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Wavelet estimation for derivative of a density
in the presence of additive noise

B. L. S. Prakasa Rao

CR Rao Advanced Institute of Mathematics, Statistics and Computer Science

Abstract. We construct a wavelet estimator for the derivative of a probabil-
ity density function in the presence of an additive noise and study its L p-
consistency property.

1 Introduction

Methods of nonparametric estimation of a density function and regression function
are widely discussed in the literature (cf. Prakasa Rao (1983, 1999a)). It is known
that the estimation of derivatives of a density are also of importance and interest to
detect possible bumps and to detect monotonicity, concavity or convexity proper-
ties of the density function. Asymptotic properties of the kernel type estimators for
the derivatives of density have been investigated earlier (cf. Prakasa Rao (1983)).
Our aim in this paper is to discuss wavelet linear estimators for the derivative of
a probability density function in the presence of an additive noise. Estimators of
density using wavelets was studied for independent and identically distributed ran-
dom variables in Antoniadis et al. (1994), for some stationary dependent random
variables in Leblanc (1996) and for stationary associated sequences in Prakasa Rao
(2003). Chaubey et al. (2006, 2008) extended these results to derivatives of den-
sity estimators for associated sequences and for negatively associated processes.
The advantages and disadvantages of the use of wavelet based probability density
estimators are discussed in Walter and Ghorai (1992) in the case of independent
and identically distributed observations. However, it was shown in Prakasa Rao
(1996, 1999b) that one can obtain precise limits on the asymptotic mean inte-
grated squared error for a wavelet based linear estimator for the density function
and its derivatives as well as some other functionals of the density (cf. Theo-
rem 3.1, Prakasa Rao (1996)). By “precise limit”, we mean that the mean inte-
grated squared error, after suitable scaling, converges to a finite limit as the sample
size tends to infinity and this limit can be computed explicitly. Tribouley (1995)
studied estimation of multivariate densities using wavelet methods. Prakasa Rao
(2000) investigated nonparametric estimation of the partial derivatives of a mul-
tivariate probability density. Donoho et al. (1996) investigated density estimation
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by wavelet thresholding. For a discussion on statistical modeling by wavelets, see
Vidakovic (1999).

In recent papers, Chesneau and Doosti (2012) studied wavelet estimation of
density for a GARCH model under various dependence structures and Chesneau
(2013) investigated wavelet estimation of a density in a GARCH-type model lead-
ing to upper bounds on the mean integrated squared error. Shirazi et al. (2012) ob-
tained wavelet based estimation of the derivative of a density by blockthresholding
under random censorship. We studied estimation of the derivative of a density in
GARCH-type model, which can be considered as a generalization of multiplica-
tive censoring model, in Prakasa Rao (2017). Vardi (1989) (cf. Vardi and Zhang
(1992)) introduced the multiplicative censoring model which unifies several mod-
els including nonparametric inference for renewal processes, non-parametric de-
convolution problems and estimation of decreasing density functions. Chaubey
et al. (2015) studied adaptive wavelet estimation of a density from mixtures un-
der multiplicative censoring model generalizing the results in Prakasa Rao (2010).
Asgharian et al. (2012) investigated asymptotic properties of the kernel density es-
timators under multiplicative censoring model. Andersen and Hansen (2001) stud-
ied density estimation for multiplicative censoring model using a series expansion
approach. Chaubey et al. (2011) give a survey of recent results on linear wavelet
density estimation.

Estimation of a probability density function, in the presence of an additive noise,
via wavelets has been recently investgated in Li and Liu (2014), Geng and Wang
(2015) and Hosseinioun (2016). Density estimation for a statistical model with
additive noise plays an important role in statistics and econometrics (cf. Li and
Racine (2007)). For earlier work on this problem, see Fan and Koo (2002) and
Lounici and Nickl (2011). In practical situations, it is not possible to observe data
directly. Suppose we have observed data consisting of independent and identically
distributed observations Yi, ..., Y, based on the model

Y=X+e¢,

where X is a real valued random variable with unknown probability density func-
tion fx and ¢ is an independent random noise with a known probabilty density
function g. The problem of estimation of the density fx based on the observed
data Yi, ..., Y, has been investigated by the authors cited earlier among others.
Our aim is to investigate the problem of estimation of the derivatives of the density
fx, whenever they exist, based on the observed data Y7, ..., ¥,. As we mentioned
earlier, this problem is also of importance and interest to detect possible bumps
of the unknown density function fx and to detect monotonicity, concavity or con-
vexity properties of the density function fx.Let fy denote the probability density
function of the random variable Y. Note that fy is the convolution of the prob-
ability density functions fx and g, i.e., fy = fx * g in the standard notation for
convolution.
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2 Preliminaries on wavelets

A wavelet system is an infinite collection of translated and scaled versions of func-
tions ¢ (-) and v (-) called the scaling function and the primary wavelet function
respectively. In the following discussion, we assume that ¢ (-) is real-valued. The
function ¢ (x) is a solution of the equation

¢ (x) = i Cigp(2x — k) @.1)
with o
/O;¢(x)dx =1 (2.2)
and the function 1 (x) is defined by
¥ (x) =ki (=D Copp162x — k). (2.3)

The choice of the sequence {Cy} determines the wavelet system. It is easy to see
that

o0
> Ce=2. (2.4)
k=—o00
Define
Pi(x) =222/ x —k),  —oo<jk<oo (2.5)
and
Yin(x) =224 (20x —k),  —oo<j,k<oo. (2.6)

Suppose the coefficients {Cy} satisfy the condition

0.¢]
> CiCrype=2 ift=0
k=—00 (2.7)
=0 if ££0.
It is known that, under some additional conditions on ¢(-), the collection
{Vj .k, —00 < j, k < 00} is an orthonormal basis for L2(R), and {@jr, —00 <k <

oo} is an orthonormal system in L2(R), for each —oo < j < oo (cf. Daubechies
(1988, 1992)).

Definition 2.1. The scaling function ¢ is said to be r-regular for an integer r > 1,
if for every nonnegative integer ¢ < r, and for any integer k > 1,

B <a(l+1x))*,  —co<x<oo (2.8)
for some c; > 0 depending only on k. Here ¢(E)(-) denotes the £th derivative of

¢().
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Definition 2.2. A multiresolution analysis of L?(R) consists of an increasing se-
quence of closed subspaces {V} of L?(R) such that

() N o Vj = {O};
(i) UfZ oo Vi = L2 (R):
(iii) there is a scaling function ¢ € Vj such that {¢ (x — k), —00 < k < 00} is
an orthonormal basis for Vj;
(iv) forall A(-) € L*(R), —00 < k < 00, h(x) € Vo = h(x — k) € Vp; and
(V) h(:) e V; = h(2x) € V4.

Mallat (1989) has shown that, given any multiresolution analysis, it is possible
to find a function v (-) (called primary wavelet function) such that, for any fixed
J»—00 < j < 00, the family {v;x, —00 < k < oo} is an orthonormal basis of
the orthogonal complement W; of V; in V;; so that {/;;, —00 < j, k < 00} is
an orthonormal basis of L2(R) (cf. Daubechies (1988, 1992)). When the scaling
function ¢ (-) is r-regular, the corresponding multiresolution analysis is said to be
r-regular.

Let f € La(R). The function f can be expanded in the form (cf. Daubechies
(1992)):

o

=Y aubsi+>, > bjavijx (2.9

k=—o00 j=sk=—o00

for any integer —oo < s < 0o. Observe that the wavelet coefficients are given by

a= [ F@Batx)dx (2.10)
and
bjr= /_oof(x)wj,k(x)dx. (2.11)

Suppose that the functions ¢ and ¥ belong to C”, the space of functions with r
continuous derivatives for some r > 1, and have compact support contained in an
interval [—8, §] for some § > 0. It follows, from the Corollary 5.5.2 in Daubechies
(1992), that the function yr(-) is orthogonal to polynomials of degree less than or
equal to r. In particular

o0
f veoxtdy =0,  0=0.1,....r
—0oQ

This brief discussion on wavelets is based on Antoniadis et al. (1994). For more
details, see Daubechies (1992) and Strang (1989).
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3 More on wavelets

Let ¢ () be a scaling function as defined earlier. Define

Op(x)= Y |p(x —k).

k=—o00
Suppose the following conditions hold:

(C1) The esssup, 0y(x) < oo where
esssup g(x) =inf{y : A([x : g(x) > y]) = 0}

and A is the Lebesgue measure on the real line.
(C2) There exists a bounded nonincreasing function ®(-) such that |¢(u)| <
@ (|u]) almost every where and

o0
/ lu|" ®(Jul) du < oo
0

for some integer r > 0.

The following Lemmas 3.1 to 3.3 follow from the results in Hardle et al. (1998).

Lemma 3.1. Suppose the condition (C1) holds. Then, for any sequence {Ag,
seZlel,,

e

Cillile, 2777 < | Chada| = Callan, 2875,
k p

where

Cr = (1617 101,/4) ™!
and

Co = (194112 16117) ",

where 1 < p < 00, %—I—é = 1 with suitable interpretation for p and q in the bound-
ary case.

Since the scaling function ¢ satisfies the condition (C1), the kernel function

K@, y) =) ¢ —kp(y—k
k

is well defined and it is called the orthonormal projection associated with the func-
tion ¢. Let

Ky(x,y)=2"K(2°x,2%y)
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for any integer s > 0. For any function 2 € L ,(R), 1 < p < 00, define
0
Ksh(x) = / Ks(x, h(y)dy =) ds ks i (x), (3.1
-0 s
where
0
asi= [ burh()dx.
—0oQ0
Lemma 3.2. Suppose the condition (C2) holds. Then

@) /._OO Kx,y)dy=1 a.e.

and

Gi)  |K@x.y)|< clq><|xc_2y|> ae.,

where C| and Cy are positive constants depending on ®.
Let F(x) = C]CD(%). Then the function F € L{(R) N Lso(R) and |K (x, y)| <
F(x—y)ae.
Lemma 3.3. Suppose the condition (C2) holds and h € L ,(R),1 < p < 0. Then
nll)ngo |Ksh —h|,=0.

Suppose the function 44 exists and 1@ e L,(R) for some 1 < p <o0. Asa
consequence of Lemma 3.3, it follows that

; d _ @) —
Tlim_ [Kh@ —n @], =0. (3.2)

It can be shown that Lemma 3.3 holds for 2 € Lo, (R) if the function A(-) is uni-
formly continuous. We will now state another result known as Rosenthal’s inequal-
ity (Rosenthal (1970)) which will be used in the sequel.

Lemma 3.4. Let X,..., X, be independent random variables with mean zero
and further suppose that | X;| < M < 00,1 <i <n. Then there exists a constant
Cp > 0, such that

() E(

n P n n /2
x)zc (e (Leed) ) o2
(ii) E(

i=1

and
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4 Estimation of the dth derivative of a probability density function

For any function A (-) € L{(R), define the Fourier transform
- o0 .
h(t) =f h(x)e " dx, —00 <t < 00.
—00

It is known that fy(t) = fx (t)g(t),t € R. Suppose that the Fourier transform g(t)
of the probability density function g is non-vanishing for all r € R.

Let {X;,1 <i < n} be independent and identically distributed random vari-
ables with probability density function fx which is d-times differentiable. Sup-
pose that the derivative f)((d) of fx exists, bounded, has compact support and

f)((d) € L2(R). Let us first consider the estimation of the probability density func-
tion fx. A wavelet based density estimator of the density function fx can be mo-
tivated in the following way from the expansion given in the equation (2.9) (cf.
Prakasa Rao (2003)). We can estimate fx(x) by fx(x) where

Fx) =3 agups i), (4.1)
keNg
where
1 n
o= D bsx(Xi). (4.2)
i=1

Here Nj is the set of integers k such that supp( fx) Nsupp(¢s x) is nonempty. Since
the functions fx and ¢ have compact supports, the cardinality of the set N is finite
and it is of the order O (2%).

Let us now consider the problem of estimation of the derivative f)((d) of fx.
As in Prakasa Rao (1996), we assume that f)‘(i € Ly(R) and that there exist
D; >0, 8; >0, such that

AP @ <DjxFi, x|=1,0<j <d,

where 8o > 4d + 1. Suppose the multiresolution analysis generated by the scal-
ing function ¢ is r-regular for some r > d. Then, by definition, ¢ € C"), ¢ and
its derivatives ¢/) up to order r are rapidly decreasing, that is, for every integer
m > 1, there exists a constant A,, > 0, such that

V@) < An(1+ 1)),  0<j<r
If d > 1, then it is clear that

lim o)) 4V =0,  0<j<d—1
x| o0

for any fixed s and k. The projection of f)((d) on V; is
D= i), 4.3)

keN;
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where

ds = f FD )by 1 () dx
(4.4)

—(—1y¢ / Fr (09D @) dx.

The last equality given above can be justified by using integration by parts since
the function ¢ (-) is r-regular (cf. Prakasa Rao (1996)). This expression motivates
the following estimator for f}((d) (x):

A0 = @k s i), (4.5)
keNg
where
1
at,= (n) 30 (X0,
i=1

Note that the estimator defined above in the equation (4.5) reduces to the density
estimator given in (4.1) for d = 0. Since the random sample X;, 1 <i <n is un-
observable and the observed data is ¥; = X; + ¢;, 1 <i < n, we now modify the
estimator f)((dz (x).

By Plancherel formula,

aw =" [ rsfeax

d
- [T Awddwar
_(—1>d * fy () 2@
2 2 g(z)¢ k(=0 dt.

For any function ¥ (-) which is d-times differentiable, define v x(x) = 2812 %

¥ (2°x — k) for integers s, k and let Ws(,dk) (x) denote the dth derivative of the func-
tion ¥ x (x). Define the operator H; by the transformation

d

1 / i1y Vai (O 0.
21 g(= t)
for all integers —oo < s, k < 0o. It can be checked that

(Hsy @), () = &, yER

d jku2S ~— s v
Iﬁ( )(M) — oiku2n dHZWs(,k)(“zs)
which we will use in the computations later. Let

. =D &

g k =

(Hyp @), (Y. (4.6)
i=1
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We will consider the modified estimator fy- ) ;(x) defined by
AO@ =Y agador)

keN;
=D & @
= 3| D)0 9 @
(=D & @
I Z[Z(qub )s,k(Yi)flﬁs,k(x)}
i=1"keN;

as an estimator of f)((d) (x).

Lemma 4.1. If the function f)((d) € L2(R), then the estimator as y defined by the
equation (4.6) is an unbiased estimator of the wavelet coefficient ag j given by the
equation (4.4).

Proof. Note that

o EDEE @
Elay il = E| —= 3 (H¢'"), , (YD)

i=1

= (—D?E[(Hs¢'V), ,(Y1)]

= (_2711)d f_o;[foo ”y¢(d)( )dt]fy(y)dy

—00 g(—1)
e N[ Ay
- 1>d/ fe t)qbi(_)
_ e

- f_ Fe (=039 0) d

(— 14

/ Fe 39 (0 dt
_ = 1>d

f Fx @D 1) di
- (—1>d N Sx09l ) dx

- O; £ )by () dx

=dy k. O
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We will now discuss L ,-consistency of the estimator f,((dz (x) for estimating of

the function f}((d) (x) following the techniques in Geng and Wang (2015). For any
function f € L,(R), we write ||f||§ for [ | f(x)|Pdx.

Theorem 4.1. Suppose that (1) ~ (1 + |t>|)7P/%,t € R for some B > 0 and the
Sfunction f,((d) € L,(R) for some 2 < p < o0. Further suppose that fy € L,/>(R).

1— {-‘

142p+4a 221

Choose the positive integer s such that 2° >~ n for some 0 < e < 1.

Define the estimator fX )(x) as an estimator of the functton f,(( )(x) Then the

estimator fX )(x) is L ,-consistent, that is,

lim E fy (d) i |, =

Proof. Note that

U@uﬂ=E§j@wmuﬂ

~keNy

i
=E Xﬂ};LEJHmWLﬂnﬂ@Mm}

LkeN; i=1

=E(—DdXxH@whAhﬂ%MM

- keNg

=(—=D* 3" E[(H¢P), , (YD)]hs & (x)

keN;

= > a5 ik (x)

keNg

= K, 3P (),

where the operator K is as defined by the equation (3.1).
As a consequence of the equation (3.2) following Lemma 3.3 (cf. Hardle et al.
(1998)), it follows that

im | £ = E[AO, = lim [ A" = K], = (4.8)

n—oo

In the following discussion, we will denote Ay ~ B, if there exist positive con-
stants C; and C» such that

ClBs = As =< CZBS

as s — 00. We will now estimate the term

D _ gl
| £xs = ELfxsll -
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Note that
” (d) [ (d) Hp Z A ks k (x) —
keNy keN;
= D @5k — as.i)¢s. k(x)
keNg
~ 25(%—”[ 3 Jagk — as,kv’] (by Lemma 3.1)
keNy
and hence
EUAD - BN =26 V[ 3 lacs - anl |
ke Ny
= ZS(%_U[ Z E|&s,k — as,k|p:|.
ke Ny
Observe that
. 1 @) 1¢ (d)
sk = asil = |~ Z (Hs ¢ @) o (YD) = =~ > E[(Hs¢@) , (¥D)]
i=1 i=1
Zik|,
where
Zix = (Hs¢'?)  (Y)) — E[(Hy¢ D), , (YD)].
Therefore

% (d)
ity sk (D t’
g(=1)
(d)(t)
R1g(=1)

~— /!qb(‘”(tn (1+1)"2ar

1
(d) _
(@), 0] =| 5 [ e

1
<

=1 /R | @) (1 + u[2*)P?2* du

~ 2ds+% 2,35 .
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Hence,

| Zik| = }(Hs¢(d))s,k(yi) - E[(Hs(p(d))s’k(Y,-)“
= ‘(HS¢(d))s,k(Yi)| + E|(HS¢(d))s,k(Yi)|

7
ifoo 2ds+%eit(2Yi—k)Mdt‘
00 §(=2%r)

. '/OO sds+} it -k 9D
00 g(=2°)

dr| fy(y)dy

~ 9s(3+B+d)

Applying Rosenthal’s inequality (Lemma 3.4), it follows that

Zzlk

[las k — ds, klp

1 | n n p/2

~ _p|:2s(§+ﬂ+d)(p—2) S EIZul? + <Z EIszIZ) ] 4.9)
n i=1 i=1
25(5+B+d)(p—2) 1

:TE|Z1k| +oon (E|Zlk| )P/

We will now estimate Y ", (E|Z1k |2)P/2. Observe that

— (d) 2
A= /R (56 ), ) dy

(d)
g( t)
:24dsfs/ ¢([i)(t2_s) zdl‘
Rl g(=1)
7 2
~ 9s(4d—1) ~¢( () 2 du
RI1g(—u2%)

:24ds/ |(1 + |u2225|)ﬂ/2q§(d)(u)|2 du
R
~ 24ds+2ﬁs.

Hence,
(E1Zul?)""? = (E|(H¢'D), (YD) — E[(H;¢@), ,(Y)]]*)"?
<(E \(Hs¢(”’))s,k(Y1>\2)”/ ?
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= ([ 1t69), P 1) dy)p/2

(] "

<%~ (/\HM k(y)|)fy(y))p/2dy

A

Furthermore,

B0
(d) _ zt
Z| ¢ sk(y)‘ 2'27{ Y ( l‘)

43 5(@) (12—
/n/ (100027,

—47/3 g(=1)

;

7(d) (- 2
" B2 )

~ 2ds —s/2
3

—47/3 g(—1)

7 (d
4r/3 F (k2 D (u)

~ 22ds—s ;(

4 /3

— 22ds—s e ~ 2 du )2
—47/3 g(—u?2’)
ol (=2’ ) . )2
—47/3 g(—u2%)
e

— 22ds+s

/
(f

_ s ;( [
( /0

i125y ¢ (1) 1z2$kdt‘
3(=251) 25t)

e )

4n/3 g( 2St)

~ 2ds+s [Z‘/ 4 /3 i1y D) itk dt}z
k 0 g(_zét)

Qi ¢ (1) itk dtm
—47/3 g(=2%1)

Observe that the function

@) ><r>

e L,[0,2
221 110,271 € L2[0, 2]
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and the series {e_"’zsk, k € Z} is an orthonormal basis for L;[0, 27]. An applica-
tion of the Parseval formula shows that

7(d
/4”/3 oi12'y ¢ () oit2k gy 2 =/4”/3 Si12'
0 g(=2%1) 0

In a similar way, we get that

Z ‘/ oi12'y (f) itk dt‘z _92p
4r/3 g( 25¢ )
Combining the above bounds, it follows that

Z |(Hs¢(d))57k(y)|2 < 2S(2,3+1+2d)
k

A ONE

(> dt =2%F,
3 (—2

k

which in turn implies that
Z(E|Z1k|2)p/2 < A5 19s@B+142d) _ 5s((Bp+D+2d(p—1))
k

Hence,

2s(3+B+d)(p=2) , 1 p/2
. b
Xk:Elas,k —askl’ = Xk:EIZucI +oon Xk:(E|Zlk| )

25(34HB+d)(p—2)9s2B+1+2d)  As(Bp+1+2d(p—1)

<
= Py + Y5

= 7

2s((Bp+1)+2d(p—1)) 2s(%—1—d(p—2))
(14250,
n2—

np/z

As a consequence of the bound obtained above, it follows that

EL S - B <2

) 2 B2 ( 2s<g—1—d<p—2)))
1+

np/2 g—l

n

2s(2ﬁ+1+4d<1’;”) /2
_(—n ) .
1—¢

T
1+2p+4d for some 0 < ¢ < 1, we obtain that

Choosing 2° ~n
: P _ pr oy
Tim E[|£ - ELAD)12) =0, (4.10)
Combining the relations (4.8) and (4.10), we obtain that

Tim E[| A7) — 715 = (4.11)
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by the inequality
IU+Vip=IUlp+1VIp

for U,V € L,(R). This proves the L ,-consistency of the estimator f}((dz for esti-
mating the derivative f )((d). g

Remarks. We have discussed the problem of estimation of derivative of a density
function in the presence of independent additive noise whose distribution is known
using linear wavelet estimators. It is not clear how to estimate the original density
or its derivative if the error density is also unknown. Another problem is to study
adaptive nonlinear wavelet estimators of derivative of a density in the presence of
known or unknown independent additive noise and to construct shape preserving
estimators. These problems need investigation.
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