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We study the lattice approximations to the dynamical d>‘31 model by para-
controlled distributions proposed in [Forum Math. Pi 3 (2015) e6]. We prove
that the solutions to the lattice systems converge to the solution to the dynam-
ical @‘3‘ model in probability, locally uniformly in time. Since the dynamical
CI>‘3‘ model is not well defined in the classical sense and renormalisation has to
be performed in order to define the nonlinear term, a corresponding suitable
drift term is added in the stochastic equations for the lattice systems.
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1. Introduction. Recall that the usual continuum Euclidean @3—quantum
field is heuristically described by the following probability measure:

N ] dprexp(— [ (Vo0 + 8200+ 6% 00) d )

xeTd

where N is a normalization constant and ¢ is the real-valued field and T¢ is the
d-dimensional torus. There have been many approaches to the problem of giving a
meaning to the above heuristic measure for d = 2 and d = 3 (see [10, 14] and refer-
ences therein). In [31], Parisi and Wu proposed a program for Euclidean quantum
field theory of getting Gibbs states of classical statistical mechanics as limiting
distributions of stochastic processes, especially as solutions to nonlinear stochas-
tic differential equations. Then one can use the stochastic differential equations to
study the properties of the Gibbs states. This procedure is called stochastic field
quantization (see [25]). The d>3 model is the simplest nontrivial Euclidean quan-
tum field (see [10] and the reference therein). The issue of the stochastic quantiza-
tion of the d>§ model is to solve the following equation:

(1.2) do = (AD — ®)dt +dW(t),  (0) = D,

where W is a cylindrical Wiener process on L?(T¢). The solution @ is also called
dynamical CD@ model. (1.2) is ill-posed in both two and three dimensions.

In two spatial dimensions, the dynamical CI>‘21 model was previously treated in
[2, 9] and [29]. In three spatial dimensions, this equation (1.2) is ill-posed and
the main difficulty in this case is that W, and hence the solutions are so singular
that the nonlinear term is not well defined in the classical sense. It was a long-
standing open problem to give a meaning to equation (1.2) in the three-dimensional
case. A breakthrough result was achieved recently by Martin Hairer in [18], where
he introduced a theory of regularity structures and gave a meaning to equation
(1.2) successfully. He also proved existence and uniqueness of a local (in time)
solution. By using the paracontrolled distributions proposed by Gubinelli, Imkeller
and Perkowski in [12], existence and uniqueness of local solutions to (1.2) has
also been obtained in [7]. Recently, these two approaches have been successful
in giving a meaning to several other ill-posed stochastic PDEs like the Kardar—
Parisi—Zhang (KPZ) equation [4, 17, 26], the Navier—Stokes equation driven by
space—time white noise [37, 38], the dynamical sine-Gordon equation [23] and so
on (see [22] for further interesting examples). From a philosophical perspective,
the theory of regularity structures and the paracontrolled distributions are inspired
by the theory of controlled rough paths [11, 28]. The main difference is that the
regularity structure theory considers the problem locally, while the paracontrolled
distribution method is a global approach using Fourier analysis. In [27], the author
also uses renormalization group techniques to make sense of the dynamical d>§'
model.
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The lattice approximation is an important tool in constructing and study-
ing the continuum d>§ field (see [1, 32, 33]). It also preserves Osterwalder—
Schrader positivity and also the ferromagnetic nature of the measure (see [10]
and the references therein). Let us set A, := {ex € T3, x € Z3}. Heuristically,
the quantities [ |V (x)|>dx, [ ¢*(x)dx, and [ ¢*(x) dx can be approximated by
€ Y xmylmerxyeh, (D) — 9%, &3 Yien, ¢(X) and &7 3 o5, ¢ (x)*, respec-
tively, as ¢ tends to zero. Thus heuristically (1.1) can be approximated by the
following probability measure fi:

N Hd«ﬁxexp(ze Y 40
xel; [x—y|=¢,x,yeA¢

(1.3)
— (@ +12¢) Y P?0) - ) ¢4(x)),

xXeAg xeA;

where N, is a normalization constant. (1.3) is still just a heuristic expression, but
one can give a rigorous meaning to it since it is a finite dimensional Gaussian
measure with a density (see [10] and the references therein). We call this the lat-
tice q)g‘—ﬁeld measure. From . by deriving suitable bounds on its moments and
choosing subsequences if necessary, one gets limit measures by weak convergence.
These are then the continuum <I>‘3‘—ﬁeld measures.

The following stochastic PDE on A, ¢ > 0, is the stochastic quantization asso-
ciated to the lattice <I>‘3‘—ﬁeld measure:

d®° (1, x) = (A D (1, x) — (D°)’ (1, x) + (3CE — 9CE) P (1, x)) dt
(1.4) +e732dw,. (@, x),
D (0) = D,

Here, W.(t) = {W(t,x)}rea, is a family of independent Brownian motions,
and W, are independent and Cjj and C7 are constants defined in (6.3) and (1.10)
below. For x € A, define

Acf):=e > (fO)—f),

YEAg,Y~X

and the nearest neighbor relation x ~ y is to be understood with periodic boundary
conditions on Ag.

The aim of this paper is to prove that as ¢ — 0 the dynamical lattice approxi-
mation, that is, the solution to (1.4), converges to the dynamical <I>‘3‘ model. This
problem is also related to the convergence of a rescaled discrete spin system to
the solution of the dynamical CI>‘31 model (see [30] for the dynamical <I>‘2t model).
We emphasize that to make sense of (1.2) we need to renormalise some ill-defined
terms in (1.2). This is done by adding the renormalisation terms C5®® and C] ®°
in the approximating equation (1.4).
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In the one-dimensional case, approximations to general stochastic partial dif-
ferential equations driven by space—time white noise have been very well studied
(see [8, 15, 16, 19, 20, 24] and the reference therein). In [13], the authors study
the Sasamoto—Spohn-type discretizations of the conservative stochastic Burgers
equation. In the three-dimensional case, we have also studied the discrete approx-
imations to stochastic Navier—Stokes equations driven by space—time white noise
(see [37)]).

In this paper, we use the paracontrolled distribution method to prove that the so-
lutions to the lattice approximation equation converge to the dynamical <I>‘3‘ model.
The theory of paracontrolled distributions combines the idea of Gubinelli’s con-
trolled rough path [11] and Bony’s paraproduct [5], which is defined as follows:
Let A f be the jth Littlewood—Paley block of a (Scharwtz) distribution f. For its
definition, we refer to Section 2. Define for distributions f and g

T (f@)=m-(8. /)= Y. D AifAjg.  mo(fig)= Y. AifAjg.
jz—li<j—1 li—jl=<1
Formally, fg =rn(f, g) + mo(f, g) + 7= (f, g). Observing that, if f is regular,
m-(f, g) behaves like g and is the only term in the Bony’s paraproduct not im-
proving the regularities, the authors in [12] consider a paracontrolled ansatz of the

type
u =7T<(u/a g) +Mﬁa

where 7_ (u', g) represents the “bad-part” of the solution, u’ is some suitable func-
tion and g is some functional of the Gaussian field and u* is regular enough to
define the multiplication required. Then to make sense of the product of uf we
only need to define gf.

Using the paracontrolled distribution method, to perform the lattice approxima-
tion of the dynamical CD;‘ model we shall meet the projection operators Py, which
do not commute with the paraproduct. Here, we use a random operator technique
from [13] to handle these operators. However, for the dynamical CI>‘3‘ model this
technique is not enough and we have to estimate an additional error term Dy by
stochastic calculations in Section 6.4 (see Remark 4.4).

Framework and main result. For N > 1,let AN ={—N,—(N — 1), ...,N}3.

Set ¢ = ﬁ Every point k € AV can be identified with x = ¢k € A, =
x =0 x2xd) eeZ?: —1 < x',x%,x3 < 1}). We view A, as a discreti-

sation of the continuous three-dimensional torus T° identified with [—1, 1]°.
In the following for simplicity, we fix a cylindrical Wiener process in (1.2)

on L%(T?) given by 27% Dk ﬁke‘”k'x for x € T3 and restrict it to L*(A,) as
Wr(x) = 2—% Dkl <N Bre™** for x € A,, which is also a cylindrical Wiener

process on _LZ(AS). Here, {Bx} is a family of complex-valued Brownian mo-
tions with B_y(t) = Bk (t) and E[By, (t1) B, (12)] = 1k, +kr=0111 A 12 and |k|oo =
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max(|k!|, |k2|, |k3|). For fixed N, (1.4) is a finite dimensional SDE and we can
easily obtain existence and uniqueness of solutions to (1.4) by [34], which implies
that the solution to (1.4) has the same distribution as the solution to the following
equation:

dde(t, x) = (A D°(t, x) — (<I>8)3(t, x) + (3C§ —9CE) ®° (¢, x)) dt
(1.5) +dWn(t, x),
D% (0) = D,

Following [30], we discuss a suitable extension of functions defined on A, onto
all of the torus T3 (which we identify with the interval [-1, 11%). For any function
Y : A, — R, we define the discrete Fourier transform Y through

> eY(x)e ™ ifke{-N,...,N}’

Y (k) = { xen.
0 ifkeZ>\{=N,...,N).
In this context, Fourier inversion states
1 .
(1.6) Y =2 ) Y™™ forallx € A..
keZ3

It is thus natural to extend Y to all of T by taking (1.6) as a definition of ¥ (x) for
xeT? \ A¢. More explicitly, for Y : A, — R we define (ExtY) : T3 — R as

1 o
ExtY (x) = > Y e TRy (y).
ke{=N,...,.N}3 yeh,

By the definition of the operators A, we have

WGy ifke (=N, ..., N},

A (k) =
® {0 ifkeZ*\{—N,...,N}>.

Here, for x = (xl,xz, x3),

xlz 2x2n 2x371>
2 2 2

4
fx)= —<sin2— + sin® —— 4+ sin” — .
x|
Now we extend the solutions to all of T2. It is easy to see that

t
Ext ®° (1) = P? Ext df — / P ON[(Ext @)’ — (3C5 — 9C?) Ext &%) dss
(1.7) , 0
—{-/ Pf_sEX‘[ dWy.
0
Here, P? = Exte’®: and Qnu(x) = Pyu(x) + Myu(x) with
(1.8) Py =F "y <nF,
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and Il is defined for u satisfying supp Fu C {k : |k|oco <3N} as follows:

Oyu(x) = Z ei\l,izi3(x)./7_l1k€Pi1i2i3.7:M(X)
i1,i2,i3€{=1,0,1},X3_, i20
(1.9) ' .
Ll
= Z Pyley?ul](x),

i1,in,i3€{=1,0,1},X3_, 240

where P12 = {k = (k',k*, k%) : k/i; > Nifi; = —1, 1; k'] < N, ifi; =
0,/ = 1,2,3} is a rectangular division of Z3 \ {k € Z3, |k|oo < N}, €7 (x) =
1., e CN+Dijx and |k|s = max([k!|, k2], |k3]). Here and in the following,
the Fourier transform and the inverse Fourier transform are denoted by F and F~!,
respectively.

REMARK 1.1. When we use (1.6) to write f and g in terms of discrete Fourier
transform and take the product of f and g, it is easy to see where the Iy part
comes from. When supp F(Ext f Extg) ¢ {k € 73 : |k|so < N}, we should multi-

ply ei\l,izi3 to make supp F (Ext f Ext geé\l,izlé) belong to the set {k € Z3 : |k|oo < N}.
Now choose Cj as in (6.3) and

(1.10) C{=C§, + 3 Ciys,
ini2,i3€{=1,0,1},°3_, i3#0
with C{, Cf’zilizi3 defined in (6.4) and (6.5), respectively. In the following, we omit
the summation with respect to iy, i, i3 if there is no confusion.
The main result of this paper is the following theorem.

THEOREM 1.2. Let z € (1/2,2/3) and &g € C™%. Let (O, T) be the unique
(maximal in time) solution to (1.2) and let for & € (0, 1) the function ®¢ be the
unique solution to (1.5) on [0, 00). If the initial data satisfies Ext & — &g —
0 in C™%, then there exists a sequence of random times Ty, such that limy _, oo Tp, =
T and

sup [Ext®® —®|_ -0 in probability, as € — 0.

tel0,7r]

REMARK 1.3. (i) Existence and uniqueness of (&, t) has been obtained in [7,
18]. For the definition of C™% and the norm | - ||—;, see Section 2 below.

(i) The constant C7 is the corresponding renormalization constant of order
—loge and is divided into two parts: C{, and C{, which come from terms with
Py and Iy defined in (1.8) and (1.9), respectively. Moreover,

C§= -, Ct = —loge, Cjy'"" = 1.
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(iii) After our original paper was published on arXiv, Hairer and Matetski in
[21] also obtained similar results by using the theory of regularity structure. More-
over, by using the results in [6] they obtained the existence of a global solution
to the dynamical @g' model starting from almost every point and the d>‘3‘ field is
an invariant measure of the solution to (1.2) when the coupling constant is small
in their Corollary 1.2. By a similar argument as in the proof of Corollary 1.2 in
[21], we can also obtain these results. Compared to the piecewise constant exten-
sion in [21], Corollary 1.2, our extension is smooth and based on discrete Fourier
transform and does not change the inner product from L2(A;) to L?(T?), which
coincides with the extension considered in [10]. Moreover, we use the lattice ap-
proximation and this extension to study the Dirichlet form associated with the <I>§1
field in our forthcoming paper.

The structure of the paper is organized as follows. In Section 2, we recall some
basic notions and results for the paracontrolled distribution method. In Section 3,
we prove some estimates for the approximating operators. In Section 4, we use the
paracontrolled distribution method to prove uniform bounds for the lattice approx-
imation equations. In Section 5, we give the proof of our main result Theorem 1.2.
In Section 6, convergence of several stochastic terms is proved.

2. Besov spaces and paraproduct. In the following, we recall the definitions
and some properties of Besov spaces and paraproducts. For a general introduction,
we refer to [3, 12]. First, we introduce the following notation. Throughout the
paper, we use the notation a < b if there exists a constant ¢ > 0 such that a < ¢b,
and we write a = b if a < b and b < a. Given a Banach space E with norm || - || g
and T > 0, we write C7E = C([0, T]; E) for the space of continuous functions

from [0, T'] to E, equipped with the supremum norm | - ||c, g. For a € (0, 1), we
also define C E as the space of «-Holder continuous functions from [0, T'] to E,
If)=fOllE

endowed with the seminorm || f||ca g = supy ;0,77 5 =

The space of real valued infinitely differentiable functions of compact support
is denoted by DRY) or D. The space of Schwartz functions is denoted by S (RY).
Its dual, the space of tempered distributions is denoted by S’ (R%).

Let x, 6 € D be nonnegative radial functions on R4, such that:

i. the support of y is contained in a ball and the support of € is contained in
an annulus;
ii. x(2)+X;200(27/z) =1forall z € RY.
iii. supp(x) N supp(@(2~/)) = @ for j > 1 and supp(@(27-) N
supp(@(2~/ ) =@ for |i — j| > 1.

We call the pair (x,0) a dyadic partition of unity, and refer to [3], Proposi-
tion 2.10, for its existence. The Littlewood—Paley blocks are now defined as

A_u=F Y (xFu), Aju=F 10277 ) Fu).
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For o € R, the Holder—Besov space C“ is given by C* = Bgo,oo(Rd ), where for
P, q €1, 00] we define

. 1/q
BY ,(RY) = {u e S'(RY): lull gz, = < 3 (2J“||Aju||Lp)q> < oo},
jz-1
with the usual interpretation as /°° norm in case ¢ = 0o. For o € R, we write || - ||
instead of || - || g, in the following for simplicity.

We point out that everything above and everything that follows can be applied
to distributions on the torus (see [35, 36]). More precisely, let S’ (T%) be the space
of distributions on T¢. Therefore, Besov spaces on the torus with general indices
p,q € [1, oo] are defined as

. 1/q
B;"q(’ﬂ‘d) = {u €S (T9): lullpy, = ( Z (2Ja||Aju”Lp('[[‘d))q> < oo}
jz-1

We will need the following Besov embedding theorem on the torus (cf. [12],
Lemma 41).

LEMMA 2.1. Letl1 <pi<py<ooand 1 <q <qy <00, and let a € R.
1 1

a—d( )
Then B, (T9) is continuously embedded in By, 4,"' " (T%).

Now we recall the following paraproduct introduced by Bony (see [5]). In gen-
eral, the product fg of two distributions f € C%, g € C# is well defined if and
only if « + 8 > 0. In terms of Littlewood—Paley blocks, the product fg of two
distributions f and g can be formally decomposed as

fe= > > AifAjg=n(f.g)+m(f. g +7m-(f. 8,
j=—li>=-1
with
r(fo)=m-(g. )= Y. D AifAjg.  mo(fi)= ). AifAjg.
j>—li<j—1 li—jl=1
For j > 0, we also use the notation
Sif= > Aif.
i<j—1
and for ky, ky € Z3
Yyolki k)= Y D 0;(kn0i(ka), Yotk k)= Y 0;(kn)o;(ka),
j=—li<j—1 li=jl=l

with §; =0(27-) fori > 0 and 6_; = x. We will use without comment that || - ||, <
|- llp fora < B, that || - || S| - [lo for @ > 0, and that || - [l¢ S || - || Lo for e < 0.
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We will also use that [|S;ullp~ S 277l for @ <0, j > 0 and u € C*, where
I - ll denotes the norm in C%, a € R.

The basic results about these bilinear operations are given by the following es-
timates: From these estimates, we know that w_(f, g) part is the only term in the
paraproduct not improving the regularity even if f is regular. wo(f, g) part is the
only term in the paraproduct not well defined for arbitrary distributions f, g.

LEMMA 2.2 (Paraproduct estimates, [5], [12], Lemma 2). For any € R we
have

lm<(f @l SUfllelgls,  fel® gecP,

and for o < 0 furthermore

| (f i SIS llaliglls,  feC gech.

For a 4+ B > 0, we have

|70(f, llorp SUflallgls,  feC*, geCP.

The following basic commutator lemma is important for our use.

LEMMA 2.3 ([12], Lemma 5). Assume that a € (0, 1) and B,y € R are such
thata+ B+ vy > 0and B+ y <O0. Then for smooth f, g, h, the trilinear operator

C(f. g, h)=mo(m<(f,8),h)— fro(g, h)

satisfies the bound
ICCf g W) aspiy SIfNaliglpllilly.

Thus, C can be uniquely extended to a bounded trilinear operator from C* x CP x
CY to Coth+Y,

Now we recall the following properties of the heat semigroup P; := ¢/, which
corresponds to the smoothing effect of the heat semigrop.

LEMMA 2.4 ([12], Lemma 47). Let u € C* for some o € R. Then for every
§>0
_3d
| Prttllots St 2 Nulla-

LEMMA 2.5 ([7], Lemma A.1). Let u € C* for some a < 1 and v € CP for
some B € R. Then for § > o +

| P < (u, v) — < (u, Po)||s S £

llullellv ]l p-
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LEMMA 2.6 ([7], Lemma 2.5). Let u € C**+° for some a € R, § > 0. Then for
everyt >0,

s
|(Pr = Du|, St2llullaqts-
We also have the following result, which will be used later.

LEMMA 2.7 (Bernstein-type lemma). Let u € C* for some o € R.

(1) If supp Fu C{k:|k| < CN} for some C > 0, then for > o
lullp S NP~ Nulla-

(2) If supp Fu C {k: |k| > CN} for some C > 0, then for B < «
lullp < NP~ lulla

Here, all the constants we omit are independent of N .

PROOF. We have

lullg = sup27P || A jull Lo = sup 2/ B2 A ju | .
J J
For the first case, we have that A ju # 0 iff 2/ <N, which implies the first result.
If supp Fu C {k : |k| > CN}, we have that A ju # 0 iff 2/ 2 N, which implies the
second result. [J

3. Estimates for the approximating operators. In this section, we prove the
estimates for the approximating operators on T2, which will be used to prove the
main result. First, we prove estimates for Py and I[1y defined in (1.8) and (1.9).
Compared to the estimates proved in the one dimensional case in [13], we prove
them here in the three-dimensional case. Moreover, we prove a commutator esti-
mate for P whereas in [13] a commutator estimate for Ay was proved.

LEMMA 3.1. Let u € C* for some « € R. Then for any k > 0 small enough
we have the following estimates:

(1) (Estimates for Py)
I Prulla—« S llulle, |(I = Py)ul

(2) (Estimates for I1y) If o > %‘, then for u satisfying supp Fu C {k : |k|co <
3N}

SN 2ulla-

oA—K "~

IMyulla—e SN2 ulla-

~

If o <0 and supp Fu C {k: |kloo < N}, then

leh> ul,_ SN2 ulla.
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Here, all the constants we omit are independent of N.

PROOF. We have for p > 1 large enough
I Prulla—e S I PNullpe o S llullpe o < llulla,

p,oo p,o0 ™
where in the first inequality we used Lemma 2.1 and in the second inequality we
used that F~! lik|o<nF is an LP-multiplier. Similarly,

|7 = Pou,_ SN2 = Py)ul,_c SN Fllulla,

— K
oA—K Y )

where in the first inequality we used Lemma 2.7 and in the second inequality we

used the result for Py . For (2), we have that for o > %TK

S5k
3k —k | 1
T yu|lo—« ,SNO( 4 ||HNM||§ SNQ K”]: lkepi1i2i3}-””§

SN 2ulle.

a—G ~

SNTI|F 1, piyigis Fu|

Here, in the first and third inequalities we used Lemma 2.7, in the second inequality
we used that || e;\l,lm 3 <N % and in the last inequality we used a similar argument

for Py since F~'1 kepitiaizF 1s an LP-multiplier. Similarly, for & <0

N ullyy SN2 e uls S N ully S N3 fulla.

aA—K ~

Here, we used supp F (eé\l,izléu) C {k: |k| > N} and Lemma 2.7 in the first inequal-
ity as well as Lemma 2.7 in the last inequality. Thus the results in (2) follows.
O

Now we prove several properties for the approximating semigroup P/ =
Exte’® such as smoothing effect, commutator estimate, which are parallel to the
properties of the heat semigroup in Lemmas 2.4-2.6. In fact,

Pf = F g ene WSO F = F1 0 ne M0k F = Py B,
with
Pf = f_le_tlklzf(gk)(p(ek)f,

where ¢ is a smooth function and equals 1 on {|x|cc < 1} with suppey C {|x]| <

1.8}. Here, we introduce ISf for the following technique calculations. Then by
similar arguments as in [12], Lemma 47, we have the following results.

LEMMA 3.2. Letu € C¥ for some o € R. Then for every § >0,k > 0,1 > 0,

_3
a+8—«k St 2 ”u”()lv

| Prul

k)
[(PE = Pl Se2t72 Ul

Here, the constants we omit are independent of N .
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PROOF. To obtain the first result, by Lemma 3.1 it suffices to prove that for
every 6 >0

_3
St 2 ulle

3.0 |PFulgss <

In the following, we prove (3.1) and have that for j >0
|4 Pful oo = | F710;0° Ful oo = | F710;6(277 )" Fu| o
<[F 0@ NIl Ajull.

Here and in the following

(3:2) 9 ()= Dp(er),  p) =T,

and 6 is a smooth function supported in an annulus such that 86 = §. Then we get
that for § > 0,

[F @ 6T D] = 1F7 (@ (27)0) | < 1= 82 (@°(27)0) | s
S Z 2j|m|“(Dm¢5)(2j')}~esupp9~“L°°

0<|m|<4

Y oL i

ot @IV

Here, in the third inequality we used that f(e&) > ¢ > 0 and |¢&| < 1 on the sup-
port of ¢, which implies that for any multiindex m satisfying |m| < 4 and every
8 >0 wehave |D,,¢%(&)| < W For j = —1, we can use Bernstein’s lemma
to obtain the estimate. Thus (3.1) follows.

For the second result, we have

Pf— P, = Py(Pf — P)+ (I — Py)P,.

AN

By Lemmas 2.4 and 3.1, it is sufficient to consider ﬁf — P;. Since ¢®(&) —
$(&) = (&) (e SO — 1Py 4 (p(e8) — e and |p(e8) — 1] S
|e&|", | f(e&) — 2 < |e&|" for every 0 < n < 1, we obtain that for any multiin-
dex m satisfying |m| <4 and every § > 0,0 < n < 1, we have | D, (¢° — ¢)(§)| <

Ll)né. Thus the second result follows by a similar argument as in the proof

g ml-+81 2

of 3.1). O

In the following, we prove a commutator estimate for P?. However, Py does
not commute with paraproduct and we can only obtain the following.

LEMMA 3.3. Letu € C* for some a < 1 and v € CP for some B € R. Then for
8>a+ B andany k >0,

~ atp—4
(3.3) |Pfme(u,v) — Pym<(u, PE)|s_, St 2 llullelvlp,

~
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o |(Pf — P)m<(u, v) — Py (u, Pfv) +m(u, P) s,

Kk ot+p—3
2t 2 lullallvlip-

™

S
Here, the constants we omit are independent of N .
PROOF. We have
Pir_(u,v) — Pym<(u, ﬁfv) = PN(ISfJT< (u,v) — < (u, ISfU)).

By Lemma 3.1, it suffices to prove that

~ ~ a+pB—=48
(3.5) |Pfrc(u,v) —me(u, PPo)|s St 2 Nlullalvlg.
In fact, we have that
o
Pimo(u,v) —mo(u, Pfv)= > (Pf(Sj—1uljv) — Sj—1uPf Ajv),

j==1

and that the Fourier transform of Pf (S j—1ulAjv) —§ j_lu};f A jv has its support

in a suitable annulus 2/ A. Let ¢ € D(R?) with support in an annulus A be such
that ¢ = 1 on A.
Thus by the same argument as in the proof of [7], Lemma A.1, we obtain that

| P (Sj—1unrjv) — S uPf Ajvl

S > IWFE W) 078 - u] el Al e,
neNd, n|=1

where ¢° is introduced in (3.2). Now we have that
" F = (277 )e%) |
<27 |FH@"W) 7)) i + [F (W (27)879%) | 1
=27 F @ O (@) 1 + 1 F T W 08797 (7)) 1
S+ PYPFT 0 ()6 (27) | e
H(A+ 1 PPF W 0879 (27) ] 1
=277 |F7HA = A" ()8 (27)))] 1
+ [ FHA = A (Y ()"9° (27))] 1o
27 = 2@ ¢ 7)1+ [ (4= AR (W (8" (27))] 11

i 0 =2in i o =2in

s Y @) oyt > @) hymAT

0<|m|<4 lm|<5

< 2 -imHp=2in,
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where in the fourth inequality we used that | D" ¢® (£)| < |&| Il =+ |E]724, 1w >0,
for any multiindex m satisfying |m| < 5. Hence we get that
a+p—48

| PE(Sj—utjv) = SjoquPf Aju]| e St 2 20@HP=027T@HB) |y v ,

which yields (3.5) by [3], Lemma 2.69.
Moreover, we have

(Pf — P)m<(u,v) — Py (u, 13,81)) + 7 (u, Pv)

= PN[(ﬁf — P (u,v) —n(u, (I3f — P)v)]
— (I — Py)(Pir<(u,v) — w<(u, Pv)).

The estimate for the second term can be obtained by Lemmas 2.5 and 3.1. By a
similar argument as the proof of Lemma 3.2, we obtain that for any multiindex

m satisfying |m| <5 and every § > 0,0 < n < 1; we have |D,,(¢° — ¢)(§)] <

Ll)né. Thus (3.4) follows by a similar argument as in the proof of (3.5). Here,

|&|Iml+872

¢° and ¢ are introduced in (3.2). O
The continuity result for P/ takes as follows.

LEMMA 3.4. Let u € C*? for some « € R,0 < & < 1. Then for every ¢ €
0,1,k >0,t>s5>0.

)
[(Pf = P)uf e S (¢ = 9)2 ltllats:

Here, the constants are independent of N.

PROOF. We have (Pf — P{)u = PN(ﬁf - ISSS)u. By Lemma 3.1, it suffices to
prove that

~ ~ b
1(Pf = PE)ul, St —9)2lullats-

Since |1 — e*(’*s)f(sf)mzl <(t— s)%|.§|3, we obtain that for any multiindex m

s
satisfying |m| <4 and any § > 0, we have |D,,(¢; — ¢5)(&)| S %, where

¢°? is introduced in (3.2). Thus by a similar argument as in the proof of Lemma 3.2
the result follows. [

4. Paracontrolled analysis for the approximating equations. Now for sim-
plicity let u® = Ext ®°. Then we have the following equation:

t
ué (1) = PP Ext @ — / P On[(uf)} — (3C5 — 9Ct)ut]ds
4.1) t 0
+/ PE PydW.
0
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Therefore, it suffices to prove the convergence result for solutions to (4.1). In this
section, we give a uniform estimate for solutions to (4.1) by using paracontrolled
analysis.

In this section, we fix «, y > 0 satisfying

1
z—5>2/c, bk <y, 10k + 3y <2 —3z.

Here, we recall that &y € C™% and z € (%, %). Parameters «, y satisfying the

above conditions can always be found. Indeed, we first choose y < 2—3& then

the conditions are satisfied if we choose x > 0 small enough satisfying « <
Y A 2z—1 , 2-3z-3y
A A TR

Paracontrolled analysis of solutions to (4.1). Now we split (4.1) into the fol-
lowing three equations. We also use the graph notation similar as in [18]: Here, the

symbol - corresponds to the white noise and | corresponds to convolution with the
kernel associated with P£. Moreover, 7 corresponds to the operator [j Pf_ Q. -ds
and ' corresponds to convolution with the kernel associated with P/:

t .
u‘;(z)Z/ PE PydW =,
—00

us )= [P0l Jds ==

and
ui(r) = P (Ext dy — u§(0))
@) = | P ON=6 W5+ 3 +3CT P+ (= )]
+ Py [3(—":::i§f;." + 50 ui) + 3(—5 + o u§) — 99°u’l]ds.
Here,

P
Coi= _CO’

N :3 :
= —3C6’1,

=T 230 + )

“ouf i=ug 4 3(CY + ) (- [t u3),
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v o '. &,i1i2i3 £,i1i2i3\!
V=t t =3(C T ey ),
o o u‘; — I/t§ ~.‘U, + 3(C8 111213 w;‘,lllzm)(_ I ug),

(/) _(p1+(p2—¢1+2(/)8l112l3,

where Cj € R, Cj; € R, 97 € C((0,T]; R) are defined as in Section 6 below
and there exists ¢; € C((0, T]; R) such that for every p > 0 small enough
SUPye, T] t?|p] — 11 — 0 and sup, (o 71”95 — 0 as & — 0. In fact, T
'“:?.f" and ¥ denote u)®=, 2 ), 3 (uéi)“2 ouf and —ei\‘,izlé (uf)o’2 o uf, respec-
tively. Furthermore

Too( Y immo( 1L ) = 3(CE + ),

o .

o0, ) = (. ™) £ 3(CH )= ¢ ),

70,0 ( i ; U) 1= 1mo( i , R ) - ( (o ’”213 +o g, 111213)

’

70.0(u5, ") = o (uf, ) A B(CHE 4 g8 (-1 ),

In (4.2), the most difficult term to be handled is u3 ¢ which requires us to
use paracontrolled ansatz and the commutator estimates. For this, we introduce the
following notation:

t o« e o - .. .
K*4(t) ::/0 P dsi= 1 K®(t) :=/0 Pt dsi= 1,

and
t . . '\.‘U'l". 5 t 5 . . .\:b'"".
Kf(t):=f Pe v dsi= T, K@) :=/ Pf vodsi= Y.
0 0
Also define
m0.0( T = T ) = € — o,
and

R \“c"" .
m0,0( F , o) i=mo( o) — C‘“llzl3 w;”llzﬂ.
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Here, we introduce ¥ and ' since Lemma 3.3 about the commutator estimates
only holds for P, not for P?. Now we introduce the following notation: for 7' > 0,

(T = sup [I_1_p + I 1- 2K+|| ||1_2,(+Hno( ?)H_ZK
t€[0,T] 2
+m0.0C T, D sy F w00 T SITM chota
and

(M) = sup I -1- 2K+Hﬂ0( e 2K+||7T0<>( 1,
tel0,T] :

.\‘\'V."". . V"'. U. .‘.‘ - 'U. . o~
+lmoC T g+ lmoC LD e+ o0 C T e | g ]

In the following, we write Cy, and Ej, for simplicity if there is no confu-
sion. Here, Ej, appears as an error term for the lattice approximations, which
goes to 0 in probability (see Section 6.2). Lemma 3.2 and (3.1) imply that for
tel0,T]

43) 7 Ol et T O 5 SC
and
44) 1Y Ola+1 ¥ Ol S E

Now we write the paracontrolled ansatz as follows:

W= —3Py[ro(— il T+ T )]4utt

with u®#(¢) € C'*3¢ for r > 0. Then Lemma 2.2 yields that, for z > 0,

@45 O] SI- T O+ a5, (Cl + Efy) + [ O] s
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Furthermore, u§ solves (4.2) if and only if u®* solves the following equation:
u® (1) = P} (Ext ®f — uf(0))
= [ Peon=6 w5+ 3w +3 TP (= )]
+ 3Py A m00) (= 1 A ud T )] - 9pfut] ds

(4.6) -3 [ PEP[ro(— 7 +u, )] ds

+3PN[7T<(— +u3, T
= P (Ext ®y — uf(0))
+/ QN¢1 +PN¢2 +9(P8u8]dS+F8

where F¢ represents the last two terms.
In the following, we give estimates of terms on the right-hand side of (4.6).

Estimates of qbf # First, we prove an estimate for qbf’ﬁ.

PROPOSITION 4.1. For (l)f’11 defined in (4.6), the following estimate holds:

, 3
10N 037y g S C(Cy i) 1+ ]y (s, + 1)+ 5.

Here, the constant we omit is independent of N .

PROOF. Since

Mafus™ ] = Pafugely™ ]

we have
T (g™ 11y,

SRR

<l \\_,_3K|| 1yt o g 1051
§( /c/2|| v ”1—2K” ||_%_2K + ”7-[0( v 33\1]1213 )H 2K)|‘u3|| g

where we used Lemma 3.1 in the first and last inequalities as well as Lemma 2.2
in the second inequality.
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Using the paraproduct, one has
[ 5)7] = Prley™" (u5)°]
= Py[m((u)?, €M) 4 mo ()%, €2) 4 o ()2, €12))]
= Pyl ((u5)?, ™) + mo(o(u§, u5), e >
- ((u5)?, €N) 4 20 (w5, s, €*™) + 2usmo (5, )]

Here, C(uf, u§, ey §11213%) s the trilinear operator as defined in Lemma 2.3. Then by
using Lemmas 2. 2 2.3 and 3.1 we obtain

21 —x i
4.7) I [@8) Iy —ae SN2 05 g pai lS 1, Ly o

Moreover, by a similar argument as for (4.7) we have
I

SNTEL T g+ 17 el ¥ ey™ )

Furthermore, Lemma 3.1 implies that

lon[(= " +u5) ]I, S 1= +usl}

Estimates for the terms containing Py can be obtained similarly. Hence the result
follows from the above estimates. [

Now we consider d);’ﬁ. To prove an estimate for 7T0,<>(M§, + .""u""-), we have
to use the paracontrolled ansatz. However, the Fourier cutoff operator Py does not
commute with the paraproduct. Here, we follow the random operator technique
from [13], Lemma 8.16, and prove the following result.

LEMMA 4.2. Leta+B+y >0,8+4+y <0, assume that a € (0, 1) and let
felC*ge cB . hec. Define the operators
AN(8. D) (f) :=—mo(( = Pn)m<(f. Png). h)
and
AN (g W (f) = m0(Py<(f. (Psn — Prn)g). h).
Then for all n <0
|mo(Pn7<(f, P3ng), h) — fro(Png, W,

SUflallPrgliplilly + Al (g, h) + AR (8. )| o om 1 -

Here, the constant we omit is independent of N and L(C*,C") denotes the space
of bounded operators between C* and C", equipped with the operator norm.
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PROOF. We have that

mo(Pnt<(f, P3ng), h) = A% (g, W) (f) + 7o (m<(f, Png), h) + AN (g, ) (f).
Thus the result follows from Lemma 2.3. [

By using Lemma 4.2, we have the following estimate for ¢§’ﬁ.

PROPOSITION 4.3.  For (158’Ij defined in (4.6), the following estimate holds:

[Png "1 6 S C(Clys Efys An DN (14 s g gy + 105 145,)
with
AV = (A + AN CT + 1T D] s
and
Dy(T):= sup (|mo((I = Pima( ", T 4+ 1), 4"

t€l0,T]

Co(Pym( (P — P T+ T ) ).

PROOF. First, we consider g (ug, + u) By the paracontrolled ansatz,
we obtain

= Bmo(Pafra(= ¢l Py (T o+ T )
+ o (ussﬁ .\’v’"{. 4 ."nu,v").

Here, in the equality we used that Ps N( * + H ) = ? + H . Then by using
Lemma 4.2 and that PN( * + ‘3' ) = + U , we obtain that

oo™ + ) _y_se

SO e+l gD T+ T sl ™2

o

mef+m%%VkM

+ AN”“3H1 3¢t Dy + [u® ﬁ”1+3K|| + 0 12

The estimate for 7~ (— ' + u S ) can be obtained by Lemma 2.2. Thus
the result follows from (4.3), (4 4) and 4.5). O
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REMARK 4.4. (i) In this paper, we split equation (4.2) by using Q y (uv) =

Py (uv + uve;&,’lz’”) and introduce a new random operator which is different from

[13]. In fact, by using Qn (5 + u§)(u§)*?) = Qn (w5 + u§) Qn[W)2]), we
can use the paracontrolled ansatz and use a random operator similar as in [13] to
deduce the result. We would like to thank the referee for pointing out this to us.
However, the idea of these two operators is the same and the calculations for these
two operators are essentially similar.

(ii) By the calculations in Section 6.3, we know that in order to get ||A}\, +
A?V”L(Ca,cn) — 0 we need o > 1 + 3/2. Also the regularity of u®* requires that
n > —1 4 3k, which implies that @ > 1/2 4 3x. However, the best regularity
we can obtain for u5 is C 1/2= Thus, for the error terms including u5 we have
to bound them directly by stochastic calculations, which corresponds to Dy (see
Section 6.4).

Estimates of F¥. We now turn to F®: We divide F? into two parts:

[ FEO] 43
< H/o PEmo(— 7 () +uss) — (= T @0 +u50),

S (s) + ."u""'(s)) ds

143«

+ H [ Pr(= T @0, 0+ ) ds

—Pyro(— OO, T 0+ o)

143k
=1+ b.

Estimate of 5 can be obtained by Lemma 3.3:

4.8) LS = T 0 +u50], (Ch + Efy),

where by the condition on y we have y > 6«k.
For 17, we will use the regularity of u5 + uf§ with respect to time to control it.
Lemmas 2.2 and 3.2 yield that

IS / (1 =5y | () 4+ 79|
~ 0 i —1-2«

X = T OO+ )~ 5] ds

S @i+ B+ [ 0 =07 0 — o)y s )
~CwHEw\Cw T 3 SR
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and we note that by (4.2), Lemmas 3.2 and 3.4 that, forr > s > 0,

) w1
SI(P; = PP+ PH(Ext 0~ i 0)]

t
H/ _)GE(r)dr —I— f P, G (r)dr
< (- s)bos HExt of — uf(0) ”
+(r— s)hf (s — r)_l+4k+2b |G- _5.d

1 b 1-by
+(z—s)b'<f (t — )2 b1>||Gf(r>|| (s dr ) :

where in the last inequality for the third term we used Holder’s inequality. Here,
6k <2by <2 —z— 2K, 6K <2b <1 —di, 3k <by <140 11 _gp)
and

Gf = ON[3( 7 P =61 us+3 W) + (= ¢ +us)’]

+ Py [3(—"‘:3::“' + o u3) + 3(—'":3""' + 0 ous)] — 99 uf

Moreover, by Propositions 4.1 and 4.3 and Lemma 2.2 one has the following esti-
mate:

49 GO 15 S C(Cy. EWy. AN, DN)UG (1) + 177 (Cyy + |50 )
Here and in the following
3
Us @) =1+ [u5@O] 14 (5O, + 1) + 5O, + [u* O] 145,
Thus we obtain that

15 (Cy -+ E) (i 175 [Exe 0~ 5 )]

t t K
+/0 / (t—5) I (g )T ds|G* ()] _y_5, dr

! bl 4 r _ 144k
+ </ (l _ s)71*3K+b1 ds) </ / (t — s)*173/(+b1 (l —7) by
0 0 Jo

=5 1=b1
x [GE ()| 113dedr> ),
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where for the last term we used Holder’s inequality. Then by changing variable
s =r + (t — r)o for the third term and using (4.9) we have

IS (Cly + B )i [Ext 0 —uS )] _, + C(Cly. Efy Av. D)

! 1
+C(Cyy, §V,AN,DN)/O(t—r)_i_s"(Ug(r)+r_pHu§Hy)dr
(4.10)
+C(Cy, Efy, An, Dy)

t 1t 1 1-=by
<[ [ wge s ]
0

Combining (4.8) and (4.10), we could control || F¢| {43, by the right-hand side of
(4.8) and (4.10).

In the following, we will bound [[u5] 1 and ||u5||, . Estimates for these two

5 +4k
terms are much easier. We do not need to use Lemma 3.3 and can obtain the fol-

lowing estimates for fo ~ Py [n<(— 1 + u3, i )]ds by Lemmas 2.2
and 3.2 directly:

[ peapilr= ¥ v s
Lyak
4.11) 2

t K
S(Ciy+Ey) [ @ =97 ], s+ C(Ch Eiy)

and

Hf o Pn[m<(— ‘:‘ +u§, "+ )] ds
(4.12) y

t
S(cw+Ey) [ «

(Cw. EVy)-
Uniform estimates of the solutions to (4.2). Now we introduce the following
random times: Define for any L > 1
tp=inf{t > 0: [u* ()| _, =L} AL,
p; :=inf{t > 0: Cy,(t) + Ey, (1) + An(t) + Dy (1) > L}.

PROPOSITION 4.5. Forany L, L1 > 1, we have

3(y+z+x) y+ztx

+~
JuF Ol gz +17 2 ||u3(f>||1+4k+t N QMY

sup (¢

te[(),ti/\pil]

SC(L,Ly).
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Moreover, before T A py, one has that u3(t) depends in a Lipschitz continuous
way on the data Ext @ and terms in (Cy,, Ey;, An, D). Here, we consider u5(t)
with respect to || - || -, norm and the Lipschitz constant can be chosen uniformly
overt €0, 1] A pil].

PROOF. It follows from Propositions 4.1, 4.3 and (4.8), (4.10) that for
M <landtel0,7; Apj ],

3(y+ztx)
RG] e

< CExt g — uf(0)| .

3(y+ztk) _ 3ytztx)

@.13) +t2C/0t(t—r)25"(r FLU ) P s ()] ) dr + C

K t —
+cﬁ%—~“f (t — 1)~ 25K (p= >U8(r)+r_p||”§(r)||y)dr

0
3ytzte) ot _ e 34z _ L
T [Ny R ) a0 ) T dr

ytztx

+r 2 [us@],-

3(y+z+x)

Here and in the following, C = C(Ly) and U°(r) =r 2 Ugy(r). A similar
argument is that for (4.13) and using (4.11), (4.12) one also has that, for ¢ € [0, T} A
Pi,] and 0 < 9« < % —2z -3y,

1

247z

2+«,+5K ¢
1 |u5 @) 1iap

< |Ext ®f — uf(0) H_Z

(4.14) Shetse ot I 25255
e / = U ) 4 Jus )], dr
0

JHetse ot 3Tk _ydzte yhzbe
+C4+Ct 2 (t—r) 32y 2 r 2 ||u3(r)|}ydr
0

and

+z+
e PAOTR

5 HEXt (1)8 - uf(O) ” -z

(4.15)
s

z+ic t K« 24k
L Cfo =) T U ) 4 P Jus )] dr

y+z+k _ (ytzte)  ytztx

t I+y+3k
+C+Ct 2 /(t—r)_ zr 2 r 2 ||M§(”)||ydr-
0
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. I +5k+2 . . 11
Since —— <y + z+«, combining with (4.13)—(4.15), we get that by Holder’s
inequality and Bihari’s inequality there exists some Ty (depending on L) such
that

3(ytzt) +)
sup (¢~ 2
1€[0,Tp]

SC(L,Ly),

nf%wwk+r% [5) ]y g+ Ju500] )

which combined with Propositions 4.1 and 4.3 implies that

3(y+z+x)
(4.16) sup 10 2 | ONGTE+ Pnas 1o SC(L, Ly).
t€[0,Tp] 2

Moreover, by (4.2) and Lemma 2.2 we obtain that for ¢ € [0, Tp] and 10k + 3y <
3

3 _2;

2

t
50, S €+ |Bxt®;— i@+ [ s~ |useo)], ds
1 Lz 74K) 3 z+k
+/ [(t —s)_2 — I]S_B(wrzdr )sw+2+)
0

x | QneSF + PN¢§’ﬁH_%—6K ds

! _ 143k— _y+K ytetz
+/(t—s) 2 “ds sup s 2
0 s€[0,¢]

SC(L, Ly).

Here in the last inequality we used (4.16). Moreover, similar arguments as above
imply that u5(t) before Ty depends in a Lipschitz continuous way on the data
Ext ®; and terms in (Cy,, Ey,, Ay, Dy). The Lipschitz constant can be chosen
uniformly for ¢ € [0, Ty]. Furthermore, we can extend the time from Tj to 7} A ,oil
as we did in [37]. O

5. Proof of main result. In [7], it is proved that the solution to (1.1) can be
obtained as a limit of solutions ®¢ to the following equation:
d®® = AD° di + Py dW — (%)’ di + (3C — 9C)d° d1,
®f(0) =
Here, C_'S and C_"f are defined in Section 6.1 below. For this equation, we can
also divide it into three equations and define u{, 5, i5, K and other terms sim-

ilarly as uf,u5,u5, K¢ and the associated terms, respectively. For L > 0, de-
fine 77 :=inf{r > 0 : ||®(¢)||—-; = L} A L. Then 77 increases to the explosion
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TABLE 1
u 7H u$ i W$)*? @@$)*? K¢ K¢
I . _\{ \

time 7 as L — oo. Moreover, define 7; :=inf{r > 0: |D°(t)||—. = L} A L and
p; =inf{t > 0: C"g,v (t) > L}. Here, Cﬁv defined similarly as Cy, with u} replaced
by corresponding i?. A similar argument as in the proof in [7] implies that for

L,L3,Ls=1

(5.1) sup |®f@) —d®]_, >0 ase—0.

IE[O,‘L’L/\ﬁZS /\fi4]

Here, & is the solution to (1.2). To make our paper more readable, we also intro-
duce the graph notation similarly as in [18] for & and we also recall the graph for
u? in Table 1.

Define

8Cy = sup [||3—W||_;_2K+II"' —\l-i- 2K+|| —\{ ||1_2K
t€[0,T1] g

+ |70t L) —no(Y, D e + |m00( T, ) —no,ﬂ 21,

e

I SRS GV IR T R ¢

1y .
c8ci
T c4

In Section 6, we will prove that 5C§V —ro, E@V —ro, AN —P0and Dy —Po
as ¢ — 0. Then using the estimates for P/ — P; obtained in Section 3 and by
similar arguments as in Section 4 we have that for L, L; > 1 with i =1,2,3,4
that

(5.2) sup u® (2) — ég(t)n_z —Po, e — 0.

tel0,1y, /\ril /\,oi2 /\ﬁi% /\fi4]

Here, Ey,, Ay, Dy appear as error terms for the lattice approximations. Then (5.1)
and (5.2) imply that

(5.3) sup |uf @) —@@®)|_, >0, e—0.

tel0,y, Aril /\,oi2 /\;323 /\‘Ei4]



LATTICE APPROXIMATION TO THE DYNAMICAL <I>‘31 MODEL 423

Moreover, we have the following estimate: for each € > 0,

P( sup [uf -] __>e)

tel0,7]

§P< sup ||u8—<I>||_Z>e>
5.4 1€l0.TLATE AP AP AT,
+ P(tL App, APL, ATL, > T1,)
+ P(tL A pp, > T1,) + P(t > pf,) + P(t > Py )
The first term goes to zero as € — 0 by (5.3). Also for L1 > L + €,
P(rLApizA,éi3Afi4>ril)§P( sup ||u8—<I>{|7Z>e),
tel0,1r, /\ri] /\pi2 /\,523 /\fi4]
which goes to zero as ¢ — 0 by (5.3). Furthermore, for L4 > L + € we have
Pnpl,>%)<P(  sup & 0]  >e)
te[O,rL/\,oi3/\ti4]

which goes to zero by (5.1) as ¢ — 0. The last two terms on the right-hand side
of (5.4) go to zero uniformly over € € (0, 1) as Ly, L3 go to co. Thus the result
follows.

6. Stochastic convergence. In this section, we will prove that §Cy, —
0,Ey, — 0, Ay — 0, Dy — 0 in probability as ¢ — 0.

To simplify the arguments below, we assume that W (0) = 0 and restrict our-
selves to the flow of [p3 u(x)dx = 0. We follow the notation from [13], Section 9.
We represent the white noise in terms of its spatial Fourier transform. More pre-
cisely, let E = Z3\ {0} and let W(s, k) = (W (s), ex) for ex(x) = 272! ™5k x ¢
T3, and we view W (s, k) as a Gaussian process on R x E with covariance given
by

e[ rowan [ sown|= [ eanso-dn.

where 1, = (s4, k4), S—q = Sa, k—q = —k, and the measure dn, = ds, dk, is the
product of the Lebesgue measure ds, on R and of the counting measure dk, on E.
Then

W (1, x) = fR AP W, @) = fR @B (W),

2
where pf(k) = e W/ ER o PR = pf) (ks pik) =
€7|k|2ﬂ2t1{t20}’ and Pl‘g k) = p; (k)1{|k|oo§N}' Moreover,
2
e~ Kl f(€k)|t—ff|1“k|0<J
21k|% f (ek)

<N} .

6 [ PGP Kds = = Ve, (k)
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and

e~k tli—olq

k| <N}
2m2|k|? '

Now we introduce the following notation: kj1. .1 = > r_; ki, n1.. = (1, ...,
) € R X E)', dni_p = dni---dnn, dki_p = dky---dky, K175 = (k/ —
ij2N + 1))j=1.23 for ij =1,0,—1 and Y3_, i3 # 0. In the following, we al-
ways omit the superscript of & if there is no confusion. Denote by

[ W
(RxE)"

(6.2) / Pt (k)P:_ (k)ds = =V, (k).

a generic element of the nth chaos of W on R x E. By [13], Section 9.2, we know

that
gl

Hence for bounding the variance of the chaos, it is enough to bound the L? norm
of the unsymmetrized kernels. To obtain the results, we first recall the following
lemma from [38] for our later use.

2
[ ronwan. }s o [ 1w drn.
(Rx E)" (RXE)"

LEMMA 6.1 ([38], Lemma 3.10). LetO<I,m <d,l+m —d > 0. Then we
have

2 11 S 1: -
m ~ m—
k1, ko €ZA\ [0}, ky +ho=k k1 [k | k|

By similar arguments as in the proof of [38], Lemma 3.11, we have the follow-
ing results.

LEMMA 6.2. ForeveryO <k <1,i>0,t >0, k1, ko € E we have
e~ kP g (2= f 1)) — ekl (27T )| < [y <27

LEMMA 6.3. Forevery 0 <k <1,i>0,t >0, we have that for k1, ky € E
with |k121loc < N, lk2]oo < N:

|e—\k12|21f(8k[12])9(2—ik[12]) _ e—\kzlztf(skz)g(z—ik2)| < Jky |27
Now we prove the following estimate for the approximating operators.

LEMMA 6.4. ForanyO <k <landt>0,ke€ E, e > 0:
(i)
pEk) — peo)| S e Wert ek |PEGR) — pr(k)| < e KPert gk e
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(ii)
e—|k|25fz lek|<

|Pt8(k) — 13f(k)| S e*IkIZE.ft|gk|’(’ |Vt€(k) — \_/tg(k)| S |k|2

Here,cy=cy A2 >0, cr=min{f(x):|x] <1.8}.
PROOF. The results follow from | f (ek) — 2| < |ek|* and
|e—|k|2zf(sk) . e—lklznzt{ 56—|k|25fz[1 A (t"}f(sk) _ n2|l<|k|2/c)]
S e W ek, 0
We prove the following two lemmas for the convergence of the error terms.
LEMMA 6.5. Foreveryq>0,0<r <3,

P | =5 1
f 6(279%)* — dk <2079 and f 60(279k)* — dk <204,
E |k|" E k1"

PROOF. We only treat the first, the second can be obtained by a similar argu-
ment. We have

1 ~a 1
[oek) —dk<_/1|kl<2‘19(2 k) de+/1k|>zw(2_"")2|k|r

dk

< 9B-r)g

Here, in the last inequality we used that the cardinality of k with 6(29k) # 0 is of
order 23¢. [

LEMMA 6.6. Foreveryq >0,0<r <3,
/ 0(279k)" — dk < 2874,
Here, k > 0 is small enough.

PROOF. We have

1
/9 (274k)? a’k</1|k|<N9(2 9£)>? i 4k

4 &" / 1|k|2N9(2_q/€)2

e dk

< ¥ 2(3—r+K)q

where in the last inequality we used that |k| < N « |l€| 29 and Lemma 6.5. [
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6.1. Convergence of renormalization terms. In this subsection, we prove
8Cy — 0 in probability as ¢ — 0. In the following, we use the graph notation

similar as in [18] to make this paper more readable. We use " e-.>e @ OF $ o--k----» 7 to
k

represent a factor PZ_ (k) for n = (s, k) and use 7 e to represent V2 (k) or
VE (k) for simplicity. We use " e—>e 7 to represent a factor P2_ (k) for n = (s, k),
and use 7 oi»t to represent Isf_a (k) or p;—q (k) if there is no confusion. We also
use the convention that if a vertex is drawn in grey, then the corresponding vari-
able is integrated out. Here, we use two different graphs to denote P?__ (k) and
PZ_ (k). The second one is to emphasize the appearance of k.

For the terms containing u5, there are error terms (Jf in the following) appears.
For these terms, we use |k;| >~ N or Lemma 6.6 to produce &*.

Convergence of | — [
In this part, we prove the convergence of | — . We have

Ela @)= 10]]

S 0@k e(PE (k) — PE(K))[*dy
RxE

< / 0(271k)% (e k])* k|2 dk < e€20%HD)
Here, k¥ > 0 is small enough and in the second inequality we used Lemma 6.4.
Similarly, by using

- e—ltz—lllf(sk)lk|2| <ty — 1< k|,
we get the desired estimates for E|A,4[((12) — [(12)) — ((11) = [(21))11? with 11, 15 €

[0, T'], which combined with Gaussian hypercontractivity implies that for p > 1,
€ > 0 small enough,

E[|(() ) - (an =Ta))|?,_ ]
B3

S P2ty — 1y |P/4,

Then by Lemma 2.1, we obtain that for every 6 > 0,p > 1, 15 0in
LP(Q; CrC1/2~ 5) as £ = 0.
Convergence of ™" —\/

. )
In this part, we prove the convergence of ™. Recall that " = — Cj and
Vo=1- C_'S. Now take

RIS Lkl <Ny
6.3 Ct=2" f o= gk,  Ci=2" / o=
- 2[k|2 f (ek) 2|k|??
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Then we have

E[ag[0) =N 0]

< / 0(2~9kia)?| (P2, (k1) PE (ko) — P2, (k1) PE_ (k) |? dnna
(RxE)?

_ k1] + |ka|*
SSK/Q(z qk[IZ])ZW dk12 §8K2(K+2)q.

Here, ¥ > 0 is small enough and in the second inequality we used Lemma 6.4
and in the last inequality we used Lemma 6.1. Then by Gauss1an hypercontrac—
tivity and Lemma 2.1, we obtain that for every § > 0, p > 1, -\ = 0in
LP(Q; CrC™ 15)asg—»o

_Y
Convergence of
In this part, we consider the convergence of u5. Recall that

Vm-Ym:ﬁ—E+ﬁ

Here,

t
3_5-3
;=2 fxE)3€k[123]/() Py, (ki23)) Py g, (k1)
x Py_g, (k2) Py (k3)do W (dn123),

o—s2

and I_t3 is defined similarly as It3 with P/ (k[123)) replaced by p;_, (kj1237) and
with other P? replaced by P? and J? is defined similarly as I with €ki123)» K[123]
replaced by e Fzs)” 12[ 123], respectively. We use a graph notation to indicate the main

part in It3 and I_t3:

2
n L ."73
¥o
K [123]

t
t toindicate/ P} (k123) -+ -do
0

ns
m P s

’v[m]

for the corresponding term in /;”. [3
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The graph for J73 is the same as that for I} with kjj23) replaced by k123). By
Lemma 6.4 and a straightforward calculation, we obtain that

E|ag (5 = 1)

t
/0( e (,(k[123])l_[ k)

< 0(2 9kp1o31)>
N/(RxE)z (27kp123)

2
dnio3

3

— Pr—o (k[123)) H _(f_sl. (k,-)) do

_ £33 ki< 4 k13| e
< [ (27 %% i=1
~ / k) e P Rl P+ ol + k3 2111232

dki23

K
</ 0(279k) —— dk < £¥29(-1+0),
~JE lk|4=e =

where we used Lemma 6.1 in the third inequality and we used the graph nota-
tion in the second inequality. From the graph, we can use Lemma 6.4 to control
each e — e—e, and &“|k;|“ is produced. Then for each integral w.r.t. time s;,
|I<l~|_ze_|‘7_‘_’”kf|2 is produced and taking integrals w.r.t. o and o, we obtain the
second inequality. Similar calculations also imply that

L{jkys1> N, 20 <)
k1 121k |2 (k3 2 k1 |2 + 1o | + [k3]2]1k; 123]|2

/ 027 k) Yim=n215N) g1 < eqat-1)
~ k|2 |k |2 ~

Here, we use |k| > N and —5 to produce & By a similar argument as above,

IkI
we also obtain that for every §>0,p> 1, ' — \{/ — 0 in LP(; CTC%—S).
Similarly, we obtain that | — \{/ S 0in LP(Q; Cicid,
Convergence of 7y, <>(‘ 4 , ) - 7T0 O(Y ) .
In this part, we focus on 710( , ) and prove that g, <>( g ) —

770, ( (, /) = 0in C7C~° for every § > 0. Now we have the following identity
fort [0, T]:

mo( T, (@) — mo( ( @) =1 412 217 —[I1 + 417 + 217,
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where

_9 !
1} =273 [eqpgtotknar kin) [ do e Guan P k)

x PE_y (k) PEy (ka) PE_y (k) W (d11234),

9 !
I}=2 2//61([23]1#0(/6[12],18 —kl)/o do Pf_, (kpap) Py, (k2)

x P (k3) V), (k1) dka W (dn23),

t
3=27° /152/0 do Ve (k) Vi, (ko) Pf_ (kpiap) dkio,

and fori =1,2, 3, I_t’ is defined similarly with P?__ (kj12)) replaced by p;—s (k[12])
and other P¢, V¢ replaced by P¢, V¢, respectively. We use a graph notation to
indicate the main part in /' and 12, I*:

m .7]2 772‘

,nfi‘..yg 774 T]f'-.;v[.l]o' . i a i

The graphs for I_tl, I_l2 and I_,3 should be the same with e--»e replaced by e—se.
In fact, choose

’

t
(6.4) cs =275 f f do Ve (k)VE (ko) P (kprap) dkio
—00

and C_‘f is defined with each P?,V? replaced by p, V¢, respectively. Choose
@i (1) =217 — C§, and ¢{ (1) =217 — C{ and

et (ki1 lka P+l )

1(t) = —2_7/ dkis.
v k1 21k 2 (k1 2 + a2 + kg D)

Then we easily obtain that

sup 1°|of — 1| S€°, sup 1°]@] — 1| S€°,
t€[0,T] te[0,T]

forevery p > 0,0 <k < 2p.
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Terms in the second chaos: Now we consider I,2 and by graph notation and (6.1),
(6.2) we have

012
E’AQ(Itz - 112)‘
S / Yo kpi2g, ks — k1) o (kpay, ks — ka)6/(2™kp23))

|leki2) /% |ekpaa) |/ + |eky |2 |eka]</? + |eka < + |eks]<
1 121ka |2 k3] 2 ka2 (k1 12 + Lkpi2)12) (ka2 + Lka) %)
2942k

ka2~ |k3]?

dki234

<" / 0(2 kp3)* dky3

< 8/(2(1316’
with ¥ > 0 small enough. Here, we used that |kf;2;| 2 29 on the support of
Yo(kjiz), k3 — ki)0(279kp23)) for i = 1, 4 in the second inequality and Lemma 6.1
in the last inequality.

Terms in the fourth chaos: Now for 1! by (6.1), (6.2) and graph notation we
have

E[|ag(1! = 1)[]

kr121, k
58”/9(2“%[1234])2 Yo (kpi2), ki34)

|12 1k2 | k3|2 Kea | Kpiog*

4
x (Ik[lz]lK + > ki |K> dki234

i=1

S/9(2_qk[1234])21ﬁ0(k[12],k[34])

&k &k
x + >dk 12][34
<|k sapllkz 5 kgl K kg S AR

/9 (29k)*2~ q<2+K>|k|1 - dk < e¥27%,

where we used Lemma 6.1 in the second inequality and that |k[j2)| 2 27 on the
support of 8(279k[1234]) Yo(k[12], k;341) in the third inequality. Now we have that
for ¥ > 0 small enough

E[|Ag(1! = I)P] S 276",

By a similar calculation as above, Gaussian hypercontractivity and Lemma 2.1 we
obtain that for every § > 0, p > 1,

To.o( I, ) — 1m0 ( )= 0 in LP(S; CrC™°).
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Convergence of 710( ) — m)(\{

In this part, we focus on no( 1 ) and prove that no( Y ) — no(\{/ ) — 0in
CrC~%. We have the following 1dent1ty fort [0, T]:

ol 0 40 DO = 1 32— [T 4372 4 I+ 32,

where
1 =27 [ epotinz ko f do PE_ (ko) PE_ (k1)

x Py_ (k) Py_ g (k3) P, (ka) W (dn1234),

F=27% [ [ etz k) / do PE_, (ko) PE_ (k)
x PS_ (k3)V7_, (k) dky W (dn23),

o—S3

andfori=1,2, It’ is defined with P?__ (k[123)) replaced by p;—s (k[123]) and other
P¢, V¢ replaced by P&, Ve, respectively, and fori =1, 2, Jti is defined similarly as
I} with k[123], €k1554)» €kpp5) TEPlaced by kp1231, iy Sy’ respectively. We also
use graph notation to indicate the main part in Itl and 1,2:

2
m o] 773 _772 .7]%

*f ¥
774. kp13) Fag™} Foprag
41 [ i 23]
t, to.

The graphs for I, I_;Z should be the same with e---»e replaced by e—e and the
graphs for Jtl, Jt2 should be the same as above only with k[123] replaced by

kp123].
Terms in the second chaos: First, we consider I? and have the following calcu-
lations:

02
E|ag (17 = 17)]
< / o (kp1237, k1) Wo (kpasap ka)6 (2~ Tkpaz))

k123 [/ ? |ekpaza)|/? + ek [</2|ekal/? + |eka|* + |ek3|*
k2 |23 12 1k1 | (k1 1% + kpi23) 1) [kal? (ks |? + [k23411%)

1234

S el / 2—q(2—2/<)9(2—qk[23])2 dko>3 SJ 8K23qk,

k2|27 k3|2

where k > 0 is small enough. Here, we used (6.1), (6.2) and graph notation in the
first inequality and that |kp1231] 2 29, k2341 2 27 in the second inequality and we
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used Lemma 6.1 in the last inequality. By a similar calculation as above, we see
that

8K

3
ol ke s e

E|A I S / 27107299 (270 kpp3))?

Here, ¥ > 0 is small enough and in the first inequality we used |k[123}| = N to
deduce that |k;| = N for some i € {1,2, 3}, which produces &, and in the last
inequality we used Lemmas 6.1 and 6.5.

Terms in the fourth chaos: Now for It1 we have

E[|ag(1! = 1)[]

< gKf 0.2~ kp123a1) Vo (kp1231, ka) (kpiaagl + iy 1K)
~ k1 |%1k2|? k3] [kal?[ k112 + k2| + |k3]2]|k[123) ]2

dki234

K
< / 2‘q<2"‘)9(2‘qk)2;—| dk < 20,

where we used (6.1), (6.2) and graph notation in the first inequality, Lemma 6.1
and that |kf1237] 2 29 in the second inequality. For Jtl, using Lemma 6.5 and by a
similar argument, we also obtain that

E|A P <2,

Now by a similar calculation as above, Gaussian hypercontractivity and Lemma 2.1
we have that forevery 6 >0, p > 1,

no(', ) — m)(\{/, b —0 in LP(; CTC_S)‘

Convergence of moo( ¥ , ™" ) — no,o(\{ )
In this part, we focus on 7 ( h ,™") and prove that 7o, o( i R -

N
770, ( ]/, )= 0in CTC_%_‘S. We have the following identity for ¢ € [0, T']:

mo.o( 1, (@) — ﬂo,o(\{ N)@)
=1 4612461 —[I' +6I>+ 61|+ +6J2+6J7,
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where

!
Itl = 2_6/616[12345]‘#0(]‘[123]’ k[45])/0 daPte—g (kr123))
3
x [ Ps—s; (ki) 1_[ ~s; (ki)W (dn12345),
i=1
t
I,2=2_6//€k[234]1ﬁ0(k[123],k4—k])/o dUPtg_G(k[]%])

H _ k)PP (k) Vo (k1) dki W (dpsa),

=27 [ [ eolhras, klz)f do P2 _ (ks)
x VE (k1) V) j (ko) PE_ (ki23)) dkiaW (dn3),

and for i = 1,2,3, I! is defined similarly with Pf _(k[123)) replaced by
Pi—o (k[1231) and other P?, V¢ replaced by PE, Ve, respectively, and fori =1, 2, 3,
J} is defined similarly as I/ with each k[123], €k;12345> €kpoay» €ks Teplaced by kpi23),
Chiinsas) Chpsa Gy respectively. We use graph notation to indicate the main parts
in It1 and I,Z, It3:

7 2 3
m, 0]2 s e o

e, ?r“f’ L W:;jgk kk
B s

El k)

The graph for 7', I2, I? should be the same with e--»e replaced by e—ss and the
graph for J!, J2, J? should be the same as above only with k123 replaced by

kp123].
We consider the following term first:
R-R-[R-P1+F -1 -coo+col,

where I?, 1:,3 are defined similarly as 13, I; [3 with P(f _s3(k3), P, _8 _s; (k3) replaced by
Pf_s3 (k3), Pf_s3 (k3), respectively, and C?(¢t) = 2[C11 + o] (t)], Ceé(t) = %[(:’fl +
@7 (1)]. We also use graph notation to indicate the main parts in I~t3 and C2(1)i(1):

3 3
o g
B I kag™ighy ¥
it it

(k3) 2 dsz < 4=22" and

~ k3 |2 K
(t — O.)K/Z A gk
k3>~

Since for « > 0 small enough, [ | P (k3) — Py _,,

f P, (ks — PE_ (ka) — [ P2y (k) — PE_ (k3)]Pdisy <
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by (6.1), (6.2) and graph notation we obtain that for ¥ > 0 small enough
73 73 1372
El|ag(17 = 1P = [I7 = ][]
1 t
< ok 2|: (/ / K/2 k K/2 k K/2 k K/2
N/ (27k3) T\ /8 (k23 /= + k2l /= + 1k [/7)

e—Uknos P +lki P +lka|%)é p (1—0)
k112 (k2|

ok t o o= Ukpaa) P+1ki P +lke ) (1 —0) <4 2
([0 ko ) [

< 8[(26](14‘3/()‘

2
(t —0)/* dky» da)

Here, in the last inequality we used that sup,.ga"e™ < C for r > 0 and
Lemma 6.1. Moreover, by Lemmas 6.2 and 6.3 and graph notation we obtain that

E[|ag(P - I =" 0cc ) + 1 ) ]

t
N/ G |2 0(27%3) (//o lkpiz) ™" k3l*

X (SK/2|k2|K/2+8K/2|k1|K/2+8K/2|k3|K/2)
ek (1=0)Ep—lka|*(1—0)C
k112 (k2|2

ekl o 2
62 %
+/ T (27%%3)

( t p—lka*(t=0)—=Ik1|*(t—0) . . 2
x s kg~ dklzda) dky
//o k12122 12l

2
dki> da) dks

1
<k /9(2_qk3)mdk3 < ka3,
3
For J;, we have
32
B8, P15 [ gt 'E)

Lk |<N. ks | <N.Jk3| <N )2
x/ <Nkl <N k3| <N dkyr ) dks
( k1 12k 2 (k1| + k2|2 + kp12311%)

< 8K2q(1+3/().

Here, we used that 2¢ «~ N = |k3| and Lemma 6.6 in the last inequality.
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Terms in the third chaos: Now we focus on the bounds for /7. We obtain the
following inequalities:

2\12
E|ag(17 = 17)|

< f 0(27kpa3a1) Yo (k123], ka — k1) Wo(kpa3s), ka — ks)

S (ks P ks 2K 4+ F (elki ¥
I1 dki234s

iy kil (k|2 + ka2 + k2 ) (ks |2 + Tkpss) 12)

K z—q
< fre |152|39—(2K|k$3|2)|2 s S A
where we used graph notation in the first inequality and Lemma 6.1 in the last
inequality. For 1,2 by a similar calculation as above, we know that
1

lka 3% k3] ka|?
Here, « > 0 is small enough and in the last inequality we used Lemmas 6.1 and
6.6.

Terms in the fifth chaos: Now we focus on the bounds for It1 . By graph notation,
we obtain the following inequalities:

E|qut2}2 S / 2_q(1_K)9(2_q£[234])2 dk34 S 8K2(1+3K)q_

71\(2
E|Ag(1) = 1))

5f9(27qk[12345])21ﬁ0(k[123],k[45])2

lill (3, lekil* + ek <) Uetraas

ki 12 |kpias |2 (k1 12 + k2] + lkpi23)12)

< 8K24(1+2/<).

i=1

For J! by similar calculations as for 7! and using the fact that |kpj23)| = N 2>
|k123]|, we obtain that

E|A T < e200+20,

By a similar calculation as above, we also obtain that there exist «, €, y > 0 small
enough such that for any #1, 1, € [0, T]

E[|Ag(moo( ¥ ) 1) — w00 T, ) (1)

N
- ﬂo,o(\k, ) (t1) + 70,0 ( V \/)(fz))|2]

S eVl — 2007,
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which by Gaussmn hypercontractivity and Lemma 2.1 implies that for every § >
0,p>1, 7To,<>( I ) — 7700 ( k )= 0in LP(; CTC___‘S)
6.2. Convergence of error terms. In this subsection, we prove that EYy, —P0

as ¢ — 0. For the estimate, we use Lemma 6.6 or the fact that there exists some
lki] ~ N to produce 8 . Due to this reason most error terms converge to zero.

However, for g, <>( , o ) and g, <>( , o ) we still need to do renormaliza-
tion such that it converges to zero. This is where C{, comes from.

Convergence of mo( , u)
We have the following identity for ¢t € [0, T']:
mo( T YO =1 + 41+ 21,
where

m 2
.0

03T 1y
_9 ~ it
=2 2/61;[123“11’0(/6[12],/6[34]) Y W(dniaa),

72
e,

3
® Il @k
17 =274 [ [ e vt ks =k S dka W)

I} =2_6/€§\1/i2i3‘/f0(k[12], —kp121) * dkis.

Term in the Oth chaos: We have

e Votkat Rz -\
32 |k[12)l2N 229 YO K[12], K[12] 3
E[}Aqh | ] S./ (/ | |3 [12]> 5 8’(2[]( K).

Term in the second chaos: Now we consider I2. We have

E!Aqlﬂz N f wolkpay ks — ki) o (kpay. ks — ka)0 (2~ 9kpa37)°

1
X
k2| 21ks |2 k1 12 (1112 + k12l ) ksl > (1kal® + [kp41|?)

< / 2249 (27 kpps))?

dki234
Knq2k
Pk f S

where « > 0 is small enough. Here, we used that |kji2)| 2 27 for i = 1,4 in the
second inequality and used Lemmas 6.1 and 6.6 in the third inequality.
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Term in the fourth chaos: Now for 1! we have

E[|Aq17] 5f9(2_q/€[1234])21ﬁo(k[12],15[34]) dkp12)34]

k3471 |kp121]> %
1
k347 || k127 13—%

where we used Lemmas 6.1 and 6.6 in the last inequality. By a similar calculation
as above, Gaussian hypercontractivity and Lemma 2.1 we obtain that for every
§>0,p>1,

S27 / 0(2 Tk 1234))° dkpiaa S €29,

)

Convergence of mo( H N
Now we have the following identity for ¢ € [0, T']:

U o , .
mo( © o, () =1, 417 4217,
where

m 12
o o

3 VU m

® lpy @

9 -
=2 2felg[1234]1//0(k[12],k[34]) Vi W(dnosa),

2
e

ns":fg

e iy gk

_2 ~

7=2% [ [ e v ks =k ¥ dkWdnz),

IP= 2_6/65\1/i2i31/f0(/€[12], —ki121) * dkiy.

13, I? can be estimated similarly as for the case of mo( T, ") and we only
consider Terms in the fourth chaos: Now for I! we have

E|Aqlz1|25/T/fo(lz[lz],k[34])9(2"’12[1234])2
1
x = d
k2|2 (k3|2 k1| (k1% + |k2]?)kal? |kpi21]?

3 1
S / 272492 kj134))° E=

k1234

dkpinpg < €297,

|k[12) k341

where we used Lemmas 6.1 and 6.6 in the last inequality. By a similar calculation
as above, Gaussian hypercontractivity and Lemma 2.1 we obtain that for § > 0,
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p>1

U R

mo( ¢, ) >0 in LP(Q; CrC™°).

g e s
Convergence of mo o( i , ™)
We have

mo( T =1 a2 42,

Here, Iti ,i = 1,2 is defined similarly as for the case of mo( , r:) with k[12],

e; and e; _ replaced by kjja1, €= and ez , respectively, and
k(12341 ko TP y K2l k[1234] ki3’ P %

///

ihil N!1lzl3
=7 f W o, “H / do Pl (ki)
x V7 (k) Vg (ko) dki2,
forij, i € {—1,0,1} for j =1,2,3 with 3°;i7 # 0, -, (i})* # 0. Choosing

i1i2i3

e . t —_
6.5) 512 =25 f /_ o P (ki )V (Ve () dkin,

and @123 = 275 [ [0 doPE (“kiz o IVE, (kD)VE (k) dkia, we
easily obtain that

C51B 1, sup 1P| 2B (1] < &
tel0,7T]
for every p > «/2 > 0. For the terms in 217 — C{3'?" — 5125 we know that

eé&,izlé e;&,lm # 1 and we easily obtain that
E[|a, 21} = Cf, — ¢5)[*] S 642109,

Term in the second chaos: Now we consider I2. We have

E|A I S / Yo (kpiay, ks — ki) Wolkpay, k3 — k4)9(2_q]€[23])21|k[12]|>N,|k[24]|>N

1
X = =
k2|2 k3|2 k1 12 (111 + (k12| ) [kal > (1kal® + (k41 |2)

dk1234

< ek / 2242999 (2 pp3:)? dky3 < £4230%

lka |2~ |32

where ¥ > 0 is small enough and we used that |k;| = N for some i € {1, 2,4} in
the second inequality and Lemmas 6.1 and 6.5 in the third inequality.
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Term in the fourth chaos: Now for 1! we have

1

E[|AgI} ] S e /9(2_"’2[1234])21/%(/5[12], ki341) k12341

lkp3a kg 1%

Se2 fe(z—q;g[1234])2 dkpoyaa S €27,

1
|kaayllkpi2y1>—*
where we used that |k[j2)] = N 2 |I€[12]| in the first inequality as well as Lem-
mas 6.1 and 6.5 in the last inequality. By a similar calculation as above, Gaussian
hypercontractivity and Lemma 2.1 we obtain that for every § > 0, p > 1,

70,0 ( H , U) —0 in LP (2 CTC_S).

Convergence of ="
By a similar calculation as that for “- in Section 6.1, we know that

o a ~ 1
ElA 12 02~ 2 (k+2)q
[ =] S/ 279k 12 dk12§8K2 .
| q | ( [ ]) |l1|2”2|2

Here, k¥ > 0 is small enough and in the last inequality we used Lemmas 6.1, 6.6.
Then by Gaussian hypercontractivity and Lemma 2.1 we obtain that for every § >

0,p>1, % —0in LP(; CrC~179).

Convergence of mo( I eé\l]izl‘S?)
Now we have the following identity for ¢ € [0, T']:

mo( 1L N () =1+ 312 + I} 4 372,
where

2
7 e 3
e :

9 ~ o i (/Tf[m.z]
=27 [ potuz ko S W s,
,7]2 3

T

9 o g™ gy
17 =27% [ [ e, vtk i) W,

and fori =1, 2, Jti is defined similarly as I,i with each k[123], replaced

612[1234] ’ e/;[zs]

by 12[123],e: , ez, respectively.
kr1234) kp23)

Terms in the second chaos: First, we consider I? and by similar calculations as
that for 77o( ' , ), we obtain

E|A I S 6" / 2742299279 p03)) dkys < €220

1
k2| k3|2
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where k > 0 is small enough and we used that |kjj23)| = lki| = N in the first
inequality and we used Lemmas 6.1 and 6.5 in the last inequality. By a similar
calculation as above, we see that

E|A T2 <6 f 2792209 (2 p3)° dky3 < 64224

1
k2|2 1k3 |2

Here, ¥ > 0 is small enough and we used that |IE[123]| “ |I€1| « N in the first in-
equality, we used Lemmas 6.1 and 6.5 in the last inequality.
Terms in the fourth chaos: Now for I!, J,1 we similarly get that

ElIAg 1) P+ |80} ] S 5259,

Here, for It1 we used that |kjj23)| = |I€4| « N and for J,1 we used that |k[1237] =

N 2 |I€[123]|. Now by a similar calculation as above, Gaussian hypercontractivity
and Lemma 2.1 we obtain that for every 6 > 0, p > 1,

wo( 1LY 50 in LP(Q; CrC7Y).

Convergence of ¢ o( v ’ U)
Now we have the following identity for # € [0, T']:

wo( 1, @) =1+ 617 + 617 + I +6J7 + 67,
where
" ?7’2 o

iy ¥

1! =2_6/e,;[12345]1ﬁ0(k[123],12[45]) W W(dniaas),

2
n e

g
Mo, ik

1;2=2_6//613[234]%%[123],/24—kl) N dkg W (dnsa),

3

H
g
ks ki

1;3=2_6//61;31//0(1([123],12[12]) i dki2 W (dn3),

. l . . . l . . N N
and fori =1, 2, 3, J/ is defined similarly as I; with each k[123], ek[]2345], ek[m], ez,

replaced by 12[123], e= ,ez ez ,respectively.
kr123as)” kps3ap ks

Terms in the first chaos: We consider J2. I? can be estimated similarly. We
decompose J2 = J3! + J32, with J3!, J3? associated with the terms that k3 # k3
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and 123 = k3, respectively. For 1,31, we have

2
E[|ag77']]

1 I~ 1 2
N/ |k3\ooz<N qk3)</ k1| SN. Jka| SN klz) dics
Ik3] k1 121k212 (Jk1 12 + k2|2 + k1231 12)

< 8K2q(1+3/c)‘

Here, we used that |k3| =227 =~ N in the last inequality. For Jz32’ we consider
TR TR ),

where J32 is defined as J?? with PS_ 5
(C12 + ¢ (t))

Since [ | P} 53 (k3) — P;_ 5 (k3)|2dS3 <C (Tk Tz) —, by a straightforward calcula-

(k3) replaced by P (k3) and C5(t) =

tion we obtaln that for ¥ > 0 small enough

(/t/ e_(llz[123]|2+‘k1|2+|k2|2)5f(t—o') ) )
. (t = 0)" Likpo3)/=N dkuda) dks3
0 k1|2 ]k |? lkr123)]

< 8K2q(1+5K).

Here, in the last inequality we used that |k123| = N implies that |k;| = N for some
i €{l,2,3} and that sup,- a"e™® < C for r > 0 and Lemma 6.1. Moreover, by
Lemmas 6.2 and 6.3 we obtain that

E[|A, (72 = nCs0)]

t ~
<[ el i) [ [l sl

e k1P t=0)ep—lka* (t1—0)y
k112 k2|

1 1
5/0 2_qk3 —dk3|:/ —  dk2
( )|k3|2_2" knzil <N ko)< lkpioy 13 2

1 2
+8K/2/ —dk 12}
\k[12]|>N |k[12]|3+K/2 [12]

< ghna(1+26)

2
dki2 da) dks
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where in the last inequality we used that if |k[j2)| < N, then |1€[12]| < N.
Terms in the third and fifth chaos can be estimated similarly as done for the case

of 70,0 ( v , ) and we also obtain that there exist , €, ¥ > 0 small enough such

that for any #1, 1, € [0, T,

E[|Ag(mo.o( T, ) (0) = mo.0( 1, v ) ()]
Se?|ty — bl 200,
which by Gaussian hypercontractivity and Lemma 2.1 implies that for every § >
0,p>1, mo,o( N ") > 0in LP(Q; CTC_%_‘S).
6.3. Convergence of random operators. The purpose of this subsection is to

prove that Ay defined in Lemma 4.2 converges to zero in probability. Here, we
follow essentially the same arguments as in [13], Section 10.2.

THEOREM 6.7. ForeveryT >0,0<n <k/2,r > 1, we have
E[(Ay)]/" S N7,

Here, k is fixed in Section 4.

To prove Theorem 6.7, we use similar arguments as in [13], Section 10.2, and
obtain the following two lemmas.

LEMMA 6.8. We have

o .

(AL +A2) (T + T ) )
_ N
=3 L ebgx 08,0y

with

Fel (tx, )0 = Y TN (e ko ki k) FC 4+ 1) kDFC 4+ 1, ko).
ki,kz

Here,
I,k ki ko)
=272 itk (k) 4 ky — k), ()< (k, k) Yo (ki — k, ko)
X (=i —kloo> N Ly oo <N F 1k —kloo <N IN <[k |00 <3N )5

with 0 » being a smooth function supported in an annulus 2P A such that 6 pOp =0,p.
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LEMMA 6.9. Forallr > 1,k > 0, we have for A}V = A}\,( .? + i , +

A= AR T

E[JAN®) + A% (1) — (AN () + A% ()|

l4;(:|

,
LCI=3 B, )

qr(—l—4/() —pr(1-3«k)

<) 29T

p.q

/2

x (sup S ENIFelyr.x.) — Felly65.x, )00 ])

xeT3

LEMMA 6.10. Forall p,g > —1,all 0 <t <tp, and all A,k € (0, 1], we
have

2
S E[(Fep (2. x. ) — Fgh  (t1.x.9) 0[]
k
< 1217,21151\](231)22‘1 + 22p23q)N_2+2}”+K|t1 — l‘2|)”.
PROOF. We only prove the estimate for ) E[|.7-'gg’q(t,x, 3(k)|*]). The

above assertion can be obtained by essentially the same arguments. First, we con-

sider the term in Ay containing t and . We have the following chaos de-
composition:

F U INF ) = 1! +41% + 217,

Here,

t
1 =27 [ Vi s || dopig (napeteka) P, ()

x Py_y, (ko) PE_, (k3) P, (ka) W (dn1234),

o—8

t
I,2=2_3flk[12]=1,,k3—k.=12/0 dop;_q (kpaDe(ekpiz)

x Py_g, (ko) Pf_y, (k3) V[ (k1) dki W (dn3),

o—8

t
I[3=2_3‘/‘/(‘) da1]([]2]:11,—]([12]:12‘/tg_g(kl)vtg_g(k2)pf—a(k[12])§0(8k[12])dklz-

The graph for I/, i = 1,2, 3 is similar as that of o( v , ) and we omit them
here.
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Term in the chaos of order 0: By a similar calculation as in Section 6.1, we have

2

Z‘ Z Fﬁq(x, k, k1,kz)1k1+k2:o1,3
K ki ko

S
k

2

N (x,k, ki, —ky)—

Y Uk —kloo> N koo =N F Lk —kloo <N N <[ky [so <3N)

<D 0,0, (—k)*
k k1

2

Xtk ot~k k) ]

In the first case without loss of generality, we may assume that |k’i — k| > N for
some i. Then there are at most |k’ | values of k’i with |k’i| < N and |k’i —ki| > N.
In the second case for 1k, k|, <~N 1N <[k |c<3n Without loss of generality, we may
assume that |k’i| > N for some i. Then there are at most |k’| values of k’i with
|k’i| > N and |k’i — k'| < N. Moreover, observe that |k;| ~ N on the support
of (1ky ko> N k1o <N + 1jk—kloo<N Liki o> N) W0 (k — k1, k1) and that k| S N
whenever 1|, <3nV<(k, k1) # 0, which implies that the above term is bounded
by

D 0, (k)04 (—k)* k1P Ly N ™2 S 1ap pg <y 27P2%IN 2.
k

Term in the second chaos: By a similar calculation as in Section 6.1, we have

ZE‘ngq(x,k,ll,zz)lf
k

1,1

2

<3 Loy aeanlp ()2 / 0, (kioz) — )2
k

X ﬁ#[/w (k, kr127) !
L 7= Qg 2 T Pk P

2
X (Ljkp1a)—kloo> N, k12 loo <N+ 1|kuzj—k|oosN,N<|k[12J|oos3N)dkl] dka3

~ 1 _
S 1ap pasnty (0)? / 6, (kj3) — k)ZMN 2T dkpaa
k

< lap 20 <G (RPN 279220 < 1) 59 <y 23P22 N 72K
k
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Here, in the second inequality we used that |k[12;] = N on the support of
Lk koo >N lk12) oo <N ¥ < (k, kr127) and in the third inequality we used Lemma 6.5.
Term in the fourth chaos: We have

2
ZE‘Z HENNINAA

1,1

< Zép(k)z / 04 (kp1234) — k)20 - (k, kpap)* o (kizg — k, kpzap)?
%

Lop pa<n
" Tk Plks 21k | 2 k) kpiog|*

X (llk[l2]_k|oo>N k(1210 <N + 1lk[lz]—klooSN,N<\k[|2]|oo§3N) dki234
21’ ,29<N

kp12347 11 %

S lopgasy D0, (k)AN~2 23 H)
k

S lop pg<y2P2MINT2,

<Ze 02 [ 6,123 — 07 dkpsag N ="

where we used Lemma 6.1 and that |k[12)| 2 N in the second inequality.
Moreover, we consider

f s (t’ ll)‘/_-'.\’“"x.(l’, 12) _ Jtl + 4-][2 + 2‘];3.

Here, J,i ,i =1,2, is defined similarly as Iti, i = 1,2, with kjj) replaced by 12[12]
and

=27 / o1z 1 Vi R0V o (k) Pl (ki (e iz,

Terms in the chaos of order 0: We have

2
Z’ é,v,q(x,k, ki, ko) g, 1x0=07
ki,ky

Nk Ry, —kp1 P
s X, K, K1, —K] |k IOO§N7~

" oo ey [y 2

o
<D 0,070, (k) PR RN IS TS
k

1 2

X Yo (k, k) gy o<y ———
oSN e 11 12
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Similarly, as above we obtain that there are at most |k’| values of Ig’l with
|I€’i| > N and |l€’i — k'l <N or |l€’i| < N and |l€’i — k'| > N. Moreover, observe
that |k;| >~ N on the support of 1|,;17k|w>N1|,;1|005N1p<(k, k1) and that k| < N
whenever 1| <3n¥<(k, k1) # 0, which implies that the above term is bounded
by

> 0, (%0, () 1k Ly <y N ™% < 1ap pa <y 222N 72,
k

For the terms in the second chaos by a similar calculation as above, we obtain the
desired estimates.
Terms in the fourth chaos: We have

2

ZE‘ZF;{q(x,k,ll,lz)Jtl
k

l1,l

< Zép(k)zfeq(l€[1234] — k)* Y- (k, ko)) 2 Yo (k) kpap)?
p

" lor 2a<n
k2|2 1k3 |2 k1 2| ka) 2 kp12g|*
x (1

1Ik[lz]ISI\’,Ik[szt]ISl\’ dk1234
z 7 +1; = )
lk12—kloo>N,|k12|co <N lk1o—kloo<N,N <[|k12|cc<3N
0 2 7 2
Slorpesn Y 0p(k) /Qq (k12341 — k)
k

1
X N
k112 |k2|?|k3|%|kal?

S o pasn Zép(k)Z/Qq (kp1234) — k)
i

4
1|’<[12]|§N,|k[34]|51\’ dk1234

1
7dk[12][34]N_2
k121 1%k (34112

< lop pa<y 23 P2 N2,

Here, in the second inequality we used that |I€[12]| « N and in the third inequality
we used that N1 < |k12) =L, N1 < k{34 |~ and in the last inequality we used
Lemma 6.5. .. .

Furthermore, for the terms associated with Y and ¥ ™" we obtain the
desired estimates by similar arguments. Thus the result follows. [
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PROOF OF THEOREM 6.7. For t,s >0, r> 0 large enough, we have for
All\/ = A[I\/( * ° "\_V,«". " o ) A = A[Z\/( * b , ":.V,»"_i_ "xu,,w):
E[J(AN®) + AK () — (AN () + AR (S))II ]

SE[J(Ay@) + AR (@) = (AN () + AR (S))|| _1_4K)]

cl-3« B,,

(Cl —3k C***SK)

S Z 2qr(—%—4/{)2—pr(l—3/<)
pP.q

X 12P,24§N[(23p22q + 22p23q)|t — S|AN—2+2A+K]V/2
<|t— S|M/2N(—K/2+A+5)r.

Here, 5 > § + A > 0. Thus the result follows by using Kolmogorov’s continuity

criterion. [
6.4. Convergence of DV. 1In this subsection, we prove that DV —7% 0 as

e — 0. Here, we use the fact that there exists some |k;| >~ N to produce £“. We
have the followmg 1dent1ty forte[0,T]:

((I _ PN)7T<( v ) V )’ " RN )(t) — 7'l,’0(P]\]7'[<(v , (P3N - PN) * )’ ."‘-.,""'.) (t)

4
Z I+ J})
where
'=27" / €kp1n3asen W0 (K[123451, k671 ¥ < (K123, kpas))

X (llk[12345]|oo>Nllk[45]|ooSN - 1|k[12345]|o<>51\/1N<|k[45]|oo§3N)

3
//dddd o kio3) [ | PE s, ki) P} (kias) e (ekpas))
i=1

1_[ —s; (ki) 1_[ s (ki)W (dni234567)
=4

3=/G(t,x,771234567)W(d771234567),

3

=Y 17, M= 6//G(t,x, M23(-3)567) dn3W (dn12567),
i=1

=6fG(l,x, N12345(=3)7) dn3 W (dn12457),
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1 :4/ G(t, x, m23as-5)7)1dns W dni23a7),
6 .
P=>1" ;= 6f / G(t,x, m23-3)-267) dn23W(dnie7),
i=1

I? =24//G(f,x, M23(-3)5(-2)7) dn23 W (dn157),
= 12//G(t,x, M123(-3)5(—5)7) dn3s W (dni27)
* =6f/G(t,x, N12345(—2)(=3)) dn23 W (dn145),

P = 12//G(f,x, N12345(=3)(—4)) dn3a W (dn125)

1 =2f/G(t,x, N12345(—4)(—5)) dnas W (dni123),
3 .

It = 21,4’, M= 12//G(t,x, N123(=1)(=2)(=3)7) dn123W(dn7),
i=1

2= 12//G(l,x, N123(=3)5(=2)(—1)) dn123W(dns),
I =24f/G(t,x, N123(=3)5(—5)—2) dn23s W (dn1),

and J! is defined similarly as I! with k[123], k[12345], €k;1p54567, TEPlaced by

12[123],/;[12345], T respectively, and J,i,i = 2,3,4 is defined similarly as

1} with the G replaced by that associated with J!. For the reader’s convenience,
we use the graph notation to denote G (¢, x, n1234567) and the term for 1,21. The
graphs for other terms are similar as the graph for 72! with the corresponding
lines connected. Here, we omit (I — Py), Pn, 7o, T< in the graph for simplic-

ity:

Terms in the seventh chaos: We have

E|Aq1,1|2Sf9(27‘1/6[1234567])Wo(k[12345],k[67])1ﬁ<(k[123],k[45])

X (1|k[12345]|oo>N;|k[45]|oo§N + 1‘k[12345]|oo§N7|k[45]|oo>N)
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7 3
1 2 2 2 2
X Lkasasent<v | 1 T <l/<|k[123]| |kpas)| <|k[123]| + > kil

i=l i=l

5
X (lk[45] P+ Ik |2>)> dk1234567.

i=4
Observe that |k4s5|cc == N on the support of v (k[123], k[451) 1 k15345) |00 >N > Which
combined with Lemma 6.1 implies that the above term is bounded by

1
6277 k[12345671) | kpas) oo =N, 29 <N
/ ( k451 TS |k[123]|4|k[45]|5|k[67]|

N—2¥ 1
|3—/<

dk[123][45][67]

gk2ax,

5/12q51v9(2_qk[1234567]) dkp1234511671 S

|k[12345) k671

Terms in the fifth chaos: Consider It21 first: by the formula we know that |ks —
k3| = N, hence

E|a 7'
T 1

< lquNfQ(Z_qk[12567]) 1_[ ki 12 k1 [2lka |2
i=5

1 2
X dk3)
[(/ k3|2 (Jks — k3|2 4 |k312) (|kp12311? + ks — k3|?)

1 2
+(f ) |
k3| (lks — k3|? + lkpi2311%) (k123112 + |k312)

X N{jks—l3 | =N, ks | SN g | SN K12567

N2
—q
5/9(2 k[12567])12‘1§N|k[12]|3—’<|k5|2+2K|k[67]| ¢

Here, in the first inequality we consider 0 > o and o < o separately and we used
that |k[123; 1>+ k3|> > k121 |2 in the second inequality.

Now we consider 17 and in this case we have that |kj4s)| = N, which implies
that

kpizisien) < €€2%%.

1
k1|2 1k2 |? | kpas) 12 k7 |?

1 2
X dk3> dki24517
</ (k123112 + k3 P13 |2 3

N—2—K
k121137 |kpas) 13— k7|?

E|AJIP1 S 124§Nf9(27"k[12457])1|k45|:N

S 124§N/9(2_qk[12457]) dkp12114517

< g< 2K,
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Here, in the second inequality we used that |k[123) |2 + |k3 |2 2 ki |2.
For I?* we have that |kj45)| = N, hence

1 1

4
23,2 —
E}Aqlf | N 12"51\’/9(2 qk[12347])1{|k[451|:N}1_[WW
]

i=1
1
X 3 2 2
(Jkri2311? + X272 1kil®) [kpi23g]

1 2
X dks) dki2347
(/ (|kias)1% + 1ks|%) |ks]?

1 p]—2+K
k234127 |k7)?

= / Lo <n0 (27 Tk[12347)) dkpipzay < €€2%4%,

Terms in the third chaos: For 17!, we have that

E|NP' P S 124§N/9(2_qk[167])1/f0(k1,k[67])1//<(k[123],k[23])

X (Ljky o> N, k3 loo <N T Liki1oo <N, N <Ik231100<3N)

1 1 1 2
X dk23>
|k11? |ke|?|k7]? ( (kpi2311? + k23112 k231 1k |2 k3|2

X ik <N dki67

—3—«k

Kn2qK
P gy “Fien S €27

Sla<w / 0(27kp1671)

Here, we used that |k[23) |2 < |k>|> + |k3|? in the first inequality and in the second
inequality we used that |k[23)| = N.
For 12, we obtain that

1

1
k1|2 lks [2[ky 2 PsI=N

E|A 27 S 12qu/9(2_‘1k[1571)1{|k5—k3|wsN}
x [(fl/(aks — kP + )
2 2 2 2 2 2
x (ka3 + Kal? + ks — ks ) kol R3] )dkzs)
+ ( [ Uk + ol + s P)

2
x (Ikr12311 + lka|* + ks — k3|?) |ka|* k3 |?) dk23) ]dk157
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1
k1|2 1ks |3~ k7|

S laagn / 02 kps7)N ™ dkis7 S e¥2%0%.

Here, in the first inequality we consider o > ¢ and o < ¢ separately. For 1,33, we
have that

1

332 —q _
E‘Aqlt | S IZQSN/Q(Z k[127])llks—ks\i‘Nslknz]ISN k1 1212 2 [l 2

<[ ([ 1R+ ks = kP + s P)

2 2 2 2 2
x (ol + ks = kol =+ ks Pkl IksP) s
+ ([ 10k + s

2
x (k123 |* + lks — k3| + 1ks|?) ks |* ks |%) dk35) }dkm
-2

Y dkpap < €29%.
lkp12)13 7% k7 |? 1l

< 124§N/9(27qk[127])

Here, in the first inequality we consider o > o and o < ¢ separately. For 1,34, we
get that

1

342 -
E|A. L7 512‘1§Nf9(2 qk[145])1\k[451|:NW

l\k[23]|<N 2
X f =~ dk23) dky4s
( (k123112 4+ 33, 1ki 12) ko |2 13 2

K

S laag /9 279k1145) ks |oN 7573

dk1[45] S ghdx,

For 1%, we have

1
E|A 1352512< /92_qk125 Likigci | oN———————
1 2
X dk34> dki2s
(/ (Ikas)|? + kal?) (Jkp12311% + 1k31?) k3 |? ks |?
—24k

S loas /9 27 k[125)) 5 dkpizys S £2%9%.
o | O RS e R
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Here, in the second inequality we used |k[123]|2 + |k3|2 pe |k[12]|2. For 1,36, we
obtain that

1
|k123)

E|A ) < 12qu/9(2_"1<[123]) a

X (/(llk[12345]|oo>1\’1k[45]|ooSN + 1Ik[12345]|oo§N1N<|k[45]|oo§3N)

5 2
/ (<|k[45]|2 +3 |ki|2) |k4|2|k5|2> dk45) dki23.
i=4

Now we use similar argument as in Section 6.3. For the case that 1|k[12345]|oo> N X
Likys)lo<n Without loss of general.ity we assume that |kf123] + kf45]| > N for
some i. Then there are at most |k{jy3)| values of kj;5; with [kfjp345,/ > N and
|kf45]| < N. For the case that 155345100 <N I N <|kus) |00 <3N > Similarly we obtain that

there are at most |kE123]| values of kf45] with |kf45]| > N and |kf12345]| < N. Thus
we obtain

dhkpi3) S £92%4%

2 _ _
E|Ag1°] SlquN/Q(z Uk1o3)) N 21" k(123112

Terms in the first chaos: For | 41 we obtain that

_ 1
Ela 1 S s [ 00K
% |:f 1\k[lz]lﬁN
k2 |21k3 |2 k112 (kpi23) % + 1k31%) [kpi2g]?

2
dk123] dky

—24k

S 12451\1/9(2_‘1/(7) dky < 2%

k7|2

For I*2, we have that

18I S o 049

31 1 g
{lkiloo<N,i=1,2,3}
X </ Liks—kz|=N H : i myan dk123>

i ki (kpiosg 12 4 27 ki) ks

1

X ——dks
|ks|?

—24k

|ks|?

S 124§N/9(2_qk5) dks < g29%.
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For I*3, we get that

El8 17 S s [ 007 h)

X (f Liks—ks =N L{jki |0 <N.i=2.3.5)
/(12| 1k312 ks (Ikpioz) 1 + kal? + |k3|?)

2
x (ks — k32 + |k5|2))dk235) dky

—24K

< IZqSN/Q(Z_qkl) dky < 24,

Ik |2
Similar arguments imply the same estimate for J/. By a similar calculation as
above, we also obtain that there exist k, € > 0 small enough such that for any
n,n€[0,T],

E[|Ag(mo((1 = Pyym<(* T ), )

—ro(Pyo(F L (P — Pw) 1)) @)

— (I = Pyym=( T, T )
+ 7o (Pyr<( , (P3n — PN)W‘.)’ "))
S 8K|t1 — t2|K2q6.

Moreover, for the other terms in DV we can use similar calculations and
Lemma 6.5 to obtain the same estimates. Then by using Gaussian hypercontractiv-
ity, Lemma 2.1 and Kolomogorov continuity criterion, we obtain that Dy —Pr0
as e — 0.
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