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CHANGE-POINT DETECTION FOR LÉVY PROCESSES

BY JOSÉ E. FIGUEROA-LÓPEZ AND SVEINN ÓLAFSSON

Washington University in St. Louis and University of California, Santa Barbara

Since the work of Page in the 1950s, the problem of detecting an abrupt
change in the distribution of stochastic processes has received a great deal
of attention. In particular, a deep connection has been established between
Lorden’s minimax approach to change-point detection and the widely used
CUSUM procedure, first for discrete-time processes, and subsequently for
some of their continuous-time counterparts. However, results for processes
with jumps are still scarce, while the practical importance of such processes
has escalated since the turn of the century. In this work, we consider the prob-
lem of detecting a change in the distribution of continuous-time processes
with independent and stationary increments, that is, Lévy processes, and our
main result shows that CUSUM is indeed optimal in Lorden’s sense. This
is the most natural continuous-time analogue of the seminal work of Mous-
takides [Ann. Statist. 14 (1986) 1379–1387] for sequentially observed ran-
dom variables that are assumed to be i.i.d. before and after the change-point.
From a practical perspective, the approach we adopt is appealing as it con-
sists in approximating the continuous-time problem by a suitable sequence
of change-point problems with equispaced sampling points, and for which a
CUSUM procedure is shown to be optimal.

1. Introduction. Quickest detection is the problem of detecting, with as little
delay as possible, a change in the probability distribution of a sequence of ran-
dom measurements, and it has a wide range of applications in various branches
of science and engineering, such as signal processing, supply chain management,
cybersecurity and finance (see [20] and references therein). The main result of this
paper is an extension of a well-known discrete-time quickest detection result of
Moustakides [13], to an important class of continuous-time stochastic processes
with jumps: Lévy processes.

In the discrete-time setting, the change-point problem involves a sequence
(Xn)n≥1 of random observations whose statistical properties change at some
unknown point in time τ . In the simplest case, the pre-change observations
X1,X2, . . . ,Xτ−1 are assumed to be independently drawn from one distribution,
while the post-change observations Xτ ,Xτ+1, . . . are independently drawn from a
different distribution. The objective is then to detect the change-point τ as soon as
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possible, and the set of feasible detection strategies corresponds to the set of (ex-
tended real-valued) stopping times with respect to the observed sequence, with the
understanding that a stopping time T decides that the change-point τ has occurred
at time k when T = k. Naturally, the frequency of false alarms needs to be taken
into account, so the design of detection procedures typically involves optimizing
a trade-off between two types of performance indices, one quantifying the delay
between the time a change occurs and the time it is detected, that is, the random
variable (T − τ + 1)+, and the other being a measure of the frequency of false
alarms, that is, events of the type {T < τ }.

There are two main formulations of this optimization problem. The first of these
is a Bayesian formulation in which the change-point is endowed with a prior distri-
bution, usually a geometric distribution in discrete-time models or an exponential
distribution in continuous-time models. This framework was first proposed with a
linear delay penalty by Kolmogorov and Shiryayev [1], where the expected delay
E(T − τ + 1)+ was to be minimized subject to an upper bound on the probability
of a false alarm, P(T < τ). In applications there is typically limited information
about the distribution of the change-point, and the second formulation is a more
conservative minimax approach, where the change-point is assumed to be deter-
ministic but unknown. In this setting, first proposed in the linear delay penalty
case by Lorden [12], the delay penalty is a worst-worst case measure of expected
delay, taken over all possible realizations of the observations leading up to the
change-point, and over all possible values of the change-point [see equation (3.1)
for details], and false alarms are constrained by a lower bound on the mean time
between such events.

In this work, we are concerned with the latter formulation, which whenever it
can be optimized, tends to give rise to the CUSUM (cumulative sum) stopping
rule, first proposed by Page [15] as a continuous inspection scheme in the 1950s.
CUSUM is one of the most widely used detection schemes in practice, and is based
on the first time the accumulated likelihood (or log-likelihood) breaches a certain
barrier [see equations (3.3)–(3.4)]. For a sequence of independent observations as
described above, the asymptotic optimality of CUSUM, as the mean time between
false alarms tends to infinity, was shown by Lorden [12] in 1971, and 15 years later,
Moustakides [13] proved its optimality for any finite bound on the false alarm
rate. Similar procedures were subsequently applied in [19] with Lorden’s linear
criterion replaced by exponentially penalized detection delays.

For continuous-time processes, the optimality of the CUSUM procedure for
detecting a change in the drift of a Brownian motion was shown independently by
several authors (see [4, 14] and [22]). More generally, its optimality for detecting
a change in the drift of Itô processes was shown in [14], and more recently in [6],
it was finally established for arbitrary processes with continuous paths. In both
cases, the optimality was established under a convenient modification of Lorden’s
criterion, based on the Kullback–Leibler divergence that coincides with Lorden’s
criterion when the quadratic variation of the process is proportional to time.
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For continuous-time processes with jumps, the current body of work is much
more limited. In fact, to our knowledge the only available optimality result is for
a proportional change in the intensity of doubly stochastic Poisson processes [7],
with Lorden’s expected delay criterion replaced by the expected number of jumps
until detection, motivated by applications in actuarial science. This result includes
the important case of a change in the jump intensity of a homogeneous Poisson
process, for which the delay measure proposed in [7] coincides with Lorden’s
criterion. We also mention a recent nonparametric result for jump processes [5],
based on the empirical tail integral of the jump-measure, and a separate stream of
literature concerning change-point detection for Poisson processes in the Bayesian
setting described above (see [3, 16, 18] and references therein).

The proofs of the aforementioned results do not appear to extend in an obvi-
ous way to more general jump processes. For instance, a fundamental step in the
methodology of [14] for continuous processes, as well as in [7] for doubly stochas-
tic Poisson processes, is to use stochastic calculus to characterize the CUSUM
performance functions [i.e., the average run length as described in Remark 3.5(i)
below] in terms of the solutions of certain differential equations, or delayed differ-
ential equations (DDE). In particular, the proof in [7] uses scale functions from the
theory of Lévy processes to deal with the aforementioned DDEs, and resolves a
long-standing discontinuity problem in the methodology of Moustakides (cf. [20],
Section 6.4.4) using the concept of a discontinuous local time, both of which may
prove difficult to extend to more general jump processes (see [7] for a further dis-
cussion, and [2] for another application of scale function in sequential testing).

In this work, we show that CUSUM is indeed optimal for detecting a change in
the statistical properties of processes with independent and stationary increments,
that is, Lévy processes. This result is in some sense the most natural continuous-
time counterpart of the discrete-time problem considered by Moustakides in [13].
In addition to being of theoretical interest, it also has practical implications, as
Lévy processes form a tractable and flexible family of stochastic models with
jumps, that is well suited to model random phenomena that exhibit erratic and
discontinuous behavior. Indeed, since the turn of the century, Lévy processes have
found numerous applications in areas as diverse as finance and insurance, physics
and biology.

Our approach to the problem has two main steps. First, we consider a
continuous-time problem where the change-point is assumed to take values in
a discrete set, and for which the methodology of Moustakides [13] can be adapted.
We show that a discretized version of the CUSUM procedure is optimal in this
case, which is of practical interest in its own right, for instance in financial markets
where the change-point may be assumed to occur at the beginning of a new busi-
ness day. The second step consists in increasing the sampling frequency, and using
a limiting procedure to establish the optimality of CUSUM for the continuous-
time detection problem with no restriction on the value of the change-point. This
latter part of the proof is novel and relatively general; it relies on little more than
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standard pathwise properties of Lévy processes, and unlike the approach in [7],
does not require separate analysis depending on whether there is a rise or a de-
cline in the jump intensity, in addition to including changes in more general Lévy
processes. The trade-off is that one does not obtain as a byproduct semiexplicit
expressions for the CUSUM performance functions that are at the center of the
methodology developed in [7, 14] and described above. On the other hand, we
believe that our approach can be extended in various important ways, such as to
incorporate exponential delay penalties (cf. [19]), and to derive optimal stopping
times for more general point processes, such as Hawkes’ processes. This is left for
further research.

The remainder of this paper has two main sections. Section 2 introduces the
probabilistic framework and the notation needed to study change-point detec-
tion for Lévy processes. Section 3 then reviews Lorden’s change-point problem
for discrete-time processes, as introduced in [12], before defining the analogous
continuous-time problem and presenting our optimal change-detection results for
Lévy processes. Proofs of ancillary results are deferred to the Appendix.

2. Probabilistic framework. Let X0 := (X0
t )t≥0 and X1 := (X1

t )t≥0 be
Lévy processes on R, defined on the same complete filtered probability space
(�̃, F̃, (F̃t )t≥0, P̃), with generating triplets given by (σ (0), b(0), ν(0)) and (σ (1),

b(1), ν(1)), relative to the truncation function 1{|x|≤1} (see [21], Section 8). In other
words, X0 and X1 have independent and stationary increments, and trajectories
that are almost surely càdlàg (right-continuous with left limits). It is assumed that
(σ (0), b(0), ν(0)) �= (σ (1), b(1), ν(1)), and that we continuously observe the stochas-
tic process X(τ) := (X

(τ)
t )t≥0, defined by

X
(τ)
t =

{
X0

t , t < τ,

X1
t − X1

τ + X0
τ−, t ≥ τ,

where τ ∈ R̄
+
0 := [0,∞) ∪ {∞}, referred to as the change-point of the process, is

assumed to be unknown and deterministic. It follows that dX
(τ)
t = dX0

t 1{t<τ } +
dX1

t 1{t≥τ }, so the pre-change and post-change distributions of the process are de-
termined by X0 and X1. We also set X(∞) := X0 and X(0) := X1, which corre-
spond, respectively, to the cases of a change-point at time zero and no change-
point. Finally, observe that for any τ ∈ (0,∞), X(τ) is almost surely continuous at
τ , and (X

(τ)
t∧τ )t≥0 and (X

(τ)
t+τ −X

(τ)
τ )t≥0 are independent (stopped) Lévy processes

with the same generating triplets as X0 and X1, respectively.
Change-point detection revolves around detecting the change-point τ as quickly

and as reliably as possible, using sequential detection schemes, that is to say, a set
of admissible stopping times. In order to formalize a framework for this problem,
let us introduce the space of càdlàg functions ω : [0,∞) → R, denoted by � =
D([0,∞),R), along with the canonical process X := (Xt)t≥0, defined by

Xt(ω) := ω(t), (ω, t) ∈ � × [0,∞),(2.1)
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and let Ft (resp., F ) be the smallest σ -field that makes (Xs)s≤t [resp., (Xs)s≥0]
measurable. As customary, let Ft− := σ(

⋃
s<t Ft ), for t > 0, and F0− ≡ F0, where

F0 is the trivial σ -algebra. Next, for each τ ∈ R̄
+
0 , define the probability measure

Pτ on the space (�,F) as

Pτ (A) := P̃
(
ω̃ ∈ �̃ : X(τ)· (ω̃) ∈ A

)
, A ∈F,(2.2)

and denote by Eτ the expected value w.r.t. to Pτ . Finally, by including in F0 the
null sets of the measure Pτ in F , denoted by Nτ , we make (�,F, (Ft )t≥0,Pτ )

a complete filtered probability. Under assumptions (i)–(iii) below, Nτ is the same
set for each τ ∈ R̄

+
0 .

Note that for the canonical process X, Borel sets B1, . . . ,Bn, and time points
t1, . . . , tn, we have

Pτ (Xt1 ∈ B1, . . . ,Xtn ∈ Bn) = P̃
(
X

(τ)
t1

∈ B1, . . . ,X
(τ)
tn ∈ Bn

)
,

so the distribution of X under Pτ is the same as the distribution of X(τ) under P̃. In
particular, under Pτ with τ ∈ (0,∞), the processes (Xt∧τ )t≥0 and (Xt+τ −Xτ)t≥0

are independent (stopped) Lévy processes with generating triplets (σ (0), b(0), ν(0))

and (σ (1), b(1), ν(1)), respectively. The process X can therefore be referred to as
the observed process, with the data-generating probability measure unknown.

It is also assumed that the probability measures P∞ and P0 induced on the path
space � by the Lévy processes X(∞) and X(0), sometimes termed the in-control
and out-of-control measures, are mutually absolutely continuous. Equivalently, it
is assumed that their generating triplets satisfy the following conditions (see [21],
Theorem 33.1):

(i) The Brownian volatilities are equal: σ (0) = σ (1).
(ii) The Lévy measures ν(0) and ν(1) are equivalent and satisfy∫

R0

(
eϕ(x)/2 − 1

)2
ν(0)(dx) < ∞,(2.3)

where eϕ(x) = dν(1)/dν(0) is the Radon–Nikodým derivative of ν(1) w.r.t. ν(0).
(iii) The drift parameters b(0) and b(1) are such that

b(1) − b(0) −
∫
|x|≤1

x
(
ν(1) − ν(0))(dx) = α

(
σ (0))2

,(2.4)

for some α ∈ R, and α = 0 if σ (0) = 0.

Under these conditions, each member of the family of measures {Pτ , τ ∈ R̄
+
0 } is

absolutely continuous with respect to P∞. It follows that for each τ ≥ 0 the likeli-
hood ratio process

L
(τ)
t := dPτ |Ft

dP∞|Ft

, t ≥ 0,(2.5)
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is well defined, with L
(τ)
t = 1 for t ≤ τ , while for t ≥ τ it can be written in terms

of the likelihood ratios L
(0)
τ and L

(0)
t (see the Appendix for a justification):

L
(τ)
t = dP0|Ft

dP∞|Ft

/ dP0|Fτ

dP∞|Fτ

= L
(0)
t

L
(0)
τ

, t ≥ τ.(2.6)

Moreover, the likelihood ratio process

L
(0)
t = eUt , t ≥ 0,(2.7)

is a P∞-martingale, and the log-likelihood ratio Ut takes the following form (see
[21], Theorem 33.2):

Ut = αXc
t − 1

2
α2(

σ (0))2
t − αb(0)t

+ lim
ε↓0

( ∑
0≤s≤t :|
Xs |>ε

ϕ(
Xs) − t

∫
|x|>ε

(
eϕ(x) − 1

)
ν(0)(dx)

)
,

(2.8)

where (Xc
t )t≥0 is the continuous part of X (i.e., a Brownian motion with drift), and

ϕ and α are as in equations (2.3)–(2.4). We remark that (Ut )t≥0 is a Lévy process
under P∞ and P0, with generating triplets given explicitly in terms of those of
X under P∞ and P0 (see [21], Section 33). In particular, the Lévy measures are
given by ν(0) ◦ ϕ−1 and ν(1) ◦ ϕ−1, respectively. Furthermore, under the measures
Pτ , with τ ∈ (0,∞), the processes (Ut∧τ )t≥0 and (Ut+τ −Uτ )t≥0 are independent
(stopped) Lévy processes, with the same generating triplets as (Ut )t≥0 under P∞
and P0, respectively.

As mentioned above, a natural class of detection strategies corresponds to the set
of stopping times with respect to the filtration generated by the observed process.
Hence, for each γ > 0 we define

Tγ := {
T ∈ T : E∞(T ) ≥ γ

}
,(2.9)

where T is the set of stopping times on � with respect to (Ft )t≥0, taking values
in R̄

+
0 . Also, for 
 > 0, let T (
) and Tγ (
) denote the corresponding subsets

of 
Z̄
+
0 -valued stopping times.1 Since P∞ is a probability measure under which

τ = ∞, that is, under which there is no change-point, the purpose of the constraint
E∞(T ) ≥ γ in (2.9) is to serve as a lower bound on the mean time between false
alarms (i.e., premature detection). Such a condition is needed since, as explained
in the Introduction, change-point detection involves a trade-off between the delay
until detection (i.e., the time while a change goes undetected) and the frequency
of false alarms. This naturally gives rise to an optimization problem, and since
our strategy to solve the continuous-time problem consists in approximating it
by a sequence of discrete-time problems, the following section sets out with a
discussion on Lorden’s change-point problem in discrete time, and then introduces
the corresponding problem for continuous-time stochastic processes.

1Let Z+
0 := {0,1, . . .} and Z̄

+
0 := Z

+
0 ∪ {∞}.



CHANGE-POINT DETECTION FOR LÉVY PROCESSES 723

3. Lorden’s change-point problem. The minimax approach to change-point
detection, wherein the change-point is assumed to be deterministic but unknown,
was originally proposed by Lorden [12] in 1971. In this setting, detection delay
is penalized linearly via its worst-case expected value, and the frequency of false
alarms is constrained by a lower bound on the expected time between such events.
In what follows we make this precise for discrete-time processes, and recall the
seminal result of Moustakides [13], before moving on to the continuous-time case
and presenting our optimal change-detection result for Lévy processes.

3.1. Discrete time. To define Lorden’s change-point problem for discrete-time
stochastic processes, we need the following notation:

(i) On the sample space �̂ := R
N, consider the canonical process X̂k(ω̂) :=

ω̂(k), for ω̂ ∈ �̂ and k ≥ 1, and the natural filtration (F̂k)k≥0 defined by F̂0 :=
{�̂,∅}, F̂k := σ(X̂1, . . . , X̂k), for k ≥ 1, and F̂∞ := σ(X̂k : k ≥ 1).

(ii) For equivalent probability distributions Q0 and Q1 on R, let (P̂k)k≥1 be a
family of probability measures on �̂ such that, under P̂k , (X̂i)i≥1 are independent
with X̂1, . . . , X̂k−1 having distribution Q0 and X̂k, X̂k+1, . . . having distribution
Q1. Let P̂∞ be a probability measure under which (X̂i)i≥1 is i.i.d. with distribution
Q0, and denote by Êk (resp., Ê∞) the expected value w.r.t. P̂k (resp., P̂∞).

(iii) Let T̂ be the set of Z̄+
0 -valued stopping times T̂ on �̂ with respect to the

filtration (F̂k)k≥0, and, for γ > 0, let T̂γ := {T̂ ∈ T̂ : Ê∞(T̂ ) ≥ γ } be the subset of
stopping times satisfying a lower bound on the mean time between false alarms.

In this setting, P̂k is a probability measure under which the change-point τ̂ is equal
to k, that is, under which k is the first instant that the sequence is governed by
the post-change distribution Q1. In particular, P̂1 is a measure under which the
sequence is i.i.d. with distribution Q1 (i.e., τ̂ = 1) and P̂∞ is a measure under
which the sequence is i.i.d. with distribution Q0 (i.e., τ̂ = ∞).

As a set of detection strategies, we consider all stopping times T̂ ∈ T̂ , and the
performance of a given stopping time is evaluated in the sense of Lorden [12], with
a linear penalty on detection delay,2

d̂(T̂ ) := sup
k≥1

ess sup Êk

((
T̂ − (k − 1)

)+|F̂k−1
)
.(3.1)

That is, detection delay is penalized via its worst-case expected value under each of
the measures P̂k , where the worst case is taken over all realizations of the process
up to (and including) time k − 1. The desire to make d̂(T̂ ) small must be balanced

2The essential supremum of a random variable X, defined on a generic probability space (�,F ,P),
is defined as ess supX := ess supω∈�X(ω) = inf{u ∈R : P(X ≥ u) = 0}, with the convention that
inf∅ = ∞.
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with a constraint on the rate of false alarms, so Lorden’s change-point detection
problem is defined as the following optimization problem:

�̂d
γ (Q0,Q1) := inf

T̂ ∈T̂γ

d̂(T̂ ),(3.2)

where γ > 0, and the infimum is taken over all stopping times T̂ that satisfy the
constraint Ê∞(T̂ ) ≥ γ on the mean time between false alarms.

The solution to this optimization problem is the widely used CUSUM proce-
dure, as stated in the following theorem, originally due to Moustakides [13]. His
methodology is based on reframing the problem so that it can be solved using the
techniques of Markovian optimal stopping theory. The key step is to establish a
convenient lower bound on the detection delay of a generic stopping time, and
then proving that the lower bound is attained by CUSUM stopping times.

THEOREM 3.1 (Moustakides (1986) [13]). Let h ≥ 0 and define the CUSUM
stopping time by

T̂ c
h := inf{k ≥ 0 : Ŝk ≥ h},(3.3)

where Ŝ0 = 0 and

Ŝk := max
1≤j≤k

k∏
i=j

L̂(X̂i) = max(Ŝk−1,1)L̂(X̂k), k ≥ 1,(3.4)

where L̂ := dQ1/dQ0 is the Radon–Nikodým derivative of Q1 with respect to Q0.
Then T̂ c

h solves the optimization problem (3.1)–(3.2), with γ = Ê∞(T̂ c
h ).

REMARK 3.2. (i) Note that h > 0 implies γ = Ê∞(T̂ c
h ) ≥ 1, since Ŝ0 = 0, so

at least one sample is needed for the barrier h to be breached. Hence, the theorem
can equivalently be formulated for a fixed rate of false alarms γ ≥ 1, assuming
the existence of a barrier h > 0 such that Ê∞(T̂ c

h ) = γ . For 0 < γ < 1, the op-
timal rule is to stop at k = 0 w.p. 1 − γ , or stop at k = 1 w.p. γ . This stopping
time outperforms any CUSUM rule, even after randomizing with k = 0. That is, if
T̂

c,p
h = T̂ c

h w.p. p, and T̂
c,p
h = 0 w.p. 1 − p, for some h > 0 and 0 < p < 1 such

that E∞(T̂
c,p
h ) = γ , then d̂(T̂

c,p
h ) = d̂(T̂ c

h ) ≥ 1 > γ . To be precise, these stopping
times based on a randomization do not belong to the set of admissible stopping
times T̂γ , but that can simply be resolved by extending the probability space (see
[9], Chapter 5) to include a random variable X̂0 ∈ F̂0 that is uniformly distributed
on [0,1], and that is independent of (X̂k)k≥1 under each of the measures P̂k .

(ii) The optimality of CUSUM hinges on the linear delay penalty in (3.1). This
type of penalty is suitable for many applications, such as the monitoring of manu-
facturing processes, where the cost of discarded items grows linearly. However, in
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other applications, it may be of interest to use a nonlinear cost function, such as in
finance where the cost of an undetected change may increase exponentially. In this
case, the CUSUM test can be arbitrarily unfavorable relative to the optimal test, if
the rate at which delay penalty accumulates is too high relative to the rate at which
information to discriminate between the pre-change and post-change distributions
accumulates. However, in [19] it is shown that a simple and intuitive adaptation of
the CUSUM procedure is optimal when (3.1) is replaced by an exponential cost of
delay function.

An important implication of Theorem 3.1 is that CUSUM is optimal in Lorden’s
sense when sequentially observing evenly spaced increments of a continuous-time
stochastic process like X, defined in (2.1), which under each of the measures Pτ ,
defined in (2.2), has independent and stationary increments before and after the
change-point τ . To formalize this idea, we need to add to the notation introduced
in Section 2:

(i) For 
 > 0, denote by Q
(
)
0 and Q

(
)
1 the distributions of X
 under P∞

and P0, respectively.
(ii) Define the filtration (F̆k
)k≥0 generated by the 
-increments of the pro-

cess X: F̆0 := {�,∅}, F̆k
 := σ(
iX : 1 ≤ i ≤ k) for k ≥ 1 and F̆∞ := σ(
kX :
k ≥ 1), where 
iX := Xi
 − X(i−1)
, for 1 ≤ i ≤ k.

(iii) Let T̆ (
) be the set of 
Z̄
+
0 -valued stopping times T̆ on � with respect

to (F̆k
)k≥0, and as before, let T̆γ (
) be the subset of those stopping times that
satisfy the false alarm constraint E∞(T̆ ) ≥ γ .

Note that under the measure Pk
, with k ≥ 0, the sequence of increments
(
iX)i≥1 consists of independent random variables whose marginal distribution
changes from Q

(
)
0 to Q

(
)
1 after the kth increment. That is, under Pk
, the ran-

dom variables 
1X, . . . ,
kX have distribution Q
(
)
0 , while the random variables


k+1X,
k+2X, . . . have distribution Q
(
)
1 . Similarly, under P∞ the sequence

(
iX)i≥1 is i.i.d. with distribution Q
(
)
0 .

It then follows from Theorem 3.1 that the CUSUM stopping time

T̆ c
h

(
Q

(
)
0 ,Q

(
)
1

) := inf{k
 ≥ 0 : S̆k
 ≥ h} = 
 inf{k ≥ 0 : S̆k
 ≥ h},
where h ≥ 0, S̆0 = 0, and

S̆k
 := max
1≤j≤k

k∏
i=j

dQ
(
)
1

dQ
(
)
0

(
iX) = max(S̆(k−1)
,1)
dQ

(
)
1

dQ
(
)
0

(
kX), k ≥ 1,

solves the Lorden-type optimization problem defined by

�̆d
γ

(
Q

(
)
0 ,Q

(
)
1

) := inf
T̆ ∈T̆γ (
)

d̆(T̆ ,
),(3.5)
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where

d̆(T̆ ,
) := sup
k≥0

ess supEk


(
(T̆ − k
)+|F̆k


)
,(3.6)

and γ = E∞(T̆ c
h (Q

(
)
0 ,Q

(
)
1 )). In the following section (see Proposition 3.6

therein), we extend this result to a setting where rather than observing the dis-
crete increments (
Xi)i≥1, one observes the entire trajectory of the process X,
but the change-point is still assumed to take values in the discrete set 
Z̄

+
0 .

3.2. Continuous time. Now we return to the continuous-time framework, as
introduced in Section 2. Recall that under the probability measure Pτ , the distri-
bution of the observed process X, defined in (2.1), undergoes an abrupt shift at
the change-point τ , and τ ∈ R̄

+
0 is assumed to be deterministic but unknown. The

continuous-time analogue of Lorden’s change-point detection problem (3.2) can
then be defined as the optimization problem

�c
γ := inf

T ∈Tγ

dc(T ),(3.7)

where the infimum is taken over all stopping times T with respect to the filtration
generated by the observed process, that satisfy a lower bound on the mean time
between false alarms, given by E∞(T ) ≥ γ , and

dc(T ) := sup
τ≥0

ess supEτ

(
(T − τ)+|Fτ

)
,(3.8)

so detection delay is penalized linearly via its worst-case expected value under
each of the measures Pτ .

The following theorem is our main result and it shows that the continuous-
time Lorden problem (3.7)–(3.8) is solved by the continuous-time analogue of the
CUSUM stopping time. The remarks that follow then discuss some extensions of
the theorem, and provide examples for specific types of Lévy processes.

THEOREM 3.3. Let h ≥ 1 and define the CUSUM stopping time by

T c
h := inf{t ≥ 0 : St ≥ h},(3.9)

where the CUSUM process (St )t≥0 is defined by

St := sup
0≤τ≤t

L
(τ)
t , t ≥ 0,(3.10)

where L
(τ)
t is the likelihood ratio defined in (2.5). Then T c

h solves Lorden’s opti-
mization problem (3.7)–(3.8) with γ = E∞(T c

h ).
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REMARK 3.4. (i) This theorem encompasses previously established results
on a change in the drift of a Brownian motion (see, e.g., [14]), and a change in the
jump-intensity of a homogeneous Poisson process (cf. [7]). Moreover, in a unified
framework it also includes changes in the statistical properties of more general
Lévy processes, such as compound Poisson processes, jump-diffusions and Lévy
processes with infinite jump activity.

(ii) In Section 2, we assumed the processes X0 and X1 to be càdlàg, but the the-
orem extends to any processes with independent and stationary increments that are
continuous in probability, since such processes have unique càdlàg modifications
that are identical in distribution to the original processes (cf. [21], Section 11).

(iii) The extension to multidimensional Lévy processes is also straightforward.
The proof goes through without any significant changes if X0 and X1 are Lévy
processes on R

d for some d > 1, with generating triplets (A(0), b(0), ν(0)) and
(A(1), b(1), ν(1)), where the Brownian covariance matrices satisfy A(0) = A(1), the
drift parameters are such that b(1) − b(0) − ∫

|x|≤1 x(ν(1) − ν(0))(dx) = A(0)α for

some α ∈ R
d , with α = 0 if A(0) = 0, and the Lévy measures ν(0) and ν(1) are

equivalent and satisfy the integrability condition (2.3).
(iv) Our strategy of proof is based on approximating the continuous-time prob-

lem by discrete-time problems, and

d̃c(T ) := sup
τ≥0

ess supEτ

(
(T − τ)+|Fτ−

)
, T ∈ T ,

can be viewed as a natural continuous-time limit of Lorden’s criterion (3.1), where
F̂k−1 is the information set prior to the change-point. However, it turns out that
d̃c(T ) coincides with Lorden’s measure dc(T ), for any T ∈ T , due to the quasi-
left-continuity of the filtration (Ft )t≥0.

REMARK 3.5. (i) The proof of Theorem 3.3 [see equation (3.24) below]
shows that the CUSUM stopping time is an equalizer rule in the sense that its
performance does not depend on the value of the change-point τ :

dc(T c
h

) := sup
τ≥0

ess supEτ

(
(T − τ)+|Fτ

) = E0
(
T c

h

)
.

The quantities E0(T
c
h ) and E∞(T c

h ) are generally referred to as the average run
lengths (ARL) under the out-of-control and in-control regimes P0 and P∞, respec-
tively, and are standard measures of the performance of the CUSUM procedure.

(ii) The CUSUM process (3.10) is also known as the maximum likelihood ra-
tio process, and by using (2.6) it is easy to see that τ̂ := sup{t ≤ T c

h : St = 1} is
the maximum likelihood estimate for the change-point τ , based on the observed
process up to time T c

h . The CUSUM procedure thus combines detection and esti-
mation, which is one reason for its sustained popularity in practical applications. It
can also be viewed as a sequential procedure for testing the in-control null hypoth-
esis H0 against the out-of-control alternative H1, with a change announced as soon
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as the maximum likelihood ratio test statistic (3.10) breaches a prescribed barrier.
This barrier reflects the trade-off between a large ARL under H0 and a small ARL
under H1, which are analogous to Type I and Type II error probabilities in conven-
tional hypothesis testing.

(iii) Another useful representation of the CUSUM stopping time is

T c
h = inf

{
t ≥ 0 : log(St ) ≥ log(h)

} = inf{t ≥ 0 : Yt ≥ h̄},(3.11)

where h̄ := log(h) ≥ 0 for h ≥ 1, and, from (2.6)–(2.7), it follows that the process
(Yt )t≥0 has the form

Yt := sup
s≤t

(Ut − Us) = Ut − inf
0≤s≤t

Us,(3.12)

where (Ut )t≥0 is the log-likelihood process defined in (2.8). This shows that the
CUSUM stopping time is the first hitting time to [h̄,∞) of the process (Ut )t≥0
reflected at its running minimum. This is also referred to as the draw-up process
of (Ut )t≥0, and it has, along with the corresponding draw-down process, received
considerable attention in the financial risk management literature (see [11] and
references therein).

(iv) The expression (2.8) for Ut can be written more concisely for specific Lévy
processes:

(a) Let X be a standard Brownian motion with a change in drift from 0 to a
nonzero μ ∈ R. Then

Ut = μXt − 1

2
μ2t, t ≥ 0,(3.13)

so the process (Ut )t≥0 is a Brownian motion with drift shifting from −μ2/2 < 0
to μ2/2 > 0 at the change-point τ , which in turn drives the process (Yt )t≥0 to the
barrier h̄.

(b) Let X be a compound Poisson process with a linear drift b ∈ R and a change
in Lévy measures from ν(0) to ν(1). Then

Ut = ∑
0≤s≤t

ϕ(
Xs) − (
λ(1) − λ(0))t, t ≥ 0,(3.14)

where λ(i) = ν(i)(R), i = 0,1, are the pre-change and post-change jump intensities
of X, and ϕ = log(dν(1)/dν(0)). Furthermore, if dν(1)/dν(0) ≡ λ(1)/λ(0), that is,
only the overall jump intensity changes, then

Ut = log
(

λ(1)

λ(0)

)
Nt − (

λ(1) − λ(0))t, t ≥ 0,

where (Nt)t≥0 is a counting process with jump-intensity shifting from λ(0) to λ(1)

at the change-point τ . If λ(1) < λ(0) the process (Yt )t≥0 drifts continuously through
the barrier h̄, but if λ(1) > λ(0) it crosses the barrier by jumping and may overshoot
it.
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(c) Let X be a jump-diffusion process, X = Xc + Xj where Xc is a standard
Brownian motion with a drift shifting from 0 to μ �= 0, and Xj a compound Pois-
son process with a Lévy measure changing from ν(0) to ν(1). In that case,

Ut = μXc
t − 1

2
μ2t + ∑

0≤s≤t

ϕ
(

Xj

s

) − (
λ(1) − λ(0))t, t ≥ 0,

which is simply the sum of the log-likelihood ratios in (3.13) and (3.14). In other
words, information to distinguish between the pre-change and post-change distri-
butions accumulates independently from the continuous component and the jump
component, which is simply a consequence of their independence. This extends to
Lévy processes with infinite jump activity for which the three components of the
Lévy–Itô decomposition—the continuous component, the “small-jump” compo-
nent and the “large-jump” component—are all independent (see, e.g., [21], Chap-
ter 4).

(d) Let X be a pure-jump Lévy process with infinite jump activity. Then

Ut =
∫ t

0

∫
R\{0}

ϕ(x)N̄(dx, ds) + βt, t ≥ 0,

where N̄ is a compensated Poisson random measure with intensity measure
ν(0)(dx) dt under P∞ and ν(1)(dx) dt under P0, and condition (2.3) implies that
the stochastic integral (Ut − βt)t≥0 is a square-integrable zero-mean martingale.
The drift β under P∞ is

β(0) = −
∫
R\{0}

(
eϕ(x) − 1 − ϕ(x)

)
ν(0)(dx) < 0,

while under P0 it is

β(1) = β(0) +
∫
R\{0}

ϕ(x)
(
ν(1) − ν(0))(dx)

=
∫
R\{0}

(
eϕ(x)(ϕ(x) − 1

) + 1
)
ν(0)(dx) > 0,

which in turn pushes (Yt )t≥0 toward the barrier h̄ when the change-point τ is
passed. Note that condition (2.3) ensures that the integrals appearing in the drift
coefficients are well defined.

As previously mentioned, the proof of Theorem 3.3 is based on considering
a sequence of discrete-time problems. More precisely, the first step is to show
that a “discretized” version of the CUSUM stopping time T c

h solves a change-
point problem where the change-point is restricted to take values in the discrete set

Z̄

+
0 , for some 
 > 0. This gives rise to an optimization problem similar to the

one in (3.5)–(3.6), but rather than conditioning on F̆k
 = σ(
iX : 1 ≤ i ≤ k), the
σ -algebra generated by the 
-increments of the observed process, we condition on
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Fk
 = σ(Xt , t ≤ k
), the σ -algebra generated by the paths of the process itself.
The following proposition formalizes this idea, which is a nontrivial and somewhat
unexpected extension of the result of Moustakides [13] for sequentially observed
random variables.

PROPOSITION 3.6. Let h ≥ 0 and

T c
h (
) := 
 inf

{
k ≥ 0 : Sk(
) ≥ h

}
,(3.15)

where S0(
) = 0, and

Sk(
) := sup
0≤m<k

L
(m
)
k
 , k ≥ 1.(3.16)

Then T c
h (
) solves the optimization problem

�c
γ (
) := inf

T ∈Tγ (
)
d(T ,
),(3.17)

where

d(T ,
) := sup
k≥0

ess supEk


(
(T − k
)+|Fk


)
,(3.18)

and γ = E∞(T c
h (
)).

REMARK 3.7. (i) This proposition serves as a stepping stone in the proof of
Theorem 3.3, but it is also of importance in its own right. It states that the CUSUM
stopping time (3.15) is optimal when continuously monitoring a process whose
distribution undergoes a change at an unknown time τ that is assumed to belong
to a discrete set of times, and the change is also declared at one of those times. For
example, in financial applications the change may reasonably be assumed to take
place at the beginning of a new business day, and in quality control a similar thing
can be said about the change from the in-control state to the out-of-control state.

(ii) Remark 3.2(i) following Theorem 3.1 also applies here. That is, γ =
E∞(T c

h (
)) ≥ 
 for any h > 0, so the theorem can equivalently be stated for a
fixed γ ≥ 
, assuming the existence of a barrier h such that E∞(T c

h (
)) = γ . On
the other hand, for 0 < γ < 
 the optimal stopping rule is to randomize between
k = 0 and k = 
, with probabilities 1 − γ and γ , respectively.

(iii) As in the discrete-time case [see Eq. (3.4)], it is easy to check that (2.6)
implies the following recursive formula for the CUSUM process (3.16):

Sk(
) = max
(
Sk−1(
),1

)
Lk(
), k ≥ 1,(3.19)

where for brevity we have defined Lk(
) := L
((k−1)
)
k
 .

The proof of the above proposition follows similar steps as the proof of Theo-
rem 3.1, using the methodology developed by Moustakides in [13], and is deferred
to the Appendix.
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Before proving Theorem 3.3, we introduce two lemmas. The first one says that
the CUSUM stopping time T c

h coincides with the first hitting time of the CUSUM
process to the open set (h,∞), and that T c

h changes continuously as the barrier h

is increased. The second lemma states that the discretized CUSUM stopping time
T c

h (
) converges to T c
h , as the step size 
 is reduced. Note that since {Pτ , τ ∈

R̄
+
0 } is a family of equivalent probability measures, almost surely in the following

lemmas actually holds with respect to any of those measures. Similarly, since the
Lévy measures ν(0) and ν(1) are assumed to be equivalent, condition (3.20) holds
for both ν(0) and ν(1) or neither of them.

LEMMA 3.8. Let h > 1 and assume that under the measures P0 and P∞, the
Lévy measure of the log-likelihood ratio process U := (Ut )t≥0, defined in (2.8),
does not have an atom at h̄ = log(h). That is,(

ν(i) ◦ ϕ−1)
(h̄) = ν(i)({x ∈ R : ϕ(x) = h̄

}) = 0, i = 0,1,(3.20)

where ϕ = log(dν(1)/dν(0)). Then the following assertions hold true almost surely,
under the measures P0 and P∞, for the CUSUM stopping time T c

h defined in (3.9):

(i) T c
h = τh := inf{t ≥ 0 : St > h}.

(ii) T c
h−ε ≤ T c

h , for any ε > 0.
(iii) T c

h−ε → T c
h , as ε ↓ 0.

PROOF. To prove (i), recall the representation (3.11)–(3.12) for T c
h in terms

of the drawup process Y := (Yt )t≥0, that is, the process U := (Ut )t≥0 reflected at
its running minimum, and observe that the paths of U can be decomposed into
independent excursions from its running minimum, potentially interlaced by time
intervals where the process can be described as drifting at its minimum.3 Then note
that YT c

h
≥ h̄, and that if U is not a compound Poisson process, then the process Y

can cross the barrier h̄ in two different ways, which we now proceed to describe.
First, Y is said to creep through the barrier if Yτc

h
= h̄. If U is an infinite variation

Lévy process, then T c
h = τh follows from the strong Markov property and the point

0 being regular for (0,∞), which makes T c
h < τh impossible. If U is a bounded

variation Lévy process, the same argument can be used because the point 0 is
regular for (0,∞) when the drift d(i) = b(i) − ∫

|x|≤1 xν(i)(dx) of the process is
positive, which is also a necessary condition for a bounded variation process to
creep through a barrier with a positive probability (see Theorems 6.5 and 7.11 in
[10]).

3Such intervals, contributing to the Lebesgue measure of the time the process spends at its mini-
mum, are not restricted to processes with a compound Poisson jump component. For instance, any
spectrally positive and bounded variation Lévy process X, with generating triplet (0, b, ν), can drift
at its minimum if d = b − ∫

|x|≤1 xν(dx) < 0, because in that case Xt/t → d a.s. as t → 0 (cf. [21],
page 323).
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Second, Y can cross the barrier by jumping. However, since Y = 0 during the
intermediate times when U is at its minimum, condition (3.20) ensures that Y

cannot jump straight to the barrier h̄, so in that case T c
h = τh. Similarly, during

an excursion of U from its running minimum, Y breaches the barrier h̄ by over-
shooting it, so T c

h = τh. This is because for a Lévy process X that is not a com-
pound Poisson process, {Xτ̂x

= x,Xτ̂x− < x} is a null event, where for x > 0,
τ̂x = inf{t ≥ 0 : Xt ≥ x}. In other words, X cannot strike a given barrier from a
position strictly below it. This follows from [10], Lemma 5.8 when X is a sub-
ordinator, while for a general Lévy process X it holds because the range of the
running maximum process, X̄t := sup0≤s≤t Xt , coincides almost surely with the
range of the ascending ladder heights process of X, which is a subordinator and
cannot jump to the level x from below it (cf. [10], page 219).

Finally, we consider the case when U is a compound Poisson process, which
happens when X is a compound Poisson process with the same pre- and post-
change jump intensity, but a different jump size distribution (see Eq. 3.14). In this
case condition (3.20) ensures that Y cannot hit the barrier h̄ starting from zero,
but Y can potentially do so in a finite number of jumps. Then h̄ is said to be 
-
accessible (cf. [17]), but the number of such points is finite or countable, so we
can find a sequence (εn)n≥1 such that εn ↓ 0 and h̄ − εn is not 
-accessible. For
such points it is clear that T c

h−εn
= τh−εn , and by part (iii) of this lemma we have

T c
h−εn

→ T c
h as n → ∞, and it follows that T c

h = τh.
To show (ii), note that [h,∞) ⊂ [h − ε,∞) for any ε > 0, so T c

h−ε is an in-
creasing sequence of stopping times, and T c

h−ε ≤ T c
h , for all ε > 0. Thus, the limit

T = limε→0 T c
h−ε is a stopping time and T ≤ T c

h . Due to quasi-left-continuity
of Lévy processes, we have YT c

h−ε
→ YT almost surely, as ε → 0, and since

YT c
h−ε

∈ [h − ε,∞) it follows that YT ∈ [h,∞) and, therefore, T c
h ≤ T . We con-

clude that T = T c
h , so T c

h−ε → T c
h , as ε → 0, which proves (iii). Note that condition

(3.20) is not needed for (ii) and (iii) to be satisfied. �

LEMMA 3.9. Let h > 1 and (
n)n≥1 be such that 
nZ
+
0 ⊂ 
n+1Z

+
0 for all

n ≥ 1, and assume that condition (3.20) is satisfied. Then the following assertions
hold true almost surely, under the measures P0 and P∞, for the CUSUM stopping
time T c

h defined in (3.9), and the stopping times (T c
h (
n))n≥1 defined in (3.15):

(i) T c
h ≤ T c

h (
n+1) ≤ T c
h (
n), n ≥ 1.

(ii) T c
h (
n) → T c

h , n → ∞.

PROOF. Assertion (i) is clear from the definitions of T c
h and T c

h (
n). To show
(ii), recall as in the proof of the previous lemma, the representation (3.11)–(3.12)
for T c

h in terms of the draw-up process Y , and write T c
h (
n) in a similar way as

T c
h (
n) = inf

{
k
n ≥ 0 : Sk(
n) ≥ h

} = inf
{
k
n ≥ 0 : Y (
n)

k
n
≥ h̄

}
,
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where h̄ = log(h), and the discretized draw-up process is defined by

Y
(
n)
k
n

:= Uk
n − inf
0≤m<k

Um
n, k ≥ 0.

Since U is a Lévy process, its trajectories are càdlàg, and it follows that the tra-
jectories of Y and Mt := infs≤t Us , are càdlàg as well. The process (Y

(
n)
k
n

)k≥0 can
also be extended to a piecewise constant càdlàg process by defining

Y
(
n)
t := Y

(
n)

k
(n)
t 
n

, t ≥ 0,

where4 k
(n)
t := �t/
n�, and we now show that

∀t ∈ ⋃
n≥1


nZ
+
0 : Y

(
n)
t

a.s.−→ Yt , n → ∞.(3.21)

Indeed, for a fixed t0 ∈ ⋃
n≥1 
nZ

+
0 we have k

(n)
t0


n = t0 for n big enough, so

U
k
(n)
t0


n
= Ut0 . The definition of Y

(
n)
t0

then shows that a sufficient condition for

the convergence Y
(
n)
t0

a.s.−→ Yt0 is given by

M
(
n)
t0

:= inf
0≤m<k

(n)
t0

Um
n

a.s.−→ inf
0≤s≤t0

Us = Mt0, n → ∞.

The definition of Mt0 and the right continuity of the process U show that for any
ε > 0, there exist sε ∈ [0, t0] and Nε ∈ N such that sε ∈ 
nZ

+
0 for all n ≥ Nε ,

and such that Usε < Mt0 + ε. It follows that M
(
n)
t0

< Mt0 + ε, for all n ≥ Nε ,

which implies that M
(
n)
t0

a.s.−→ Mt0 , as n → ∞ and, therefore, Y
(
n)
t0

a.s.−→ Yt0 . The
convergence (3.21) then follows from the fact that a countable union of almost sure
events is also almost sure.

Now we show that T c
h (
n)

a.s.−→ T c
h , as n → ∞, that is, that the hitting time

of (Y
(
n)
t )t≥0 to the set [h̄,∞) converges to the corresponding hitting time of Y .

By Lemma 3.8(i) and the right continuity of Y , for any ε > 0 there exists tε ∈
[T c

h , T c
h + ε) such that tε ∈ 
nZ

+
0 for any n greater than some Ntε ∈ N, and such

that Ytε > h̄. By (3.21), Y
(
n)
tε → Ytε , as n → ∞, so there exists Nε ∈ N such that

Y
(
n)
tε > h̄, for n ≥ Nε . Thus, T c

h (
n) < T c
h + ε + 
n for any N ≥ Nε , which

implies that T c
h (
n) → T c

h , as n → ∞. �

We are now ready to prove Theorem 3.3, and thus show that the CUSUM stop-
ping time T c

h solves the continuous-time version of Lorden’s change-point prob-
lem.

4For x ∈ R, �x� := sup{z ∈ Z : z ≤ x} and �x� := inf{z ∈ Z : z ≥ x}.
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PROOF OF THEOREM 3.3. Let (
n)n≥1 and (T c
h (
n))n≥1 be as in Lemma 3.9,

and assume that condition (3.20) is satisfied. In the Appendix, we show that

d
(
T c

h (
n),
n

)
= sup

k≥1
ess supE(k−1)
n

((
T c

h (
n) − (k − 1)
n

)+|F(k−1)
n

)
= E0

(
T c

h (
n)
)
,

(3.22)

and a similar identity can be established for T c
h . To see that, first note that from

(2.6) it follows that L
(τ)
t = L

(τ)
s · L(s)

t , for any τ ≤ s ≤ t , so

St = max
(
SτL

(τ)
t , sup

τ≤s≤t
L

(s)
t

)
.(3.23)

Since (Ut )t≥0 is adapted to the filtration (Ft )t≥0 generated by X, it is clear from
(2.7) and (2.8) that L

(s)
t = eUt−Us , for s ∈ [τ, t], is measurable with respect to

the filtration generated by (Xs − Xτ)τ≤s≤t , and independent of Fτ . Hence, (3.23)
shows that for fixed (Xs − Xτ)τ≤s≤t , St is a nondecreasing function of Sτ , which
implies that on {T c

h ≥ τ }, T c
h is a nonincreasing function of Sτ ∈ Fτ . Thus, since

Sτ ≥ 1,

dc(T c
h

) = sup
τ>0

ess supEτ

((
T c

h − τ
)+|Fτ

)
= sup

τ>0
ess supEτ

((
T c

h − τ
)+|Sτ = 1

)
(3.24)

= E0
(
T c

h

)
,

where the third equality follows from the homogeneous Markov property of
(St )t≥0. Using (3.22) and (3.24), as well as Lemma 3.9(i), now yields

dc(T c
h

) = E0
(
T c

h

) ≤ lim inf
n

E0
(
T c

h (
n)
) = lim inf

n
d
(
T c

h (
n),
n

)
,(3.25)

and, furthermore, by Lemma 3.9(i) and (ii), and the monotone convergence theo-
rem,

γn := E∞
(
T c

h (
n)
) ↘ E∞

(
T c

h

) = γ, n → ∞.(3.26)

Next, for a fixed T ∈ Tγ , define the stopping times

Tn :=
⌈

T


n

⌉

n +

⌈
γn − γ


n

⌉

n, n ≥ 1,

which belong to Tγn(
n), so by Proposition 3.6,

d
(
T c

h (
n),
n

) ≤ d(Tn,
n), n ≥ 1.(3.27)
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Moreover, using Tn ≤ T + (1 + ηn)
n, where ηn := �(γn − γ )/
n�, we have

d(Tn,
n) = sup
m≥0

ess supEm
n

(
(Tn − m
n)

+|Fm
n

)
≤ sup

m≥0
ess supEm
n

(
(T − m
n)

+|Fm
n

) + (1 + ηn)
n

≤ sup
τ≥0

ess supEτ

(
(T − τ)+|Fτ

) + (1 + ηn)
n

= dc(T ) + (1 + ηn)
n

→ dc(T ), n → ∞,

since ηn
n ≤ γn − γ + 
n → 0, as n → ∞, because of (3.26). This implies that

lim sup
n

d(Tn,
n) ≤ dc(T ),(3.28)

which together with (3.25) and (3.27), shows that

dc(T c
h

) ≤ lim inf
n

d
(
T c

h (
n),
n

)
≤ lim sup

n
d
(
T c

h (
n),
n

)
≤ lim sup

n
d(Tn,
n)

≤ dc(T ).

In other words, for a given T ∈ Tγ we have dc(T c
h ) ≤ dc(T ), which concludes the

proof when condition (3.20) of Lemma 3.9 is satisfied.
If (3.20) is not satisfied, consider a sequence (εn)n≥1 such that εn ↓ 0 as n → ∞,

and such that the Lévy measures ν(i) ◦ ϕ−1 do not have an atom at h̄ − εn,
that is, ν(i)(ϕ−1(h̄ − εn)) = 0, i = 0,1, for all n ≥ 1. This is possible because
Lévy measures are σ -finite and, therefore, have at most countably many atoms.
In that case, we have shown that dc(T c

h−εn
) ≤ dc(T ), for any T ∈ Tγh−εn

, with
γh−εn := E∞(T c

h−εn
) ≤ γ . Since Tγ ⊆ Tγh−εn

, it follows that dc(T c
h−εn

) ≤ dc(T ) is
in particular true for any T ∈ Tγ . To complete the proof, it is therefore sufficient to
show that dc(T c

h−εn
) → dc(T c

h ) as n → ∞, which follows from Lemma 3.8(iii)
and the dominated convergence theorem, because dc(T c

h−εn
) = E0(T

c
h−εn

) and
dc(T c

h ) = E0(T
c
h ), by (3.24). �

APPENDIX: ADDITIONAL PROOFS

PROOF OF (2.6). The definition of L
(τ)
t entails that

Pτ (B) = E∞
(
1BL

(τ)
t

)
, ∀B ∈ Ft ,
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so to prove (2.6) it is sufficient to show that

Pτ (B) = E∞
(

1B

L
(0)
t

L
(0)
τ

)
, ∀B ∈ Ft .(A.1)

We first show this for B ∈ Ft of the form

B = {Xt1 ∈ A1, . . . ,Xtk ∈ Ak, . . . ,Xtn ∈ An},
for some n ≥ 1, 0 ≤ t1 < · · · < tk−1 ≤ τ < tk < · · · < tn ≤ t , and Borel sets
A1, . . . ,An. By invoking the monotone class theorem, (A.1) can then be shown
to hold for any B ∈Ft . The details can be found in [8]. �

PROOF OF PROPOSITION 3.6. We first remark that it is sufficient to consider
stopping times T ∈ Tγ (
) that satisfy the constraint E∞(T ) = γ with equality.
First, if T satisfies E∞(T ) = ∞, then it can be excluded by choosing a sufficiently
large integer n such that γ ≤ E∞(T ∧ n
) < ∞, and d(T ∧ n
,
) ≤ d(T ,
).
Second, if T satisfies γ < E∞(T ) < ∞, then we can consider a stopping time
T (p) such that T (p) = T w.p. p, and T (p) = 0 w.p. 1 − p, where p = γ /E∞(T ).
Then E∞(T (p)) = γ , and d(T (p),
) ≤ d(T ,
), so T (p) outperforms T , while
satisfying the false alarm constraint.

After this simplifying observation, the proof rests on the following two results.
The first one gives a convenient lower bound for the performance of a generic stop-
ping time, which the CUSUM stopping time T c

h (
) satisfies with equality, while
the second one shows that T c

h (
) is the solution to a key optimization problem.
The proofs of these intermediary results follow closely the methodology developed
by Moustakides in [13] and are therefore omitted, but can be found in full detail in
[8] (see Lemma 3.8 and Proposition 3.9 therein).

LEMMA A.1. Let T ∈ T (
) such that 0 < E∞(T ) < ∞. Then

d(T ,
) ≥ d̄(T ,
) := 

E∞(

∑T/
−1
k=0 max(Sk(
),1))

E∞(
∑T/
−1

k=0 (1 − Sk(
))+)
,(A.2)

with equality if T = T c
h (
) for some h > 0.

PROPOSITION A.2. Let 0 < h < ∞, γ = E∞(T c
h (
)), and g : [0,∞) → R

be a nonincreasing and continuous function. Then T c
h satisfies

sup
T

E∞
(T/
−1∑

k=0

g
(
Sk(
)

)) = E∞
(T c

h (
)/
−1∑
k=0

g
(
Sk(
)

))
,(A.3)

where the supremum is taken over all stopping times T ∈ T (
) that satisfy
E∞(T ) = γ .



CHANGE-POINT DETECTION FOR LÉVY PROCESSES 737

With the above results at our disposal, we can easily proof Proposition 3.6. The
case h = 0 is trivial. For h > 0, take g(x) = −max(x,1) and g(x) = (1 − x)+ in
(A.3) to see that T c

h (
) simultaneously minimizes the numerator and maximizes
the denominator of (A.2), over all stopping times T ∈ T (
) with E∞(T ) = γ .
From this, it follows that, for any such stopping time,

d(T ,
) ≥ d̄(T ,
) ≥ d̄
(
T c

h (
),

) = d

(
T c

h (
),

)
,

which shows that T c
h (
) solves the optimization problem (3.17)–(3.18). �

PROOF OF (3.22). From the recursive formula (3.19), it follows that for n ≥ k,
and for fixed (Lm(
))k<m≤n, Sn(
) is an increasing function of max(Sk(
),1).
Therefore, on the event {T c

h (
) ≥ k
}, T c
h (
) is a nonincreasing function of

max(Sk(
),1). Using that, and the homogeneous Markov property of (Sk(
))k≥1,
we obtain for any k ≥ 0:

dk

(
T c

h (
),

) = ess supEk


((
T c

h (
) − k

)+|Fk


)
= ess supEk


((
T c

h (
) − k

)+|Sk(
) ≤ 1

)
= ess supE0

(
T c

h (
)
)

= E0
(
T c

h (
)
)
,

from which it follows that d(T c
h (
),
) = supk≥1 dk(T

c
h (
),
) = E0(T

c
h (
n)).

�
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