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Abstract

We consider the 3D hyperviscous Navier-Stokes equations in vorticity form, where
the dissipative term −∆~ξ of the Navier-Stokes equations is substituted by (−∆)1+c~ξ.
We investigate how big the correction term c has to be in order to prove, by means
of Girsanov transform, that the vorticity equations are equivalent (in law) to easier
reference equations obtained by neglecting the stretching term. This holds as soon as
c > 1

2
, improving previous results obtained with c > 3

2
in a different setting in [5, 14].
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1 Introduction

The stochastic Navier-Stokes equations, governing the motion of a homogeneous and
incompressible viscous fluid, are

∂~v

∂t
− ν∆~v + (~v · ∇)~v +∇p = ~f + ~n

∇ · ~v = 0
(1.1)

where the unknown are the velocity ~v and the pressure p; the data are the viscosity
ν > 0, the deterministic forcing term ~f and the random one ~n.

Working in a bounded three dimensional spatial domain with suitable boundary
conditions, it is known that for initial velocity of finite energy and suitable forcing terms
there exists a weak solution to (1.1) defined for any positive time, but uniqueness is an
open problem. On the other side, more regular initial velocities provide existence and
uniqueness of a solution, which is only local in time. For these results we refer to [20]
for the deterministic equations (the case ~n = ~0) and to [9] for the stochastic ones (the
case ~n 6= ~0).

*Università di Pavia, Italy. E-mail: benedetta.ferrario@unipv.it

http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/16-EJP4607
mailto:benedetta.ferrario@unipv.it


Characterization of the law for 3D stochastic hyperviscous fluids

However, suitable modifications of the first equation in (1.1) provide better results.
Let us consider the hyperviscous model

∂~v

∂t
+ ν(−∆)1+c~v + (~v · ∇)~v +∇p = ~f + ~n

∇ · ~v = 0
(1.2)

We consider c > 0, whereas it reduces to the Navier-Stokes system for c = 0. This
model is widely used in computer simulations (see e.g. [11], [18] and references therein).
It turns out that large enough values of the parameter c provide better mathematical
properties of system (1.2).

As far as the well posedness of (1.2) is concerned, the condition c ≥ 1
4 allows to prove

that there exists a unique global solution for the hyperviscous Navier-Stokes equations
(1.2). This is based on the fact that the operator (−∆)1+c has a more regularizing effect
than the Laplacian itself and c ≥ 1

4 provides a sufficient regularity to prove uniqueness
of the global weak solution. The result has been proved first for integer values of c ≥ 1,
both in the stochastic (see [19]) and deterministic case (see [15]). Then, these results
have been improved allowing c to be non integer (see [6] for the stochastic case and [16]
for the deterministic one).

A further question concerns the characterization of the law of the process solving
(1.2) with a stochastic force. When ~f = ~0 and ~n is a Gaussian random field, white in time
and coloured in space, Gallavotti (see [12], Ch 6.1) suggested to use Girsanov transform
to relate the law of the stochastic Navier-Stokes equations with that of the stochastic
Stokes equations, which are linear equations obtained from the Navier-Stokes ones by
neglecting the non linear term (~v · ∇)~v. The formula given in [12] when c = 0 is formal,
but this idea can be used also for the hyperviscous fluids. Actually, a rigorous result has
been proved in [14], [5]: for c > 3

2 the law of the process ~v solving


∂~v

∂t
+ ν(−∆)1+c~v + (~v · ∇)~v +∇p = ~n

∇ · ~v = 0
(1.3)

is equivalent to the law of the process ~z solving the stochastic hyperviscous Stokes
system 

∂~z

∂t
+ ν(−∆)1+c~z +∇p = ~n

∇ · ~z = 0
(1.4)

This holds in the 2D and in the 3D setting and implies that all what holds a.s. for the
hyperviscous Stokes problem (1.4) holds a.s. for the hyperviscous Navier-Stokes problem
(1.3) as well. In other words: the advection term (~v · ∇)~v takes second place to the
dissipative term (−∆)1+c~v for c large enough. This means that hyperviscosity with c > 3

2

changes drastically the nature of the equations of motion of the fluid. This remark already
appeared in [11], where the authors discuss artifacts arising in numerical simulation
of hyperviscous fluids. The mathematical representation of the law of ~v by means of
Girsanov transform, which reduces the analysis of the law of ~v to the analysis of the law
of the linear problem for ~z, gives evidence in support of the fact that hyperviscous fluid
models with c > 3

2 are far away from the real turbulent fluids.

But, what happens for smaller values of the correction term, i.e. for c ≤ 3
2? To answer

this question, we change the auxiliary process. First of all we write the Navier-Stokes
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Characterization of the law for 3D stochastic hyperviscous fluids

system in vorticity form
∂~ξ

∂t
+ ν(−∆)1+c~ξ + (~v · ∇)~ξ − (~ξ · ∇)~v = ∇× ~n

∇ · ~v = 0
~ξ = ∇× ~v

(1.5)

Notice that the first equation can be rewritten as

∂~ξ

∂t
+ ν(−∆)1+c~ξ + P [(~v · ∇)~ξ]− P [(~ξ · ∇)~v] = ∇× ~n

where P is the projection operator onto the space of divergence free vector fields (see
details in Section 2).

The idea is to simplify the vorticity equation by neglecting only the vorticity stretching
term, getting 

∂~η

∂t
+ ν(−∆)1+c~η + P [(~v · ∇)~η] = ∇× ~n

∇ · ~v = 0

~η = ∇× ~v

(1.6)

This system has the same structure as the 2D vorticity system, but we consider it in the
3D setting. Indeed, in the 2D setting the vorticity is a vector orthogonal to the plane
where the fluid moves and therefore the term (~ξ · ∇)~v vanishes. Therefore, systems (1.5)
and (1.6) are different only in the 3D setting. Let us compare them.

From the mathematical point of view we shall prove that system (1.6) is well posed
for any c ≥ 0, whereas the well posedness of the full system (1.5) has been proved by
assuming c ≥ 1

4 .

On the other hand, the vorticity stretching term (~ξ · ∇)~v is essential in 3D fluids (see
e.g. [10] Ch 9); it is responsible of the peculiar features of 3D turbulence, which is very
different from and more involved than 2D turbulence. Thus one expects the dynamics of

∂~ξ

∂t
− ν∆~ξ + P [(~v · ∇)~ξ − (~ξ · ∇)~v] = ∇× ~n

∇ · ~v = 0
~ξ = ∇× ~v

to be very different from that of
∂~η

∂t
− ν∆~η + P [(~v · ∇)~η] = ∇× ~n

∇ · ~v = 0

~η = ∇× ~v

Now, the question is: what happens if we introduce hyperviscosity (−∆)1+c? Our main
theorem states the equivalence of laws of the solution processes of systems (1.5) and
(1.6) under the assumption c > 1

2 . Again our result gives evidence that the hyperviscous
models with c > 1

2 do not well represent the real 3D turbulence, since the effect of the
vorticity stretching term are not relevant when c > 1

2 .
Finally, we present this paper. In the next section we define the functional spaces and

the noise term. Section 3 presents various technical results. Then we start to analyze the
main equations: the linear problem in Section 4, the auxiliary problem (1.6) in Section 5
and the full vorticity problem (1.5) in Section 6. The main result on the equivalence of
the laws is proved in Section 7.
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2 Mathematical setting

We denote a 3D vector as ~k = (k(1), k(2), k(3)); we define Z3
0 = Z3 \ {~0} and Z3

+ =

{k(1) > 0} ∪ {k(1) = 0, k(2) > 0} ∪ {k(1) = 0, k(2) = 0, k(3) > 0}. Then for any ~k ∈ Z3
0,

there exist two unit vectors ~b~k,1 and ~b~k,2, orthogonal to each other and belonging to the

plane orthogonal to ~k; we choose these vectors in such a way that (~b~k,1,
~b~k,2,

~k

|~k|
) is a

right-handed orthonormal frame and ~b~k,j = −~b−~k,j .
We work on the 3D torus, that is we deal with functions defined on R3 and [−π, π]3-

periodic. We set D = [−π, π]3. As usual, in the periodic case we assume that the mean
value of the vectors we are dealing with is zero. This gives a simplification in the
mathematical treatment, but it does not prevent to consider non zero mean value vectors.
Actually, if we can analyse the problem for zero mean vectors then the problem without
this assumption can be dealt with in a similar way (see [21]).

The velocity vector ~v is divergence free by assumption and the vorticity vector ~ξ is
divergence free by construction. We can write any zero mean, periodic, divergence free
vector ~u in Fourier series as

~u(~x) =
∑
~k∈Z3

0

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x, ~x ∈ R3

where u~k,1, u~k,2 ∈ C, with the condition u~k,j = −u−~k,j in order to have a real vector ~u(~x).

When needed, we use the notation ~v and ~ξ to make precise that we deal with the
velocity or vorticity vector. For instance, we have ~ξ = ∇× ~v, but we can also express the
velocity in terms of the vorticity, solving

−∆~v = ∇× ~ξ
∇ · ~v = 0

~v periodic

(2.1)

More explicitly

~ξ(~x) =
∑
~k∈Z3

0

(ξ~k,1
~b~k,1 + ξ~k,2

~b~k,2)ei
~k·~x

=⇒ ~v(~x) = i
∑
~k∈Z3

0

1

|~k|
(ξ~k,1

~b~k,2 − ξ~k,2~b~k,1)ei
~k·~x (2.2)

We now define the functional spaces. Let L2 denote the subspace of [L2(D)]3 consist-
ing of zero mean, periodic, divergence free vectors (this condition has to be understood
in the distributional sense):

L2 =
{
~u(~x) =

∑
~k∈Z3

0

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x :

∑
~k∈Z3

0

(|u~k,1|
2 + |u~k,2|

2) <∞
}

This is a Hilbert space with scalar product

〈~u,~v〉 = (2π)3
∑
~k∈Z3

0

(u~k,1v~k,1 + u~k,2v~k,2)

The space L2 is a closed subspace of [L2(D)]3; we decide to put the subindex in L2 in
order to distinguish them.
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Moreover, for any integer n we define the projection operator Πn as a linear bounded
operator in L2 such that

Πn

∑
~k∈Z3

0

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x

 =
∑

0<|~k|≤n

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x

and we set Hn = ΠnL2.
For p > 2 we define the Banach spaces

Lp = L2 ∩ [Lp(D)]3

These are Banach spaces with norms inherited from [Lp(D)]3.
We denote by P the projection operator from [Lp(D)]3 onto Lp. We have that P [(~v ·
∇)~ξ − (~ξ · ∇)~v] = 0. Indeed, the vorticity transport term (~v · ∇)~ξ and the vorticity
stretching term (~ξ · ∇)~v are not divergence free vector fields; so P [(~v · ∇)~ξ] 6= (~v · ∇)~ξ

and P [(~ξ · ∇)~v] 6= (~ξ · ∇)~v. However, their difference is divergence free, being given by
the curl form ∇× [(~v · ∇)~v]. Moreover, if ~φ is a divergence free vector field (i.e. P ~φ = ~φ),
then

〈P [(~ξ · ∇)~v], ~φ〉 = 〈(~ξ · ∇)~v, ~φ〉
For any a ∈ R we define the fractional powers of the Laplace operator; formally, if

~u(~x) =
∑
~k∈Z3

0

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x

then
(−∆)a~u(~x) =

∑
~k∈Z3

0

|~k|2a[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x

Thus, for b ∈ R we define the Hilbert spaces

Hb = {~u(~x) =
∑
~k∈Z3

0

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x :

∑
~k∈Z3

0

|~k|2b(|u~k,1|
2 + |u~k,2|

2) <∞}

with scalar product

〈~u,~v〉b = (2π)3
∑
~k∈Z3

0

|~k|2b(u~k,1v~k,1 + u~k,2v~k,2) ≡ 〈(−∆)
b
2 ~u, (−∆)

b
2~v〉

The duality between Hb and H−b (or between [Hb(D)]3 and [H−b(D)]3) is again denoted
by 〈·, ·〉.

For b > 0 and p > 2, we define the generalized Sobolev spaces Hb
p

Hb
p = {~u ∈ Lp : (−∆)

b
2 ~u ∈ Lp}

which are Banach spaces with norms

‖~u‖Hb
p

= ‖(−∆)
b
2 ~u‖Lp

When b ∈ N, Hb
p are the Sobolev spaces. We recall the Sobolev embedding theorem (see

[17] Ch 1 §8)

• if 1 < p < q <∞ with 1
q = 1

p −
a−b

3 , then the following inclusion holds

Ha
p ⊂ Hb

q

and there exists a constant C (depending on a− b, p, q) such that

‖~v‖Hb
q
≤ C‖~v‖Ha

p
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• if 1 < p <∞ with 3 < ap, then the following inclusion holds

Ha
p ⊂ L∞

and there exists a constant C (depending on a, p) such that

‖~v‖L∞ ≤ C‖~v‖Ha
p

The Poincaré inequality holds, because of the zero mean value assumption, and there-
fore ‖~u‖Hb

p
is equivalent to (‖~u‖pLp

+ ‖~u‖p
Hb

p
)1/p, which appears usually in the definition of

the generalized Sobolev spaces.
Moreover for ~ξ = ∇× ~v, the norms ‖~v‖Hb

p
and ‖~ξ‖Hb−1

p
are equivalent (see (2.2)).

For any t > 0 and b > 0, the linear operator e−t(−∆)b , formally defined as

e−t(−∆)b

∑
~k∈Z3

0

[u~k,1
~b~k,1 + u~k,2

~b~k,2]ei
~k·~x

 =
∑
~k∈Z3

0

e−t|
~k|2b [u~k,1

~b~k,1 + u~k,2
~b~k,2]ei

~k·~x

is a contraction operator in Lp for any p ≥ 2.

Next, we define the random forcing term. We consider a noise d~n of the form
d(−∆)−b ~w, where ~w is a cylindrical Wiener process in L2 (see, e.g., [4]). We can
represent it as follows. Suppose we are given a Brownian stochastic basis, i.e. a
probability space (Ω,F ,P) and a filtration (Ft)t≥0; we denote by E the mathematical
expectation with respect to P. Let {β~k,1, β~k,2}~k∈Z3

+
be a double sequence of complex

valued independent Brownian motions on
(

Ω,F , (Ft)t≥0 ,P
)

; namely, the sequence

{<β~k,j ,=β~k,j}~k∈Z3
+;j=1,2 consists of real valued processes that are independent, adapted

to (Ft)t≥0, continuous for t ≥ 0 and null at t = 0, with increments on any time interval
[s, t] that are N (0, t− s)-distributed and independent of Fs.

Moreover, for −~k ∈ Z3
+ let β~k,j = −β−~k,j . Then

~w(t, ~x) =
∑
~k∈Z3

0

[~b~k,1β~k,1(t) +~b~k,2β~k,2(t)]ei
~k·~x (2.3)

is a cylindrical Wiener process in L2. Its paths do not live in the space C(R+;L2); they
are less regular in space. Indeed

E‖(−∆)a ~w(t)‖2L2
= 2t

∑
~k∈Z3

0

|~k|2a

which is finite if and only if a < − 3
2 .

Within this setting, we write system (1.5) for the vorticity as
d~ξ +

(
(−∆)1+c~ξ + P [(~v · ∇)~ξ]− P [(~ξ · ∇)~v]

)
dt = (−∆)−bd~w

∇ · ~v = 0
~ξ = ∇× ~v

(2.4)

We have put ν = 1 for simplicity and consider b, c ≥ 0.
We give the following definition of solution: this is a weak (or distributional) solution

from the point of view of PDE’s and a strong solution from the point of view of stochastic
equations.
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Definition 2.1. Given (Ω,F , (Ft)t≥0,P) and an L2-cylindrical Wiener process ~w, we say
that a process ~ξ is a basic solution to system (2.4) on the finite time interval [0, T ] with
initial condition ~ξ(0) = ~ξ0 ∈ L2 if

~ξ ∈ C([0, T ];L2) ∩ L1(0, T ;L3) P− a.s. (2.5)

and it satisfies the first equation of (2.4) in the following sense:
for any t ∈ [0, T ], for any ~φ ∈ H2+2c ∩H4−2b

〈~ξ(t), ~φ〉+

∫ t

0

〈~ξ(s), (−∆)1+c~φ〉ds−
∫ t

0

〈(~v(s) · ∇)~φ, ~ξ(s)〉ds

+

∫ t

0

〈(~ξ(s) · ∇)~φ,~v(s)〉ds = 〈~ξ0, ~φ〉+ 〈(−∆)−2 ~w(t), (−∆)2−b~φ〉 (2.6)

P-a.s.

The latter relationship is obtained by multiplying the first equation of (2.4) by
~φ, integrating in space and time and finally by integration by part in the trilinear
terms. Indeed, −〈(~v(s) · ∇)~φ, ~ξ(s)〉 = 〈(~v(s) · ∇)~ξ(s), ~φ〉 = 〈P [(~v(s) · ∇)~ξ(s)], ~φ〉 and
〈(~ξ(s) · ∇)~φ,~v(s)〉 = −〈(~ξ(s) · ∇)~v(s), ~φ〉 = −〈P [(~ξ(s) · ∇)~v(s)], ~φ〉, since ~φ is a divergence
free vector.

Remark 2.2. We remark that all the terms in (2.5) are meaningful. We show the basic
estimates for the trilinear terms, by means of Hölder and Sobolev inequalities:∣∣∣∣∫ t

0

〈(~v(s) · ∇)~φ, ~ξ(s)〉ds
∣∣∣∣ ≤ ‖~φ‖H1

∫ t

0

‖~v(s)‖L6
‖~ξ(s)‖L3

ds

≤ C‖~φ‖H1

∫ t

0

‖~v(s)‖H1‖~ξ(s)‖L3ds

≤ C‖~φ‖H1

∫ t

0

‖~ξ(s)‖L2‖~ξ(s)‖L3ds

≤ C‖~φ‖H1‖~ξ‖L∞(0,T ;L2)‖~ξ‖L1(0,T ;L3)

and similarly ∣∣∣∣∫ t

0

〈(~ξ(s) · ∇)~φ,~v(s)〉ds
∣∣∣∣ ≤ C‖~φ‖H1

∫ t

0

‖~ξ(s)‖L3
‖~v(s)‖L6

ds

≤ C‖~φ‖H1‖~ξ‖L1(0,T ;L3)‖~ξ‖L∞(0,T ;L2)

Here and in the following, we denote by C a generic constant, which may vary from
line to line. However a subscript denotes that the constant depends on the specified
parameters.

Remark 2.3. To prove the well posedness of system (2.4), we shall exploit the pathwise
technique used the first time in [2] and later on in a more useful way in [8]. We shall
transform the stochastic equation of Itô type (2.4) into a random equation which behaves
like a deterministic equation when studied for P-a.e. ω ∈ Ω, that is we find estimates for
the paths of the solution process.

The solution process will enjoy more properties as a stochastic process; as in the 2D
setting, we shall prove pathwise uniqueness and continuous dependence on the initial
data in L2. Thus our solution will be a strong solution from the point of view of stochastic
differential equations (see e.g. [13]), and a Feller and Markov process in L2. For these
details, see [9] and references therein.
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3 Estimates of the nonlinearities

This is a technical section, where we present the estimates to be used in proving the
well posedness of system (2.4) and (1.6).

First, we present a classical result.

Lemma 3.1. Let ~u,~v, ~w : R3 → R3 be smooth D-periodic and divergence free vector
fields. Then

〈P [(~u · ∇)~v], ~w〉 = −〈P [(~u · ∇)~w], ~v〉 (3.1)

In particular
〈P [(~u · ∇)~v], ~v〉 = 0 (3.2)

Proof. First

〈P [(~u · ∇)~v], ~w〉 = 〈(~u · ∇)~v, ~w〉 =

3∑
i,j=1

∫
D

u(i)(~x)∂iv
(j)(~x)w(j)(~x) d~x

Then by integration by parts we get (3.1). The relationship (3.2) is obtained from (3.1)
by taking ~w = ~v.

By density, the above results hold for all vectors giving meaning to the above expres-
sions. One can find estimates on the trilinear term in [21]. Here we present particular
estimates, not included in [21], and useful in the sequel. Their proofs are based on
Sobolev embeddings theorems and Hölder inequalities.

Lemma 3.2. Let c ≥ 0. Then there exists a positive constant C (depending on c) such
that for any ε > 0 we have

|〈(~u1 · ∇)~u2, ~u3〉| ≤ ε‖~u2‖2H1+c +
C

ε
‖~u1‖2H1‖~u3‖2L3

(3.3)

|〈(~u1 · ∇)~u2, ~u3〉| ≤ ε‖~u3‖2H1+c +
C

ε
‖~u1‖2L3

‖~u2‖2H1+c (3.4)

|〈(~u1 · ∇)~u2, ~u3〉| ≤ ε
∥∥~u3

∥∥2

H1+c +
C

ε
‖~u1‖2H1‖~u2‖2L3

(3.5)

for all vectors making finite each r.h.s.

Proof. We begin with the first inequality:

|〈(~u1 · ∇)~u2, ~u3〉| ≤ ‖~u1‖L6‖∇~u2‖L2‖~u3‖L3 by Hölder inequality

≤ C‖~u1‖H1‖~u2‖H1‖~u3‖L3 by Sobolev embedding H1 ⊂ L6

≤ Cc‖~u1‖H1‖~u2‖H1+c‖~u3‖L3

≤ ε‖~u2‖2H1+c +
C2
c

4ε
‖~u1‖2H1‖~u3‖2L3

by Cauchy inequality

For the second inequality, we proceed in a similar way:

|〈(~u1 · ∇)~u2, ~u3〉| ≤ ‖~u1‖L3
‖∇~u2‖L2

‖~u3‖L6

≤ C‖~u1‖L3
‖~u2‖H1‖~u3‖H1

≤ Cc‖~u1‖L3‖~u2‖H1+c‖~u3‖H1+c

Then we apply Cauchy inequality to get the desired result.
For the third inequality, we have

〈(~u1 · ∇)~u2, ~u3〉 = −〈(~u1 · ∇)~u3, ~u2〉

from (3.1). Then we get (3.5) from (3.3).
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Characterization of the law for 3D stochastic hyperviscous fluids

Lemma 3.3. Let c ≥ 1
4 . Then there exists a positive constant C (depending on c) such

that for any ε > 0 we have

|〈(~u1 · ∇)~u2, ~u1〉| ≤ ε
∥∥~u1

∥∥2

H1+c +
C

ε

∥∥~u2

∥∥2

H1+c

∥∥~u1

∥∥2

L2

for all vectors making finite the r.h.s..

Proof. First we consider the range of values 1
4 ≤ c <

1
2 . We have 1−2c

6 + 3−2c
6 + 1

2 ≤ 1 and
H1+c ⊂ L 6

1−2c
, Hc ⊂ L 6

3−2c
. Thus, Hölder and Sobolev inequalities give

|〈(~u1 · ∇)~u2, ~u1〉| ≤ ‖~u1‖L 6
1−2c

‖∇~u2‖L 6
3−2c

‖~u1‖L2

≤ Cc‖~u1‖H1+c‖∇~u2‖Hc‖~u1‖L2

≤ Cc‖~u1‖H1+c‖~u2‖H1+c‖~u1‖L2

Otherwise, for c ≥ 1
2 , we use the Sobolev embeddings H

1
2 ⊂ L3 and H1 ⊂ L6.

Therefore, again we estimate

|〈(~u1 · ∇)~u2, ~u1〉| ≤ ‖~u1‖L6
‖∇~u2‖L3

‖~u1‖L2

≤ C‖~u1‖H1‖∇~u2‖
H

1
2
‖~u1‖L2

≤ Cc‖~u1‖H1+c‖~u2‖H1+c‖~u1‖L2

Applying Cauchy inequality we conclude the proof.

4 The linear equation

When we neglect the non linearites in system (2.4) for the vorticity, we get{
d~ζ + (−∆)1+c~ζ dt = (−∆)−bd~w

∇ · ~ζ = 0
(4.1)

Here the second equation keeps track of the fact that the vorticity vector is divergence
free. So ~ζ is the usual Ornstein-Uhlenbeck process, well studied in the literature. Here
we assume ~ζ(0) = ~0. Therefore the mild solution of (4.1) is

~ζ(t) =

∫ t

0

e−(−∆)1+c(t−s)(−∆)−bd~w(s) (4.2)

(see e.g. [4]). We have

Proposition 4.1. Let

2b+ c > a+
1

2
(4.3)

Then, for any m ∈ N
~ζ ∈ C(R+;Ha

2m) P− a.s

Proof. The proof is basically the same as that in [3] proving that ~ζ has P-a.e. path in
C(R+;Ha). Working on the torus, we can improve that result getting ~ζ ∈ C(R+;Ha

2m).
The factorization method uses that

~ζ(t) =
sin(πα)

π

∫ t

0

1

(t− s)1−α e
−(−∆)1+c(t−s)~Yα(s)ds (4.4)

for 0 < α < 1, with

~Yα(s) =

∫ s

0

1

(s− r)α
e−(−∆)1+c(s−r)(−∆)−bd~w(r)
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Now we prove that under assumption (4.3) there exists α ∈ (0, 1
2 ) such that

E‖~Yα‖2mL2m(0,T ;Ha
2m) <∞ (4.5)

for any m ∈ N.
For fixed ~x and t, [(−∆)a/2~Yα](t, ~x) is a Gaussian random variable given by the sum of

independent Gaussian random variables

(−∆)a/2~Yα(t, ~x) =
∑
~k∈Z3

0

|~k|a
2∑
j=1

∫ t

0

1

(t− s)α
e−|

~k|2(1+c)(t−s)|~k|−2b~b~k,jdβ~k,j(s)e
i~k·~x

Therefore the variance of (−∆)a/2~Yα(t, ~x) is the sum of the variance of each addend:

E|(−∆)a/2~Yα(t, ~x)|2 =
∑
~k∈Z3

0

|~k|2a−4b

∫ t

0

1

(t− s)2α
e−2|~k|2(1+c)(t−s)ds

=
∑
~k∈Z3

0

|~k|2a−4b

∫ t

0

1

r2α
e−2|~k|2(1+c)rdr

=
∑
~k∈Z3

0

|~k|2a−4b|~k|2(1+c)(2α−1)

∫ t|~k|2(1+c)

0

1

u2α
e−2udu

≤
∑
~k∈Z3

0

|~k|2a−4b|~k|2(1+c)(2α−1)

∫ ∞
0

1

u2α
e−2udu

= Cα
∑
~k∈Z3

0

|~k|2a−4b+2(1+c)(2α−1)

where the constant Cα is finite for any α < 1
2 .

Since (−∆)a/2~Yα(t, ~x) is a centered Gaussian random variable, for any integer m we
have

E|(−∆)a/2~Yα(t, ~x)|2m = Cm

(
E|(−∆)a/2~Yα(t, ~x)|2

)m
≤ Cm,α

∑
~k∈Z3

0

|~k|2a−4b+2(1+c)(2α−1)

m

Integrating with respect to the variables t ∈ [0, T ] and ~x ∈ D we get

E‖~Yα‖2mL2m(0,T ;Ha
2m) ≤ Cm,αT (2π)3

∑
~k∈Z3

0

|~k|2a−4b+2(1+c)(2α−1)

m

The series in the r.h.s. converges if and only if

2a− 4b+ 2(1 + c)(2α− 1) < −3

i.e.

2b+ c > a+
1

2
+ 2α(1 + c) (4.6)

If (4.3) holds then there exists α > 0 small enough to get (4.6) and thus for such an α
we have proved (4.5).

Now, given (4.5), with a trivial modification of the proof of Lemma 2.7 in [3], from
(4.4) we get

E sup
0≤t≤T

‖~ζ(t)‖2mHa
2m
≤ Cm,T ‖~Yα‖2mL2m(0,T ;L2m)

and the continuity result.
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5 The vorticity transport equation

As explained before, we consider the system obtained from (2.4) by neglecting the
term P [(~ξ · ∇)~v] in the first equation. This is

d~η + (−∆)1+c~η dt+ P [(~v · ∇)~η] dt = (−∆)−bd~w

∇ · ~v = 0

~η = ∇× ~v
(5.1)

We call it the vorticity transport system, since its first equation is a reduced form of the
vorticity equation in (2.4): in (5.1) vorticity is only transported, not stretched.

Let us point out a feature of the equation of ~η. The nonlinearity (~v ·∇)~η has a peculiar
form similar to that appearing in the regularized form of Leray-α models for fluids (see
e.g. [1]), that is the first entry of the bilinear term P [(~v · ∇)~η] is not the unknown ~η itself
but indeed ~v, which has one order more of regularity with respect to ~η (recall that if
~η ∈ Hb

p then ~v ∈ Hb+1
p ). Therefore, even if ~η satisfies a nonlinear equation, the quadratic

term (~v ·∇)~η in (5.1) (with ~η = ∇×~v) behaves better than (~v ·∇)~v in (1.1) and this makes
the difference in the analysis of systems (5.1) and (1.1).

As far as the technique is concerned, we point out that in order to get existence and
uniqueness results, we could look for mean estimates. However, for our purpose it is
enough to get pathwise estimates (see Theorem 7.1). Moreover, the advantage of the
pathwise approach is twofold: the existence result is obtained asking weaker assumption
on the covariance of the noise and the regularity results are easily obtained. To see the
first advantage, thanks to (3.1), with the usual techniques (see e.g. [2], [9]) we can get

E

[
‖~η(t)‖2L2

+ 2

∫ t

0

‖~η(s)‖2H1+cds

]
≤ ‖~η(0)‖2L2

+ Tr
(
(−∆)−2b

)
t

This requires Tr
(
(−∆)−2b

)
<∞, i.e.∑

~k∈Z3
0

|~k|−4b <∞

which holds when b > 3
4 . But Theorem 5.2 allows to get existence of a basic solution ~η

for b > 1
4 −

c
2 . Since our task in Theorem 7.1 will be to estimate

‖(−∆)bP [(~η · ∇)~v]‖L2

it is clear than the smaller is b the easier is our task.
For this aim, we set ~β = ~η − ~ζ and exploit that the noise is independent of the

unknowns; then 
∂~β

∂t
+ (−∆)1+c~β + P [(~v · ∇)(~β + ~ζ)] = ~0

∇ · ~v = 0

∇× ~v = ~β + ~ζ

(5.2)

System (5.2) is studied pathwise. We have the following result

Proposition 5.1. i) Assume that {
c ≥ 0

2b+ c > 1
2
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Then, for any ~β(0) ∈ L2 there exists a solution to (5.2) such that

~β ∈ C([0, T ];L2) ∩ L2(0, T ;H1+c) P− a.s.

ii) Assume that {
c ≥ 0

2b+ c > 3
2

Then, for any ~β(0) ∈ H1 the solution given in i) enjoys also

~β ∈ C([0, T ];H1) ∩ L2(0, T ;H2+c) P− a.s.

iii) Assume that {
c ≥ 0

2b+ c > 5
2

Then, for any ~β(0) ∈ H2 the solution given in i) enjoys also

~β ∈ C([0, T ];H2) ∩ L2(0, T ;H3+c) P− a.s.

Proof. We proceed pathwise. The technique to prove existence is to consider first the
finite dimensional problem, obtained by applying the projection operator Πn to (5.2).
The goal is to find suitable a priori estimates, uniformly in n. Thus, when any finite
dimensional (Galerkin) problem has a solution we pass to the limit as n→∞ to get an
existence result for (5.2). This technique, based on finite dimensional approximation,
is well known (see e.g. [20, 21]). Therefore we look for a priori estimates for the full
system (5.2); they hold for any Galerkin approximation as well, but we skip the details
for the limit as n→∞.

i) We multiply the l.h.s. of the first equation of (5.2) by ~β(t) and integrate over D.
Using (3.1)-(3.2) and then Hölder and Sobolev inequalities, we get

1

2

d

dt
‖~β(t)‖2L2

+ ‖~β(t)‖2H1+c = −〈P [(~v(t) · ∇)~ζ(t)], ~β(t)〉

= 〈(~v(t) · ∇)~β(t), ~ζ(t)〉

≤ C‖~v(t)‖L6
‖~β(t)‖H1‖~ζ(t)‖L3

≤ Cc‖~v(t)‖H1‖~β(t)‖H1+c‖~ζ(t)‖L3

≤ C‖~β(t) + ~ζ(t)‖L2‖~β(t)‖H1+c‖~ζ(t)‖L3

Cauchy inequality gives

1

2

d

dt
‖~β(t)‖2L2

+ ‖~β(t)‖2H1+c ≤
1

2
‖~β(t)‖2H1+c + C‖~ζ(t)‖2L3

‖~β(t)‖2L2
+ C‖~ζ(t)‖4L3

(5.3)

Therefore, Gronwall inequality applied to

d

dt
‖~β(t)‖2L2

≤ C‖~ζ(t)‖2L3
‖~β(t)‖2L2

+ C‖~ζ(t)‖4L3

gives
sup

0≤t≤T
‖~β(t)‖2L2

≤ C(b, c, T, ‖~β(0)‖L2 , ‖~ζ‖L∞(0,T ;L3))

Integrating in time (5.3) we get∫ T

0

‖~β(t)‖2H1+cdt ≤ C̃(b, c, T, ‖~β(0)‖L2 , ‖~ζ‖L∞(0,T ;L3))
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We remind that ~ζ ∈ C([0, T ];L3) if 2b + c > 1
2 , according to Proposition 4.1. Then

these a priori estimates give ~β ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1+c).
Moreover,

∂~β

∂t
= −(−∆)1+c~β − P [(~v · ∇)~β]− P [(~v · ∇)~ζ]

Given the regularity of ~β we have that the r.h.s. belongs to L2(0, T ;H−1−c); indeed
(−∆)1+c~β ∈ L2(0, T ;H−1−c) and the two latter terms belong to L2(0, T ;H−1). Let us see
this; we proceed as before

|〈(~v · ∇)~β, ~u〉| = |〈(~v · ∇)~u, ~β〉| ≤ ‖~v‖L6‖∇~u‖L2‖~β‖L3

This gives

‖(~v · ∇)~β‖H−1 = sup
‖~u‖H1>0

|〈(~v · ∇)~β, ~u〉|
‖~u‖H1

≤ ‖~v‖L6
‖~β‖L3

≤ C‖~v‖H1‖~β‖H1

≤ C(‖~β‖L2 + ‖~ζ‖L2)‖~β‖H1

Similarly we deal with (~v · ∇)~ζ:

‖(~v · ∇)~ζ‖H−1 ≤ ‖~v‖L6‖~ζ‖L3
≤ C‖~ζ‖2L3

+ ‖~ζ‖L3
‖~β‖L2

We recall that the space {~β ∈ L2(0, T ;H1+c) : ∂~β
∂t ∈ L2(0, T ;H−1−c)} is compactly

embedded in L2(0, T ;L2).
These are the basic results to implement the Galerkin approximation.

As far as the continuity is concerned, the fact that ~β ∈ L2(0, T ;H1+c) and ∂~β
∂t ∈

L2(0, T ;H−1−c) implies ~β ∈ C([0, T ];L2) (see Ch III Lemma 1.2 of [20]).
ii) We need a priori estimates and we proceed as in the previous step. We multiply

the l.h.s. of the first equation of (5.2) by −∆~β(t) and integrate on D. We get

1

2

d

dt
‖~β(t)‖2H1 + ‖~β(t)‖2H2+c = 〈(~v(t) · ∇)(~β(t) + ~ζ(t)),∆~β(t)〉

We estimate the r.h.s. as follows

〈(~v · ∇)(~β + ~ζ),∆~β〉 ≤ ‖(~v · ∇)(~β + ~ζ)‖L2‖∆~β‖L2

≤ ‖~v‖L∞‖~β + ~ζ‖H1‖~β‖H2

≤ C‖~v‖H2‖~β + ~ζ‖H1‖~β‖H2 since H2 ⊂ L∞
≤ Cc‖~β + ~ζ‖2H1‖~β‖H2+c

≤ 1

2
‖~β‖2H2+c + C‖~β‖4H1 + ‖~ζ‖4H1

This gives
d

dt
‖~β(t)‖2H1 + ‖~β(t)‖2H2+c ≤ C‖~β‖4H1 + ‖~ζ‖4H1

and we conclude as before using Gronwall Lemma and the fact that ~β ∈ L2(0, T ;H1)

from i) and ~ζ ∈ C([0, T ];H1) from Proposition 4.1, getting

sup
0≤t≤T

‖~β(t)‖2H1 ≤ C(b, c, T, ‖~β(0)‖H1 , ‖~ζ‖L∞(0,T ;H1))

∫ T

0

‖~β(t)‖2H2+cdt ≤ C̃(b, c, T, ‖~β(0)‖H1 , ‖~ζ‖L∞(0,T ;H1))
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Continuity in time is obtained as before.
iii) We multiply the l.h.s. of the first equation of (5.2) by (−∆)2~β(t) and integrate on

D. We get

1

2

d

dt
‖~β(t)‖2H2 + ‖~β(t)‖2H3+c = −〈(~v(t) · ∇)(~β(t) + ~ζ(t)), (−∆)2~β(t)〉

We estimate the r.h.s. as follows. First, we use the estimate for the product; by means of
the Sobolev embedding H2 ⊂ L∞ we get

‖fg‖H1 ≤ ‖g∇f‖L2
+ ‖f∇g‖L2

≤ ‖∇f‖L∞‖g‖L2
+ ‖f‖L∞‖∇g‖L2

≤ C‖f‖H3‖g‖L2
+ C‖f‖H2‖g‖H1

Hence, for the trilinear term we get

〈(~v · ∇)(~β + ~ζ), (−∆)2~β〉 = 〈(−∆)
1
2 [(~v · ∇)(~β + ~ζ)], (−∆)

3
2 ~β〉

≤ ‖(~v · ∇)(~β + ~ζ)‖H1‖~β‖H3

≤ C
(
‖~v‖H3‖~β + ~ζ‖H1 + ‖~v‖H2‖~β + ~ζ‖H2

)
‖~β‖H3

≤ C‖~β + ~ζ‖H1‖~β + ~ζ‖H2‖~β‖H3

≤ Cc‖~β + ~ζ‖H1‖~β + ~ζ‖H2‖~β‖H3+c

≤ 1

2
‖~β‖2H3+c + C‖~β + ~ζ‖2H1‖~β‖2H2 + C‖~β + ~ζ‖2H1‖~ζ‖2H2

This gives

d

dt
‖~β(t)‖2H2 + ‖~β(t)‖2H3+c ≤ C‖~β(t) + ~ζ(t)‖2H1‖~β(t)‖2H2 + C‖~ζ(t)‖2H2‖~β(t)‖2H1 + C‖~ζ(t)‖4H2

Since ~β ∈ C([0, T ];H1) from step ii) and ~ζ ∈ C([0, T ];H2) from Proposition 4.1, we get
first

sup
0≤t≤T

‖~β(t)‖2H2 ≤ C(b, c, T, ‖~β(0)‖H2 , ‖~ζ‖L∞(0,T ;H2))

and then ∫ T

0

‖~β(t)‖2H3+cdt ≤ C̃(b, c, T, ‖~β(0)‖H2 , ‖~ζ‖L∞(0,T ;H2))

Continuity in time is obtained as before. This concludes the proof.

Now we come back to the unknown ~η = ~β + ~ζ. The definition of basic solution is the
same as that for ~ξ given at the end of Section 2, with the obvious modification of the
equation by neglecting P [(~ξ · ∇)~v].

Theorem 5.2. i) Assume that {
c ≥ 0

2b+ c > 1
2

Then, for any ~η(0) ∈ L2 there exists a unique process ~η which is a basic solution to (5.1)
such that

~η ∈ C([0, T ];L2) ∩ L2(0, T ;L6)

P-a.s.
Moreover there is continuous dependence on the initial data: given two initial data
~η(0), ~η?(0) ∈ L2 we have

‖~η(0)− ~η?(0)‖L2
→ 0 =⇒ ‖~η − ~η?‖C([0,T ];L2) → 0
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ii) Assume that {
c ≥ 0

2b+ c > 3
2

Then, for any ~η(0) ∈ H1 the solution given in i) enjoys also

~η ∈ C([0, T ];H1) P− a.s.

iii) Assume that {
c ≥ 0

2b+ c > 5
2

Then, for any ~η(0) ∈ H2 the solution given in i) enjoys also

~η ∈ C([0, T ];H2) P− a.s.

Proof. The existence comes from the existence results on ~β, ~ζ. Moreover

~ζ ∈ C([0, T ];Lq) ∀q <∞

and by Sobolev embedding

~β ∈ L2(0, T ;H1+c) ⊂ L2(0, T ;H1) ⊂ L2(0, T ;L6)

Merging toghether the regularity of these processes we get our three results for ~η.
As far as continuous dependence on the initial data is concerned, let us take two

basic solutions ~η1 and ~η2 with ~η1(0) = ~η2(0) ∈ L2; at least we have

~η1, ~η2 ∈ C([0, T ];L2) ∩ L2(0, T ;L3)

We define ~y = ~η1 − ~η2; then the system fulfilled by ~y can be written as
∂~y

∂t
+ (−∆)1+c~y + P [(~v1 · ∇)~y] + P [((~v1 − ~v2) · ∇) ~η2] = ~0

∇ · ~v1 = ∇ · ~v2 = 0

~y = ∇× (~v1 − ~v2)

We estimate the following term, as usual:

|〈[(~v1 − ~v2) · ∇]~η2, ~y〉| = |〈[(~v1 − ~v2) · ∇]~y, ~η2〉|

≤ 1

2
‖~y‖2H1+c + C‖~η2‖2L3

‖~v1 − ~v2‖2H1 from (3.3)

≤ 1

2
‖~y‖2H1+c + C‖~η2‖2L3

‖~y‖2L2

Then taking the scalar product of the the first equation for ~y with ~y, integrating on the
spatial domain and using (3.1), we get

d

dt
‖~y(t)‖2L2

+ ‖~y(t)‖2H1+c ≤ C‖~η2(t)‖2L3
‖~y(t)‖2L2

Recall that ~η2 ∈ L2(0, T ;L3). Applying Gronwall lemma to

d

dt
‖~y(t)‖2L2

≤ C‖~η2(t)‖2L3
‖~y(t)‖2L2

we get

sup
0≤t≤T

‖~y(t)‖L2
≤ ‖~y(0)‖L2

eC
∫ T
0
‖~η2(t)‖2L3

dt

This gives the continuous dependence on the initial data; uniqueness is obtained when
~y(0) = ~0.
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6 The vorticity equation

Now we consider the full nonlinear system (2.4). If the initial velocity is more regular,
say ~v(0) ∈ H1 (i.e. ~ξ(0) ∈ L2), one can prove a local existence and uniqueness result
for c = 0; global existence holds only for c ≥ 1

4 (see [6]). In this paper we improve the

results for c ≥ 1
4 considering initial data ~ξ(0) ∈ H1 and H2.

We need a preliminary result for the velocity, fulfilling (1.3) with the noise obtained
from a Wiener process ~wvel such that ∇× ~wvel = (−∆)−b ~w, that is

~wvel(t, ~x) =
∑
~k∈Z3

0

|~k|−2b−1[−~b~k,1β~k,1(t) +~b~k,2β~k,2(t)]ei
~k·~x

Therefore (1.3) becomes{
d~v + (−∆)1+c~v dt+ (~v · ∇)~v dt+∇p dt = d~wvel

∇ · ~v = 0
(6.1)

Proposition 6.1. Assume that {
c ≥ 0

b > 1
4

Then for any ~v(0) ∈ L2 there exists a process ~v with P-a.e. path in L∞(0, T ;L2) ∩
L2(0, T ;H1+c), solving (6.1).

Proof. We know the result for c = 0 (see [9]); the case c > 0 does not provide any
difficulty. But we show the shortest way to get it, by means of mean value estimates.
Only here we use mean value estimates instead of the pathwise ones.

We write the basic energy estimate obtained from Itô formula for d‖~v(t)‖2L2
; the

details can be found in [9]. We have

E‖~v(t)‖2L2
+ 2

∫ t

0

E‖~v(s)‖2H1+cds ≤ ‖~v(0)‖2L2
+ t

∑
~k∈Z3

0

|~k|−2(2b+1)

The series in the r.h.s. converges if and only if 2(2b+ 1) > 3, i.e. b > 1
4 . These estimates

improves the regularity: ~v ∈ L2(0, T ;H1+c), P-a.s.

Now we consider the unknown ~ξ. Let ~δ := ~ξ − ~ζ; bearing in mind the equations for ~ξ
and ~ζ we have that this new unknown satisfies

∂~δ

∂t
+ (−∆)1+c~δ + P [(~v · ∇)~δ − (~δ · ∇)~v + (~v · ∇)~ζ − (~ζ · ∇)~v] = ~0 (6.2)

Now the quantities ~v and ~δ are linked through ~δ = −~ζ +∇× ~v.
Our aim is to find existence and regularity results for ~δ in order to obtain the same

results for ~ξ. This requires c ≥ 1
4 .

As in the previous section we look for pathwise results.

Proposition 6.2. i) Assume that {
c ≥ 1

4

b > 1
4

Then, for any ~δ(0) ∈ L2 there exists a solution to (6.2) such that

~δ ∈ C([0, T ];L2) ∩ L2(0, T ;H1+c) P− a.s.
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ii) Assume that 
c ≥ 1

4

b > 1
4

2b+ c > 3
2

Then, for any ~δ(0) ∈ H1 the solution given in i) enjoys also

~δ ∈ C([0, T ];H1) ∩ L2(0, T ;H2+c) P− a.s.

iii) Assume that 
c ≥ 1

4

b > 1
4

2b+ c > 5
2

Then, for any ~δ(0) ∈ H2 the solution given in i) enjoys also

~δ ∈ C([0, T ];H2) ∩ L2(0, T ;H3+c) P− a.s.

Proof. i) First, notice that if c ≥ 1
4 and b > 1

4 then 2b+ c > 3
4 >

1
2 . Therefore Proposition

4.1 provides that for any finite p we have ~ζ ∈ C([0, T ];Lp) a.s..
We deal with (6.2) as we did with (5.2). So

1

2

d

dt
‖~δ(t)‖2L2

+ ‖~δ(t)‖2H1+c = 〈(~δ · ∇)~v − (~v · ∇)~ζ + (~ζ · ∇)~v, ~δ〉

From Lemma 3.3
〈(~δ · ∇)~v, ~δ〉 ≤ 1

6‖~δ‖
2
H1+c + C‖~v‖2H1+c‖~δ‖2L2

From (3.5) of Lemma 3.2

|〈(~v · ∇)~ζ, ~δ〉| ≤ 1
6‖~δ‖

2
H1+c + C‖~v‖2H1‖~ζ‖2L3

From (3.4) of Lemma 3.2

|〈(~ζ · ∇)~v, ~δ〉| ≤ 1
6‖~δ‖

2
H1+c + C‖~v‖2H1‖~ζ‖2L3

Summing up, we get

d

dt
‖~δ(t)‖2L2

+ ‖~δ(t)‖2H1+c ≤ C‖~v(t)‖2H1+c‖~δ(t)‖2L2
+ C‖~ζ(t)‖2L3

‖~v(t)‖2H1+c

From Proposition 6.1, we know that ~v ∈ L2(0, T ;H1+c); moreover our assumption and
Proposition 4.1 give ~ζ ∈ C([0, T ];L3). Then by Gronwall lemma we get

sup
0≤t≤T

‖~δ(t)‖2L2
<∞

and integrating in time ∫ T

0

‖~δ(t)‖2H1+c dt <∞

The continuity in time is obtained as in Proposition 5.1.
ii) We need a priori estimates and we proceed as in the previous step. We multiply

the l.h.s. of the first equation of (6.2) by −∆~δ(t) and integrate on D. We get

1

2

d

dt
‖~δ(t)‖2H1 + ‖~δ(t)‖2H2+c

= 〈(~v(t) · ∇)(~δ(t) + ~ζ(t)),∆~δ(t)〉 − 〈((~δ(t) + ~ζ(t)) · ∇)~v(t),∆~δ(t)〉
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We estimate the latter term in the r.h.s. as usual:

|〈((~δ + ~ζ) · ∇)~v,∆~δ〉| ≤ ‖~δ + ~ζ‖L4‖∇~v‖L4‖∆~δ‖L2

≤ C‖~δ + ~ζ‖H1‖∇~v‖H1‖~δ‖H2

≤ Cc‖~δ + ~ζ‖2H1‖~δ‖H2+c

≤ 1

4
‖~δ‖2H2+c + C‖~δ‖4H1 + C‖~ζ‖4H1

With this estimate and dealing with the other trilinear term as in the proof of
Proposition 5.1 ii), we obtain

d

dt
‖~δ(t)‖2H1 + ‖~δ(t)‖2H2+c ≤ C‖~δ(t)‖4H1 + ‖~ζ(t)‖4H1

Since ~δ ∈ L2(0, T ;H1) from the previous step and ~ζ ∈ C([0, T ];H1) from Proposition 4.1,
we conclude as in the proof of Proposition 5.1 ii).

iii) We multiply the l.h.s. of the first equation of (6.2) by (−∆)2~δ(t) and integrate on
D. We get

1

2

d

dt
‖~δ(t)‖2H2 + ‖~δ(t)‖2H3+c = −〈(~v(t) · ∇)(~δ(t) + ~ζ(t)), (−∆)2~δ(t)〉

+ 〈((~δ(t) + ~ζ(t)) · ∇)~v(t), (−∆)2~δ(t)〉

We are left to estimate the latter trilinear term. First, we use the estimate for the
product; by means of the Sobolev embeddings H2 ⊂ L∞ and H1 ⊂ L4 we get

‖fg‖H1 ≤ ‖g∇f‖L2
+ ‖f∇g‖L2

≤ ‖∇f‖L2
‖g‖L∞ + ‖f‖L4

‖∇g‖L4

≤ C‖f‖H1‖g‖H2 + C‖f‖H1‖g‖H2

Hence, for the trilinear term we get

〈((~δ + ~ζ) · ∇)~v, (−∆)2~δ〉 ≤ ‖((~δ + ~ζ) · ∇)~v‖H1‖~δ‖H3

≤ C‖~δ + ~ζ‖H1‖∇~v‖H2‖~δ‖H3

≤ Cc‖~δ + ~ζ‖H1‖~δ + ~ζ‖H2‖~δ‖H3+c

≤ 1

4
‖~δ‖2H3+c + C‖~δ + ~ζ‖2H1‖~δ‖2H2 + C‖~δ + ~ζ‖2H1‖~ζ‖2H2

Therefore, keeping in mind the proof of Proposition 5.1 iii) to estimate the other trilinear
term, we obtain

d

dt
‖~δ(t)‖2H2 + ‖~δ(t)‖2H3+c ≤ C‖~δ(t) + ~ζ(t)‖2H1‖~δ(t)‖2H2 + C‖~δ(t) + ~ζ(t)‖2H1‖~ζ(t)‖2H2

Since ~δ ∈ L2(0, T ;H2) from the previous step and ~ζ ∈ C([0, T ];H2) from Proposition 4.1,
we conclude as in the proof of Proposition 5.1 iii).

Now we have the result for ~ξ = ~δ + ~ζ.

Theorem 6.3. i) Assume that {
c ≥ 1

4

b > 1
4

Then, for any ~ξ(0) ∈ L2 there exists a unique process ~ξ which is a basic solution to (2.4)
such that

~ξ ∈ C([0, T ];L2) ∩ L2(0, T ;L6)
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P-a.s.
Moreover there is continuous dependence on the initial data: given two initial data

~ξ(0), ~ξ?(0) ∈ L2 we have

‖~ξ(0)− ~ξ?(0)‖L2
→ 0 =⇒ ‖~ξ − ~ξ?‖C([0,T ];L2) → 0

ii) Assume that 
c ≥ 1

4

b > 1
4

2b+ c > 3
2

Then, for any ~ξ(0) ∈ H1 the solution given in i) enjoys also

~ξ ∈ C([0, T ];H1) P− a.s.

iii) Assume that 
c ≥ 1

4

b > 1
4

2b+ c > 5
2

Then, for any ~ξ(0) ∈ H2 the solution given in i) enjoys also

~ξ ∈ C([0, T ];H2) P− a.s.

Proof. i) If c ≥ 1
4 and b > 1

4 then 2b+ c > 1
2 . Therefore Proposition 4.1 provides that for

any finite p we have ~ζ ∈ C([0, T ];Lp) a.s.. We merge the results of Proposition 6.2 for ~δ

with those of Proposition 4.1 for ~ζ to get existence of ~ξ and its regularity. This is the
same as in Theorem 5.2.

As far as continuous dependence on the initial data is concerned, we proceed as in
the proof of Theorem 5.2. The additional term does not give any problem; we estimate it
as follows. Set ~y = ~ξ1 − ~ξ2; then the system fulfilled by ~y can be written as

∂~y

∂t
+ (−∆)1+c~y + P [(~v1 · ∇)~y + ((~v1 − ~v2) · ∇) ~ξ2 − (~ξ1 · ∇)(~v1 − ~v2)− (~y · ∇)~v2] = ~0

∇ · ~v1 = ∇ · ~v2 = 0

~y = ∇× (~v1 − ~v2)

Therefore, in the equation fulfilled by ‖~y(t)‖2L2
, in addition to the terms appearing in the

proof of Theorem 5.2 we also have

〈(~ξ1 · ∇)(~v1 − ~v2), ~y〉+ 〈(~y · ∇)~v2, ~y〉

We have

|〈(~ξ1 · ∇)(~v1 − ~v2), ~y〉| ≤ ‖~ξ1‖L3
‖∇(~v1 − ~v2)‖L2

‖~y‖L6

≤ C‖~ξ1‖L3‖~y‖L2‖~y‖H1

≤ Cc‖~ξ1‖L3‖~y‖L2‖~y‖H1+c

≤ 1

6
‖~y‖2H1+c + C‖~ξ1‖2L3

‖~y‖2L2

and

|〈(~y · ∇)~v2, ~y〉| ≤ ‖~y‖L2
‖∇~v2‖L3

‖~y‖L6

≤ C‖~y‖L2
‖~ξ2‖L3

‖~y‖H1

≤ Cc‖~y‖L2‖~ξ2‖L3‖~y‖H1+c

≤ 1

6
‖~y‖2H1+c + C‖~ξ2‖2L3

‖~y‖2L2
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Therefore
d

dt
‖~y(t)‖2L2

≤ C
(
‖~ξ1(t)‖2L3

+ ‖~ξ2(t)‖2L3

)
‖~y(t)‖2L2

By Gronwall lemma, we get continuous dependence on the initial data. Uniqueness is
obtained when ~y(0) = ~0

7 Equivalence of measures

Let T : ~ξ 7→ ~v be the mapping giving the solution to (2.1).

We write system (2.4) as{
d~ξ + (−∆)1+c~ξ dt+ P [(T ~ξ · ∇)~ξ] dt− P [(~ξ · ∇)T ~ξ] dt = (−∆)−bd~w

∇ · ~ξ = 0
(7.1)

and system (5.1) as{
d~η + (−∆)1+c~η dt+ P [(T ~η · ∇)~η] dt = (−∆)−bd~w

∇ · ~η = 0
(7.2)

Denote by L~ξ and L~η the laws of the processes ~ξ and ~η respectively, when defined on
a finite time interval [0, T ]. Let σT (~η) denote the σ-algebra generated by {~η(t)}0≤t≤T .

We recall the main result of [5], [7], in a form adapted to our context; indeed in those
papers it was sufficient to assume weak existence (without uniqueness) for system (7.1).

Theorem 7.1. Assume (7.2) and (7.1) have a unique basic solution with the same initial
data in H2. If

P{
∫ T

0
‖(−∆)bP [(~η(t) · ∇)T ~η(t)]‖2L2

dt <∞} = 1, (7.3)

P{
∫ T

0
‖(−∆)bP [(~ξ(t) · ∇)T ~ξ(t)]‖2L2

dt <∞} = 1, (7.4)

then the laws L~ξ and L~η, defined as measures on the Borel subsets of C([0, T ];H2), are
equivalent.

In particular for the Radon-Nykodim derivative we have

dL~ξ
dL~η

(~η) = E
[
e
∫ T
0
〈(−∆)bP [(~η(t)·∇)T ~η(t)],d~w(s)〉− 1

2

∫ T
0
‖(−∆)bP [(~η(t)·∇)T ~η(t)]‖2L2

ds
∣∣σT (~η)

]
(7.5)

P-a.s.

From this we get our main result.

Theorem 7.2. Let {
c > 1

2

b = 1

If ~η(0) = ~ξ(0) ∈ H2, then the laws L~ξ and L~η are equivalent and (7.5) holds.

Proof. We use Theorems 6.3, iii); notice that the conditions on b and c are fulfilled if
b = 1 and c > 1

2 . We have only to check estimates (7.3) - (7.4) with b = 1. This follows

easily, since H2 is a multiplicative algebra and ‖T ~ξ‖H3 ≤ C‖~ξ‖H2 ; therefore

‖P [(~ξ · ∇)T ~ξ]‖H2 ≤ C‖~ξ‖H2‖∇T ~ξ‖H2 ≤ C‖~ξ‖H2‖T ~ξ‖H3 ≤ C‖~ξ‖2H2

and finally we use that the paths are in C([0, T ];H2).
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We point out that the restriction c > 1
2 cannot be weakened with this technique using

‖(−∆)bP [(~ζ · ∇)T ~ζ]‖2L2
≤ ‖(~ζ · ∇)T ~ζ‖2H2b ≤ C‖~ζ‖2H2b

for b large enough. Indeed, Proposition 4.1 provides ζ ∈ C([0, T ];H2b) a.s. if c > 1
2 . And

the paths of ~ξ, ~η cannot have better behavior than those of ~ζ.
Acknowledgments. The author thanks Franco Flandoli for various stimulating conver-
sations and the referees for revision suggestions.
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