

(logn)1+s

nh3 ) and
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also ĝ′(βτ
0Xi ,β0) = g′(βτ

0Xi ) + OP (h2 +
√

(logn)1+s

nh3 ). As a result, as nh8 → 0,

(logn)2+2s

nh2 → 0, we have that

n−1/2Wn

(
β

(1)
0

)
= n−1/2

n∑
i=1

J τ
β0

ĝ′(βτ
0Xi ,β0

)[
Xi − V̂

(
βτ

0Xi ,β0
)]

σ̂−2(
βτ

0Xi ,β0
)
(A.3)

× [
Yi − ĝ

(
βτ

0Xi ,β0
)]

= n−1/2
n∑

i=1

J τ
β0

g′(βτ
0Xi

)[
Xi − V

(
βτ

0Xi

)]
σ−1(

βτ
0Xi

)
εi + oP (1).

Step 2. In this sub-step, we deal with 1
n

∂Wn(β(1))

∂β(1) |
β(1)=β̃

(1)

0
. Define

Sn1
(
β̃

(1)

0
)

def= 1

n

n∑
i=1

{[
∂

∂β(1)

{
J τ

β ĝ′(βτXi ,β
)[

Xi − V̂
(
βτXi ,β

)]
σ̂−2(

βτXi ,β
)}]

× [
Yi − ĝ

(
βτ

0Xi ,β0
)]}∣∣∣∣

β(1)=β̃
(1)

0

,

and

Sn2
(
β̃

(1)

0
)

def= 1

n

n∑
i=1

{
J τ

β̃0
ĝ′(β̃τ

0Xi , β̃0
)[

Xi − V̂
(
β̃

τ

0Xi , β̃0
)]

σ̂−2(
β̃

τ

0Xi , β̃0
)}

×
{
∂ĝ(βτXi ,β)

∂β(1)

∣∣∣∣
β(1)=β̃

(1)

0

}
.

Then,

1

n

∂Wn(β
(1))

∂β(1)

∣∣∣∣
β(1)=β̃

(1)

0

= Sn1
(
β̃

(1)

0
) + Sn2

(
β̃

(1)

0
)
, (A.4)

where β̃0 = (

√
1 − β̃

(1)τ

0 β̃
(1)

0 , β̃
(1)τ

0 )τ . Note that β̃
(1)

0 is between β̂
(1)

and β
(1)
0 , and

(A.1) entails that β̂(1) = β
(1)
0 +OP (n−1/2). Then, Using Lemma A.1, we have that

∂ĝ(βτXi ,β)

∂β(1)

∣∣∣∣
β(1)=β̃

(1)

0
(A.5)

= J τ
β0

[
Xi − V

(
βτ

0Xi

)]
g′(βτ

0Xi

) + OP

(
h2 +

√
(logn)1+s

nh3

)
.
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By using the fact that β̃
(1)

0
P−→ β

(1)
0 and β̃0

P−→ β0 and (A.5), we have

Sn2
(
β̃

(1)

0
) P−→ J τ

β0
E

[
g′2(

βτ
0X

)
σ−2(

βτ
0X

)[
X − V

(
βτ

0X
)]⊗2]

Jβ0
. (A.6)

Moreover, a direct calculation for Sn1(β̃
(1)

0 ) and Lemma A.1 entail that

Sn1(β̃
(1)

0 ) = oP (1). Together with (A.3) and (A.6), we have completed the proof
of Theorem 2.1. �

A.2 Proof of Theorem 3.1

Lemma A.2. Suppose that Conditions (A1)–(A5) hold. Let Fε̂(s|Hn) be the dis-

tribution function of ε̂ = Y−ĝ(β̂
τ

0X,β̂0)

σ̂ (β̂
τ

0X,β̂0)
conditional on the data Hn = {Xi , Yi}ni=1

(i.e., considering ĝ(β̂
τ

0x, β̂0), σ̂ (β̂
τ

0x, β̂0) as fixed functions on x). Then, we have

sup
−∞<s<+∞

∣∣∣∣∣n−1
n∑

i=1

[
I {ε̂i ≤ s} − I {εi ≤ s} − Fε̂(s|Hn) + Fε(s)

]∣∣∣∣∣
(A.7)

= oP

(
n−1/2)

.

Proof. Define dn1(x) = ĝ(β̂
τ

0x,β̂0)−g(βτ
0x)

σ (βτ
0x)

, dn2(x) = σ̂ (β̂
τ

0x,β̂0)

σ (βτ
0x)

and

F = {
I
{
ε ≤ sd2(X) + d1(X)

} − I {ε ≤ s} − P
(
ε ≤ sd2(X) + d1(X)

)
+ P(ε ≤ s);−∞ < s < +∞, d1, d2 ∈ C1+δ

1

(
Rp

c

)}
,

where C1+δ
1 (R

p
c ) is the class of all differential functions d(·) defined on the do-

main R
p
c of x and ‖d‖1+δ ≤ 1. Here R

p
c is a compact set of Rp and

‖d‖1+δ = max

{
sup

x∈Rp
c

∣∣d(x)
∣∣ + p∑

l=1

sup
x∈Rp

c

∣∣∣∣∂d(x)

∂xl

∣∣∣∣
}

+ sup
x1,x2∈Rp

c

|∂d(x1) − ∂d(x2)|
‖x1 − x2‖δ

.

Using Lemma A.1 and β̂0 = β0 + OP (n−1/2), we have ĝ(β̂
τ

0x, β̂0) = g(βτ
0x) +

OP (h2 +
√

(logn)1+s

nh
) and ĝ′(β̂τ

0x, β̂0) = g′(βτ
0x) + OP (h2 +

√
(logn)1+s

nh3 ) uni-

formly in x ∈ R
p
c . From Theorem 2.1, we have |σ̂ (β̂

τ

0x, β̂0) − σ(βτ
0x)| =

OP (h2 +
√

(logn)1+s

nh
), |σ̂ ′(β̂τ

0x, β̂0) − σ ′(βτ
0x)| = OP (h2 +

√
(logn)1+s

nh3 ). So,

P(dn1 ∈ C1+δ
1 (R

p
c )) → 1, P(dn2 ∈ C1+δ

1 (R
p
c )) → 1 as n → ∞, h → 0 and

nh3

(logn)1+s → ∞.
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By directly using the Corollary 2.7.2 of van der Vaart and Wellner (1996),
we have that the bracketing number N[ ](ε2,C1+δ

1 (R
p
c ),L2(P )) will be at most

exp(c0ε
− 2p

1+δ ) for some positive constant c0, Following the proof of Lemma 1 in
Appendix B of Akritas and Van Keilegom (2001) and the proof of Lemma A.3 in
Neumeyer and Van Keilegom (2010), the afore-defined class F is a Donsker class,
i.e.,

∫ ∞
0

√
N[ ](ε̄,F ,L2(P )) dε̄ < ∞. Then, we finish the proof of (A.7). �

Proof of Theorem 3.1. Using Lemma A.2, we have that

F̂ε(s) − Fε(s)

= 1

n

n∑
i=1

I {ε̂i ≤ s} − Fε(s) (A.8)

= 1

n

n∑
i=1

I {εi ≤ s} − Fε(s) + (
Fε̂(s|Hn) − Fε(s)

) + Rn,1(s).

Rn,1(s) = 1
n

∑n
i=1[I {ε̂i ≤ s} − I {εi ≤ s}] + Fε(s) − Fε̂(s|Hn) = oP (n−1/2) uni-

formly in s ∈ R. For Fε̂(s|Hn) − Fε(s), Taylor expansion entails that

Fε̂(s|Hn) − Fε(s)

=
∫ [

Fε

(
s + s

[
dn2(x) − 1

] + dn1(x)
) − Fε(s)

]
dFX(x)

= fε(s)s

∫ [
dn2(x) − 1

]
dFX(x) + fε(s)

∫
dn1(x) dFX(x) (A.9)

+
∫

f ′
ε

(
s + s∗

n(s,x)
){

s
[
dn2(x) − 1

] + dn1(x)
}2

dFX(x)

= Rn,2(s) + Rn,3(s) + Rn,4(s),

where s∗
n(s,x) is between 0 and s[dn2(x) − 1] + dn1(x).

Step 2.1. Recall the definition of ĝ(u,β) and dn1(x), we have that

dn1(x)

=
Tn,01(β̂

τ

0x, β̂0) − Tn,00(β̂
τ

0x, β̂0)g(β̂
τ

0x) + T 2
n,10(β̂

τ

0x,β̂0)

Tn,20(β̂
τ

0x,β̂0)
g(β̂

τ

0x)

σ (βτ
0x)(Tn,00(β̂

τ

0x, β̂0) − T 2
n,10(β̂

τ

0x,β̂0)

Tn,20(β̂
τ

0x,β̂0)
)

(A.10)

− Tn,10(β̂
τ

0x, β̂0)Tn,11(β̂
τ

0x, β̂0)

Tn,20(β̂
τ

0x, β̂0)Tn,00(β̂
τ

0x, β̂0) − T 2
n,10(β̂

τ

0x, β̂0)

+ g(β̂
τ

0x) − g(βτ
0x)

σ (βτ
0x)

.
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From Theorem 2.1, we have β̂0 = β0 + OP (n−1/2). Using Lemma A.1, we have
that

1

nh
Tn,1m

(
β̂

τ

0x, β̂0
) = OP

(
h +

√
(logn)1+s

nh

)
, m = 0,1.

Moreover
1

n
Tn,01

(
β̂

τ

0x, β̂0
) − 1

n
Tn,00

(
β̂

τ

0x, β̂0
)
g
(
β̂

τ

0x
)

= 1

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)
σ

(
βτ

0Xi

)
εi

− 1

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)[
g
(
β̂

τ

0Xi

) − g
(
βτ

0Xi

)]
(A.11)

+ 1

n

n∑
i=1

[
Kh

(
β̂

τ

0Xi − β̂
τ

0x
) − Kh

(
βτ

0Xi − βτ
0x

)]
σ

(
βτ

0Xi

)
εi

+ 1

n

n∑
i=1

Kh

(
β̂

τ

0Xi − β̂
τ

0x
)[

g
(
β̂

τ

0Xi

) − g
(
β̂

τ

0x
)]

def= Dn,1 − Dn,2 + Dn,3 + Dn,4.

For Dn,2, as h → 0, (logn)1+s

nh
→ 0, Taylor expansion and Lemma A.1 entail that

Dn,2 = 1

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)
g′(βτ

0Xi

)
Xτ

i (β̂0 − β0)

+ OP

(‖β̂0 − β0‖2
2
)

(A.12)

= fβτ
0X

(
βτ

0x
)
g′(βτ

0x
)
V τ (

βτ
0x

)
(β̂0 − β0) + oP

(
n−1/2)

.

Let K ′
h(·) = h−1K ′(·), and β̃0 is between β̂0 and β0. Using lemma A.1, we have

Dn,3 = 1

nh

n∑
i=1

σ
(
βτ

0Xi

)
εiK

′
h

(
β̃

τ

0Xi − β̃
τ

0x
)
(Xi − x)τ (β̂0 − β0)

(A.13)
= oP

(
n−1/2)

,

and as h(logn)1+s → 0, nh4 → 0,

Dn,4 = hg′(β̂τ

0x
)1

n

n∑
i=1

Kh

(
β̂

τ

0Xi − β̂
τ

0x
)( β̂

τ

0Xi − β̂
τ

0x

h

)
+ OP

(
h2)

(A.14)

= OP

(
h2 + h

(
h +

√
(logn)1+s

nh

))
= oP

(
n−1/2)

.
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Note that 1
nh

Tn,00(β̂
τ

0x, β̂0) = fβτ
0X(βτ

0x) + OP (h2 +
√

(logn)1+s

nh
), together with

(A.10)–(A.14), we have that

dn1(x) =
1
n

∑n
i=1 Kh(β

τ
0Xi − βτ

0x)σ (βτ
0Xi )εi

fβτ
0X(βτ

0x)σ (βτ
0x)

(A.15)

+ g′(βτ
0x)[x − V (βτ

0x)]τ (β̂0 − β0)

σ (βτ
0x)

+ oP

(
n−1/2)

.

Step 2.2. Similar to the analysis of (A.10), we have that

σ̂ 2(
β̂

τ

0x, β̂0
) − σ 2(

βτ
0x

)
= f −1

βτ
0X

(
βτ

0x
)1

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)
σ 2(

βτ
0Xi

)(
ε2
i − 1

)

− f −1
βτ

0X

(
βτ

0x
)2

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)
σ

(
βτ

0Xi

)
εi

× (
ĝ
(
β̂

τ

0Xi , β̂0
) − g

(
βτ

0Xi

))
+ oP

(
n−1/2)

def= Dn,5 − Dn,6 + oP

(
n−1/2)

.

Directly using (A.15), we have that

Dn,6 = f −1
βτ

0X

(
βτ

0x
)2

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)
σ

(
βτ

0Xi

)
g′(βτ

0Xi

)
εi

×(
Xi − V

(
βτ

0Xi

))τ
(β̂0 − β0)

+ f −1
βτ

0X

(
βτ

0x
) 2

n2

n∑
i=1

n∑
s=1

f −1
βτ

0X

(
βτ

0Xi

)
Kh

(
βτ

0Xi − βτ
0x

)

×Kh

(
βτ

0Xs − βτ
0Xi

)
σ

(
βτ

0Xi

)
σ

(
βτ

0Xs

)
εiεs

def= Dn,6[1] + Dn,6[2].
Using Lemma A.1 and β̂0 = β0 + OP (n−1/2), we have that Dn,6[1] = oP (n−1/2).
The projection of U -statistics with second order (Serfling (1980), Section 5.5.2)
entails that nDn,6[2] converges in distribution to a weighted sum of independent
χ2 random variables, i.e., Dn,6[2] = OP (n−1) = oP (n−1/2). Then,

d2
n2(x) − 1

= σ̂ 2(β̂
τ

0x, β̂0) − σ 2(βτ
0x)

σ 2(βτ
0x)

(A.16)
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= 1

σ 2(βτ
0x)fβτ

0X(βτ
0x)

1

n

n∑
i=1

Kh

(
βτ

0Xi − βτ
0x

)
σ 2(

βτ
0Xi

)(
ε2
i − 1

)

+ oP

(
n−1/2)

.

Using (A.16), we have that

dn2(x) − 1 = 1

2σ 2(βτ
0x)fβτ

0X(βτ
0x)

1

n

(A.17)

×
n∑

i=1

Kh

(
βτ

0Xi − βτ
0x

)
σ 2(

βτ
0Xi

)(
ε2
i − 1

) + oP

(
n−1/2)

.

Step 2.3. Note that E[X − V (βτ
0X)] = 0, then

∫ g′(βτ
0x)[x−V (βτ

0x)]
σ(βτ

0x)
dFX(x) =

E[g′(βτ
0X)[X−V (βτ

0X)]
σ(βτ

0X)
] = 0. Together with (A.9), (A.15) and (A.17), we have

Fε̂(s|Hn) − Fε(s)

= sfε(s)
1

2n

n∑
i=1

(
ε2
i − 1

)
σ 2(

βτ
0Xi

) ∫
Kh(β

τ
0Xi − βτ

0x)

σ 2(βτ
0x)fβτ

0X(βτ
0x)

dFX(x)

+ fε(s)
1

n

n∑
i=1

σ
(
βτ

0Xi

)
εi (A.18)

×
∫

Kh(β
τ
0Xi − βτ

0x)

fβτ
0X(βτ

0x)σ (βτ
0x)

dFX(x) + oP

(
n−1/2)

= sfε(s)
1

2n

n∑
i=1

(
ε2
i − 1

) + fε(s)
1

n

n∑
i=1

εi + oP

(
n−1/2)

.

Moreover, (A.15), (A.17) and Condition (C5) entail Rn,4(s) = oP (n−1/2) uni-
formly in s. Together with (A.8), (A.9) and (A.18), we have completed the proof
of Theorem 3.1. �

A.3 Proof of Theorem 3.2

Recalling F ∗
ε (s) = E[Fε(s+mc − g(βτ

0X)

σ (βτ
0X)

)], mc = E[g(βτ
0X)]

E[σ(βτ
0X)] , and we further define

Ȳ = 1
n

∑n
i=1 Yi and ¯̂σ = 1

n

∑n
i=1 σ̂ (β̂0Xi , β̂0).

F̂0ε(s) − F ∗
ε (s) = 1

n

n∑
i=1

I {ε̂0i ≤ s} − F ∗
ε (s)

= 1

n

n∑
i=1

I

{
εi + g(βτ

0Xi )

σ (βτ
0Xi )

− mc ≤ s

}
− F ∗

ε (s) (A.19)

+ [
F0ε̂ (s|Hn) − F ∗

ε (s)
] + Qn,1(s),
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where F0ε̂ (s|Hn) be the distribution function of ε̂0 = Y

σ̂ (β̂
τ

0X,β̂0)
− Ȳ / ¯̂σ conditional

on the data Hn = {Xi , Yi}ni=1, and

Qn,1(s) = 1

n

n∑
i=1

[
I {ε̂0i ≤ s} − I

{
εi + g

(
βτ

0Xi

)
/σ

(
βτ

0Xi

) − mc ≤ s
}]

+ F ∗
ε (s) − F0ε̂ (s|Hn) = oP

(
n−1/2)

,

uniformly in s ∈ R. Similar to Lemma A.2, we have sup−∞<s<∞|Qn,1(s)| =
oP (n−1/2). Directly using (A.17) and the projection of U -statistics (Serfling
(1980), Section 5.3.1), we have that

¯̂σ − E
[
σ

(
βτ

0X
)]

= 1

n2

n∑
i=1

n∑
j=1

1

2σ(βτ
0Xi)fβτ

0X(βτ
0Xi )

Kh

(
βτ

0Xi − βτ
0Xj

)
σ 2(

βτ
0Xj

)

× (
ε2
j − 1

)
(A.20)

+ 1

n

n∑
i=1

σ
(
βτ

0Xi

) − E
[
σ

(
βτ

0X
)] + oP

(
n−1/2)

= 1

n

n∑
i=1

σ
(
βτ

0Xi

) − E
[
σ

(
βτ

0X
)] + 1

2n

n∑
i=1

σ
(
βτ

0Xi

)(
ε2
i − 1

) + oP

(
n−1/2)

.

From (A.20), we have that ¯̂σ − E[σ(βτ
0X)] = OP (n−1/2) and

Ȳ / ¯̂σ − mc

(A.21)

= Ȳ − E[Y ]
E[σ(βτ

0X)] − E[Y ]
(E[σ(βτ

0X)])2

( ¯̂σ − E
[
σ

(
βτ

0X
)]) + oP

(
n−1/2)

.

Then, (A.20) and (A.21) entail that Ȳ / ¯̂σ − mc = oP (1). As a result, we use the
Taylor expansion and have that

F0ε̂ (s|Hn) − F ∗
ε (s)

=
∫

Fε

(
s + mc − g(βτ

0x)

σ (βτ
0x)

+ (s + Ȳ / ¯̂σ)
[
dn2(x) − 1

] + Ȳ

¯̂σ − mc

)
dFX(x)

− F ∗
ε (s)

=
∫

fε

(
s + mc − g(βτ

0x)

σ (βτ
0x)

)
(A.22)

×
[
(s + Ȳ / ¯̂σ)

[
dn2(x) − 1

] + Ȳ

¯̂σ − mc

]
dFX(x)
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+
∫

f ′
ε

(
s + mc − g(βτ

0x)

σ (βτ
0x)

+ s∗∗
n (s,x)

)

×
[(

s + Ȳ

¯̂σ
)[

dn2(x) − 1
] + Ȳ

¯̂σ − mc

]2
dFX(x)

= Qn,2(s) + Qn,3(s),

where s∗∗
n (s,x) is between 0 and (s + Ȳ / ¯̂σ)[dn2(x) − 1] + Ȳ / ¯̂σ − mc. Recalling

the definition of mfε,c(s) = E[fε(s + mc − g(βτ
0X)

σ (βτ
0X)

)], then

Qn,2(s)

= s + Ȳ / ¯̂σ
2n

n∑
i=1

∫
fε

(
s + mc − g(βτ

0x)

σ (βτ
0x)

)
Kh(β

τ
0Xi − βτ

0x)

σ 2(βτ
0x)fβτ

0X(βτ
0x)

dFX(x)

× σ 2(
βτ

0Xi

)(
ε2
i − 1

) + (Ȳ / ¯̂σ − mc)mfε,c(s) + oP

(
n−1/2)

(A.23)

= 1

2n

n∑
i=1

(s + mc)fε

(
s + mc − g(βτ

0Xi )

σ (βτ
0xi )

)(
ε2
i − 1

)

+ mfε,c(s)(Ȳ / ¯̂σ − mc) + oP

(
n−1/2)

.

Similar to the analysis of (A.23), we have that Qn,3(s) = oP (n−1/2) uniformly in
s ∈ R. From (A.19)–(A.23), we have completed the proof of Theorem 3.2.

A.4 Proofs of Theorems 3.4–3.5

Proof. Under the local alternative hypothesis H1n, we have that

n−1/2Wn

(
β

(1)
0

)
= n−1/2

n∑
i=1

J τ
β0

cσ ′(βτ
0Xi

)[
Xi − V

(
βτ

0Xi

)]
σ−1(

βτ
0Xi

)
εi

(A.24)

+ n−1
n∑

i=1

J τ
β0

cσ ′(βτ
0Xi

)[
Xi − V

(
βτ

0Xi

)]
σ−2(

βτ
0Xi

)
γ (Xi )

+ oP (1).

It is easily seen that the second summation of (A.24) converges in probability to

cJ τ
β0

E

[
σ ′(βτ

0X)

σ 2(βτ
0X)

(
X − V

(
βτ

0X
))

γ (X)

]
.

Moreover, using the fact that Yi = cσ(βτ
0Xi )+n−1/2γ (βτ

0Xi )+σ(βτ
0Xi )εi under

the local alternative hypothesis H1n, similar to the analysis of (A.10) and (A.17),
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we have that

dc,n1(x) = ĝ(β̂
τ

0x, β̂0) − cσ(βτ
0x)

σ (βτ
0x)

=
1
n

∑n
i=1 Kh(β

τ
0Xi − βτ

0x)[σ(βτ
0Xi )εi + n−1/2γ (Xi )]

fβτ
0X(βτ

0x)σ (βτ
0x)

+ cσ ′(βτ
0x)[x − V (βτ

0x)]τ (β̂0 − β0)

σ (βτ
0x)

+ oP

(
n−1/2)

(A.25)

=
1
n

∑n
i=1 Kh(β

τ
0Xi − βτ

0x)σ (βτ
0Xi )εi

fβτ
0X(βτ

0x)σ (βτ
0x)

+ cσ ′(βτ
0x)[x − V (βτ

0x)]τ (β̂0 − β0)

σ (βτ
0x)

+ 1√
n

E[γ (X)|βτ
0X = βτ

0x]
σ(βτ

0x)
+ oP

(
n−1/2)

,

and similar to the analysis of (A.25), we have that dn2(x)− 1 has the same asymp-
totic expression with (A.17) under the local alternative hypothesis H1n. Moreover,
together with (A.25), (A.9) becomes to

Fε̂(s|Hn) − Fε(s)

def=
∫

Fε

(
s + s

[
dn2(x) − 1

] + dc,n1(x) − n−1/2 γ (x)

σ (βτ
0x)

)
dFX(x)

− Fε(s)
(A.26)

= fε(s)

(∫
dc,n1(x) dFX(x) − 1√

n
E

[
γ (X)

σ (βτ
0X)

])

+ fε(s)s

∫ [
dn2(x) − 1

]
dFX(x) + oP

(
n−1/2)

= sfε(s)
1

2n

n∑
i=1

(
ε2
i − 1

) + fε(s)
1

n

n∑
i=1

εi + oP

(
n−1/2)

.

We see that the asymptotic expression (A.26) is also the same as the one obtained
in Theorem 3.1. Moreover, similar to the analysis of (A.20) and (A.21), using
(A.26) and that Ȳ = c

n

∑n
i=1 σ(βτ

0Xi ) + 1√
n

1
n

∑n
i=1 γ (Xi ) + 1

n

∑n
i=1 σ(βτ

0Xi )εi ,
we have that

F0ε̂ (s|Hn) − Fε(s)

=
∫

Fε

(
s + (s + Ȳ / ¯̂σ)

[
dn2(x) − 1

] + Ȳ / ¯̂σ − c − 1√
n

γ (x)

σ (βτ
0x)

)
dFX(x)
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− Fε(s)

= fε(s)

∫ [
(s + Y/σ)

[
dn2(x) − 1

] + Ȳ / ¯̂σ

− c − 1√
n

γ (x)

σ (βτ
0x)

]
dFX(x) (A.27)

+ oP

(
n−1/2)

= fε(s)

[
s

2n

n∑
i=1

(
ε2
i − 1

) + 1

n

n∑
i=1

σ(βτ
0Xi )

E[σ(βτ
0X)]εi

]

− fε(s)

[
c

2n

n∑
i=1

(
σ(βτ

0Xi )

E[σ(βτ
0X)] − 1

)(
ε2
i − 1

)]

+ fε(s)√
n

[
E[γ (X)]

E[σ(βτ
0X)] − E

[
γ (X)

σ (βτ
0X)

]]
+ oP

(
n−1/2)

.

Together with (A.26) and (A.27), we have completed the proof of Theorem 3.4. �
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