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High-Dimensional Bayesian Geostatistics

Sudipto Banerjee∗

Abstract. With the growing capabilities of Geographic Information Systems
(GIS) and user-friendly software, statisticians today routinely encounter geograph-
ically referenced data containing observations from a large number of spatial lo-
cations and time points. Over the last decade, hierarchical spatiotemporal process
models have become widely deployed statistical tools for researchers to better un-
derstand the complex nature of spatial and temporal variability. However, fitting
hierarchical spatiotemporal models often involves expensive matrix computations
with complexity increasing in cubic order for the number of spatial locations and
temporal points. This renders such models unfeasible for large data sets. This
article offers a focused review of two methods for constructing well-defined highly
scalable spatiotemporal stochastic processes. Both these processes can be used as
“priors” for spatiotemporal random fields. The first approach constructs a low-
rank process operating on a lower-dimensional subspace. The second approach
constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse
precision matrices for its finite realizations. Both processes can be exploited as
a scalable prior embedded within a rich hierarchical modeling framework to de-
liver full Bayesian inference. These approaches can be described as model-based
solutions for big spatiotemporal datasets. The models ensure that the algorithmic
complexity has ∼ n floating point operations (flops), where n the number of spa-
tial locations (per iteration). We compare these methods and provide some insight
into their methodological underpinnings.

Keywords: Bayesian statistics, Gaussian process, low rank Gaussian process,
Nearest Neighbor Gaussian process (NNGP), predictive process, sparse Gaussian
process, spatiotemporal statistics.

1 Introduction

The increased availability of inexpensive, high speed computing has enabled the col-
lection of massive amounts of spatial and spatiotemporal datasets across many fields.
This has resulted in widespread deployment of sophisticated Geographic Information
Systems (GIS) and related software, and the ability to investigate challenging infer-
ential questions related to geographically-referenced data. See, for example, the books
by Cressie (1993), Stein (1999), Moller and Waagepetersen (2003), Schabenberger and
Gotway (2004), Gelfand et al. (2010), Cressie and Wikle (2011) and Banerjee et al.
(2014) for a variety of statistical methods and applications.

This article will focus only on point-referenced data, which refers to data referenced
by points with coordinates (latitude-longitude, Easting-Northing etc.). Modeling typ-
ically proceeds from a spatial or spatiotemporal process that introduces dependence
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among any finite collection of random variables from an underlying random field. For
our purposes, we will consider the stochastic process as an uncountable set of random
variables, say {w(�) : � ∈ L}, over a domain of interest L, which is endowed with a
probability law specifying the joint distribution for any finite sample from that set. For
example, in spatial modeling L is often assumed to be a subset of points in the Euclidean
space �d (usually d = 2 or 3) or, perhaps, a set of geographic coordinates over a sphere
or ellipsoid. In spatiotemporal settings L = S × T , where S ⊂ �d is the spatial region,
T ⊂ [0,∞) is the time domain and � = (s, t) is a space-time coordinate with spatial
location s ∈ S and time point t ∈ T (see, e.g., Gneiting and Guttorp, 2010, for details).

Such processes are specified with a covariance function Kθ(�, �
′) that gives the co-

variance between w(�) and w(�′) for any two points � and �′ in L. For any finite collec-
tion U = {�1, �2, . . . , �n} in L, let wU = (w(�1), w(�2), . . . , w(�n))

� be the realizations
of the process over U . Also, for two finite sets U and V containing n and m points
in L, respectively, we define the n × m matrix Kθ(U ,V) = Cov(wU , wV | θ), where
the covariances are evaluated using Kθ(·, ·). When U or V contains a single point,
Kθ(U ,V) is a row or column vector, respectively. A valid spatiotemporal covariance
function ensures that Kθ(U ,U) is positive definite for any finite set U . In geostatis-
tics, we usually deal with a fixed set of points U and, if the context is clear, we write
Kθ(U ,U) simply as Kθ. A popular specification assumes {w(�) : � ∈ L} is a zero-
centered Gaussian process written as w(�) ∼ GP (0,Kθ(·, ·)), which implies that the
n × 1 vector w = (w(�1), w(�2) . . . , w(�n))

� is distributed as N(0,Kθ), where Kθ is
the n× n covariance matrix with (i, j)-th element Kθ(�i, �j). Various characterizations
and classes of valid spatial (and spatiotemporal) covariance functions can be found
in Gneiting and Guttorp (2010), Cressie (1993), Stein (1999), Gelfand et al. (2010),
Cressie and Wikle (2011) and Banerjee et al. (2014) and numerous references therein.
The more common assumptions are of stationarity and isotropy. The former assumes
that Kθ(�, �

′) = Kθ(�− �′) depends upon the coordinates only through their separation
vector, while isotropy goes a step further and assumes the covariance is a function of
the distance between them.

Spatial and spatiotemporal processes are conveniently embedded within Bayesian
hierarchical models. The most common geostatistical setting assumes a response or
dependent variable y(�) observed at a generic point � along with a p × 1 (p < n)
vector of spatially referenced predictors x(�). Model-based geostatistical data analysis
customarily envisions a spatial regression model,

y(�) = x�(�)β + w(�) + ε(�) , (1)

where β is the p×1 vector of slopes, and the residual from the regression is the sum of a
spatial or spatiotemporal process, w(�) ∼ GP (0,Kθ(·, ·)) capturing spatial and/or tem-
poral association, and an independent process, ε(�) modeling measurement error or fine
scale variation attributed to disturbances at distances smaller than the minimum ob-
served separations in space and time. A Bayesian spatial model can now be constructed
from (1) as

p(θ, β, τ)×N(w | 0,Kθ)×N(y |Xβ + w,Dτ ) , (2)

where y = (y(�1), y(�2), . . . , y(�n))
� is the n × 1 vector of observed outcomes, X is

the n × p matrix of regressors with i-th row x�(�i) and the noise covariance matrix
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D(τ) represents measurement error or micro-scale variation and depends upon a set of
variance parameters τ . A common specification is Dτ = τ2In, where τ2 is called the
“nugget.” The hierarchy is completed by assigning prior distributions to β, θ and τ .

Bayesian inference can proceed by sampling from the joint posterior density in (2)
using, for example, Markov chain Monte Carlo (MCMC) methods (see, e.g., Robert and
Casella, 2004). A major computational bottleneck emerges from the size of Kθ in com-
puting (2). Since θ is unknown, each iteration of the model fitting algorithm will involve
decomposing or factorizing Kθ, which typically requires ∼ n3 floating point operations
(flops). Memory requirements are of the order ∼ n2. These become prohibitive for large
values of n when Kθ has no exploitable structure. Evidently, multivariate process set-
tings, where y(�) is a q × 1 vector of outcomes, exacerbate the computational burden
by a factor of q. For Gaussian likelihoods, one can integrate out the random effects w
from (2). This reduces the parameter space to {τ2, θ, β}, but one still needs to work
with Kθ+ τ2In, which is again n×n. These settings are referred to as “big-n” or “high-
dimensional” problems in geostatistics and are widely encountered in environmental
sciences today.

As modern data technologies are acquiring and exploiting massive amounts of spa-
tiotemporal data, modeling and inference for large spatiotemporal datasets are receiving
increased attention. In fact, it is impossible to provide a comprehensive review of all ex-
isting methods for geostatistical models for massive spatial data sets; Sun et al. (2011)
offer an excellent review for a number of methods for high-dimensional geostatistics.
The ideas at the core of fitting models for large spatial and spatiotemporal data con-
cern effectively solving positive definite linear systems such as Ax = b, where A is a
covariance matrix. Thus one can use probability models to build computationally effi-
cient covariance matrices. One approach is to approximate or model A with a covariance
structure that can significantly reduce the computational burden. An alternative is to
model A−1 itself with an exploitable structure so that the solution A−1b is available
without computing the inverse. For full Bayesian inference, one also needs to ensure
that the determinant of A is available easily.

We remark that when inferring about stochastic processes, it is also possible to
work in the spectral domain. This rich, and theoretically attractive, option has been
advocated by Stein (1999) and Fuentes (2007) and completely avoids expensive matrix
computations. The underlying idea is to transform to the space of frequencies, construct
a periodogram (an estimate of the spectral density), and exploit the Whittle likelihood
(see, e.g., Whittle, 1954; Guyon, 1995) in the spectral domain as an approximation to
the data likelihood in the original domain. The Whittle likelihood requires no matrix
inversion so, as a result, computation is very rapid. In principle, inversion back to
the original space is straightforward. However, there are practical impediments. First,
there is discretization to implement a fast Fourier transform whose performance can
be tricky over large irregular domains. Predictive inference at arbitrary locations also
will not be straightforward. Other issues include arbitrariness to the development of a
periodogram. Empirical experience is employed to suggest how many low frequencies
should be discarded. Also, there is concern regarding the performance of the Whittle
likelihood as an approximation to the exact likelihood. While this approximation is
reasonably well centered, it does an unsatisfactory job in the tails (thus leading to
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poor estimation of model variances). Lastly, modeling non-Gaussian first stages will
entail unobservable random spatial effects, making the implementation impossible. In
summary, use of the spectral domain with regard to handling large n, while theoretically
attractive, has limited applicability.

Broadly speaking, model-based approaches for large spatial datasets proceeds from
either exploiting “low-rank” models or exploiting “sparsity”. The former attempts to
construct Gaussian processes on a lower-dimensional subspace (see, e.g., Wikle and
Cressie, 1999; Higdon, 2002a; Kammann and Wand, 2003; Quinoñero and Rasmussen,
2005; Stein, 2007; Gramacy and Lee, 2008; Stein, 2008; Cressie and Johannesson, 2008;
Banerjee et al., 2008; Crainiceanu et al., 2008; Sansó et al., 2008; Finley et al., 2009a;
Lemos and Sansó, 2009; Cressie et al., 2010) in spatial, spatiotemporal and more gen-
eral Gaussian process regression settings. Sparse approaches include covariance tapering
(see, e.g., Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009; Shaby and Ruppert,
2012) using compactly supported covariance functions. This is effective for parameter
estimation and interpolation of the response (“kriging”), but it has not been fully evalu-
ated for fully Bayesian inference on residual or latent processes. Introducing sparsity in
K−1

θ is prevalent in approximating Gaussian process likelihoods using Markov random
fields (e.g., Rue and Held, 2005), products of lower dimensional conditional distributions
(Vecchia, 1988, 1992; Stein et al., 2004), or composite likelihoods (e.g., Bevilacqua and
Gaetan, 2014; Eidsvik et al., 2014).

This article aims to provide a focused review of some massively scalable Bayesian
hierarchical models for spatiotemporal data. The aim is not to provide a comprehensive
review of all existing methods. Instead, we focus upon two fully model-based approaches
that can be easily embedded within hierarchical models and deliver full Bayesian in-
ference. These are low-rank processes and sparsity-inducing processes. Both these pro-
cesses can be used as “priors” for spatiotemporal random fields. Here is a brief outline
of the paper. Section 2 discusses a Bayesian hierarchical framework for low-rank models
and their implementation. Section 3 discusses some recent developments in sparsity-
inducing Gaussian processes, especially nearest-neighbor Gaussian processes, and their
implementation. Finally, Section 4 provides a brief account of outstanding issues for
future research.

2 Hierarchical low-rank models

A popular way of dealing with large spatial datasets is to devise models that bring about
dimension reduction (Wikle and Cressie, 1999). A low rank or reduced rank specification
is typically based upon a representation or approximation in terms of the realizations
of some latent process over a smaller set of points, often referred to as knots. To be
precise,

w(�) ≈ w̃(�) =

r∑
j=1

bθ(�, �
∗
j )z(�

∗
j ) = b�θ (�)z, (3)

where z(�) is a well-defined process and bθ(s, s
′) is a family of basis functions possibly

depending upon some parameters θ. The collection of r locations {�∗1, �∗2, . . . , �∗r} are the
knots, bθ(�) and z are r×1 vectors with components bθ(�, �

∗
j ) and z(�∗j ), respectively. For
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any collection of n points, the n×1 vector w̃ = (w̃(�1), w̃(�2), . . . , w̃(�n))
� is represented

as w̃ = Bθz, where Bθ is n× r with (i, j)-th element bθ(�i, �
∗
j ). Irrespective of how big

n is, we now have to work with the r (instead of n) z(�∗j )’s and the n × r matrix Bθ.
Since we anticipate r << n, the consequential dimension reduction is evident and, since
we will write the model in terms of the z’s (with the w̃’s being deterministic from the
z’s, given bθ(·, ·)), the associated matrices we work with will be r×r. Evidently, w̃(�) as
defined in (3) spans only an r-dimensional space. When n > r, the joint distribution of
w̃ is singular. However, we do create a valid stochastic process with covariance function

cov(w̃(�), w̃(�′)) = b�θ (�)Vzbθ(�
′) , (4)

where Vz is the variance-covariance matrix (also depends upon parameter θ) for z. From
(4), we see that, even if bθ(·, ·) is stationary, the induced covariance function is not. If
the z’s are Gaussian, then w̃(�) is a Gaussian process. Every choice of basis functions
yields a process and there are too many choices to enumerate here. Wikle (2010) offers
an excellent overview of low rank models.

Different families of spatial models emerge from different specifications for the pro-
cess z(�) and the basis functions bθ(�, �

′). In fact, (3) can be used to construct classes of
rich and flexible processes. Furthermore, such constructions need not be restricted to low
rank models. If dimension reduction is not a concern, then full rank models can be con-
structed by taking r = n basis functions in (3). A very popular specification for z(�) is a
white noise process so that z ∼ N(0, σ2In), whereupon (4) simplifies to σ2bθ(�)

�bθ(�
′).

A natural choice for the basis functions is a kernel function, say bθ(�, �
′) = Kθ(� − �′),

which puts more weight on �′ near �. Variants of this form have been called “moving
average” models and explored by Barry and Ver Hoef (1996), while the term “kernel
convolution” has been used in a series of papers by Higdon and collaborators (Higdon,
1998; Higdon et al., 1999; Higdon, 2002b) to not only achieve dimension reduction, but
also model nonstationary and multivariate spatial processes. The kernel (which induces
a parametric covariance function) can depend upon parameters and might even be spa-
tially varying (Higdon, 2002b; Paciorek and Schervish, 2006). Sansó et al. (2008) use
discrete kernel convolutions of independent processes to construct two different class of
computationally efficient spatiotemporal processes.

Some choices of basis functions can be more computationally efficient than others
depending upon the specific application. For example, Cressie and Johannesson (2008)
(also see Shi and Cressie (2007)) discuss “Fixed Rank Kriging” (FRK) by construct-
ing Bθ using very flexible families of non-stationary covariance functions to carry out
high-dimensional kriging, Cressie et al. (2010) extend FRK to spatiotemporal settings
calling the procedure “Fixed Rank Filtering” (FRF), Katzfuss and Cressie (2012) pro-
vide efficient constructions for Bθ for massive spatiotemporal datasets, and Katzfuss
(2013) uses spatial basis functions to capture medium to long range dependence and
tapers the residual w(�)− w̃(�) to capture fine scale dependence. Multiresolution basis
functions (see, e.g., Nychka et al., 2002, 2015) have been shown to be effective in build-
ing computationally efficient nonstationary models. These papers amply demonstrate
the versatility of low-rank approaches using different basis functions.

A different approach is to specify the z(�) as a spatial process model having a
selected covariance function. This process is called the parent process and one can
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derive a low-rank process w̃(�) from the parent process. For example, one could use the
Karhunen–Loeve (infinite) basis expansion for a Gaussian process (see, e.g., Rasmussen
and Williams, 2005; Banerjee et al., 2014) and truncate it to a finite number of terms to
obtain a low-rank process. Another example is to project the realizations of the parent
process onto a lower-dimensional subspace, which yields the predictive process and its
variants; see Section 2.2 for details.

The idea underlying low-rank dimension reduction is not dissimilar to Bayesian
linear regression. For example, consider a simplified version of the hierarchical model in
(2), where β = 0 and the process parameters {θ, τ} are fixed. A low rank version of (2)
is obtained by replacing w with Bθz, so the joint distribution is

N(z | 0, Vz)×N(y |Bθz,Dτ ) , (5)

where y is n×1, z is r×1,Dτ and Vz are positive definite matrices of sizes n×n and r×r,
respectively, and Bθ is n × r. The low rank specification is accommodated using Bθz
and the prior on z, while Dτ (usually diagonal) has the residual variance components.
By computing the marginal covariance matrix var{y} in two ways (Lindley and Smith,
1972), one arrives at the well-known Sherman–Woodbury–Morrison formula

(Dτ +BθVzB
�
θ )−1 = D−1

τ −D−1
τ Bθ(V

−1
z +B�

θ D−1
τ Bθ)

−1B�
θ D−1

τ . (6)

The above formula reveals dimension reduction in terms of the marginal covariance
matrix for y. If Dτ is easily invertible (e.g., diagonal), then the inverse of an n × n
covariance matrix of the form Dτ + BθVzB

�
θ can be computed efficiently using the

right-hand-side which only involves inverses of r × r matrices and D−1
τ . A companion

formula for (6) is that for the determinant,

det(Dτ +BθVzB
�
θ ) = det(Vz) det(Dτ ) det(V

−1
z +B�

θ D−1
τ Bθ) , (7)

which shows that the determinant of the n × n matrix can be computed as a product
of the determinants of two r × r matrices and that of Dτ .

In practical Bayesian computations, however, it is less efficient to directly use the
formulas in (6) and (7). Since both the inverse and the determinant are needed, it is more
useful to compute the Cholesky decomposition of the covariance matrix. In fact, one
can avoid (6) completely and resort to a common trick in hierarchical models (see, e.g.,
Gelman et al., 2013) and smoothed analysis of variance (Hodges, 2013) that expresses
(5) as the linear model

[
D

−1/2
τ y
0

]
︸ ︷︷ ︸ =

[
D

−1/2
τ Bθ

V
−1/2
z

]
︸ ︷︷ ︸

z +

[
e1
e2

]
︸︷︷︸

y∗ B∗ e∗

, where e∗ ∼ N(0, In+r) , (8)

V
1/2
z and D

1/2
τ are matrix square roots of Vz and Dτ , respectively. For example, in

practice Dτ is diagonal so D
1/2
τ is simply the square root of the diagonal elements of

Dτ , while V
1/2
z is the triangular (upper or lower) Cholesky factor of the r × r matrix
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Vz. The marginal density of p(y∗ | θ, τ) after integrating out z now corresponds to the
linear model y∗ = B∗ẑ + e∗, where ẑ is the ordinary least-square estimate of z. Such
computations are easily conducted in statistical programming environments such as R by

applying the chol function to obtain the Cholesky factor V
1/2
z , a backsolve function

to efficiently obtain V
−1/2
z z in constructing (8), and an lm function to compute the

least squares estimate of z using the QR decomposition of the design matrix B∗. We
discuss implementation of low rank hierarchical models in a more general contexts in
Section 2.3.

2.1 Biases in low-rank models

Irrespective of the precise specifications, low-rank models tend to underestimate uncer-
tainty (since they are driven by a finite number of random variables), hence, overesti-
mate the residual variance (i.e., the nugget). Put differently, this arises from systemic
over-smoothing or model under-specification by the low-rank model when compared to
the parent model. For example, if w(�) = w̃(�) + η(�), where w(�) is the parent process
and w̃(�) is a low-rank approximation, then ignoring the residual η(�) = w(�)− w̃(�) can
result in loss of uncertainty and oversmoothing. In settings where the spatial signal is
weak compared to the noise, such biases will be less pronounced. Also, it is conceivable
that in certain specific case studies proper choices of basis functions (e.g., multiresolu-
tion basis functions) will be able to capture much of the spatial behavior and the effect
of the bias will be mitigated. However, in general it will be preferable to develop models
that will be able to compensate for the overestimation of the nugget.

This phenomenon, in fact, is not dissimilar to what is seen in linear regression models
and is especially transparent from writing the parent likelihood and low-rank likelihood
as mixed linear models. To elucidate, suppose, without much loss of generality, that U
is a set with n points of which the first r act as the knots. Let us write the Gaussian
likelihood with the parent process asN(y |Bu, τ2I), whereB is the n×n lower-triangular
Cholesky factor of Kθ (B = Bθ depends on θ, but we suppress this here) and u =

(u1, u2, . . . , un)
� is now an n× 1 vector such that ui

iid∼ N(0, 1). Writing B = [B1 : B2],
where B1 has r < n columns, suppose we derive a low-rank model by truncating to only
the first r basis functions. The corresponding likelihood is N(y |B1ũ1, τ

2I), where ũ1 is
an r×1 vector whose components are independently and identically distributed N(0, 1)
variables. Customary linear model calculations reveal that the magnitude of the residual
vector from the parent model is given by y�(I − PB)y, while that from the low-rank
model is given by y�(I−PB1)y, where PA denotes the orthogonal projector matrix onto
the column space of any matrix A. Using the fact that PB = PB1 +P[(I−PB1

)B2], which
is a standard result in linear model theory, we find the excess residual variability in the
low-rank likelihood is summarized by y�P[(I−PB1

)B2]y which can be substantial when r
is much smaller than n.

In practical data analysis, the above phenomenon is usually manifested by an over-
estimation of the nugget variance as it absorbs the residual variation from the low-
rank approximation. Consider the following simple experiment. We simulated a spatial
dataset using the spatial regression model in (1) with n = 200 fixed spatial locations, say
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Figure 1: 95% credible intervals for the nugget for 40 different low-rank radial-basis
models with knots varying between 5 and 200 in steps of 5. The horizontal line at
τ2 = 5 denotes the true value of τ2 with which the data was simulated.

{�1, �2, . . . , �n}, within the unit square, and setting β = 0, τ2 = 5, w(�) ∼ GP (0,Kθ),
where Kθ(�i, �j) = σ2 exp(−φ‖�i − �j‖) with σ2 = 5 and φ = 9. We then fit the low
rank model (5) with D = τ2In×n, V = Ir×r, and B as the n × r matrix with i-th

row b�(�i) = Kθ(�i,U∗)K
−1/2
θ (U∗,U∗), where U∗ = {�∗1, �∗2, . . . , �∗r} is a set of r knots,

Kθ(�i,U∗) is the 1× r vector with j-th element Kθ(�i, �
∗
j ) and K

−1/2
θ (U∗,U∗) is the in-

verse of the lower-triangular Cholesky factor of the r×r matrix with elementsKθ(�
∗
i , �

∗
j ).

This emerges from using low-rank radial basis functions in (3); (see, e.g., Ruppert and
Carroll, 2003). We fit 40 such models increasing r from 5 to 200 in steps of 5. Fig-
ure 1 presents the 95% posterior credible intervals for τ2. Even with r = 175 knots for
a dataset with just 200 spatial locations, the estimate of the nugget was significantly
different from the true value of the parameter. This indicates that low rank processes
may be unable to accurately estimate the nugget from the true process. Also, they will
likely produce oversmoothed interpolated maps of the underlying spatial process and
impair predictive performance. As one specific example, Table 4 in Banerjee et al. (2008)
report less than optimal posterior predictive coverage from a predictive process model
(see Section 2.2) with over 500 knots for a dataset comprising 15,000 locations.

Although this excess residual variability can be quantified as above (for any given
value of the covariance parameters θ), it is less clear how the low-rank likelihood could
be modified to compensate for this oversmoothing without adding significantly to the
computational burden. Matters are complicated by the fact that expressions for the ex-
cess variability will involve the unknown process parameters θ, which must be estimated.
In fact, not all low-rank models deliver a straightforward quantification for this bias.
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For instance, low-rank models based upon kernel convolutions approximate w(�) with

wKC(�) =
∑n∗

j=1 Kθ(�− �∗j , θ)uj , where Kθ(·) is some kernel function and uj
iid∼ N(0, 1),

assumed to arise from a Brownian motion U(ω) on �2. The difference w(�) − wKC(�)
does not, in general, render a closed form and may be difficult to approximate efficiently.

2.2 Predictive process models and variants

One particular class of low-rank processes have been especially useful in providing easy
tractability to the residual process. Let w(�) ∼ GP (0,Kθ(·, ·)) and let w∗ be the r × 1
vector of w(�∗j )’s over a set U∗ of r knots. The usual spatial interpolant (that leads to
“kriging”) at an arbitrary site � is

w̃(�) = E[w(�) |w∗] = Kθ(�,U∗)K−1
θ (U∗,U∗)w∗ . (9)

This single site interpolator, in fact, is a well-defined process w̃(�) ∼ GP (0, K̃θ(·, ·)) with
covariance function, K̃θ(�, �

′) = Kθ(�;U∗)K−1
θ (U∗,U∗)Kθ(U∗, �′) . We refer to w̃(�) as

the predictive process derived from the parent process w(�). The realizations of w̃(�)
are precisely the kriged predictions conditional upon a realization of w(�) over U∗. The
process is completely specified given the covariance function of the parent process and
the set of knots, U∗. The corresponding basis functions in (3) are given by b�θ (�) =
Kθ(�,U∗)K−1

θ (U∗,U∗). These methods have are referred to as subset of regressors in
Gaussian process regressions for large data sets in machine learning (Quinoñero and
Rasmussen, 2005; Rasmussen and Williams, 2005). Banerjee et al. (2008) coined the
term predictive process (as the process could be derived from kriging equations) and
developed classes of scalable Bayesian hierarchical spatial process models by replacing
the parent process with its predictive process counterpart. An alternate derivation is
available by truncating the Karhunen–Loeve (infinite) basis expansion for a Gaussian
process to a finite number of terms and solving (approximately) the integral eigen-
system equation for Kθ(�, �

′) by an approximate linear system over the set of knots (see,
e.g., Rasmussen and Williams, 2005; Sang and Huang, 2012; Banerjee et al., 2014).

Exploiting elementary properties of conditional expectations, we obtain

var{w(�)} = var{E[w(�) |w∗]}+ E{var[w(�) |w∗]} ≥ var{E[w(�) |w∗]} , (10)

which implies that var{w(�)} ≥ var{w̃(�)} and the variance of η(�) = w(�) − w̃(�) is
simply the difference of the variances. For Gaussian processes, we get the following
closed form for Cov{η(�), η(�′)},

Kη,θ(�, �
′) = Kθ(�, �

′)−Kθ(�,U∗)K−1
θ (U∗,U∗)Kθ(U∗, �′) . (11)

Therefore, var{η(�)} = Kη,θ(�, �), which we denote as δ2(�).

Perhaps the simplest way to remedy the bias in the predictive process is to approx-

imate the residual process η(�) with a heteroskedastic process ε̃(�)
ind∼ N(0, δ2(�)). We

construct a modified or bias-adjusted predictive process as

w̃ε(�) = w̃(�) + ε̃(�) , (12)
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μ σ2 τ2 RMSPE

True 1 1 1
m = 49
PP 1.37 (0.29,2.61) 1.37 (0.65,2.37) 1.18 (1.07,1.23) 1.21
MPP 1.36 (0.51,2.39) 1.04 (0.52,1.92) 0.94 (0.68.1,14) 1.20

m = 144
PP 1.36 (0.52,2.32) 1.39 (0.76,2.44) 1.09 (0.96, 1.24) 1.17
MPP 1.33 (0.50,2.24) 1.14 (0.64,1.78) 0.93 (0.76,1.22) 1.17

m = 900
PP 1.31 (0.23, 2.55) 1.12 (0.85,1.58) 0.99 (0.85,1.16) 1.17
MPP 1.31 (0.23,2.63) 1.04 (0.76,1.49) 0.98 (0.87,1.21) 1.17

Table 1: Parameter estimates for the predictive process (PP) and modified predictive
process (MPP) models in the univariate simulation.

where ε̃(�) is independent of w̃(�). It is easy to see that var{w̃ε(�)} = var{w(�)}, so
the variance of the two processes are the same. Also, the remedy is computationally
efficient – adding an independent space-varying nugget does not incur substantial com-
putational expense. Finley et al. (2009b) offer computational details for the modified
predictive process, while Banerjee et al. (2010) show the effectiveness of the bias adjust-
ment in mitigating the effect exhibited in Figure 1 and in estimating multiple variance
components in the presence of different structured random effects.

We present a brief simulation example revealing the benefits of the modified pre-
dictive process. We generate 2000 locations within a [0, 100]× [0, 100] square and then
generate the outcomes from (1) using only an intercept as the regressor, an exponential
covariance function with range parameter φ = 0.06 (i.e., such that the spatial corre-
lation is ∼ 0.05 at 50 distance units), scale σ2 = 1 for the spatial process, and with
nugget variance τ2 = 1. We then fit the predictive process and modified predictive pro-
cess models derived from (1) using a hold out set of randomly selected sites, along with
a separate set of regular lattices for the knots (m = 49, 144 and 900). Table 1 shows
the posterior estimates and the square roots of mean squared predictive error (RMSPE)
based on the predictions for the hold-out data. We clearly see the overestimation of τ2

by the predictive process and that the modified predictive process is able to adjust for
the τ2. Not surprisingly, the RMSPE is essentially the same under either process model.

Further enhancements to the modified predictive process are possible. Since the
modified predictive process adjusts only the variance, information in the covariance
induced by the residual process η(�) is lost. One alternative is to use the so called
“full scale approximation” proposed by Sang et al. (2011) and Sang and Huang (2012),
where η(�) is approximated by a tapered process, say ηtap(�). The covariance function
for η(�) is of the form Kη,θ(�, �

′)Ktap,ν(‖� − �′‖), where Kη,θ(�, �
′) is as in (11) and

Ktap,ν(‖� − �′‖) is a compactly supported covariance function that equals 0 beyond a
distance ν (see, e.g., Furrer et al., 2006, for some practical choices.). This full scale
approximation is also able to more effectively capture small scale dependence. Katzfuss
(2013) extended some of these ideas by modeling the spatial error as a combination
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of a low-rank component designed to capture medium to long-range dependence and a
tapered component to capture local dependence.

Perhaps the most promising use of the predictive process, at least in terms of scala-
bility to massive spatial datasets, is the recent multiresolution approximation proposed
by Katzfuss (2017). Instead of approximating the residual process η(�) in one step, the
idea here is to partition the spatial domain recursively and construct a sequence of ap-
proximations. We start by partitioning the domain of interest L into J non-intersecting
subregions, say L1,L2, . . . ,LJ , such that L = ∪J

j=1Lj . We call the Lj ’s level-1 subre-
gions. We fix a set of knots in L and write the parent process as w(�) = w̃(�) + η(�),
where w̃(�) is the predictive process as in (9) and η(�) is the residual Gaussian process
with covariance function given by (11). At resolution 1, we replace η(�) with a block-
independent process η1(�) such that Cov{η1(�), η1(�′)} = 0 if � and �′ are not in the
same subregion and is equal to (11) if � and �′ are in the same subregion.

At the second resolution, each Lj is partitioned into a set of disjoint subregions
Lj1,Lj2, . . . ,Ljm. We call these the level-2 subregions and choose a set of knots within
each. We approximate η1(�) ≈ η̃1(�)+η2(�), where η̃1(�) is the predictive process derived
from η1(�) using the knots in Lj if � ∈ Lj and η2(�) is the analogous block-independent
approximation across the subregions within each Lj . Thus, Cov{η2(�), η2(�′)} = 0 if �
and �′ are not in the same level-2 subregion and will equal Cov{η1(�), η1(�′)} when �
and �′ are in the same level-2 subregion. At resolution 3 we partition each of the level-2
subregions into level-3 subregions and continue the approximation of the residual process
from the predictive process. At the end ofM resolutions, we arrive at the mult-resolution
predictive process w̃M (�) = w̃(�)+

∑M−1
i=1 η̃i(�)+ηM (�), which, by construction, is a valid

Gaussian process. The computational complexity with the multi-resolution predictive
process is ∼ O(nM2r2), where M is the number of resolutions and r is the number of
knots chosen within each subregion.

To summarize, we do not recommend the use of just a reduced/low rank model.
To improve performance, it is necessary to approximate the residual process and, in
this regard, the predictive process is especially attractive since the residual process is
available explicitly.

2.3 Bayesian implementation for low-rank models

A very rich and flexible class of spatial and spatiotemporal models emerge from the
hierarchical linear mixed model

p(θ)× p(τ)×N(β |μβ , Vβ)×N(z | 0, Vz,θ)×N(y |Xβ +Bθz,Dτ ) , (13)

where y is an n × 1 vector of possibly irregularly located observations, X is a known
n×p matrix of regressors (p < n), Vu,θ and Dτ are families of r×r and n×n covariance
matrices depending on unknown process parameters θ and τ , respectively, and Bθ is
n×r with r ≤ n. The low-rank models in (3) emerge when r << n and Bθ is the matrix
obtained by evaluating the basis functions. Proper prior distributions p(θ) and p(τ) for
θ and τ , respectively, complete the hierarchical specification.
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Bayesian inference proceeds, customarily, by sampling {β, z, θ, τ} from (13) using
Markov chain Monte Carlo (MCMC) methods. For faster convergence, we integrate
out z from the model and first sample from p(θ, τ, β | y) ∝ p(θ)× p(τ)×N(β |μβ , Vβ)×
N(y |Xβ,Σy | θ,τ ), where Σy | θ,τ = BθVz,θB

�
θ +Dτ . Working directly with Σy | θ,τ will be

expensive. Usually Dτ is diagonal or sparse, so the expense is incurred from the matrix
BθVz,θB

�
θ . Assuming that Bθ and Vz,u are computationally inexpensive to construct

for each θ and τ , BθVz,θB
�
θ requires ∼ O(rn2) flops. Using the Sherman–Woodbury–

Morrison formula in (6) will avoid constructing BθVz,θB
�
θ or inverting any n×n matrix.

However, in practice it is better to not directly compute the right hand side of (6) as
it involves some redundant matrix multiplications. Furthermore, we wish to obtain the
determinant of Σy | θ,τ cheaply. These are efficiently accomplished as outlined below.

The primary computational bottleneck lies in evaluating the multivariate Gaussian
likelihood N(y |Xβ,Σy | θ,τ ) which is required for updating the parameters {θ, τ} (e.g.,
using random-walk Metropolis or Hamiltonian Monte Carlo steps). We can accomplish
this effectively using two functions: L = chol(V ) which computes the Cholesky fac-
torization for any positive definite matrix V = LL�, where L is lower-triangular, and
W = trsolve(T,B) which solves the triangular system TW = B for a triangular (lower
or upper) matrix T . We first compute(

BθVz,θB
�
θ +Dτ

)−1
= D−1/2

τ (I −H�H)D−1/2
τ , (14)

where H is obtained by first computing W = D−1/2Bθ, then the Cholesky factorization
L = chol(V −1

z,θ +W�W ), and finally solve the triangular system H = trsolve(L,W�).

Having obtained H, we compute e = y − Xβ, m1 = D−1/2e, m2 = Hm1, and obtain
T = chol(Ir −HH�). The log-target density for {θ, τ} is then computed as

log p(θ) + log p(τ)− 1

2

n∑
i=1

dii +

r∑
i=1

log tii −
1

2
(m�

1 m−m�
2 m2) , (15)

where dii’s and tii’s are the diagonal elements of Dτ and T , respectively. The total num-
ber of flops required for evaluating the target is O(nr2 + r3) ≈ O(nr2) (since r << n)
which is considerably cheaper than the O(n3) flops that would have been required for
the analogous computations in a full Gaussian process model. In practice, Gaussian pro-
posal distributions are employed for the Metropolis algorithm and all parameters with
positive support are transformed to their logarithmic scale. Therefore, the necessary
Jacobian adjustments are made to (15) by adding some scalar quantities with negligible
computational costs.

Starting with initial values for all parameters, each iteration of the MCMC executes
the above calculations to provide a sample for {θ, τ}. The regression parameter β is
then sampled from its full conditional distribution. Writing Σy = BθVz,θB

�
θ +Dτ as in

(14), the full conditional distribution for β is N(Aa,A), where A−1 = Σ−1
β +X�Σ−1

y X

and a = Σ−1
β μβ +X�Σ−1

y y. These are efficiently computed as [f : F ] = D−1/2[y : X],

F̃ = HF and setting a = Σ−1
β μβ + F�f − F̃�Hf and L = chol(Σ−1

β + F�F − F̃�F̃ ).

We then compute β = trsolve(L�, trsolve(L, a)) + trsolve(L, Z̃), where Z̃ is a
conformable vector of independent N(0, 1) variables.
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We repeat the above computations for each iteration of the MCMC algorithm using
the current values of the process parameters in Σy. The algorithm described above will
produce, after convergence, posterior samples for Ω = {θ, τ, β}. We then sample from the
posterior distribution p(z | y) =

∫
p(z |Ω, y)p(Ω | y)dΩ, where p(z |Ω, y) = N(z |Aa,A)

with A = (V −1
z,θ + B�

θ D−1
τ Bθ)

−1 and a = B�
θ D−1

τ (y − Xβ). For each Ω drawn from
p(Ω | y) we will need to draw a corresponding z from N(z |Aa,A). This will involve
chol(A). Since the number of knots r is usually fixed at a value much smaller than
n, obtaining chol(A) is ∼ O(r3) and not as expensive. However, it will involve the
inverse of Vz,θ, which is computed using chol(Vz,θ) and can be numerically unstable for
certain smoother covariance functions such as the Gaussian or the Matérn with large ν.
A numerically more stable algorithm exploits the relation A = Q − Q(Vz,θ + Q)−1Q,
whereQ−1 = B�

θ D−1
τ Bθ. For each Ω sampled from p(Ω | y), we compute L = chol(Vz,θ+

Q), W = trsolve(L,Q) and L = Q−W�W . We generate an r×1 vector Z∗ ∼ N(0, Ir)
and set z = L(Z∗ + L�a). Repeating this for each Ω drawn from p(Ω | y) produces a
sample of z’s from p(z | y).

Finally, we seek predictive inference for y(�0) at any arbitrary space-time coordinate
�0. Given x�(�0), we draw y(�0) ∼ N

(
x�(�0)β + b�θ (�0)z, τ

2
)
for every posterior sam-

ple of Ω and z. This yields the corresponding posterior predictive samples for z(�0) and
y(�0). Posterior predictive samples of the latent processes can also be easily computed
as z(�0) = b�θ (�0)z for each posterior sample of the z and θ. Posterior predictive distri-
butions at any of the observed �i’s yield replicated data (see, e.g., Gelman et al., 2013)
that can be used for model assessment and comparisons. Finley et al. (2015) provide
more extensive implementation details for models such as (13) in the context of the
spBayes package in R.

3 Sparsity-inducing nearest-neighbor Gaussian processes

Low-rank models have been, and continue to be, widely employed for analyzing spatial
and spatiotemporal data. The algorithmic cost for fitting low-rank models typically
decrease from O(n3) to O(nr2 + r3) ≈ O(nr2) flops since n >> r. However, when
n is large, empirical investigations suggest that r must be fairly large to adequately
approximate the parent process and the nr2 flops become exorbitant. Furthermore,
low-rank models can perform poorly depending upon the smoothness of the underlying
process or when neighboring observations are strongly correlated and the spatial signal
dominates the noise (Stein, 2014).

As an example, consider part of the simulation experiment presented in Datta et al.
(2016a), where a spatial random field was generated over a unit square using a Gaussian
process with fixed spatial process parameters over a set of 2500 locations. We then fit
a full Gaussian process model and a predictive process model with 64 knots. Figure 2
presents the results (see, e.g., Datta et al., 2016a, for details.) While the estimated
random field from the full Gaussian process is almost indistinguishable from the true
random field, the surface obtained from the predictive process with 64 locations substan-
tially oversmooths. This oversmoothing can be ameliorated by using a larger number of
knots, but that adds to the computational burden.
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Figure 2: Comparing estimates of a simulated random field using a full Gaussian Process
(Full GP) and a Gaussian Predictive process (PPGP) with 64 knots. The oversmoothing
by the low-rank predictive process is evident.

Figure 2 serves to reinforce findings that low-rank models may be limited in their
ability to produce accurate representation of the underlying process at massive scales.
They will need a considerably larger number of basis functions to capture the features
of the process and will require substantial computational resources for emulating results
from a full GP. As the demands for analyzing large spatial datasets increase from the
order of ∼ 104 to ∼ 106 locations, low-rank models may struggle to deliver acceptable
inference. In this regard, enhancements such as the multi-resolution predictive process
approximations referred to in Section 2.2 are highly promising.

An alternative is to develop full rank models that can exploit sparsity. Instead of
deriving basis approximations for w, one could achieve computational gains by model-
ing either its covariance function or its inverse as sparse. Covariance tapering does the
former by modeling var{w} = Kθ 
Ktap,ν , where Ktap,ν is a sparse covariance matrix
formed from a compactly supported, or tapered, covariance function with tapering pa-
rameter ν and 
 denotes the element wise (or Hadamard) product of two matrices. The
Hadamard product of two positive definite matrices is again a positive definite matrix,
so Kθ 
 Ktap,ν is positive definite. Furthermore, Ktap,ν is sparse because a tapered
covariance function is equal to 0 for all pairs of locations separated by a distance be-
yond a threshold ν. We refer the reader to Furrer et al. (2006), Kaufman et al. (2008)
and Du et al. (2009) for further computational and theoretical details on covariance
tapering. Covariance tapering is undoubtedly an attractive approach for constructing
sparse covariance matrices, but its practical implementation for full Bayesian inference
will generally require efficient sparse Cholesky decompositions, numerically stable deter-
minant computations and, perhaps most importantly, effective memory management.
These issues are yet to be tested for truly massive spatiotemporal datasets with n ∼ 105

or more.

Another way to exploit sparsity is to model the inverse of var{w} as a sparse matrix.
For finite-dimensional distributions conditional and simultaneous autoregressive (CAR
and SAR) models (see, e.g., Cressie, 1993; Banerjee et al., 2014, and references therein)
adopt this approach for areally referenced datasets. More generally, Gaussian Markov
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random fields or GMRFs (see, e.g., Rue and Held, 2005) are widely used tools for con-
structing sparse precision matrices and have led to computational algorithms such as
the Integrated Nested Laplace Approximation (INLA) developed by Rue et al. (2009).
A subsequent article by Lindgren et al. (2011) show how Gaussian processes can be
approximated by GMRFs using computationally efficient sparse representations. Thus,
a Gaussian process model with a dense covariance function is approximated by a GMRF
with a sparse precision matrix. The approach is very computationally efficient for cer-
tain classes of covariance functions generated by a certain class of stochastic partial
differential equations (including the versatile Matérn class), but their inferential per-
formance on unobservable spatial, spatiotemporal or multivariate Gaussian processes
(perhaps specified through more general covariance or cross-covariance functions) em-
bedded within Bayesian hierarchical models is yet to be assessed.

Rather than working with approximations to the process, one could also construct
massively scalable sparsity-inducing Gaussian processes that can be conveniently em-
bedded within Bayesian hierarchical models and deliver full Bayesian inference for ran-
dom fields at arbitrary resolutions. Section 3.1 describes how sparsity is introduced in the
precision matrices for graphical Gaussian models by exploiting the relationship between
the Cholesky decomposition of a positive definite matrix and conditional independence.
These sparse Gaussian models (i.e., normal distributions with sparse precision matri-
ces) can be used prior models for a finite number of spatial random effects. Section 3.2
shows the construction of a process from these graphical Gaussian models. This process
will be a Gaussian process whose finite-dimensional realizations will have sparse pre-
cision matrices. We call them Nearest Neighbor Gaussian Processes (NNGP). Finally,
Section 3.3 outlines how the process can be embedded within hierarchical models and
presents some brief simulation examples demonstrating certain aspects of inference from
NNGP models.

3.1 Sparse Gaussian graphical models

Consider the hierarchical model (2) and, in particular, the expensive prior density
N(w | 0,Kθ). From the dense covariance matrix Kθ, we wish to obtain a covariance ma-

trix K̃θ such that K̃−1
θ is sparse and, importantly, its determinant is available cheaply.

What would be an effective way of achieving this? One approach would be to consider
modeling the Cholesky decomposition of the precision matrix so that it is sparse. For
example, forcing some elements in the dense half of the triangular Cholesky factor to be
zero will introduce sparsity in the precision matrix. To precisely set out which elements
should be made zero in the Cholesky factor, we borrow some fundamental notions of
sparsity from graphical (Gaussian) models.

The underlying idea is, in fact, ubiquitous in graphical models or Bayesian networks
(see, e.g., Lauritzen, 1996; Bishop, 2006; Murphy, 2012). The joint distribution for a
random vector w can be looked upon as a directed acyclic graph (DAG) where each
node is a random variable wi. We write the joint distribution as

p(w1)
n∏

i=2

p(wi |w1, . . . , wi−1) =
n∏

i=1

p(wi |wPa[i]) ,
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Figure 3: Sparsity using directed acyclic graphs.

where Pa[1] is the empty set and Pa[i] = {1, 2, . . . , i − 1} for i = 2, 3, . . . , n − 1 is
the set of parent nodes with directed edges to i. This model is specific to the ordering
(sometimes called “topological ordering”) of the nodes. The DAG corresponding to this
factorization is shown in Figure 3(a) for n = 7 nodes. One can refer to this as the full
graphical model since Pa[i] comprises all nodes preceding i in the topological order.
Shrinking Pa[i] from the set of all nodes preceding i to a smaller subset of parent nodes
yields a different, but still valid, joint distribution. In spatial settings, each of the nodes
in the DAG have associated spatial coordinates. Thus, the parents for any node i can be
chosen to include a certain fixed number of “nearest neighbors”, say based upon their
distance from node i. For example, Figure 3(b) shows the DAG when some of the edges
are deleted so as to retain at most 3 nearest neighbors in the conditional probabilities.
The resulting joint density is

p(w1)× p(w2 |w1)× p(w3 |w1, w2)× p(w4 |w1, w2, w3)× p(w5 |��w1, w2, w3, w4)

× p(w6 |w1,��w2,��w3, w4, w5)× p(w7 |w1, w2,��w3,��w4,��w5, w6) .

The above model posits that any node i, given its parents, is conditionally independent
of any other node that is neither its parent nor its child.

Applying the above notion to multivariate Gaussian densities evinces the connection
between conditional independence in DAGs and sparsity. Consider an n × 1 random
vector w distributed as N(0,Kθ). Writing N(w | 0,Kθ) as p(w1)

∏n
i=2 p(wi |w1, w2, . . . ,

wi−1) is equivalent to the following set of linear models,

w1 = 0 + η1 and wi = ai1w1 + ai2w2 + · · ·+ ai,i−1wi−1 + ηi for i = 2, . . . , n ,

or, more compactly, simply w = Aw+ η, where A is n×n strictly lower-triangular with
elements aij = 0 whenever j ≥ i and η ∼ N(0, D) and D is diagonal with diagonal
entries d11 = var{w1} and dii = var{wi |wj : j < i} for i = 2, . . . , n.

From the structure of A it is evident that I − A is nonsingular and Kθ = (I −
A)−1D(I−A)−�. The possibly nonzero elements of A and D are completely determined
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by the matrix Kθ. Let a[i,j], d[i,j] and K[i,j] denote the (i, j)-th entries of A, D
and Kθ, respectively. Note that d[1,1] = K[1,1] and the first row of A is 0. A pseudo-
code to compute the remaining elements of A and D is:

for(i in 1:(n-1)) {
a[i+1,1:i] = solve(K[1:i,1:i], K[1:i,i+1])

d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,1:i],a[i+1,1:i])

}.
(16)

Here a[i+1,1:i] is the 1 × i row vector comprising the possibly nonzero elements
of the i+1-th row of A, K[1:i,1:i] is the i × i leading principal submatrix of Kθ,
K[1:i, i] is the i× 1 row vector formed by the first i elements in the i-th column of
Kθ, K[i, 1:i] is the 1 × i row vector formed by the first i elements in the i-th row
of Kθ, solve(B,b) computes the solution for the linear system Bx = b, and dot(u,v)

provides the inner product between vectors u and v. The determinant of Kθ is obtained
with almost no additional cost: it is simply

∏n
i=1 d[i,i].

The above pseudocode provides a way to obtain the Cholesky decomposition of Kθ.
If Kθ = LDL� is the Cholesky decomposition, then L = (I −A)−1. There is, however,
no apparent gain to be had from the preceding computations since one will need to solve
increasingly larger linear systems as the loop runs into higher values of i. Nevertheless,
it immediately shows how to exploit sparsity if we set some of the elements in the lower
triangular part of A to be zero. For example, suppose we set at most m elements in each
row of A to be nonzero. Let N[i] be the set of indices j < i such that a[i,j] �= 0. We
can compute the nonzero elements of A and the diagonal elements of D efficiently as:

for(i in 1:(n-1) {
Pa = N[i+1] # neighbors of i+1

a[i+1,Pa] = solve(K[Pa,Pa], K[(i+1),Pa])

d[i+1,i+1] = K[i+1,i+1] - dot(K[(i+1),Pa], a[i+1,Pa])

}.

(17)

In (17) we solve n-1 linear systems of size at most m × m. This can be performed in
∼ nm3 flops, whereas the earlier pseudocode in (16) for the dense model required ∼ n3

flops. These computations can be performed in parallel as each iteration of the loop is
independent of the others.

The above discussion provides a very useful strategy for introducing sparsity in
a precision matrix. Let Kθ and K−1

θ both be dense n × n positive definite matrices.
Suppose we use the pseudocode in (17) with K = Kθ to construct a sparse strictly
lower-triangular matrix A with no more than m non-zero entries in each row, where m
is considerably smaller than n, and the diagonal matrix D. The resulting matrix K̃θ =
(I−A)−1D(I−A)−� is a covariance matrix whose inverse K̃−1

θ = (I−A�)D−1(I−A)

is sparse. Figure 4 presents a visual representation of the sparsity. While K̃θ need not be
sparse, the density N(w | 0, K̃θ) is cheap to compute since K̃−1

θ is sparse and det(K̃−1
θ )

is the product of the diagonal elements of D−1. Therefore, one way to achieve massive
scalability for models such as (2) is to assume that w has prior N(w | 0, K̃θ) instead of
N(w | 0,Kθ).



600 High-Dimensional Bayesian Geostatistics

Figure 4: Structure of the factors making up the sparse K̃−1
θ matrix.

3.2 From distributions to processes

If we are interested in estimating the spatial or spatiotemporal process parameters from
a finite collection of random variables, then we can use the approach in Section 3.1 with
wi := w(�i). In spatial settings, matters are especially convenient as we can delete the
edges in the DAG based upon the distances among �i’s. In fact, one can decide to retain
at most m of the nearest neighbors for each location and delete all remaining edges.
This implies that the (i, j)-th element of A in Section 3.1 will be nonzero only if �j is one
of the m nearest neighbors of �i. In fact, this idea has been effectively used to construct
composite likelihoods for Gaussian process models by Vecchia (1988) and Stein et al.
(2004), while Stroud et al. (2017) exploits this idea to propose preconditioned conjugate
gradient algorithms for Bayesian and maximum likelihood estimates on large incomplete
lattices.

Localized Gaussian process regression based on few nearest neighbors has also been
used to obtain fast kriging estimates. Emery (2009) provides fast updates for kriging
equations after adding a new location to the input set. Iterative application of their
algorithm yields a localized kriging estimate based on a small set of locations (including
few nearest neighbors). The local estimate often provides an excellent approximation to
the global kriging estimate which uses data observed at all the locations to predict at
a new location. However, this assumes that the parameters associated with the mean
and covariance of the GP are known or already estimated. Local Approximation GP,
or LAGP (Gramacy and Apley, 2015; Gramacy and Haaland, 2016; Gramacy, 2016),
extends this further to estimate the parameters at each new location, essentially pro-
viding a non-stationary local approximation to a Gaussian Process at every predictive
location and can be used to interpolate or smooth the observed data.

If, however, posterior predictive inference is sought at arbitrary spatiotemporal res-
olutions, i.e., for the entire process {w(�) : � ∈ L}, then the ideas in Section 3.1 need to
be extended to process-based models. Recently, Datta et al. (2016a) proposed a Nearest
Neighbor Gaussian Process (NNGP) for modeling large spatial data. NNGP is a well de-
fined Gaussian Process over a domain L and yields finite dimensional Gaussian densities
with sparse precision matrices. This has been also extended to a dynamic NNGP with
dynamic neighbor selection for massive spatiotemporal data (Datta et al., 2016b). The
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NNGP delivers massive scalability both in terms of parameter estimation and kriging.
Unlike low rank processes, it does not oversmooth and accurately emulates the inference
from full rank GPs.

We will construct the NNGP in two steps. First, we specify a multivariate Gaussian
distribution over a fixed finite set r points in L, say R = {�∗1, �∗2, . . . , �∗r}, which we call
the reference set. The reference set can be very large. It can be a fine grid of points
over L or one can simply take r = n and let R be the set of observed points in L.
We require that the inverse of the covariance matrix be sparse and computationally
efficient. Therefore, we specify that wR ∼ N(0, K̃θ), where wR is the r × 1 vector with
elements w(�∗i ) and K̃θ is a covariance matrix such that K̃−1

θ is sparse. The matrix

K̃θ is constructed from a dense covariance matrix Kθ as described in Section 3.1. This
provides a highly effective approximation (Vecchia, 1988; Stein et al., 2004) as below:

N(wR | 0,Kθ) =

r∏
i=1

p(w(�∗i ) |wH(�∗i )
) ≈

r∏
i=1

p(w(�∗i ) |wN(�∗i )
) = N(wR | 0, K̃θ) , (18)

where history sets H(�∗i ) so that H(�∗1) is the empty set and H(�∗i ) = {�∗1, �∗2, . . . , �∗i−1}
for i = 2, 3, . . . , r and we have much smaller neighbor sets N(�∗i ) ⊆ H(�∗i ) for each �∗i in
R. We have legitimate probability models for any choice of N(�∗i )’s as long as N(�∗i ) ⊆
H(�∗i ). One easy specification is to define N(�∗i ) as the set of m nearest neighbors of �∗i
among the points in R. Therefore,

N(�i) =

⎧⎨
⎩

empty set for i = 1
H(�∗i ) = {�∗1, �∗2, . . . , �∗i−1} for i = 2, 3, . . . ,m
m nearest neighbors of �∗i among H(�∗i ) for i = m+ 1, . . . , n

.

If m(<< r) denotes the limiting size of the neighbor sets N(�), then K̃−1
θ has at

most O(rm2) non-zero elements. Hence, the approximation in (18) produces a sparsity-
inducing proper prior distribution for random effects over R that closely approximates
the realizations from a GP (0,Kθ).

To construct the NNGP we extend the above model to arbitrary locations. We
define neighbor sets N(�) for any � ∈ L as the set of m nearest neighbors of � in R.
Thus, N(�) ⊆ R and the process can be derived from p(wR, w(�) | θ) = N(wR | 0, K̃θ)×
p
(
w(�) |wN(�), θ

)
or, equivalently, by writing

w(�) =

r∑
i=1

ai(�)w(�
∗
i ) + η(�) for any � /∈ R , (19)

where ai(�) = 0 whenever �∗i /∈ N(�), η(�)
ind∼ N(0, δ2(�)) is a process independent of

w(�), Cov{η(�), η(�′)} = 0 for any two distinct points in L, and

δ2(�) = Kθ(�, �)−Kθ(�,N(�))K−1
θ (N(�), N(�))Kθ(N(�), �) .

Taking conditional expectations in (19) yields E[w(�) |wN(�)] =
∑

i:�i∈N(�) ai(�)w(�
∗
i ) ,

which implies that for each � the nonzero ai(�)’s are obtained by solving an m×m lin-
ear system. The above construction ensures that w(�) is a legitimate Gaussian process
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whose realizations over any finite collection of arbitrary points in L will have a multi-
variate normal distribution with a sparse precision matrix. More formal developments
and technical details in the spatial and spatiotemporal settings can be found in Datta
et al. (2016a) and Datta et al. (2016b), respectively.

One point worth considering is the definition of “neighbors.” There is some flexibility
here. In the spatial setting, the correlation functions usually decay with increasing
inter-site distance, so the set of nearest neighbors based on the inter-site distances
represents locations exhibiting highest correlation with the given locations. For example,
on the plane one could simply use the Euclidean metric to construct neighbor sets,
although Stein et al. (2004) recommend including a few points that are farther apart.
The neighbor sets can be fixed before the model fitting exercise.

In spatiotemporal settings, matters are more complicated. Spatiotemporal covari-
ances between two points typically depend on the spatial as well as the temporal lag
between the points. Non-separable isotropic spatiotemporal covariance functions can be
written as Kθ((s1, t1), (s2, t2)) = Kθ(h, u) where h = ‖s1 − s2‖ and u = |t1 − t2|. This
often precludes defining any universal distance function d : (S × T )2 → �+ such that
Kθ((s1, t1), (s2, t2)) will be monotonic with respect to d((s1, t1), (s2, t2)) for all choices
of θ. This makes it difficult to define universal nearest neighbors in spatiotemporal
domains. To obviate this hurdle, Datta et al. (2016b) define “nearest neighbors” in a
spatiotemporal domain using the spatiotemporal covariance function itself as a proxy
for distance. This can work for arbitrary domains. For any three points �1, �2 and �3,
we say that �1 is nearer to �2 than to �3 if Kθ(�1, �2) > Kθ(�1, �3). Subsequently, this
definition of “distance” is used to find m nearest neighbors for any location.

However, for every point �i, its neighbor set Nθ(�) will now depend on θ and can
change from iteration to iteration in the estimation algorithm. If θ were known, one
could have simply evaluated the pairwise correlations between any point �∗i in R and all
points in its history set H(�∗i ) to obtain Nθ(�

∗
i ) – the set of m true nearest neighbors. In

practice, however, θ is unknown and for every new value of θ in an iterative algorithm,
we need to search for the neighbor sets within the history sets. Since the history sets
are quite large, searching the entire space for nearest neighbors in each iteration will be
computationally unfeasible. Datta et al. (2016b) offer some smart strategies for selecting
spatiotemporal neighbors. They propose restricting the search for the neighbor sets to
carefully constructed small subsets of the history sets. These small eligible sets E(�∗i )
are constructed in such a manner that, despite being much smaller than the history sets,
they are guaranteed to contain the true nearest neighbor sets. This strategy works when
we choose m to be a perfect square and the original nonseparable covariance function
Kθ(h, u) satisfies natural monotonicity, i.e. Kθ(h, u) is decreasing in h for fixed u and
decreasing in u for fixed h. All Matèrn-based space-time separable covariances and many
non-separable classes of covariance functions possess this property (Stein, 2013; Omidi
and Mohammadzadeh, 2015).

3.3 Hierarchical NNGP models

We briefly turn to model fitting and estimation. For the approximation in (18) to be
effective, the size of the reference set, r, needs to be large enough to represent the spatial
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domain. However, this does not impede computations involving NNGP models because
the storage and number of floating point operations are always linear in r. The reference
set R can, in principle, be any finite set of locations in the study domain. A particularly
convenient choice, in practice, is to simply take R to be the set of observed locations in
the dataset. Datta et al. (2016a) demonstrate through extensive simulation experiments
and a real application that this simple choice seems to be very effective.

Since the NNGP is a proper Gaussian process, we can use it as a prior for the spatial
random effects in any hierarchical model. We write w(�) ∼ NNGP (0, K̃θ(·, ·)), where
K̃θ(�, �

′) is the covariance function for the NNGP (see Datta et al., 2016a, for a closed
form expression). For example, with r = n and R the set of observed locations, one can
build a scalable Bayesian hierarchical model exactly as with a usual spatial process, but
assigning an NNGP to the spatial random effects. Here is a simple NNGP-based spatial
model with a first stage exponential family model:

Y (�) | g(·), β, w(�) ind∼ Pτ exponential family ,

g(E[Y (�)]) = x�(�)β + w(�) , w(�) ∼ NNGP (0, K̃θ(·, ·)) ,
{θ, β, τ} ∼ p(θ, β, τ) ,

(20)

where Pτ is an exponential family distribution with link function g(·). Posterior sam-
pling from (20) is customarily performed using Gibbs sampling with Metropolis steps.
Computational benefits emerge from the fact that the full conditional distribution
p(w(�i) |wR, θ, β, τ) = p(w(�i) |wN(�i), θ, β, τ) and since wN(�i) is an m×1 subset of wR.
Prediction at any arbitrary location � /∈ R is performed by sampling from the posterior
predictive distribution. For each draw of {wR, β, θ, τ} from p(wR, β, τ, θ | y), we draw a
w(�) from N(a�(�)wN(�), δ

2(�)) and y(�) from p(y(�) |β,w(�), τ), where y is the vector
of observed outcomes and a(�) is a vector of the nonzero aj(�)’s in (19).

Another, even simpler, example could be modeling a continuous outcome itself as an
NNGP. Let the desired full GP specification be Y (�) ∼ GP (x�(�)β,Kθ(·, ·)). We derive
the NNGP from this Kθ and obtain

Y (�) ∼ NNGP (μ(�), K̃θ(·, ·)) ; μ(�) = x�(�)β ; {θ, β} ∼ p(θ, β) . (21)

The above model is extremely fast. The likelihood is of the form y ∼ N(Xβ, K̃θ), where
K̃−1

θ = (I−A�)D−1(I −A) is sparse and A and D are obtained from (17) efficiently in
parallel. The parameter space of interest is {θ, β}, which is much smaller than for (20)
where the latent spatial process also was unknown. While (21) does not separate the
residuals into a spatial process and a measurement error process, one can still include
measurement error variance, or the nugget, in (21). Here, one would absorb the nugget
into θ. For example, suppose we wish to approximate (1) using (21). We could write the
likelihood in (1) as N(y |Xβ,Kθ), where Kθ = σ2Rφ + τ2In, Rφ is a spatial correlation
matrix and θ = {σ2, φ, τ2}. These will also feature in the derived NNGP covariance
matrix K̃θ. We can predict the outcome at an arbitrary point � by sampling from the
posterior predictive distribution as follows: for each draw of {β, θ} from p(β, θ | y), we
draw a y(�) from N(y(�) |x�(�)β, δ2(�)). Note, however, that there is no latent smooth
process w(�) in (21) and inference on the latent spatial process is precluded.
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Figure 5: 95% credible intervals for the effective spatial range from an NNGP model
with m = 10 and a full GP model fitted to 10 different simulated datasets with true
effective range fixed at values between 0.1 and 1.0 in increments of 0.1.

Likelihood computations in NNGP models usually involve O(nm3) flops. One does
not need to store n× n matrices, only m ×m matrices which leads to storage ∼ nm2.
Substantial computational savings accrue because m is usually very small. Datta et al.
(2016a) demonstrate that fitting NNGP models to the simulated data in Figure 2 with
number of neighbors as less as m = 10 produce posterior estimates of the spatial surface
indistinguishable from Figures 2(a) and 2(b). In fact, simulation experiments in Datta
et al. (2016a) and Datta et al. (2016b) also affirm that m can usually be taken to be very
small compared to r; there seems to be no inferential advantage to taking m to exceed
15, even for datasets with over 105 spatial locations. For example, Figure 5 shows the
95% posterior credible intervals for a series of 10 simulation experiments where the true
effective range was fixed at values from 0.1 to 1.0 in increments of 0.1. Each dataset
comprised 2500 points. Even with m = 10 neighbors, the credible intervals for the
effective spatial range from the NNGP model were very consistent with those from the
full GP model. Datta et al. (2016a) present simulations using the Matérn and other
covariance functions revealing very similar behavior.

Another important point to note is that K̃θ is not invariant to the order in which
we define H(�1) ⊆ H(�2) ⊆ · · · ⊆ H(�r) (i.e., the topological order). Vecchia (1988)
and Stein et al. (2004) both assert that the approximation in (18) is not sensitive to
this ordering. This is corroborated by simulation experiments by Datta et al. (2016a),
but a recent manuscript by Guinness (2016) has indicated sensitivity to the ordering in
terms of model deviance. We conducted some preliminary investigations to investigate
the effect of the topological order. In one simple experiment we generated data from
the “true” model in (1) for 6400 spatial locations arranged over an 80 × 80 grid. The
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NNGP from different topological orders

True Sorted coord(x+y) MMD Sorted x Sorted y

σ 1 0.79 (0.69, 1.04) 0.80 (0.69, 1.02) 0.80 (0.70, 1.05) 0.83 (0.69, 1.08)

τ 0.45 0.45 (0.44, 0.46) 0.45 (0.44, 0.47) 0.45 (0.44, 0.46 ) 0.45 (0.44, 0.47)

φ 5 8.11 (4.42, 11.10) 7.63 (4.58, 10.97) 8.01 (4.26, 11.18) 7.12 (4.06, 11.03)

KL-D – 24.04022 13.88847 22.30667 21.59174

RMSPE – 0.5278996 0.5278198 0.527912 0.527807

Table 2: Posterior parameter estimates, the Kullback–Leibler divergence (KL-D) and
root mean square predictive errors (RMSPE) are presented for four NNGP models
constructed from different topological orderings. The four orderings from left to right are
“sorted on the sum of vertical and horizontal coordinate”, maximum-minimum distance
(Guinness, 2016), sorted on horizontal coordinate and sorted on vertical coordinate.

parameter β in (1) was set to 0, the covariance function was specified as Kθ(�i, �j) =

σ2 exp(−φ‖�i − �j‖), and ε(�i)
iid∼ N(0, τ2) with the true values of σ2, φ and τ2 given

in the second column of Table 2. Four different NNGP models corresponding to (21)
with K̃θ derived from Kθ = σ2Rφ+τ2I and Rφ having elements exp(−φ‖�i−�j‖), were
fitted to the simulated data. Each of these models were constructed with m = 10 nearest
neighbors, but with different ordering of the points � = (x, y). These were performed
according to the sum of the coordinates x+ y, a maximum-minimum distance (MMD)
proposed by Guinness (2016), the x coordinate, and the y coordinate. Table 2 presents
a comparison of these NNGP models. Irrespective of the ordering of the points, the
inference with respect to parameter estimates and predictive performance is extremely
robust and effectively indistinguishable from each other. However, the posterior mean of
the Kullback–Leibler divergence of these models from the true generating model revealed
that the metric proposed by Guinness (2016) is indeed less than the other three. Further
explorations are currently being conducted to see how this behavior changes for more
complex nonstationary models and in more general settings.

4 Discussion and future directions

The article has attempted to provide some insight into constructing highly scalable
Bayesian hierarchical models for very large spatiotemporal datasets using low-rank and
sparsity-inducing processes. Such models are increasingly being employed to answer
complex scientific questions and analyze massive spatiotemporal datasets in the nat-
ural and environmental sciences. Any standard Bayesian estimation algorithm, such
as Markov chain and Hamiltonian Monte Carlo (see, e.g., Robert and Casella, 2004;
Brooks et al., 2011; Gelman et al., 2013; Neal, 2011; Hoffman and Gelman, 2014), Inte-
grated Nested Laplace Approximations (Rue et al., 2009), and Variational Bayes (see,
e.g., Bishop, 2006) can be used for fitting these models. The models ensure that the
algorithmic complexity has ∼ n floating point operations (flops), where n the number
of spatial locations (per iteration). Storage requirements are also linear in n. Methods
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such as the multiresolution predictive process (Katzfuss, 2017) and the NNGP (Datta
et al., 2016a) can scale up to datasets in the order of ∼ 106 spatial and/or temporal
points without sacrificing richness in the model.

While the NNGP certainly seem to have an edge in scalability over the more con-
ventional low-rank or fixed rank models, it is premature to say whether its inferential
performance will always excel over low rank of fixed rank models. For example, analyz-
ing complex nonstationary random fields may pose challenges regarding construction of
neighbor sets as simple distance-based definition of neighbors may prove to be inade-
quate. Multiresolution basis functions may be more adept at capturing nonstationary,
but may struggle with massive datasets. Dynamic neighbor selection for nonstationary
fields, where neighbors will be chosen based upon the covariance kernel itself, analogous
to Datta et al. (2016b) for space-time covariance functions, may be an option worth
exploring. Multiresolution NNGPs, where the residual from the NNGP approximation
is modeled hierarchically (analogous to Katzfuss, 2017, for the predictive process) may
also be promising in terms of full Bayesian inference at massive scales.

There remain other challenges in high-dimensional geostatistics. Here, we have con-
sidered geostatistical settings where we have very large numbers of locations and/or
time-points, but restricted our discussion to univariate outcomes. In practice, we often
observe a q× 1 variate response y(�) along with a set of explanatory variables X(�) and
q × 1 variate GP, w(�), is used to capture the spatial patterns beyond the observed co-
variates. We seek to capture associations among the variables as well as the strength of
spatiotemporal association for each outcome. One specific geostatistical problem in ecol-
ogy that currently lacks a satisfying solution is a joint species distribution model, where
we seek to model a large collection of species (say, order 103) over a large collection of
spatial sites (again, say, order 103).

The linear model of coregionalization (LMC) proposed by Matheron (1982) is among
the most general models for multivariate spatial data analysis. Here, the spatial behav-
ior of the outcomes is assumed to arise from a linear combination of the independent
latent processes operating at different spatial scales (Chilés and Delfiner, 1999). The
idea resembles latent factor analysis (FA) models for multivariate data analysis (e.g.,
Anderson, 2003) except that in the LMC the number of latent processes is usually taken
to be the same as the number of outcomes. Then, an q × q covariance matrix has to be
estimated for each spatial scale (see, e.g., Lark and Papritz, 2003; Castrignanó et al.,
2005; Zhang, 2007), where q is the number of outcomes. When q is large (e.g., q ≥ 5
and 300 spatial locations), obtaining such estimates is expensive. Schmidt and Gelfand
(2003) and Gelfand et al. (2004) associate only a q× q triangular matrix with the latent
processes. However, high dimensional outcomes are still computationally prohibitive for
these models.

Spatial factor models (see, e.g., Lopes and West, 2004; Lopes et al., 2008; Wang
and Wall, 2003) have been used to handle high dimensional outcomes but with modest
number of spatial locations. Dimension reduction is needed in two aspects: (i) the length
of the vector of outcomes, and (ii) the very large number of spatial locations. Latent
variable (factor) models are usually used to address the former, while low-rank spatial
processes offer a rich and flexible modeling option for dealing with a large number of
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locations. Ren and Banerjee (2013) have exploited these two ideas to propose a class of

hierarchical low-rank spatial factor models and also explored stochastic selection of the

latent factors without resorting to complex computational strategies (such as reversible

jump algorithms) by utilizing certain identifiability characterizations for the spatial fac-

tor model. Their model was designed to capture associations among the variables as well

as the strength of spatial association for each variable. In addition, they reckoned with

the common setting where not all the variables have been observed over all locations,

which leads to spatial misalignment. The fully Bayesian approach effectively deals with

spatial misalignment. However, this method is likely to suffer from the limited ability of

low-rank models to scale to a very large number of locations. Promising ideas include

using the multiresolution predictive process or the NNGP as a prior on the spatial

factors.

Computational developments with regard to Markov chain Monte Carlo (MCMC)

algorithms (see, e.g., Robert and Casella, 2004) have contributed enormously to the

dissemination of Bayesian hierarchical models in a wide array of disciplines. Spatial

modeling is no exception. However, the challenges for automated implementation of

geostatistical model fitting and inference are substantial. First, expensive matrix com-

putations are required that can become prohibitive with large datasets. Second, routines

to fit unmarginalized models are less suited for direct updating using a Gibbs sampler

and result in slower convergence of the chains. Third, investigators often encounter

multivariate spatial datasets with several spatially dependent outcomes, whose analy-

sis requires multivariate spatial models that involve demanding matrix computations.

These issues have, however, started to wane with the delivery of relatively simpler soft-

ware packages in the R statistical computing environment via the Comprehensive R

Archive Network (CRAN) (http://cran.r-project.org). Several packages that au-

tomate Bayesian methods for point-referenced data and diagnose convergence of MCMC

algorithms are easily available from CRAN. Packages that fit Bayesian models include

geoR, geoRglm, spTimer, spBayes, spate, and ramps.

In terms of the hierarchical geostatistical models presented in this article, spBayes

offers users a suite of Bayesian hierarchical models for Gaussian and non-Gaussian

univariate and multivariate spatial data as well as dynamic Bayesian spatio-temporal

models. It focuses upon performance issues for full Bayesian inference, sampler conver-

gence rate and efficiency using a collapsed Gibbs sampler, decreasing sampler run-time

by avoiding expensive matrix computations, and increased scalability to large datasets

by implementing predictive process models. Beyond these general computational im-

provements for existing models, it analyzes data indexed both in space and time using a

class of dynamic spatiotemporal models, and their predictive process counterparts, for

settings where space is viewed as continuous and time is taken as discrete. Finally, we

have modeling environments such as Nimble (de Valpine et al., 2017) that gives users

enormous flexibility to choose algorithms for fitting their models, and Stan (Carpenter

et al., 2017) that estimates Bayesian hierarchical models using Hamiltonian dynamics.

The NNGP and the predictive process can be also coded in Nimble and Stan fairly

easily.

http://cran.r-project.org
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