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PHASE TRANSITION FOR THE ONCE-REINFORCED RANDOM
WALK ON Z

d -LIKE TREES

BY DANIEL KIOUS† AND VLADAS SIDORAVICIUS∗,†

New York University∗ and New York University Shanghai†

In this short paper, we consider the Once-reinforced random walk with
reinforcement parameter a on trees with bounded degree which are transient
for the simple random walk. On each of these trees, we prove that there exists
an explicit critical parameter a0 such that the Once-reinforced random walk
is almost surely recurrent if a > a0 and almost surely transient if a < a0.
This provides the first examples of phase transition for the Once-reinforced
random walk.

1. Introduction. We will be interested in non-Markovian random walks for
which the future of the walk depends on its past trajectory. This fits in the large
family of self-interacting random walks. Usually, these walks are hard to study
and even basic properties such as recurrence and transience can be very difficult to
obtain.

Here, we will focus on edge-interaction, where each edge of the considered
graph has a current weight (depending on the past trajectory) and the walker jumps
through an edge with a probability proportional to its weight. One important exam-
ple of such walks is the linearly Edge-reinforced random walk (ERRW) which was
first introduced by Coppersmith and Diaconis [4]. The ERRW corresponds to the
case where the current weight of an edge is equal to the number of time it has been
crossed so far plus some initial weight w. In the eighties, it was conjectured that
the ERRW on Z

d is recurrent if d ≤ 2 and, if d ≥ 3, that it is recurrent for small
w and transient for large w. This remained a long standing open problem until the
last few years. Let us state a brief history of the results obtained so far. We refer
the reader to [10, 15, 21] for surveys on various random walks with reinforcement.

A phase transition was first proved on the binary tree by Pemantle [14] who
described the ERRW on trees as a random walk in an independent random envi-
ronment. Later, Merkl and Rolles considered, in a series of papers, the ERRW on
various particular graphs, for instance proving recurrence on a graph which is Z2

with each edge replaced by 130 edges in series; see [13]. One of the most recent
and most important result is the recurrence for w small on Z

d which was proved
independently by Angel, Crawford and Kozma [2] and by Sabot and Tarrès [16], at
about the same time but with two different techniques. The proof in [2] is intuitive
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and uses a nice simple idea, whereas the proof in [16] makes an explicit link with
a model in quantum field theory, which seems to have far-reaching consequences.
Using arguments from the physics literature [7], Disertori, Sabot and Tarrès [6]
proved the transience for large w on Z

d , d ≥ 3. Up until now, the last striking
result on ERRW is the recurrence on Z

2 for any reinforcement parameter, proved
by Sabot and Zeng [19]. Research on ERRW is still going on: it seems that many
links are to be discovered between the ERRW and models from physics or other
interesting probabilistic models, as initiated by Sabot, Tarrès and co-authors [6,
16–19].

Due to the absence of results about ERRW for many years, Davis [5] introduced
the Once-reinforced random walk (ORRW) as an a priori simplified version of
the ERRW. This is a walk for which the current weight of an edge is 1 if it has
never been crossed and a > 1 otherwise. It turned out that the study of this walk
on Z

d is not easy at all and its recurrence/transience is still an open problem. It
has been conjectured by the second author that the ORRW is recurrent on Z

d for
d ∈ {1,2} and undergoes a phase transition for d ≥ 3, being recurrent when the
parameter a is large and transient when it is small. So far, there are only results
on trees and particular graphs, for which no phase transition occurs. Sellke [20]
proved that the ORRW is almost surely recurrent on the ladder Z× {1, . . . , d} for
a ∈ (1, (d −1)/(d −2)); see also [22]. In contrast with the ERRW, Durrett, Kesten
and Limic [9] showed that the ORRW is transient on regular trees for any a > 1,
which was later generalized to any supercritical tree by Collevecchio [3].

Until now, there was no example of a graph on which the ORRW exhibits a
phase transition and, among the results available so far, there is no good indication
that a phase transition occurs. Here, we provide examples of irregular trees with a
bounded degree on which the ORRW indeed undergoes a phase transition. These
trees have an overall drift that is similar to that of Zd . They were already introduced
as a way to investigate the behavior of the simple random walk on Z

d ; see the
survey [8] by Doyle and Snell or Section 3.2.

While we do not claim that it really implies anything on Z
d , it shows in a simple

case that the once-reinforcement procedure can change the nature of the walk on
graphs with polynomial overall drifts.

2. Construction of the trees and transience of simple random walk. Fix a
positive integer d ∈ N \ {0} and let us construct a tree Td rooted at a vertex ∅. The
root is said to be at level 0 and has one child (at level 1). Each vertex at level 2k ,
k ≥ 0, has d children and the vertices at any other level have only one child. This
“rarely splitting” tree is depicted in Figure 1. For two vertices x, y ∈ Td , we write
x ∼ y if they are neighbors, that is, if one them is the child of the other one, and we
denote [x, y] the nonoriented edge linking them. Besides, we call x the ancestor of
y (at level k) if it is on the unique path between the root and y (and if x is at level
k), and in this case y is called a descendant of x.
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FIG. 1. The first generations of the tree T3.

Each edge of the tree has a conductance, or weight, 1. For the simple random
walk, this tree is known to be recurrent if d ≤ 2 and transient if d ≥ 3. Indeed, it
is straightforward to compute the effective resistance from the root to infinity and
obtain

R(∅↔ ∞) = 1 +
+∞∑
k=0

2k

dk+1 ,

which is infinite for d ∈ {1,2} and finite for d ≥ 3; see [8] or [12] for more
details on how to compute effective resistances and consequences on the recur-
rence/transience of the simple random walk.

3. The Once-reinforced random walk on Td .

3.1. Main result. Let us first define the ORRW on Td , d ≥ 1, with parameter
a > 0.

The current weight of an edge is defined as follows: at time n, an edge has
conductance 1 if it has never been crossed (regardless of any orientation of the
edges) and conductance a > 0 otherwise. The case where a > 1 matches the usual
definition of the ORRW, but here we will also consider a ≤ 1 which corresponds
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to some “negative reinforcement,” or repulsion. For any n ≥ 0, let En be the set of
nonoriented edges crossed up to time n, that is,

En := {[x, y] : x, y ∈ Td and ∃1 ≤ k ≤ n s.t. {Xk−1,Xk} = {x, y}}.
At time n ∈ N, if Xn = x ∈ Td , then the walk jumps to a neighbor y ∼ x with
conditional probability

P[Xn+1 = y|Fn] = (a − 1)1{[x, y] ∈ En} + 1∑
z:z∼x((a − 1)1{[x, z] ∈ En} + 1)

,

where (Fn) is the natural filtration generated by the history of (Xn).

THEOREM 1. For any positive integer d , the Once-reinforced random walk on
Td with reinforcement parameter a > 0 is almost surely:

(i) recurrent if a > log2(d);
(ii) transient if 0 < a < log2(d).

REMARK 1. We believe that the walk is recurrent when a is critical for d ≥ 2,
as it seems to corresponds to the criticality of some branching process, but we do
not provide any proof. Nevertheless, for d = 2, the critical case corresponds to the
simple random walk on T2, which is recurrent. Also, note that the ORRW is always
recurrent on the integer half-line T1 (obviously transient for the critical case a = 0
which is degenerate) and on T2 if we restrict ourselves to the usual attractive case
a ≥ 1.

3.2. The idea behind Td . The trees Td were already introduced by Doyle and
Snell [8] in order to investigate the behavior of the simple random walk on Z

d . The
idea is pretty simple: we want a tree with spheres having a polynomial number of
points with respect to their radius. Namely, in order to compare it with Z

d , we want
that, when we double the radius of a sphere, this multiplies the numbers of vertices
on it by 2d−1. With this in mind, it is quite easy to see that T2 “corresponds” to
Z

2, T4 to Z
3 and more generally T2d−1 to Z

d . In other words, for d ≥ 1, we think
of Td as a tree of dimension log2(d) + 1.

In [8], the authors compute the effective resistance of these trees in order to
embed them in Z

d and conclude about the recurrence or transience of the simple
random walk. Although the phase transition of the ORRW on these trees is some-
how good news for the conjecture of a phase transition, we do not claim that any
strategy of embedding them on Z

d could work for the ORRW.

3.3. Other examples of trees with phase transition. We believe that the tech-
niques used here can apply to various examples of trees with polynomial overall
drift, in particular weighted regular trees.
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Here is an example proposed to us by Gady Kozma. Consider the regular 3-ary
tree where the edges at level k have a conductance 2−k . This tree is transient for
the simple random walk (on each site, the local drift is positive). Applying the
very same techniques as in this paper, one can prove that the ORRW on this tree is
recurrent if a > 2 and transient if 0 < a < 2.

3.4. The behavior of the ERRW on Td . It is interesting to note the different
behaviors of the ERRW and the ORRW on the trees Td . Indeed, while our main
result reveals a phase transition for the ORRW, it can be proved that the ERRW
is recurrent on Td , for any d ≥ 1 and for any reinforcement parameter (at least
provided that all edges have the same initial weight).

We do not provide a full proof of this, as this does not provide anything new
and it is fairly easy to obtain this using the results of [11, 14]. Let us give a rough
blueprint. First, one can prove that, for any ε > 0, Td is, with positive probability,
a subtree of a Galton–Watson tree with mean offspring 1 + ε, using for instance
Lemma 6 of [14]. Second, one can prove that, for any reinforcement parameter,
there exists ε > 0 such that the ERRW is almost surely recurrent on this Galton–
Watson tree, using Theorem 3 of [11] and doing the same computation as in display
(6.2) of [14] (note that the quantity computed there is strictly less than 1 and does
not depend on the precise law of the tree or on ε).

3.5. Strategy of the proof of Theorem 1. The strategy to prove recurrence is
quite simple. First, we consider the ORRW on the half-line and estimate the prob-
ability for the walk to hit level 2k+1 before hitting the root once it is at level 2k .
When a is large enough, this probability is small compared to the number of points
in the sphere of radius 2k+1 and this enables us to conclude recurrence.

The proof for transience is more subtle, adapting a very nice technique due to
Collevecchio [3]. The idea is to consider the walk after it has reached level 2kn0 , for
some constant integer n0, and observe the number Zk of children at level 2(k+1)n0

that are hit before the walk goes back to the ancestor at level 2kn0−1 (assuming
that the walk eventually comes back to this ancestor). Then we see the law of Zk

as the offspring distribution at level k of an inhomogeneous branching process.
If a is small enough, this branching process is supercritical and survives forever
with lower-bounded probability. For the walk, it means that, for any k0 and with
lower-bounded probability, there exists an infinite path starting at level 2k0n0 such
that the walk has to visit all the vertices on this path before going back to level
2k0n0−1. This easily implies the almost sure transience of the walk.

3.6. Proof of Theorem 1.

PROOF OF (i). Fix d ≥ 1 and a > log2(d), that is, a ln(2) − ln(d) > 0.
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Let us denote Ln, n ≥ 0, the set of vertices at level n in Td . For x ∈ Td , define
the following hitting time:

Tx := inf{n ≥ 0 : Xn = x},
which is infinite if x is never hit. Besides, for any k ≥ 0, define T (2k) :=
infx∈L2k

Tx , the hitting time of level 2k . Also, for any k ≥ 0, define the first

time the walker goes back the root after having hit level 2k , that is, T
(k)
∅ =

T (2k) + T∅ ◦ θT (2k), where θ is the canonical shift. Note that T (2k) is almost
surely finite for any k ≥ 0 as the walk cannot stay in any finite subtree forever.
For any vertex x ∈ L2k , k ≥ 1, and for any 1 ≤ n ≤ k, we denote

←
x k−n∈ L2k−n its

unique ancestor at level 2k−n.
Notice that, for any k ≥ 0 and any integer n ≥ 1,

(3.1)

P
[
T

(k)
∅ > T

(
2k+n)|FT (2k)

]
= P

[ ⋃
x∈L2k+n

{
T←

x k
< ∞, Tx < T

(k)
∅ , T

(
2k+n) = Tx

}∣∣∣FT (2k)

]

≤ ∑
x∈L2k+n

E
[
1{T←

x k
< ∞}P[Tx ◦ θT←

x k

< T∅ ◦ θT←
x k

|FT←
x k

]|FT (2k)

]
.

Now, we denote X1, T 1
∅

and T 1(2i ), respectively, the ORRW on the integer half-
line (identifying the root ∅ and 0), the hitting time of the root and the hitting time
of level 2i (or vertex 2i ) associated to this walk. Also, we denote P1 the probability
measure associated to X1. Then, for any x ∈ L2k+n , if T←

x k
< ∞, starting from T←

x k

and up to Tx ∧T
(k)
∅ , the jumps of X along the unique path from the root to x can be

coupled with those of X1 starting from T 1(2k). It is quite straightforward to define
this coupling such that if Tx ◦ θT←

x k

∧ T∅ ◦ θT←
x k

< ∞ then XTx◦θT←
x k

∧T∅◦θT←
x k

=
X1

T 1(2k+n)◦θ
T 1(2k)

∧T 1
∅

◦θ
T 1(2k)

almost surely; hence we will not detail it.

This yields

(3.2)
1{T←

x k
< ∞}P[Tx ◦ θT←

x k

< T∅ ◦ θT←
x k

|FT←
x k

]

≤ P
1[

T 1(
2k+n)

< T 1(
2k) + T 1

∅
◦ θT 1(2k)

]
.

In order to estimate this last quantity, note that when X1 is at some level j ∈
{2k,2k + 1, . . . ,2k+n − 1}, with all the edges on its left having weight a and all
the edges on its right having weight 1, the probability to hit j + 1 before the root,
at level 0, is j/(j + a) as can be seen by computing the effective resistance from
∅ to j on the line or solving the Gambler’s ruin problem; see [12]. Therefore, we
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have

P
1[

T 1(
2k+n)

< T 1(
2k) + T 1

∅
◦ θT 1(2k)

]
=

2k+n−1∏
j=2k

(
1 − a

j + a

)
≤ exp

(
−a

2k+n−1∑
j=2k

1

j + a

)

≤ exp
(
−a ln

(
2k+n + a

2k + a

))
≤ exp

(−an ln(2) − a ln
(
1 − a2−k)).

Finally, notice that, in Td , there are dk+n vertices at level 2k+n, so that the last
inequality, together with (3.1) and (3.2), implies

P
[
T

(k)
∅ > T

(
2k+n)|FT (2k)

]
≤ exp

(
k ln(d) − n

(
a ln(2) − ln(d)

) − a ln
(
1 − a2−k))

and choosing n = nk = 2k
ln(d + 1)/(a ln(2)− ln(d))�, which we can do because
a ln(2) − ln(d) > 0, we obtain, as d + 1 ≥ 2, that

P
[
T

(k)
∅ > T

(
2k+nk

)|FT (2k)

] ≤ exp
(−k ln(2) − a ln

(
1 − a2−k)).

This last quantity is summable. Define the increasing sequence starting at k0 = 1
and such that ki = ki−1 +2ki−1
ln(d +1)/(a ln(2)− ln(d))�, for any i ≥ 1. By the
Borel–Cantelli lemma, there almost surely exists a finite random index i0 such that,
for any i ≥ i0, T

(ki)
∅ < T (2ki+1). Hence the root is almost surely visited infinitely

many times, that is, the walk is recurrent. �

PROOF OF (ii). Let us assume a ln(2) − ln(d) < 0, with d ≥ 2 and a > 0.
We use a strategy which is a slight variation of the one in [3], as explained in
Section 3.5. We will keep some notation from the proof of (i).

Let n0 ∈ N the smallest integer such that, for any k ≥ 1,

dn0

2(k+1)n0−1∏
j=2kn0−2kn0−1

(
1 − a

j + a

)
≥ 2.

It can be easily checked that this integer n0 exists and is finite as soon as 0 < a <

ln(d)/ ln(2). It is important that n0 does not depend on k.
For k ≥ 1, fix a vertex x ∈ L2kn0 , denote xi , 1 ≤ i ≤ dn0 , its descendants at

level 2(k+1)n0 and x−1 its ancestor at level 2kn0−1. We define T(x) the smallest
connected subtree containing x, x−1 and xi , 1 ≤ i ≤ dn0 ; see Figure 2.

Now, let us define (Y x
i )i the ORRW on the finite tree T(x), reflected at x−1 and

xi , 1 ≤ i ≤ dn0 . We will denote T x· and P
x , respectively, the stopping times and

the probability measure associated to Yx . We start Yx at x, putting weight a on
the edges on the path between x−1 and x, and weight 1 and the other edges. Then
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FIG. 2. The finite tree T(x) and some distinguished points, in the case d = 3.

consider this walk up to time T x
x−1

and let Zx
k ∈ {0, . . . , dn0} be the number vertices

among xi , 1 ≤ i ≤ dn0 that have been visited before time T x
x−1

. Note that the law

of Zx
k depends on k, n0, a and d but not on x (as soon as it is at level 2kn0 ).

For any k ≥ 1, x ∈ L2kn0 and 1 ≤ i ≤ dn0 , by comparing Yx to a one-
dimensional ORRW, we have that

P
x[

T x
xi

< T x
x−1

] =
2(k+1)n0−1∏

j=2kn0−2kn0−1

(
1 − a

j + a

)
,

and thus

E
x[

Zx
k

] = E
x

[
dn0∑
i=1

1
{
T x

xi
< T x

x−1

}] = dn0

2(k+1)n0−1∏
j=2kn0−2kn0−1

(
1 − a

j + a

)
≥ 2.

For k0 ≥ 1, let Bk0 be the branching process where vertices at level i have an off-
spring distribution given by that of Zx

i+k0
(for some x ∈ L2(i+k0)n0 ), and denote B

k0
i

the number of particles at level i. Now, we want to use Theorem 1 of [1] in order
to prove that the process Bk0 is supercritical. Let us precisely transcript the nota-
tion of [1] (using generating functions) according to our notation, for the reader’s
convenience. In Theorem 1 of [1], T denotes the extinction time of the branching
process, thus P(T ≤ i) ≡ 1 − P[Bk0

i > 0], and we are therefore interested in the
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upper bound in display (2.4) of [1]. Besides, we have the following correspondence
between the notation of [1] and our notation: Pj ≡ E[Bk0

j ], g′
j (1) ≡ E[Zx

k0+j ] and

g′′
j (1) ≡ E[(Zx

k0+j )
2] −E[Zx

k0+j ], for any x ∈ L2(j+k0)n0 and for any j ≥ 0.

Hence the upper bound in (2.4) of [1] and then using that E[(Zx
k )2] ≤ d2n0 ,

E[Zx
k ] ≥ 2, for any k ≥ 1, and E[Bk0

i ] ≥ 2i , we have that

lim
i→∞P

[
B

k0
i > 0

]
≥ lim sup

i→∞

[
E

[
B

k0
i

]−1 +
i−1∑
j=0

E[(Zx
k0+j )

2] −E[Zx
k0+j ]

E[Zx
k0+j ]

E
[
B

k0
j+1

]−1

]−1

≥ lim sup
i→∞

1

2−i + d2n0(1 − 2−i )
= d−2n0 =: δ,

where it should be noted that δ > 0 is a constant that does not depend on k0.
Now, consider the following coloring scheme on the whole tree Td . Fix some

k0 ≥ 1. For any k ≥ k0 and for any x ∈ L2kn0 , let the walks Yx defined above evolve
independently up to time T x

x−1
. Pick any vertex v0 ∈ L2k0n0 and start by coloring it

in white. By induction, for any k ≥ k0 and x ∈ L2kn0 , we color a descendant of x

at level 2(k+1)n0 if x is white and if this descendant has been visited by Yx before
x−1. Call the set of white points BY,k0 . It is straightforward to see that the set of
white points is then equivalent to one realization of Bk0 .

The next step is to define a coupling of the trajectories (Y x)x∈Td
and X such

that, if X comes back to level 2k0n0−1 after having hit level 2k0n0 , then it has before
visited all the points in BY,k0 . Therefore, this can happen only if BY,k0 is finite, and
thus with probability at most 1 − δ. The coupling is quite artificial but it hopefully
clarifies that the dependencies created by the visits of X in different generations
of the tree are not too strong, or at least not relevant to prove a sufficient result. As
the good coupling is not obvious, we detail it.

Fix two integers k0 ≥ 1, K0 > k0 and wait for X to hit level 2k0n0 , denoting
v0 = XT (2k0n0 ) and v−1 the ancestor of v0 at level 2k0n0−1. Let us define V

K0
v0 the

set of vertices containing v0 and all its descendants at levels 2kn0 , k0 < k < K0.
Besides, let us define Tend = T (2K0n0) ◦ θT (2k0n0 ) ∧ T (2k0n0−1) ◦ θT (2k0n0 ). We are
going to describe the evolution of a process

Wn = (
XT (2k0n0 )+n∧Tend

,Cn,
{(

Nx(n),
(
Yx

i

)
0≤i≤Nx(n)

)
, x ∈ V K0

v0

})
,

where Cn is a process taking values in V
K0
v0 ∪{∅} starting at C0 = v0, Yx· is a finite

trajectory on the tree T(x) starting at Yx
0 = x and Nx(·) is its associated clock

(nondecreasing integer-valued process) starting at Nx(0) = 0, for any x ∈ V
K0
v0 .

The process Cn will indicate which of the Yx is currently coupled with X (with
the convention that Cn = ∅ means that there is currently no coupling). We denote
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P the probability measure associated to (Wn). (Wn) will be constructed in a way
such that the trace (i.e., the set of visited points) of X on T(x) at time T (2k0n0) + n

matches the trace of Yx at time Nx(n), for any Tx ◦ θT (2k0n0 ) ≤ n ≤ Tend (at these
times, the edges on the left of x are always considered visited for both walks).

We will need more notation. For any k ≥ k0 and any x ∈ L2kn0 , we still de-
note x−1 its ancestor at level 2kn0−1 and xi , 1 ≤ i ≤ dn0 , its descendants at level
2(k+1)n0 , as well as x0

i the ancestor of xi at level 2(k+1)n0−1 (they are not all
distinct, see Figure 2). We denote Hx

n the (random) set of vertices among xi ,
1 ≤ i ≤ dn0 , visited by X up to time T (2k0n0) + n ∧ Tend (Hx

n can be empty). Also,
define ∂x = {x−1, x1, . . . , xdn0 }, the boundary of the finite tree T(x).

Assume that we have constructed W up to time n < Tend and that, for any y ∈
V

K0
v0 such that Ty ≤ T (2k0n0) + n, the traces of X and Yy on T(y) are the same.

Moreover, assume that XT (2k0n0 )+n ∈ T(x) \ ∂x for some x ∈ L2kn0 , k0 ≤ k < K0
and Cn = x. Then let X take one step according to its usual law, jumping on some
vertex zn+1 and:

(i) If n + 1 < Tend then

(a) If zn+1 /∈ ∂x , then Hx
n+1 = Hx

n , Cn+1 = x, Nx(n + 1) = Nx(n) + 1,

Yx
Nx(n+1) = zn+1 and Nv(n + 1) = Nv(n) for any v ∈ V

K0
v0 \ {x}.

(b) If zn+1 = xi ∈ {x1, . . . xdn0 } \ Hx
n and thus Hx

n+1 = Hx
n ∪ {xi}, then set

Cn+1 = xi , Nv(n + 1) = Nv(n) for any v ∈ V
K0
v0 \ {x}, set Yx

Nx(n)+1 = xi and

let Yx evolve according to its usual law until it comes back to x0
i , at some time

n′, and set Nx(n + 1) = n′. At the end of the construction, it will be clear that,
in this case, Nxi

(n + 1) = 0 and that it is the first time Yxi is coupled with X.
The next time X comes back to x0

i , if it ever does, we will start again to couple
it with Yx [see item (d)].

(c) If zn+1 = xi ∈ Hx
n−1, then let X move according to its usual law until

it comes back to the father of xi (call this time T̃ for the clock of W ), setting
Cj = ∅ for any n + 1 ≤ j < T̃ ∧ Tend and C

T̃ ∧Tend
is x if T̃ < Tend and ∅

otherwise. Besides, let Yx
Nx(n)+1 = xi , Yx

Nx(n)+2 =←
x i (the father of xi ) and, for

any n + 1 ≤ i ≤ T̃ ∧ Tend, set Nx(i) = Nx(n) + 2 and Nv(i) = Nv(n) for any
v ∈ V

K0
v0 \ {x}.

(d) If zn+1 = x−1, then Nx(n + 1) = Nx(n) + 1, Yx
Nx(n+1) = x−1, Nv(n +

1) = Nv(n) for any v ∈ V
K0
v0 \ {x}, and we set Cn+1 = ←

x (k−1)n0 . From this
time, the sub-tree starting at x will not be relevant to us anymore, Y x has been
constructed up to T x

x−1
and we will never couple it with X again. The next time

X comes back to x, we will be in the situation (c) described above.

(ii) If n+1 = Tend, then Cn+1 = ∅, Nx(n+1) = Nx(n)+1, Y x
Nx(n+1) = zn+1 and

Nv(n + 1) = Nv(n) for any v ∈ V
K0
v0 \ {x}.
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The process W is thus constructed up to time Tend. Now, for any x ∈ V
K0
v0 such that

Nx(Tend) < T x
x−1

, we let Yx evolve according to its usual law up to time T x
x−1

=:
Nx(Tend + 1); otherwise, we already have Nx(Tend) = T x

x−1
=: Nx(Tend + 1).

Finally, we set Nx(i) = Nx(Tend + 1) for any x ∈ V
K0
v0 and Ci = ∅, for all

i ≥ Tend + 1. This completes the construction of the process and we obtain

W∞ = (
XT (2k0n0 )+Tend

,∅,
{(

T x
x−1

,
(
Yx

i

)
0≤i≤T x

x−1

)
, x ∈ V K0

v0

})
.

The important point is to decouple Yx and X when they hit for the first time
some vertex xi , 1 ≤ i ≤ dn0 , and until X comes back to x0

i . This allows us to
start coupling X with Yxi at time Txi

. Besides, it is quite straightforward that the
marginal laws of X and {(Y x

i )0≤i≤T x
x−1

, x ∈ V
K0
v0 } under P are their usual laws

(because the traces of X and Yx match when they move together) and that the
trajectories (Y x)

x∈V
K0
v0

are independent (because the steps of X when Cn �= x have

no influence on the steps of Yx ).
Also, note that if XT (2k0n0 )+Tend

= v−1, then we necessarily have that if x ∈ V
K0
v0

and Tx < T (2k0n0) + Tend then Nx(Tend) = T x
x−1

(i.e., X and Yx have been
coupled until they hit x−1 together). Thus, if we color the points in the tree⋃

x∈V
K0
v0

T(x), starting with v0 and defining BY,k0 as above, it means that if

Tv−1 ◦ θTv0
< T (2K0n0) ◦ θTv0

then X visits all the white points. Therefore, if

XT (2k0n0 )+Tend
= v−1 then BY,k0 necessarily dies out before level K0 − k0. We thus

obtain

P
[
T

(
2k0n0−1) ◦ θT (2k0n0 ) < ∞|FT (n0k0)

]
= lim

K0→∞P
[
T

(
2k0n0−1) ◦ θT (2k0n0 ) < T

(
2K0n0

) ◦ θT (2k0n0 )|FT (n0k0)

]
≤ lim

i→∞P
[
B

k0
i = 0

] ≤ 1 − δ.

As δ > 0 does not depend on k0, this implies that the walk is almost surely tran-
sient. �
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