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Abstract. The semi-infinite Atlas process is a one-dimensional system of Brownian particles, where only the leftmost particle
gets a unit drift to the right. Its particle spacing process has infinitely many stationary measures, with one distinguished translation
invariant reversible measure. We show that the latter is attractive for a large class of initial configurations of slowly growing (or
bounded) particle densities. Key to our proof is a new estimate on the rate of convergence to equilibrium for the particle spacing in
a triangular array of finite, large size systems.

Résumé. Let modèle de Atlas demi-infini est un système unidimensional des particules Browniens, où seulement la particule plus
à gauche a une vitesse positive. Le processus d’incréments correspondant a une infinité des mesures invariantes, avec une mesure
distinguée, reversible et invariante par translations. On montre que cette mesure attire une grande classe des configurations initiales
avec densité bornée ou à croissance modérée. Central à notre preuve est une nouvelle estimation de la vitesse de convergence vers
l’équilibre du processus d’incréments dans un tableau triangulaire de systèmes finis et de grande taille.

MSC: 60K35; 82C22; 60F17; 60J60

Keywords: Interacting particles; Reflecting Brownian motions; Non-equilibrium hydrodynamics; Infinite Atlas process

1. Introduction

Systems of competing Brownian particles interacting through their rank dependent drift and diffusion coefficient
vectors have received much recent attention (for example, in stochastic portfolio theory, where they appear under the
name first-order market model, see [9] and the references therein). For a fixed number of particles m ∈N, such system
corresponds to the unique weak solution of

dYi(t) =
∑
j≥1

γj 1{Yi(t)=Y(j)(t)} dt +
∑
j≥1

σj 1{Yi(t)=Y(j)(t)} dWi(t), (1.1)

for i = 1, . . . ,m, where γ = (γ1, . . . , γm) and σ = (σ1, . . . , σm) are some constant drift and diffusion coefficient
vectors and (Wi(t), t ≥ 0), i ≥ 1 are independent standard Brownian motions. Here Y(1)(t) ≤ Y(2)(t) ≤ · · · ≤ Y(m)(t)

are the ranked particles at time t and the Rm−1+ -valued spacings process Z(t) = (Z1(t),Z2(t), . . . ,Zm−1(t)), t ≥ 0, is
given by

Zk(t) := Xk+1(t) − Xk(t) := Y(k+1)(t) − Y(k)(t), k ≥ 1. (1.2)
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The variables Xk(·) and Zk(·) correspond to the kth ranked particle and kth spacing, respectively, with X1 = mini Yi

denoting the leftmost particle. In particular, existence and uniqueness of such weak solution to (1.1) has been shown
already in [3]. The corresponding ranked process X(t) solves the system

dXj (t) = γj dt + σj dBj (t) + dLj−1(t) − dLj (t), j = 1, . . . ,m (1.3)

for independent standard Brownian motions (Bj (t), t ≥ 0), where Lj (t) denotes the local time at zero of the non-
negative semi-martingale Zj (·), during [0, t], with L0 ≡ 0 and Lm ≡ 0. The spacing process Z(t) is thus a reflected
Brownian motions (RBM) in a polyhedral domain. That is, the solution in R

m−1+ of

dZj = (γj+1 − γj ) dt + σj+1 dBj+1 − σj dBj + 2dLj − dLj+1 − dLj−1. (1.4)

The general theory of such RBM (due to [11,25], cf. the survey [26]), characterizes those (γ , σ ) for which the stationary
distribution of Z(t) is a product of exponential random variables. Further utilizing this theory, [18] deduces various
stochastic comparison results, whereas [14] and the references therein, estimate the rate tm, m � 1 of convergence
in distribution of the spacing process Z(t). In particular, the Atlas model of m particles, denoted by ATLASm(γ ) (or
ATLASm when γ = 1), corresponds to σj ≡ 1 and γj = γ 1j=1. For ATLASm(γ ) it is shown in [15, Corollary 10] that
the spacing process Z(t) has the unique invariant measure

μ
(m,2γ )
� :=

m−1⊗
k=1

Exp
(
2γ (1 − k/m)

)
, m ∈N, (1.5)

out of which [15, Theorem 1] deduces that

μ
(∞,2γ )
� :=

∞⊗
k=1

Exp(2γ ), (1.6)

is an invariant measure for the spacings process of ATLAS∞(γ ) (see also [16] for invariant measures of spacings when
the particles follow linear Brownian motions which are repelled by their nearest neighbors through a potential). By
time-space scaling we hereafter set γ = 1 WLOG and recall in passing that to rigorously construct the ATLAS∞ we
call y = (yi)i≥1 ∈ R

∞ rankable if there exists a bijective mapping to the ranked terms y(1) ≤ y(2) ≤ y(3) ≤ · · · of y.
The solution of (1.1) starting at a fixed y ∈R

∞ is then well defined if a.s. the resulting process Y = (Y1(t), Y2(t), . . .)

is rankable at all t (under some measurable ranking permutation). The ATLAS∞ process is unique in law and well
defined, when

P

(∑
i≥1

e−αYi(0)2
< ∞

)
= 1, for any α > 0 (1.7)

(see [23, Proposition 3.1]), and [13, Theorem 2] further constructs a strong solution of (1.1) in this setting (more gen-
erally, whenever σ 2

0 = 0, j �→ σ 2
j+1 is concave and eventually, both σ 2

j = 1 and γj = 0). We focus here on ATLAS∞,
where WLOG all ATLASm, m ∈ N ∪ {∞}, evolutions considered, start at a ranked configuration Y(0) = X(0) having
leftmost particle at zero (i.e. X1(0) = 0), and which satisfies (1.7). For example, this applies when Z(0) is drawn from
the product measure

μ(∞,λ,a)
� :=

∞⊗
k=1

Exp(λ + ka), λ > 0, a ≥ 0. (1.8)

The natural conjecture made in [15] that μ
(∞,2)
� is the only invariant measure for spacing of ATLAS∞, has been refuted

by [21] showing that {μ(∞,2,a)
� , a ≥ 0}, forms an infinite family of such invariant measures (similar invariant spacings

measures appeared earlier, in the non-interacting discrete model studied by [17,22]).
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As for the behavior of the leading particle of ATLAS∞, [5] verifies [15, Conjecture 3], that starting with spacing at
the translation invariant equilibrium law μ

(∞,2)
� results with

t−1/4X1(t)
d→ N (0, c), when t → ∞, some c ∈ (0,∞). (1.9)

Similar asymptotic fluctuations at equilibrium were established in [8,10] for a tagged particle in the doubly-infinite
Harris system (the non-interacting model with γj ≡ 0, σj ≡ 1), for the symmetric exclusion process associated with
the SRW on Z (starting with [2]), and for a discrete version of the Atlas model (see [12]). In contrast, initial spacing
of law μ

(∞,2,a)
� for a > 0, induces a negative ballistic motion of the leading particle. Specifically, [24] and [21] show

respectively, that {X1(t) + at} is then a tight collection, of zero-mean variables.
Little is known about the challenging out of equilibrium behavior of ATLAS∞. From [15, Theorem 1] we learn that

at critical spacing density λ = 2 the unit drift to the leftmost particle compensates the spreading of bulk particles to the
left, thereby keeping the gaps at equilibrium. Such interplay between spacing density and drift is re-affirmed by [4],
which shows that initial spacing law μ

(∞,λ)
� induces the a.s. convergence t−1/2X1(t) → κ with sign(κ) = sign(2 −λ).

From [20, Theorem 4.7] it follows that if ATLAS∞ starts at spacing law ν0 which stochastically dominates μ
(∞,2)
� (e.g.

when ν0 = μ
(∞,λ)
� any λ ≤ 2), then the finite dimensional distributions (FDD) of Z(t) converge to those of μ

(∞,2)
� as

t → ∞. However, nothing else is known about the domain of attraction of μ
(∞,2)
� (or about those of {μ(∞,2,a)

� , a > 0}).
For example, what happens when ν0 = μ

(∞,λ)
� with λ > 2?

Our main result, stated next, answers this question by drastically increasing the established domain of attraction of
μ

(∞,2)
� spacing for ATLAS∞.

Theorem 1.1. Suppose the ATLAS∞ process starts at Z(0) = (zj )j≥1 such that for eventually non-decreasing θ(m)

with infm{θ(m − 1)/θ(m)} > 0 and β ∈ [1,2),

lim sup
m→∞

1

mβθ(m)

m∑
j=1

zj < ∞, (1.10)

lim sup
m→∞

1

mβθ(m)

m∑
j=1

(log zj )− < ∞, (1.11)

lim inf
m→∞

1

mβ ′
θ(m)

m∑
j=1

zj = ∞, β ′ := β2/(1 + β), (1.12)

further assuming in case β = 1 that θ(m) ≥ logm. Then, the FDD of Z(t) for the ATLAS∞ converge as t → ∞ to
those of μ

(∞,2)
� .

For example, if λj ∈ [c−1, c] and λjzj are i.i.d. of finite mean such that E(log z1)− < ∞, then taking θ(m) ≡ 1
and β > 1 small enough for β ′ < 1, it follows by the SLLN that (1.10)–(1.12) hold a.s. Namely, when ν0 is any such
product measure, Z(t) converges in FDD to μ

(∞,2)
� . For independent zj ∼ Exp(λj ) this applies even when λj ↑ ∞

slow enough so
∑m

j=1 λ−1
j /(

√
m logm) diverges (and hence (1.12) holds a.s.), or when λj ↓ 0 slow enough to have

m−β
∑m

j=1 λ−1
j bounded (for some β < 2, so (1.10) holds).

Remark 1.2. As matter of comparison, note that if zj decays to zero slower than j−1/2 log j , then {zj } satisfies the
hypothesis of Theorem 1.1 (for β = 1), while for measures of the form (1.8), generically zj decays like j−1.

The key to proving Theorem 1.1 is a novel control of the ATLASm particle spacing distance from equilibrium at
time t , in terms of the relative entropy distance of its initial law from equilibrium.

Proposition 1.3. Start the ATLASm system at initial spacing law ν
(m)
0 of finite entropy H(ν

(m)
0 |μ(m,2)

� ) and finite

second moment
∫ ‖z‖2dν

(m)
0 . Then, for any t > 0 the spacing law ν

(m)
t is absolutely continuous with respect to the
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marginal of μ
(∞,2)
� and the Radon–Nikodym derivative gt satisfies

∫ {
m−1∑
j=1

[
(∂zj−1 − ∂zj

)
√

gt

]2

}
m−1∏
j=1

2e−2zj dzj ≤ 1

2t
H

(
ν

(m)
0 |μ(m,2)

�

) + 1

m
. (1.13)

Combining Proposition 1.3 with Lyapunov functions for finite ATLAS systems (constructed for example in [7,14]),
yields the following information on convergence of the ATLASm particle spacing FDD at times tm → ∞ fast enough.

Corollary 1.4. Starting the ATLASm system at initial spacing law ν
(m)
0 of finite second moment, for any fixed k ≥ 1, the

joint density of (Z1(tm), . . . ,Zk(tm)) with respect to the corresponding marginal of μ
(∞,2)
� , converges to one, provided

tm is large enough so both t−1
m H(ν

(m)
0 |μ(m,2)

� ) → 0, and t−1
m

∑k
j=1 Zj (0) → 0 (in ν

(m)
0 -probability), as m → ∞.

Remark 1.5. For concreteness we focused on the ATLAS∞ process, but a similar proof applies for systems of com-
peting Brownian particles where σ 2

j ≡ 1, γ1 > 0 and j �→ γj is non-increasing and eventually zero. We further expect
this to extend to some of the two-sided infinite systems considered in [19, Section 3], and that such an approach may
help in proving the attractivity of μ

(∞,2,a)
� in the ATLAS∞ system.

In Section 2 we prove Proposition 1.3 and Corollary 1.4, whereas in Section 3, we deduce Theorem 1.1 from
Corollary 1.4 by a suitable coupling of the ATLASm system and the left-most k particles of ATLAS∞ up to time tm.

2. Entropy control for ATLASm: Proposition 1.3 and Corollary 1.4

Recall (1.3), which for ATLASm is

Xj(t) = Xj(0) + 1{j=1}t + Bj (t) + Lj−1(t) − Lj (t), j = 1, . . . ,m, (2.1)

where Lj (t) denotes the local time on {s ∈ [0, t] : Zj (s) = 0} for 1 ≤ j < m, with L0(t) = Lm(t) ≡ 0. Let Xm := {x :
x1 ≤ x2 ≤ · · · ≤ xm} ⊂R

m. The generator of the Xm-valued Markov process X(t) is then

(L̂mg)(x) := 1

2

m∑
j=1

∂2
xj

+ ∂x1 (2.2)

defined on the core of smooth bounded functions g(·) on Xm satisfying the Neumann boundary conditions

(∂xj
− ∂xj+1)g|xj =xj+1 = 0, j = 1, . . . ,m − 1.

Specializing (1.4) the corresponding R
m−1+ -valued spacings Zj (t) = Xj+1(t) − Xj(t) are then such that for 1 ≤ j ≤

m − 1,

Zj (t) = Zj (0) − 1{j=1}t + Bj+1(t) − Bj (t) + 2Lj(t) − Lj+1(j) − Lj−1(t). (2.3)

Let �(m) denote the discrete Laplacian with Dirichlet boundary conditions at 0 and m. Hence, using hereafter the
convention of ∂z0 = ∂zm ≡ 0,

�(m)∂zj
:= ∂zj−1 − 2∂zj

+ ∂zj+1 , j = 1, . . . ,m − 1. (2.4)

Following this convention, in combination with the rule

∂xj
= ∂zj−1 − ∂zj

, j = 1, . . . ,m,
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the generator of the R
m−1+ -valued Markov process Z(t) is thus

Lm = 1

2

m∑
j=1

(∂zj−1 − ∂zj
)2 − ∂z1 = −1

2

m−1∑
j=1

∂zj

(
�(m)∂zj

) − ∂z1 (2.5)

defined on the core Cm of local, smooth functions h(z) such that(
�(m)∂zj

)
h|zj =0 = 0, j = 1, . . . ,m − 1. (2.6)

Recall that μ
(m,2)
� (·) is the (unique) stationary law of Z(t) for ATLASm. In fact, for the density on R

m−1+ of μ
(m,2)
� (·),

pm(z) :=
m−1∏
j=1

αje
−αj zj , αj := 2(1 − j/m), (2.7)

a direct calculation shows that

1

2

m−1∑
j=1

αj�
(m)∂zj

= −∂z1 . (2.8)

Combining the LHS of (2.5) with (2.8) yields the symmetric form of the generator

Lm = − 1

2pm

m−1∑
j=1

∂zj

(
pm�(m)∂zj

)
. (2.9)

Using (2.9) and integration by parts, we have for bounded, smooth g,h satisfying (2.6)∫
g(−Lmh)dμ(m,2)

� =
∫

h(−Lmg)dμ(m,2)
�

= 1

2

∫ {
m∑

j=1

[
(∂zj−1 − ∂zj

)g
][

(∂zj−1 − ∂zj
)h

]}
dμ(m,2)

� := Dm(g,h). (2.10)

We see that dμ
(m,2)
� = pm(z) dz is reversible for this dynamic, and the corresponding Dirichlet form Dm(h) :=

Dm(h,h), extends from Cm, now only as

Dm(h) = 1

2

∫ {
m∑

j=1

[
(∂zj−1 − ∂zj

)h
]2

}
pm(z) dz, (2.11)

to the Sobolev space W 1,2(μ
(2,m)
� ) of functions on R

m−1+ with L2(μ
(2,m)
� )-derivatives.

We also consider the Markov dynamics on R
m−1+ for the spacing process of an ATLASm whose mth particle

Xm(s) = Xm(0) is frozen. Under the same convention as before, the generator for this, right-anchored dynamics,
is

L̃m = 1

2

m−1∑
j=1

(∂zj−1 − ∂zj
)2 − ∂z1 (2.12)

for the core C̃m of local, smooth functions h(z) such that(
�̃(m)∂zj

)
h|zj =0 = 0, j = 1, . . . ,m − 1, (2.13)
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where �̃(m) is the discrete Laplacian with mixed boundary conditions. Specifically,

�̃(m)∂zj
= ∂zj−1 − 2∂zj

+ ∂zj+1, 1 ≤ j ≤ m − 2, �̃(m)∂zm−1 = ∂zm−2 − ∂zm−1 . (2.14)

For the remainder of this section we identify μ
(∞,2)
� with its marginal on z = (z1, . . . , zm−1), whose density on

R
m−1+ is

qm(z) :=
m−1∏
j=1

2e−2zj . (2.15)

Analogously to (2.9) we find that

L̃m = − 1

2qm

m−1∑
j=1

∂zj

(
qm�̃(m)∂zj

)
. (2.16)

This (marginal of) μ
(∞,2)
� is thus reversible (stationary and ergodic) for the right-anchored dynamics, and similarly to

(2.10)–(2.11) for bounded, smooth h satisfying (2.13), the associated Dirichlet form is given (on W 1,2(qm dz)) by

D̃m(h) = 1

2

∫ {
m−1∑
j=1

[
(∂zj−1 − ∂zj

)h
]2

}
qm(z) dz. (2.17)

Indeed, this reversible measure corresponds to starting the right-anchored dynamics with X1(0) = 0 and a
Gamma(2,m − 1) law for the frozen Xm, with the remaining m − 2 initial particle positions chosen independently
and uniformly on [0,Xm].

Proof of Proposition 1.3. Fixing m ≥ 2, we start the finite particle dynamics of generator L̃m of (2.9), with initial
law ν

(m)
0 on R

m−1+ whose density

f0 := dν
(m)
0

dμ
(m,2)
�

, (2.18)

has the finite entropy

H
(
ν

(m)
0 |μ(m,2)

�

) =
∫

[f0 logf0](z)pm(z) dz =: Hm(f0). (2.19)

Recall [1] that a Wasserstein solution of the Fokker–Planck equation

∂tft = Lmft , (2.20)

starting at f0, is a continuous (in the topology of weak convergence) collection of probability measures t �→ ftμ
(2,m)
�

such that for any s, the derivatives (∂zj−1 − ∂zj
)
√

fs exist a.e. in R
m−1+ , with∫ t

0
Dm(

√
fs) ds < ∞, ∀t < ∞ (2.21)

and moreover for any fixed compactly supported smooth function ζ(t, z) on R+ ×R
m−1+ ,∫ ∞

0

{
Dm

(
ft , ζ(t, ·)) −

∫
∂t ζ(t, z)ft (z)pm(z) dz

}
dt = 0. (2.22)
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By [1, Theorem 6.6], the law ν
(m)
t that corresponds to a starting measure ν

(m)
0 of finite entropy and finite second

moment, is a Wasserstein solution ν
(m)
t = ftμ

(m,2)
� of (2.20).4 As pm(·) is log-concave, from [1, Theorem 6.6] we

further have that then
√

ft ∈ W 1,2(μ
(2,m)
� ) and

Dm(
√

ft ) < ∞, ∀t > 0, (2.23)

with t �→ Dm(
√

ft ) non-increasing and

Hm(ft ) − Hm(f0) = −4
∫ t

0
Dm(

√
fs) ds. (2.24)

Consequently, for any t ≥ 0,

4tDm(
√

ft ) ≤ 4
∫ t

0
Dm(

√
fs) ds = Hm(f0) − Hm(ft ) ≤ Hm(f0). (2.25)

Next, comparing (2.7) with (2.15), notice that qm = pmhm for the strictly positive

hm(z) :=
m−1∏
j=1

2

αj

e− 2j
m

zj ,

such that

(∂zj−1 − ∂zj
)
√

hm = (
m−1 − 1{j=m}

)√
hm. (2.26)

Hence, for ft = hmgt , using that
∑m

j=1(∂zj−1 − ∂zj
) = 0 and

∫
gtqm dz = 1, we arrive at

2Dm(
√

ft ) =
∫ {

m∑
j=1

[
(∂zj−1 − ∂zj

)
√

gt + (
m−1 − 1{j=m}

)√
gt

]2

}
qm(z) dz

= 2D̃m(
√

gt ) − m−1 +
∫

[√gt − ∂zm−1

√
gt ]2qm(z) dz. (2.27)

Combining (2.25) and (2.27) we see that for any t > 0,

2D̃m(
√

gt ) ≤ 1

2t
Hm(f0) + m−1, (2.28)

where gt is precisely the density of ν
(m)
t with respect to the marginal of μ

(∞,2)
� . In view of the definitions (2.17) and

(2.19), the preceding bound matches our claim (1.13). �

With D̃k+1(
√

g) invariant to mass-shifts g(z) �→ exp(2
∑k

j=1 θj )g(z−θ), having D̃k+1(
√

gm) → 0 does not imply
(uniform) tightness of the collection of probability measures {gmqk+1 dz}m∈N. Instead, when proving Corollary 1.4,
we rely for tightness on the following direct consequence of [14, Section 3].

Lemma 2.1. For ATLASk+1, some c1 = c1(k) finite and D(t) := ∑k
j=1 Zj (t),

lim
x→∞ sup

t≥c1D(0)

{
P
(
D(t) ≥ x

)} = 0, (2.29)

where the supremum is also over all initial configurations.

4Though we could not find a reference for it, we expect ft to be also a strong solution of (2.20) which satisfies the boundary conditions of (2.6).
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Proof. Building on the construction in [7, Section 3] of Lyapunov functions for RBM in polyhedral domains, while
proving [14, Theorem 3] the authors show that for the ATLASk+1 (and more generally, for the spacing associated with
(1.1), whenever j �→ γj is non-increasing and j �→ σ 2

j forms an arithmetic progression), one has

E
[
V

(
Z(t)

)] ≤ e−t
[
V

(
Z(0)

)] + c2, ∀t ≥ 0, (2.30)

where V (z) = e〈v,z〉 for some strictly positive v and c2 < ∞ (see [14, Inequality (51)]). Noting that 〈v,Z(t)〉/D(t) ∈
[c−1

1 , c1] (with c1 := maxj {vj ∨ v−1
j }), we get upon combining (2.30) with Markov’s inequality that for any initial

configuration Z(0),

P
(
D(t) ≥ x

) ≤ P
(〈

v,Z(t)
〉 ≥ x/c1

) ≤ e−x/c1
[
e−t ec1D(0) + c2

]
. (2.31)

For t ≥ c1D(0) the RHS of (2.31) is at most e−x/c1(1 + c2), yielding (2.29). �

Proof of Corollary 1.4. Fix probability densities h0 �= h1 WRT the law qm dz on R
m−1+ , such that

√
h0,

√
h1 ∈

W 1,2(qm dz). Both properties then apply for hλ := λh1 + (1 − λ)h0, any λ ∈ (0,1), and it is not hard to verify that

d2D̃m(
√

hλ)

d2λ
=

∫ {
m−1∑
j=1

[√
α0(∂zj−1 − ∂zj

)
√

h1 − √
α1(∂zj−1 − ∂zj

)
√

h0
]2

}
α0α1qm dz,

where the non-negative α0 := h0/hλ, α1 := h1/hλ are uniformly bounded (per λ). Consequently, the map h �→
D̃m(

√
h) is convex on the set of probability densities h with respect to the product law qm dz on R

m−1+ .

The marginal density on (z1, . . . , zk) (WRT the kth marginal of μ
(∞,2)
� ), is given for ν

(m)
t (dz) = gtqm dz and

1 ≤ k < m, by

gt,k(z1, . . . , zk) :=
∫

gt (z)
m−1∏

j=k+1

2e−2zj dzj . (2.32)

Thus, by the convexity of D̃m(
√·) and the formula (2.17), we have that

D̃m(
√

gt ) =
∫

D̃m(
√

gt )

m−1∏
j=k+1

2e−2zj dzj ≥ D̃m(
√

gt,k) ≥ D̃k+1(
√

gt,k). (2.33)

In particular, fixing k ≥ 1 and choosing tm → ∞ as in the statement of the corollary, we deduce from (1.13) and (2.33)
that

lim
m→∞ D̃k+1(

√
gtm,k) = 0. (2.34)

For r ≥ 2 and the Markov generator L̃r of (2.12) consider the functional on the collection of probability measures ν

on R
r−1+ defined by

Ĩr (ν) := sup
h�0

{∫
h−1(−L̃rh) dν

}
, (2.35)

where the supremum is taken over all bounded away from zero, twice continuously differentiable functions having the
boundary conditions (2.13) at m = r . With h−1(−L̃rh) then continuous and bounded, clearly Ĩr (·) is l.s.c. in the weak
topology on probability measures in R

r−1+ . Further, recall from [6, Theorem 5] that Ĩr (ν) = ∞ unless ν = gqr dz for
a probability density g such that

√
g ∈ W 1,2(qr dz), or equivalently D̃r (

√
g) < ∞, in which case Ĩr (ν) = D̃r (

√
g).

Hence, (2.34) amounts to Ĩk+1(ν
(m,k)
tm

) → 0 for the joint law ν
(m,k)
tm

of (Z1(tm), . . . ,Zk(tm)) and any weak limit point
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of these laws must have a density g WRT qk+1 dz such that D̃k+1(
√

g) = 0. From (2.17) it is thus necessarily that
throughout Rk+,

∂z1

√
g = 0, (∂zj−1 − ∂zj

)
√

g = 0, j = 2, . . . , k,

so as claimed, the only possible limit point is g ≡ 1. By Prohorov’s theorem, it remains to verify that {ν(m,k)
tm

} are
uniformly tight, namely, to provide a uniform in m tail-decay for

∑k
j=1 Zj (tm) in the corresponding ATLASm system.

To this end, recall [20, Corollary 3.10(ii)] that under the same driving Brownian motions {Bj (s)} and initial configu-
ration, the first k spacings increase when all particles to the right of Xk+1(0) are removed. Consequently, it suffices
to provide a uniform in m tail decay for the diameter D(tm) of an ATLASk+1 system of initial spacing distribution
ν

(m,k)
0 . Fixing ε > 0 we have from (2.29) the existence of finite c1 = c1(k) and x = x(ε) such that for a given initial

configuration, if t ≥ c1D(0) then P(D(t) ≥ x) ≤ ε. By our assumption that t−1
m ρm → 0 in ν

(m,k)
0 -probability, for the

(random) initial diameter ρm := Xk+1(0) − X1(0), we have that P(c1ρm ≥ tm) ≤ ε for all m ≥ m0(ε), in which case

P
(
D(tm) ≥ x

) ≤ P
(
D(tm) ≥ x, tm ≥ c1ρm

) + P(c1ρm ≥ tm) ≤ 2ε.

With ε > 0 arbitrarily small and x = x(ε) independent of m, we have thus established the required uniform tight-
ness. �

Remark 2.2. The proof of Proposition 1.3 is easily adapted to deal with the right-anchored dynamic (of the generator
L̃m given in (2.12)). It yields for the latter dynamic the bound of (1.13), now with (2t)−1H(ν

(m)
0 |⊗m−1

k=1 Exp(2))

in the RHS. The proof of Lemma 2.1 also adapts to right-anchored dynamics, hence the conclusion of Corollary 1.4
applies for sequences of right-anchored dynamics when the latter expression decays to zero at t = tm → ∞ such that
t−1
m

∑k
j=1 Zj (0) → 0.

3. Coupling to ATLAS∞: Proof of Theorem 1.1

Let G(a) = (2π)−1/2
∫ ∞
a

e−x2/2 dx and consider the ATLAS∞ process Y (t) = {Yi(t)}, denoting by X(t) = {Xj(t)}
the corresponding ranked configuration. We first provide three elementary bounds for this process that are key to the
proof of Theorem 1.1.

Lemma 3.1. For any initial condition X(0), � ≥ 1 and t,� > 0,

P

(
sup

s∈[0,t]
{
X1(s)

} ≥ �
)

≤ 2G
(

�� − t − ∑�
j=1 Xj(0)√

�t

)
. (3.1)

Proof. Starting WLOG at Y (0) = X(0), we have that for any s ≥ 0,

X1(s) ≤ 1

�

�∑
i=1

Yi(s) ≤ s

�
+ 1

�

�∑
j=1

Xj(0) + 1√
�
W̃ (s),

where W̃ (s) := �−1/2 ∑�
i=1 Wi(s) is a standard Brownian motion. Thus, by the reflection principle,

P

(
sup

s∈[0,t]
{
X1(s)

} ≥ �
)

≤ P

(
sup

s∈[0,t]

{
1√
�
W̃ (s)

}
≥ � − t

�
− 1

�

�∑
j=1

Xj(0)

)

= 2P

(
W̃ (t) ≥ √

�� − t√
�

− 1√
�

�∑
j=1

Xj(0)

)
,

which upon Brownian scaling yields the stated bound of (3.1). �
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Lemma 3.2. For X1(0) ≥ 0, � and k ≥ 2 such that �(k) := (� − Xk(0))/3 > 0, any � ≥ 1 and t > 0, we have that

P

(
sup

s∈[0,t]
{
Xk(s)

} ≥ �
)

≤ 2G
(

��(k) − t − ∑�
j=1 Xj(0)√

�t

)
+ 4kG

(
�(k)

√
t

)
. (3.2)

Proof. Recall [20, Corollary 3.12(ii)] that keeping the same driving Brownian motions {Bj (s)} and initial configu-
ration X(0), the spacing vector Z(t) is pointwise decreasing in γ . Further, by [20, Corollary 3.10(ii)], the first k − 1
spacings increase when all particles to the right of Xk(0) are removed. Consequently, that value of Xk(t) − X1(t) at
the drift γ = 1 of ATLAS∞ is bounded by its value for a k-particle Harris system (of γ = 0), starting at same posi-
tions as the original ATLAS∞ process left-most k particles. In the latter case, letting Vk(s) := maxk

j=1{Bj (s)} and the

identically distributed V ′
k(s) := maxk

j=1{−Bj (s)}, our assumption that X1(0) ≥ 0 results with

Xk(s) − X1(s) ≤ Xk(0) + Vk(s) + V ′
k(s).

Thus, with �(k) = (� − Xk(0))/3 and {B̃(s)} denoting a standard Brownian motion, we get by the union bound that

P

(
sup

s∈[0,t]
{
Xk(s)

} ≥ �
)

≤ P

(
sup

s∈[0,t]
{
X1(s) + Vk(s) + V ′

k(s)
} ≥ � − Xk(0)

)
≤ P

(
sup

s∈[0,t]
{
X1(s)

} ≥ �(k)
)

+ 2kP
(

sup
s∈[0,t]

{
B̃(s)

} ≥ �(k)
)
.

Consequently, by (3.1) and the reflection principle,

P

(
sup

s∈[0,t]
{
Xk(s)

} ≥ �
)

≤ 2G
(

��(k) − t − ∑�
j=1 Xj(0)√

�t

)
+ 4kG

(
�(k)

√
t

)
,

as claimed. �

Lemma 3.3. For any m ≥ 0, t,� > 0 and initial configuration Y(0) = X(0),

P

(
inf

s∈[0,t] inf
i>m

{
Yi(s)

} ≤ �
)

≤ 2
∑
i>m

G
(

Xi(0) − �√
t

)
. (3.3)

Proof. Removing the drift in the ATLAS model decreases all coordinates of Y (s) and correspondingly increases the
LHS of (3.3). Thus,

P

(
inf
i>m

inf
s∈[0,t]

{
Yi(s)

} ≤ �
)

≤
∑
i>m

P

(
inf

s∈[0,t]
{
Wi(s)

} ≤ � − Xi(0)
)

= 2
∑
i>m

P

(
W(1) ≤ � − Xi(0)√

t

)
= 2

∑
i>m

(
Xi(0) − �√

t

)
,

as claimed. �

Proof of Theorem 1.1. Given initial spacing configuration z that satisfies (1.10) and (1.11), consider the following
two sequences of initial distributions for the finite increment vectors Zm(0) := (Z1(0), . . . ,Zm−1(0)) of the ATLASm

process, m ≥ 2. Starting at the measure ν
(m,−)
0 (·) = μ

(m,2)
� (·|Zm(0) ≤ z

m
) for the given z

m
= (z1, . . . , zm−1) yields

for same driving Brownian motions an ATLASm spacing process Z−
m(s) which is dominated at all times s ≥ 0 by

the corresponding process that started at spacing z
m

, whereas ν
(m,+)
0 (·) = μ

(m,2)
� (·|Zm(0) ≥ z

m
) similarly yields a

spacing process Z+
m(s) that dominates the spacing for the original process which started at z

m
. The corresponding
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relative entropies are then

H+
m := H

(
ν

(m,+)
0 |μ(m,2)

�

) = − logμ(m,2)
�

({
m−1∏
j=1

[zj ,∞)

})
=

m−1∑
j=1

αjzj ≤ 2
m−1∑
j=1

zj , (3.4)

H−
m := H

(
ν

(m,−)
0 |μ(m,2)

�

) = − logμ(m,2)
�

({
m−1∏
j=1

[0, zj ]
})

=
m−1∑
j=1

− log
(
1 − e−αj zj

)

≤
m−1∑
j=1

[
1 + (logαjzj )−

] ≤ 2m logm +
m−1∑
j=1

(log zj )−, (3.5)

since − log(1 − e−u) ≤ 1 + (logu)− for all u ≥ 0, while αj ≥ 2/m (see (2.7)), hence log(e/αj ) ≤ 2 logm. By (1.10)
and (3.4),

lim sup
m→∞

H(ν
(m,+)
0 |μ(m,2)

� )

mβθ(m)
< ∞.

With θ(m) ≥ logm in case β = 1, we similarly deduce from (1.11) and (3.5) that

lim sup
m→∞

H(ν
(m,−)
0 |μ(m,2)

� )

mβθ(m)
< ∞.

Fixing k ≥ 2, the uniform over m ≥ 2k first moment bound,

ν
(m,−)
0

[
k∑

j=1

Zj (0)

]
≤ ν

(m,+)
0

[
k∑

j=1

Zj (0)

]
=

k∑
j=1

(
zj + α−1

j

) ≤
k∑

j=1

(zj + 1),

yields by Markov’s inequality that t−1
m

∑k
j=1 Zj(0) → 0 in ν

(m,±)
0 -probability, for any tm → ∞. Further, the second

moment of ν
(m,−)
0 is finite (being at most ‖z‖2), as is the second moment of ν

(m,+)
0 (being at most the product of eH+

m

and the finite second moment of μ
(m,2)
� ). Hereafter, let

tm := 2mβθ(m)ψ(m), (3.6)

for some slowly growing ψ(m) ↑ ∞ such that infm{ψ(m − 1)/ψ(m)} > 0. Setting mn = mn(s) := inf{m ≥ 2 : tm ≥
sn}, our constraints on θ(·) and ψ(·) yields that for tm of (3.6) and any sn ↑ ∞,

inf
n≥1

{
sn

tmn

}
≥ inf

m≥2

{
tm−1

tm

}
> 0.

Thus, by the preceding, upon applying Corollary 1.4 to the ATLASm model initialized at ν
(m,±)
0 we have that the joint

law of the first k coordinates of Z±
mn

(sn), converges as n → ∞ to the corresponding marginal of μ
(∞,2)
� . The same

limit in distribution then applies for the spacing (Z1(sn), . . . ,Zk(sn)) of ATLASmn started at z
mn

(which is sandwiched
between the corresponding marginals of Z−

mn
(sn) and Z+

mn
(sn)). Assuming further that supm{ψ(m)/m} ≤ 1, we claim

that for X1(0) = 0 and the given initial spacing Z(0) = z, the RHS of (3.2) is summable over m, at t = tm of (3.6) and

�m := 36mβ ′
θ(m)ψ(m)β/(1+β), �m := [

mβ/(1+β)ψ(m)1/(1+β
]
. (3.7)

Indeed, since θ(·) is eventually non-decreasing, we have then that

1

12
�m�m ≥ tm ≥ �1+β

m θ(�m), ∀m ≥ m�. (3.8)
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Further, with k fixed and �m ↑ ∞, necessarily Xk(0) ≤ �m/8 for all m ≥ m� large enough, in which case from (3.8),
the RHS of (3.2) is bounded above for such m, tm, �m and �m, by

2G
(√

�
β
mθ(�m)

)
+ 4kG

(
3
√

�
β−1
m θ(�m)

)
and recalling that θ(�m) ≥ 1

2 logm when β = 1, it is easy to verify that the preceding bound is summable in m. Next,
utilizing (1.12), we can further make sure that ψ(m) ↑ ∞ slowly enough so that for any fixed κ < ∞,

Xm(0) ≥ (κ + 1)�m, ∀m ≥ mκ (3.9)

so that for m ≥ mκ the RHS of (3.3) is bounded above, at t = tm and � = �m, by

2
∞∑

j=1

G(κ�m+j /
√

tm). (3.10)

Note that β ′ ≥ 1/2 and δ := β/(1 +β)− 1/2 ≥ 0 is strictly positive when β > 1. Thus, β ′ −β/2 = δβ ≥ 0 and setting
κ ′ := (18κ)2, we deduce from (3.6) and (3.7) that

κ
�m√
tm

�m+j

�m

≥ mβδθ(m)1/2
√

2κ ′(1 + j/m).

Increasing mκ if needed, we have that m2βδθ(m) ≥ logm for all m ≥ mκ , in which case for bm := m−1 logm, the
expression (3.10) is further bounded by

2
∞∑

j=1

G
(√

2κ ′(1 + j/m) logm
) ≤ 2m−κ ′

∞∑
j=1

e−κ ′jbm ≤ 2

κ ′bm

m−κ ′

(recall the elementary bound G(x) ≤ e−x2/2 for x ≥ 0). Thus, for any κ ′ > 2, such choices of tm and �m guarantee
that the RHS of (3.3) is also summable over m. Combining Lemma 3.2, Lemma 3.3 and the Borel–Cantelli lemma we
deduce that almost surely, the events

Am :=
{

sup
s∈[0,tm]

{
Xk(s)

}
< �m ≤ inf

s∈[0,tm],i>m

{
Yi(s)

}}
,

occur for all m large enough. Note that Am implies that throughout [0, tm] the k left-most particles of the AT-
LAS∞ process are from among the initially left-most m particles. From this it follows that under Amn the spacing
(Z1(sn), . . . ,Zk−1(sn)) for the ATLASmn coincide with those for the ATLAS∞, when using the same initial configura-
tion z and driving Brownian motions {Wi(s)}. Having proved already the convergence in distribution when n → ∞,
of the first k −1 spacing for ATLASmn at time sn and that the events Am occur for all m large enough, we conclude that
the FDD of spacing for ATLAS∞ converge to those of μ

(∞,2)
� , along any (non-random) sequence sn ↑ ∞, as claimed.

�
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