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Abstract

We give an algorithm to construct a translation-invariant transport kernel between
two arbitrary ergodic stationary random measures on Rd, given that they have equal
intensities. As a result, this yields a construction of a shift-coupling of an arbitrary
ergodic stationary random measure and its Palm version. This algorithm constructs
the transport kernel in a deterministic manner given a pair of realizations of the two
measures. The (non-constructive) existence of such a transport kernel was proved
in [9]. Our algorithm is a generalization of the work of [3], in which a construction
is provided for the Lebesgue measure and an ergodic simple point process. In the
general case, we limit ourselves to what we call constrained transport densities and
transport kernels. We give a definition of stability of constrained transport densities
and introduce our construction algorithm inspired by the Gale-Shapley stable marriage
algorithm. For stable constrained transport densities, we study existence, uniqueness,
monotonicity w.r.t. the measures and boundedness.
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1 Introduction

For a random measure Ψ on Rd, there are a number of equivalent definitions for
the Palm distribution of Ψ (see Section 2). Heuristically speaking, in the case that Ψ is
stationary and ergodic, the Palm version of Ψ is obtained by viewing Ψ from a typical
point of Ψ. The result of [13] shows that there exists a random point Y such that by
viewing Ψ from Y ; i.e. by translating Ψ by vector −Y , we get exactly the Palm version of
Ψ. In other words, there exists a coupling of Ψ and its Palm version such that almost
surely each one is a translated version of the other one. Such a coupling is called a
shift-coupling.
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Stable transports between stationary random measures

To obtain a shift-coupling, one can use a (random) balancing transport kernel T that
transports a multiple of the Lebesgue measure to Ψ, where by a (random) transport
kernel we mean a (random) function that assigns to each point s ∈ Rd and ω in the
probability space, a probability measure Tω(s, ·) on Rd. This measure can be interpreted
as how the infinitesimal mass at s is distributed in the space. Given that T depends on Ψ

in a translation-invariant manner (which is called flow-adapted here), then choosing Y
with distribution Tω(0, ·) gives a shift-coupling of Ψ and its Palm version (see [9] and [5]
as explained after Theorem 4.9). A case of special interest is when T is a balancing
allocation in which the measure Tω(s, ·) is a Dirac measure a.e. In this case, given Ψ,
the vector Y defined above is deterministic and the shift-coupling does not need extra
randomness.

Let Φ and Ψ be jointly stationary and ergodic random measures on Rd. Considering
flow-adapted transport kernels balancing Φ and Ψ has been of great interest recently.
The abstract existence of such transports was proved in [9] (which is merely based
on [13]) provided that the intensities are equal, finite and positive. Nevertheless, there
has been tremendous interest in the construction of such transports in special cases in
the recent years. One of the reasons for this interest is that such transport kernels lead
to explicit shift-coupling of the Palm distributions of Φ and Ψ, as explained above. The
constructions were motivated by Liggett [10], who constructed a balancing allocation for
an ergodic simple point process in dimension one. The landmark in this topic is [3] which
generalizes [10] to arbitrary dimensions. There are several other constructions in the
literature for the case of simple point processes, such as gravitational allocation [1],
optimal transport [6], one-sided stable allocation on the line [8], etc.

In this paper we give an algorithm that works in the general case and enables us to

• construct a flow-adapted transport kernel balancing two arbitrary jointly stationary
and ergodic random measures on Rd with equal intensities (Theorem 4.8)

• and constructs a shift-coupling for an arbitrary stationary ergodic random measure
on Rd and its Palm version (Theorem 4.9).

To do this, we generalize the notion of stable allocations introduced in [3] to what we
call stable constrained transport densities, where the notion of constrained transport
densities is a special case of capacity constrained transport kernels introduced in [7].
The first, and in fact deterministic, result (Theorem 4.13) is that stable constrained
transport densities exist and one can be given by our algorithm (Algorithm 4.4) which
is inspired by the continuum version of the Gale-Shapley algorithm in [3]. Another
important result is considering the algorithm in the random case described above. Other
results deal with monotonicity (Theorem 4.21) and optimality (Corollary 4.22) properties
of stable constrained transport densities, uniqueness (Theorem 4.24) and boundedness of
the support of the mass transported from and to a region (Theorem 4.25). These results
are in the spirit of the seminal papers [3] and [5] and generalize some of their results.
We also introduce the notion of Voronoi transport kernel with respect to a measure,
which generalizes the notion of Voronoi diagram for a discrete set. It helps us in proving
some statements, but it can be interesting in its own. The construction and results in
this paper can be generalized to random measures on a locally compact Abelian group
and also to non-ergodic cases (only equality of sample intensities is important) in the
setting of [9]. We don’t go through these general cases to stay focused on the main
ideas.

We show that using transport kernels is inevitable in the general case by providing
examples where no flow-adapted balancing allocation exists. However, some results and
open problems on the existence and construction of flow-adapted balancing allocations
are addressed in Subsection 4.6.
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Stable transports between stationary random measures

The paper is structured as follows. Preliminaries about random measures and
transport kernels are reviewed in Section 2. Since we generalize some works of [3], in
Section 3 we review the idea of the algorithm in [3] as a motivation of our work. Our
main definitions and results are presented in Section 4 and the proofs are postponed
to Section 5. In Subsection 4.1 we define constrained transports. We introduce our
algorithm in Subsection 4.2 and state the shift-coupling and balancing properties in the
random case. In Subsection 4.3 we generalize the notion of stability which is a key tool for
proving the results. Other properties of stable transports are provided in Subsection 4.4.
Voronoi transport kernels are defined in Subsection 4.5. In Subsection 4.6 we study the
existence and constructions of balancing allocations. Finally, some examples are given
in Section 6 which are addressed in the text.

2 Preliminaries

Let G be the Borel σ-field on Rd and Ld be the Lebesgue measure on (Rd,G). We
denote by M the set of all non-negative locally finite measures on (Rd,G), and byM the
smallest σ-field on M such that the mappings µ 7→ µ(B) are measurable for all B ∈ G.
All measures in this paper are assumed to be members of M .

Recall that the complement, the interior and the boundary of a set A are denoted
by Ac, A◦ and ∂A respectively. We denote The identity function on A by 1A. Also, the
closed ball with center x ∈ Rd and radius r is denoted by Br (x).

For a measure ϕ and a non-negative measurable function f : Rd → R, we denote by
fϕ the measure B 7→

∫
B
f(s)ϕ(ds). In this article, by ϕ1 ≥ ϕ2 we mean ϕ1(B) ≥ ϕ2(B)

for all B ∈ G. A weighted transport kernel is a measurable map T : Rd → M . For
simplicity of notation, we denote (T (s)) (B) by T (s,B). Intuitively, we can think of T (s,B)

as the portion of the infinitesimal mass at s transported to the set B. Given measures ϕ
and ψ, T is called non-weighted or Markovian if

T (s,Rd) = 1 for ϕ-almost all s ∈ Rd

and it is called (ϕ,ψ)-balancing if it transports ϕ to ψ; i.e.∫
Rd
T (s, ·)ϕ(ds) = ψ(·).

In this paper, by a transport kernel we mean a non-weighted transport kernel. Being
non-weighted is equivalent to the condition that the total mass transported from a set B,
which is

∫
B
T (s,Rd)ϕ(ds), is equal to ϕ(B). Being (ϕ,ψ)-balancing means that the mass

transported into B is equal to ψ(B). If T is (ϕ,ψ)− balancing transport kernel, then T is
a Markovian kernel which transports ϕ to ψ.

A (ϕ,ψ)-balancing allocation is a transport kernel T such that for ϕ-a.e. s, T (s, ·)
is a Dirac measure δτ(s) and ϕ(τ−1(·)) = ψ(·). See Definition 4.31 for a precise definition
of an allocation. For more details on transport kernels, see [9].

In this work, we fix a measurable space (Ω,F) equipped with a measurable flow
θs : Ω→ Ω for s ∈ Rd; i.e. (ω, s) 7→ θsω is measurable, θ0 is the identity on Ω and

θs ◦ θt = θs+t, ∀s, t ∈ Rd.

With an abuse of notation, we use θs also for natural flows on the space of functions on
Rd or Rd ×Rd, on M , and on the space of weighted transport kernels; i.e.

θsf(x) := f(x+ s),

θsf(x, y) := f(x+ s, y + s),

θsϕ(B) := ϕ(B + s),

θsT (x,B) := T (x+ s,B + s).
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Stable transports between stationary random measures

Using these conventions, a measurable function F from Ω to a flow-equipped space is
called flow-adapted if F (θsω) = θsF (ω). We denote F (ω) by Fω too.

A random measure is a pair (P,Φ), where P is a probability measure on Ω and
Φ : Ω → M is a measurable function. The distribution of (P,Φ) is the push-forward
measure P(Φ−1(·)) on M .

A probability measure P on Ω is stationary if it is invariant under θs for all s in Rd.
A stationary random measure is a random measure (P,Φ) such that P is a stationary
probability measure and Φ is flow-adapted. This implies stationarity in the usual sense,
which is translation-invariance of its distribution; i.e. P [Φ ∈ A] = P [θsΦ ∈ A] for any
A ∈M and s ∈ Rd. Moreover, if (P,Ψ) is another stationary random measure (with the
same P), then Φ and Ψ are jointly stationary in the usual sense; i.e. the distribution of
the pair (Φ,Ψ) is invariant by translations. When there is no ambiguity about P, we may
say that Φ is a stationary random measure in the sense given above. Therefore, when
we mention two stationary random measures without definig the probability measure(s),
they are assumed to be jointly stationary.

A stationary probability measure P on Ω is ergodic if for any event A ∈ F that is
invariant under all θs, we have P(A) ∈ {0, 1}. The stationary random measure (P,Φ) is
ergodic if P is ergodic. It is clear that if Ψ is a measure derived from Φ in a translation-
invariant manner, then stationarity (resp. ergodicity) of (P,Φ) implies stationarity (resp.
ergodicity) of (P,Ψ). For simplicity, we use the term ergodic random measure instead of
ergodic stationary random measure.

Since we deal with random measures in this work, we have two different notions of
‘almost everywhere’; one corresponding to probability and the other corresponding to
the measures on Rd. To avoid confusion, we preserve the phrase almost sure(ly) (or a.s.)
for probability measures on Ω and we use almost everywhere and almost all (denoted by
a.e. and a.a.) for measures on Rd.

Lemma 2.1. Let V ⊆ Rd be a subset that contains arbitrarily large balls. If Φ is a
stationary random measure such that a.s. Φ(Rd) > 0, then a.s. Φ(V ) =∞.

The intensity of a stationary random measure (P,Φ) is the unique constant λ ∈ [0,∞]

such that E [Φ(B)] = λLd(B) for an arbitrary Borel set B ∈ G. If λ is positive and finite,
then the Palm version of (P,Φ) is the random measure (PΦ,Φ) in which

PΦ(A) :=
1

λLd(B)
E

[∫
Rd
1A(θs)1B(s)Φ(ds)

]
, (2.1)

for all A ∈ F , where θs is interpreted as the random element θs(ω) and B is an arbitrary
Borel set B ∈ G with positive and finite Lebesgue measure. Note that Φ stays the same
and only the probability measure is changed. It can be shown that stationarity implies
that this definition is independent of the choice of B and formalizes the intuition of the
Palm distribution given in the introduction. The above equation is equivalent to the fact
that

EΦ [H] =
1

λLd(B)
E

[∫
Rd
H(θs)1B(s)Φ(ds)

]
(2.2)

for all non-negative measurable functions H : Ω → R, where EΦ is expectation with
respect to PΦ. By this equation, we can think of EΦ [H] as averaging H(θsω) over the
points s ∈ B and ω ∈ Ω.

The refined Campbell theorem states that for all non-negative measurable functions
H : Ω×Rd → R,

λEΦ

[∫
H(θ0, s)ds

]
= E

[∫
H(θs, s)Φ(ds)

]
, (2.3)
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Stable transports between stationary random measures

where ds is a short form of Ld(ds). If (P,Ψ) is also a stationary random measure on the
same space, we have Neveu’s exchange formula

λΦEΦ

[∫
H(θ0, s)Ψ(ds)

]
= λΨEΨ

[∫
H(θs,−s)Φ(ds)

]
, (2.4)

where λΦ and λΨ are the intensities of Φ and Ψ respectively. Interested readers may refer
to [12], sections 3.3 and 3.4, for more details on the properties of Palm distributions.

A shift-coupling of random measures (P1,Φ1) and (P2,Φ2) is a random vector Y
(possibly on an extension of Ω) such that (P1, θY (Φ1)) has the same distribution as
(P2,Φ2). Note that this provides a coupling of the distributions of the two random
measures such that they are a translated version of each other in every realization. The
necessary and sufficient condition for the existence of a shift-coupling is proved in [13] in
a more general setting. However, the proof in [13] is non-constructive (See Theorem 4.9).
Shift-couplings are of special interest in the case that (P1,Φ1) is a stationary random
measure and (P2,Φ2) is its Palm version. They can be used to construct the Palm version
of a random measure or to reconstruct the random measure from its Palm version by a
random translation (see Theorem 4.9). In particular, when Φ1 is a simple point process,
Y is a called an extra head scheme for Φ1 in [5]. The name comes from the fact that if
Φ1 is the point process on Zd formed by the heads in i.i.d. coin tosses (resp. the Poisson
point process), then by shifting Y to the origin we get the same thing (in distribution) as
placing a head (resp. point) on the origin.

3 Motivation: extra head scheme for a point process

To understand the idea behind the definitions in this paper, it is helpful to recall
the novel algorithm of [3] (Algorithm 3.1) which we will generalize. This algorithm is
inspired by the stable marriage algorithm of Gale and Shapley in bipartite graphs ([2])
and appears to be the first generalization to a continuum setting. The main goal in the
paper is to construct a translation-invariant balancing allocation between the Lebesgue
measure and a realization of an ergodic stationary simple point process in Rd.

Let Ξ be a discrete subset of Rd. By sites and centers we mean the points of Rd and
Ξ respectively. The idea of the following algorithm is that each site and each center
prefer to be allocated as close as possible. Forget the sites that are equidistant from two
or more centers.

Algorithm 3.1. For each natural number n, stage n consists of the following two parts:

(a) Each site x applies to the closest center to x which has not rejected x at any earlier
stage.

(b) For each center ξ, Let A (which depends on n and ξ) be the set of sites which
applied to ξ in the previous step. Let B be the smallest ball centered at ξ such that
L(A ∩B) ≥ 1. Then ξ rejects the sites in A\B.

Easily seen, each site x either is rejected by all centers or for some center ξ, x applies to
ξ and is never rejected for sufficiently large n. In the first case let τ(x) =∞ (where∞ is
treated as a single point added to the space whose distance to every other point is∞)
and in the second case let τ(x) := ξ.

It is proved in [3] that the function τ defined in this algorithm is stable in a sense that
is a generalization of stable matchings, which is, roughly speaking, there are no sites
x1 and x2 such that |x1 − τ(x2)| < min{|x1 − τ(x1)| , |x2 − τ(x2)|} (see Definition 4.32 for
the exact definition). An interesting theorem in [3] is that if Ψ is an ergodic simple
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point process in Rd with intensity 1, then almost surely the (random) function τ defined
in Algorithm 3.1 for the discrete set Ψω defines a balancing allocation between the
Lebesgue measure and Ψ; i.e. almost surely τ is defined for almost every site and
L(τ−1(ξ)) = 1 for all centers ξ.

One can try to apply Algorithm 3.1 to find an allocation for two arbitrary measures ϕ
and ψ (instead of the Lebesgue measure and a counting measure). For example, let them
be the Lebesgue measure restricted on (−∞, 0] and [0,∞) respectively. The sites and the
centers are the points in the supports of ϕ and ψ respectively. In the first step, all sites
apply to center 0, but the next steps are vague. Same issue may happen in the stationary
case. If we consider the allocation as a transport kernel T (x, ·) := δτ(x), our idea is to
force the infinitesimal mass at every point to be spreaded instead of being transported
to a single point. To do so, We will force an upper bound on the measure T (x, ·). Since
x wants to apply to the support of ψ, a natural upper bound is T (x,B) ≤ ψ(B). This
justifies the choice of the name ‘constrained’ (see definitions 4.1 and 4.2). The above
example will be addressed in Example 6.8.

4 Definitions and main results

4.1 Constrained transport kernels and constrained transport densities

Let ϕ and ψ be given locally finite non-negative Borel measures on Rd.

Definition 4.1. A weighted transport kernel T is called ψ-constrained if T (x, ·) ≤ ψ for
all x ∈ Rd.

As we will see in Subsection 4.6, a (ϕ,ψ)-balancing ψ-constrained transport kernel
cannot be an allocation except maybe when ψ is discrete.

Since T (x, ·) is absolutely continuous w.r.t. ψ for any x, we will work with its Radon-
Nykodim derivative. The following definition and Remark 4.3 establish the setup in a
measurable way.

Definition 4.2. A non-negative measurable function f(x, ξ) on Rd ×Rd is called a sub-
balancing transport density (given ϕ and ψ) if∫

Rd
f(x, ξ)ψ(dξ) ≤ 1, ∀x ∈ Rd,∫

Rd
f(x, ξ)ϕ(dx) ≤ 1, ∀ξ ∈ Rd.

We call f balancing if equality happens for ϕ-a.e. x and ψ-a.e. ξ. Furthermore, f is
called constrained if it is sub-balancing and f(x, ξ) ≤ 1 for every (x, ξ) ∈ Rd ×Rd.
Remark 4.3. A constrained transport density f defines a ψ-constrained weighted trans-
port kernel via

T (x,B) :=

∫
B

f(x, ξ)ψ(dξ). (4.1)

f(x, ξ) can be thought as the infinitesimal mass going from x to ξ. If f is balancing,
then T is a (ϕ,ψ)-balancing transport kernel. Conversely, If T is a (ϕ,ψ)-balancing ψ-
constrained transport kernel, then (a suitable version of) the Radon-Nykodim derivative
of the measure on Rd ×Rd defined as (A×B) 7→

∫
A
T (x,B)ϕ(dx), with respect to ϕ⊗ ψ,

is a balancing constrained transport density. Hence, we might think of f as the density
of T w.r.t. ψ. Similar correspondence holds in the random case.

Note that the definition of constrained transport densities depends on both ϕ and ψ,
but we don’t use a prefix for simplicity. The notion of balancing constrained transport
densities is a special case of capacity constrained transport kernels defined in [7]. It can
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be interpreted as there is a transportation capacity between any pair of points. More
explicitly, the total mass going from a set A to a set B is at most ϕ(A)ψ(B).

4.2 Construction of a shift-coupling

Let ϕ,ψ ∈ M be given. Since we have different procedures regarding ϕ and ψ, it
is helpful to use the names sites and centers for points in the supports of ϕ and ψ

respectively, following the terminology of [3]. Imagine we have two copies of Rd, in one
copy, we have sites and measure ϕ and in the other copy we have centers and measure
ψ. Nevertheless, we will measure the distance between a site and a center as if they are
on the same space. We use roman letters for naming sites and Greek letters for naming
centers.

Here is an overview of Algorithm 4.4. The algorithm consists of infinitely many stages
and each stage has two steps. At stage n, each site x0 applies to the closest possible
centers with weight An(x0, ·) : Rd → [0, 1] (tries to construct f(x0, ·)). Then each center
ξ0 rejects some of the weights applied to ξ0 if it has reached its capacity. The amount of
rejection is denoted by Rn(·, ξ0). Note that even if Rn(x0, ξ0) > 0, x0 will still apply to ξ0
at all later stages. The functions An and Rn will be non-decreasing with respect to n.
A heuristic for choosing An and Rn in the algorithm is that the sites prefer to apply to
centers which are as close as possible, in a greedy manner. Similarly, the centers prefer
to reject no portion of the applications of the sites which are as close as possible.

For an illustration of Algorithm 4.4 see Example 6.2. Example 6.1 shows that this
algorithm generalizes the algorithm in [3]. The name site-optimal is justified in Corol-
lary 4.22.

Algorithm 4.4 (site-optimal Gale-Shapley algorithm). Given measures ϕ and ψ on Rd,
let the rejection function be zero at the beginning; i.e. R0(x, ξ) := 0 for all (x, ξ) ∈ Rd×Rd.
For each natural number n, stage n consists of the following steps:

(i) For each site x0, define its application radius at stage n as

an(x0) := sup

{
a :

∫
Ba(x0)

(1−Rn−1(x0, ξ))ψ(dξ) ≤ 1

}
. (4.2)

Define the n-th application function as

An(x0, ξ) :=


1 |x0 − ξ| < an(x0),

cRn−1(x0, ξ) + (1− c) |x0 − ξ| = an(x0),

0 |x0 − ξ| > an(x0),

where c = cn(x0) is the constant in [0, 1] such that we have∫
Rd

(An(x0, ξ)−Rn−1(x0, ξ))ψ(dξ) = 1 if an(x0) <∞ (4.3)

and we let c = 1 (or any arbitrary constant) if an(x0) = ∞ or ψ(∂Ban(x0) (x0)) = 0.
We say x0 applies to the centers with weight An(x0, ·) at stage n.

(ii) For each center ξ0, define its rejection radius at stage n as

rn(ξ0) := sup

{
r :

∫
Br(ξ0)

An(x, ξ0)ϕ(dx) ≤ 1

}
. (4.4)

Define the n-th rejection function as

Rn(x, ξ0) :=


0 |x− ξ0| < rn(ξ0),

c′An(x, ξ0) |x− ξ0| = rn(ξ0),

An(x, ξ0) |x− ξ0| > rn(ξ0),
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where c′ = c′n(ξ0) is the constant in [0, 1] such that we have∫
Rd

(An(x, ξ0)−Rn(x, ξ0))ϕ(dx) = 1 if rn(ξ0) <∞

and we let c′ = 0 if rn(ξ0) = ∞ or ϕ(∂Brn(ξ0) (ξ0)) = 0. We say ξ0 rejects the
application weights according to Rn(·, ξ0) at stage n.

It is shown in the proof of Lemma 4.5 that cn(x0) and c′n(ξ0), which are defined in the
algorithm, exist and are well defined.

Lemma 4.5. In Algorithm 4.4, An, Rn and an are non-decreasing with respect to n, rn is
non-increasing. Moreover, they depend on ϕ and ω in a measurable and flow-adapted
manner.

This lemma allows us to provide the following definitions.

Definition 4.6. In Algorithm 4.4, the (final) application radius, rejection radius, applica-
tion function, rejection function and the site-optimal transport density are defined
as follows

a(x) := lim
n→∞

an(x),

r(ξ) := lim
n→∞

rn(ξ),

A(x, ξ) := lim
n→∞

An(x, ξ),

R(x, ξ) := lim
n→∞

Rn(x, ξ),

fs(x, ξ) := A(x, ξ)−R(x, ξ).

Definition 4.7. The center-optimal Gale-Shapley algorithm for ϕ and ψ is just Algo-
rithm 4.4 for ψ and ϕ; i.e. we swap the roles of sites and centers. The center-optimal
transport density fc is defined similar to Definition 4.6 using the center-optimal Gale-
Shapley algorithm.

Theorem 4.8. Let Φ and Ψ be ergodic random measures on Rd with positive and finite
intensities. If the intensities are equal, then the site-optimal transport density which is
constructed by Algorithm 4.4 is almost surely a balancing constrained transport density.
Therefore, it almost surely gives a flow-adapted (Φω,Ψω)-balancing transport kernel
via (4.1).

According to Theorem 4.8, Algorithm 4.4 answers a question in [9] asking for a
constructive algorithm to find a flow-adapted balancing transport kernel, although the
existence of such a transport kernel is proved to be equivalent to the equality of the
sample intensities in [9], which is granted here by ergodicity.

As a result of Theorem 4.8, one can construct a shift-coupling between an ergodic
random measure and its Palm version as in the following theorem. The key tool for this
construction is the following well-known theorem in the literature.

Theorem 4.9 (Shift-coupling). Let Ψ be an ergodic random measure on Rd with positive
and finite intensity λΨ and let Φ = λΨLd. Let F = Fω(x, ξ) be a flow-adapted function
which is almost surely a balancing transport density for Φω and Ψω; e.g. the site-optimal
transport density for Φω and Ψω.

(i) If Y is a random vector such that its conditional distribution given Ψ is F (0, ·)Ψ,
then Y gives a shift-coupling of Ψ and its Palm version; i.e. θY Ψ has the same
distribution as the Palm version of Ψ.

(ii) On the probability space (Ω,F ,PΨ), if Y is a random vector such that its conditional
distribution given Ψ is F (·, 0)Φ, then the random measure (PΨ, θY Ψ) has the same
distribution as (P,Ψ). In words, θY Ψ is a reconstruction of Ψ from its Palm version.
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Stable transports between stationary random measures

Theorem 4.9 is a direct implication of Theorem 4.1 in [9] (see also Theorem 16 in [5]
for point processes). Nevertheless, we state it for the purpose of this paper. In part (i),
we call the random vector Y an extra head scheme for Ψ with the terminology of [5].
One can also replace F (0, ·)Ψ by T (0, ·), where T is a flow-adapted transport kernel
which is almost surely (Φ,Ψ)-balancing. If moreover T is a balancing allocation that is a
function of Ψ, provided that it exists, then Y will be a deterministic vector conditional
on Ψ. This is called a non-randomized extra head scheme (note that to construct
Y in the general case, one may need extra randomness; i.e. to extend the probability
space) and its existence is proved in the case when Ψ is an ergodic simple point process
in [3] by providing a construction. Algorithm 4.4 is a generalization of that construction.
Although it does not provide a non-randomized extra head scheme in Theorem 4.9, it has
the property that the distribution of Y conditional on Ψ depends only on the realization
of Ψ. We don’t know whether non-randomized extra head schemes always exist for
general random measures or not, as stated in Open Problem 4.40. However, we show
that a flow-adapted balancing allocation may not exist for two general random measures,
as shown in examples 6.6 and 6.7. Some results and open problems about this problem
are provided in Subsection 4.6.

The claim of Theorem 4.9 is similar to the inversion formula ([11], Satz 2.4. See
also [9], (2.6)). This formula recovers the distribution of Ψ from its Palm distribution.
Here, the difference is that the balancing property of F ensures that the recovery can
be done using a shift-coupling as defined in the theorem.

Remark 4.10. In Algorithm 4.4, one could define An(x0, ·) on ∂Ban(x0) (x0) and Rn(·, ξ0)

on ∂Brn(ξ0) (ξ0) in other ways. If this is done such that Lemma 4.5 and Remark 5.1 hold,
then all of our results remain valid.

Remark 4.11. Being stationary is crucial in Theorem 4.14. As an example, Exam-
ple 6.3 shows cases in which the site-optimal transport density is not balancing although
the (non-random) measures in the example may have equal spatial intensities; i.e.
ϕ([−r, r]) ∼ ψ([−r, r]) as r →∞ (see also [3]). As mentioned in [4], it seems difficult to
give a sufficient condition for deterministic discrete sets (and therefore, for measures)
to ensure that the site-optimal transport density is balancing.

4.3 Stability of constrained transport densities

Definition 4.12. Let ϕ,ψ ∈M be given and f be a given constrained transport density.
We say that a site x0 is f-exhausted if∫

Rd
f(x0, ξ)ψ(dξ) = 1

and f-unexhausted otherwise. Similarly, a center ξ0 is f-sated if∫
Rd
f(x, ξ0)ϕ(dx) = 1

and f-unsated otherwise. We say that a site x0, f-desires a center ξ0 if f(x0, ξ0) < 1

and either x0 is f -unexhausted or

∃ξ1 ∈ Rd : |x0 − ξ1| > |x0 − ξ0| and f(x0, ξ1) > 0.

Similarly, we say ξ0, f-desires x0 if f(x0, ξ0) < 1 and either ξ0 is f -unsated or

∃x1 ∈ Rd : |x1 − ξ0| > |x0 − ξ0| and f(x1, ξ0) > 0.

We drop the prefix ’f -’ when there is no confusion. A constrained transport density f
is called stable if there is no (x0, ξ0) ∈ Rd ×Rd such that x0 desires ξ0 and ξ0 desires x0.
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In this definition, each sites prefers the centers according to Euclidean distance
and vice-versa. See examples 6.3 and 6.4 in Section 6 for examples of a stable and an
unstable constrained transport density.

Theorem 4.13 (Stability). The site-optimal transport density is a stable constrained
transport density and depends on ϕ and ω in a measurable and flow-adapted manner.

Theorem 4.14. Let Φ and Ψ be ergodic random measures on Rd with positive and finite
intensities λΦ and λΨ. Let F = Fω(x, ξ) be a flow-adapted function which is almost surely
a stable constrained transport density for Φω and Ψω. Then almost surely

(i) if λΦ = λΨ, then Fω is (Φω,Ψω)-balancing; i.e. the set of unexhausted sites has zero
Φω-measure and the set of unsated centers has zero Ψω-measure.

(ii) if λΦ < λΨ, then there is no unexhausted site but the set of unsated centers has an
infinite Ψω-measure.

(iii) if λΦ > λΨ, then there is no unsated center but the set of unexhausted sites has an
infinite Φω-measure.

Proposition 4.20 quantifies how far the centers (resp. sites) are from being sated
(resp. exhausted) in average in the second (resp. third) case of Theorem 4.14.

Remark 4.15. Theorems 4.8, 4.9 and 4.14 can be extended to stationary non-ergodic
cases. The necessary and sufficient condition on Φ and Ψ is the equality of the sample
intensities limr→∞Φ(Br (0))/L(Br (0)) and limr→∞Ψ(Br (0))/L(Br (0)). This condition
is proved to be necessary and sufficient for the existence of a flow-adapted balancing
transport kernel in Theorem 5.1 in [9]. To do so, we can slightly change the proofs and
use conditional expectation with respect to the invariant sigma-filed (using the ideas
in [9]) or obtain the general versions simply by applying the ergodic decomposition
theorem.

4.4 Other properties of stable constrained transport densities

In this subsection we study monotonicity, optimality, uniqueness and boundedness
of territories of stable constrained transport densities. In general, uniqueness is not
granted in the deterministic case (see [3] for a counter example). The manner of choosing
between equidistant points in Algorithm 4.4 (see Remark 4.10) is another obstacle for
uniqueness; e.g. when ϕ and ψ are measures on Zd. Assumption 4.16 gives a sufficient
condition for uniqueness of the choice in Remark 4.10 for almost all points. However,
we will prove uniqueness of stable constrained transport densities only in the stationary
case in Theorem 4.24. It can be seen that the first condition in Assumption 4.16 means
that, for ϕ-a.e. site x, the boundary of no ball centered at x can be partitioned in two
disjoint sets with positive ψ-measure. This assumption is not difficult to satisfy as shown
by Proposition 4.17.

Assumption 4.16. For ϕ-a.e. site x and ψ-a.e. center ξ, we have

∀r > 0, ∃s ∈ ∂Br (x) : ψ(∂Br (x) \{s}) = 0, (4.5)

∀r > 0, ∃s ∈ ∂Br (ξ) : ϕ(∂Br (ξ) \{s}) = 0. (4.6)

Proposition 4.17. If at least one of ϕ and ψ assigns zero to all spheres and all affine
hyperplanes of Rd; e.g. is absolutely continuous with respect to the Lebesgue measure,
then Assumption 4.16 holds.

The following auxiliary functions measure how far the mass is transported from sites
and to centers, given a sub-balancing transport density f .
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Definition 4.18. Let f be a sub-balancing transport density as in Definition 4.2. For
t ∈ [0,∞] define

ψx(f, t) :=

∫
Rd
f(x, ξ)1|x−ξ|≤tψ(dξ),

ϕξ(f, t) :=

∫
Rd
f(x, ξ)1|x−ξ|≤tϕ(dx).

Remark 4.19. If f(x, ξ) < 1 and ψx(f, |x− ξ|) < 1, then x desires ξ. Similarly, if f(x, ξ) <

1 and ϕξ(f, |x− ξ|) < 1, then ξ desires x. Note that the converse is not true; i.e. x may
desire ξ even if ψx(f, |x− ξ|) = 1 since f(x, ·) can be positive on a ψ-null set that contains
a center farther than ξ to x.

Proposition 4.20. In the setting of Theorem 4.14, one has

lim
r→∞

1

Φ(Br (0))

∫
Br(0)

Ψx(F,∞)Φ(dx) = min{1, λΨ

λΦ
}, a.s.

lim
r→∞

1

Ψ(Br (0))

∫
Br(0)

Φξ(F,∞)Ψ(dξ) = min{1, λΦ

λΨ
}, a.s.

Note that the left hand sides in the above equations are the spatial averages of
Ψx(F,∞) and Φξ(F,∞). This is a measure of how far the sites and the centers are from
being satisfied.

Theorem 4.21 (Monotonicity). Let (ϕ,ψ) and (µ, ν) be two pairs of measures such that
µ ≥ ϕ, ν ≤ ψ and the pair (µ, ψ) satisfies Assumption 4.16. Let f be an arbitrary stable
constrained transport density for (µ, ν) and consider the site-optimal transport density
fs for (ϕ,ψ) together with the functions in Definition 4.6.

(i) We have

f +R ≤ 1, (µ⊗ ψ)-a.e.

(ii) For (µ ⊗ ψ)-a.e. (x, ξ), if x fully applies to ξ, for example if |x− ξ| < a(x), then
f(x, ξ) ≤ fs(x, ξ).

(iii) For µ-a.e. site x we have

νx(f, t) ≤ ψx(fs, t), ∀t ∈ [0,∞].

(iv) For ψ-a.e. center ξ we have

µξ(f, t) ≥ ϕξ(fs, t), ∀t ∈ [0,∞].

Intuitively, it means that when there are less sites and more centers, the situation is
better for sites and worse for centers. The following corollary is immediately obtained
from Theorem 4.21. Note that the inequalities that contain fc are equivalent to the ones
that contain fs as seen by swapping the roles of the sites and the centers.

Corollary 4.22 (Optimality). Suppose ϕ and ψ satisfy Assumption 4.16 and let f be
an arbitrary stable constrained transport density for ϕ and ψ. Let fs and fc be the
site-optimal and the center-optimal transport densities for the same measures.

(i) For ϕ-a.e. site x we have

ψx(fs, t) ≥ ψx(f, t) ≥ ψx(fc, t), ∀t ∈ [0,∞].
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(ii) For ψ-a.e. center ξ we have

ϕξ(fc, t) ≥ ϕξ(f, t) ≥ ϕξ(fs, t), ∀t ∈ [0,∞].

In words, among all stable constrained transport densities, the site-optimal transport
density is the best for sites and the worst for centers. This justifies the names site-optimal
and center-optimal for the Gale-Shapley algorithm.

As mentioned in [4], it seems difficult to express a simple condition in terms of ϕ and
ψ that ensures uniqueness of stable constrained transport densities. But Assumption 4.16
is enough in the stationary case, as shown in Theorem 4.24. The key for proving the
theorem is the following proposition.

Proposition 4.23. With the assumptions of Corollary 4.22, if for ϕ-a.e. site x we have

ψx(fs, t) = ψx(fc, t), ∀t ∈ [0,∞],

then there is a (ϕ⊗ ψ)-a.e. unique stable constrained transport density for ϕ and ψ.

Here, by (ϕ ⊗ ψ)-a.e. unique, we mean that any two stable constrained transport
densities are identical except on a set of zero (ϕ⊗ ψ)-measure.

Theorem 4.24 (Uniqueness). Let Φ and Ψ be stationary random measures on Rd with
positive finite intensities that satisfy Assumption 4.16 almost surely. Almost surely, any
two stable constrained transport densities for Φω and Ψω agree on (Φω ⊗Ψω)-a.a. points.

Here, we mean that there is an event with probability one such that uniqueness holds
on that event.

Given a stable constrained transport density f , the territory of a site x is the set
{ξ ∈ Rd : f(x, ξ) > 0}. Similarly, the territory of a center ξ is the set {x ∈ Rd : f(x, ξ) >

0}.
Theorem 4.25 (Boundedness). Let Φ and Ψ be stationary random measures on Rd which
are almost surely non-zero and have finite intensities. Let F = Fω(x, ξ) be a flow-adapted
stable constrained transport density for (Φ,Ψ). Almost surely we have

(i) Φω-a.a. sites and Ψω-a.a. centers have bounded territories.

(ii) The union of the territories of the sites (resp. centers) in a bounded set, has finite
Ψ-measure (resp. finite Φ-measure).

4.5 Voronoi transport kernel corresponding to a measure

In this subsection, we generalize the notion of Voronoi tessellation and define it for a
measure. We will use it only for proving Theorem 4.25 here, but it can be interesting in
its own.

Definition 4.26. Let ψ be a measure on Rd such that ψ(Rd) ≥ 1. For x0 ∈ Rd define

s(x0) := sup{s ∈ R : ψ(Bs (x0)) ≤ 1}.

For x0, ξ ∈ Rd define

v(x0, ξ) :=


1, |x0 − ξ| < s(x0),

c, |x0 − ξ| = s(x0),

0, |x0 − ξ| > s(x0),

where c is the constant in [0, 1] such that
∫
v(x0, ξ)ψ(dξ) = 1. We let c = 1 if s(x0) =∞

or ψ(∂Bs(x0) (x0)) = 0. The Voronoi transport density and the Voronoi transport
kernel with respect to ψ are the function v and the transport kernel V (x, ·) := v(x, ·)ψ
respectively. The Voronoi territory of center ξ with respect to ψ is the set {x ∈ Rd :

v(x, ξ) > 0}.
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Note that the Voronoi transport density is the same as the function A1 in Algo-
rithm 4.4.

Remark 4.27. The condition ψ(Rd) ≥ 1 ensures that the Voronoi transport kernel is a
non-weighted transport kernel. If ψ is the counting measure on a discrete set Ξ, then the
Voronoi territories with respect to ψ give the usual Voronoi tessellation of Ξ. Therefore,
the notion of Voronoi transport kernel generalizes the notion of Voronoi tessellation.

Remark 4.28. It is easy to see that x is in the Voronoi territory of ξ if and only if
ψ(B◦|x−ξ| (x)) ≤ 1 and if equality happens, then ψ(∂B|x−ξ| (x)) = 0.

Lemma 4.29. The Voronoi territory of ξ is star-shaped with center ξ but not necessarily
convex or closed. Moreover, it is a closed polyhedral region in Rd provided that ψ has a
discrete support.

Proposition 4.30. If every half-space has infinite ψ-measure, then all Voronoi territories
with respect to ψ are bounded. In particular, if Ψ is a stationary random measure which
is almost surely non-zero, then almost surely all Voronoi territories with respect to Ψ are
bounded.

4.6 On allocations

As explained in the introduction, a problem of special interest is constructing flow-
adapted balancing allocations. But since a ψ-constrained weighted transport kernel T
satisfies T ≤ ψ (as in Definition 4.1), a balancing ψ-constrained transport kernel cannot
be an allocation except maybe when ψ is a discrete measure. The reason is, if B is a
set of centers such that 0 < ψ(B) < 1 (which exists in the non-discrete case), then on
a set of sites with positive measure (under ϕ) we have T (x,B) > 0. On the other hand,
T (x,B) < 1 and so T (x, ·) is not a Dirac measure. However, we will see that under some
conditions in the case when ψ is a counting measure, the site-optimal transport density
is guarantied to give an allocation.

Motivating from [3] and Definition 4.12, we define

Definition 4.31. Given ϕ,ψ ∈ M , an allocation is a measurable function τ : D →
Rd ∪ {∞}, where D ⊆ Rd is a measurable set such that ϕ(Dc) = 0 and∞ is treated as
a single point added to the space. This can be regarded a weighted transport kernel
that transports the mass at s to a single point τ(s); i.e. define T (s, ·) to be δτ(s) whenever
s 6∈ D ∪ τ−1(∞) and zero otherwise. This allocation is (ϕ,ψ)-balancing if τ 6= ∞, ϕ-a.e.
and ϕ(τ−1(·)) = ψ(·).
Definition 4.32. Given measures ϕ and ψ on Rd, let τ be an allocation defined on a
domain D ⊆ supp(ϕ) with ϕ(Dc) = 0. We say τ is sub-balancing when ϕ(τ−1(B)) ≤
ψ(B) for all B ∈ G; i.e. τ∗(ϕ|D) ≤ ψ. Given a sub-balancing allocation τ , a site x0 ∈ D
is exhausted when τ(x0) 6=∞ and unexhausted when τ(x0) =∞. A center ξ0 is sated
when it is not in the support of the measure ψ − τ∗(ϕ|D). we say a site x0 desires a
center ξ0 when either x0 is unexhausted or |x0 − τ(x0)|> |x0 − ξ0|. We say ξ0 desires
x0 if τ(x0) 6= ξ0 and either ξ0 is unsated or there is a sites x1 s.th. τ(x1) = ξ0 and
|x1 − ξ0| > |x0 − ξ0|. We say that a sub-balancing allocation is stable if there is no pair
(x0, ξ0) such that both desire each other.

A similar notion of one-sided stable allocations in dimension one is also defined in [8].
The authors construct a balancing stable allocation (in that sense) between two ergodic
stationary and mutually singular diffuse (i.e. without atom) random measures on R.

Proposition 4.33. In the following cases the site-optimal transport density is {0, 1}-
valued on (ϕ⊗ ψ)-a.e. points.

(i) when both ϕ and ψ are absolutely continuous w.r.t. L,
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(ii) when one of ϕ and ψ is absolutely continuous w.r.t. L and the other is a counting
measure,

(iii) when both ϕ and ψ are counting measures and Assumption 4.16 holds.

We skip the proof of Proposition 4.33. For a proof, it is easy to use induction to show
that the functions in Algorithm 4.4 are {0, 1}-valued a.e.

Remark 4.34. In the case that each one of ϕ and ψ is either a diffuse (i.e. without
atom) measure or a counting measure (not necessarily satisfying Assumption 4.16),
Algorithm 4.4 can be slightly changed to find a {0, 1}-valued stable constrained transport
density. It is enough to re-define the functions An(x0, ·) and Rn(·, ξ0) on ∂Ban(x0) (x0)

and ∂Brn(ξ0) (ξ0) for example using the lexicographic order on the boundary of the balls
(see Remark 4.10).

Proposition 4.35. A constrained transport density which is {0, 1}-valued on (ϕ ⊗ ψ)-
a.e. points gives an allocation provided that ψ is a counting measure. Therefore, by
Remark 4.34, for the existence (and construction) of stable allocations it is enough that

(i) ϕ is diffuse and ψ is a counting measure,

(ii) or both ϕ and ψ are counting measures.

Here, by ‘gives an allocation’ we mean that the weighted transport kernel given by
Remark 4.3 coincides with an allocation on almost all sites.

Remark 4.36. When ψ is a measure with discrete support ψ =
∑∞
i=1 wiδξi and ϕ

is diffuse, we can slightly change Algorithm 4.4 to obtain a stable allocation. We
limit ourselves to ψ̄-constrained transport kernels, where ψ̄ =

∑∞
i=1 δξi is the counting

measure with the same support as ψ. Equivalently, f(x, ξi) ≤ 1
wi

for defining constrained
transport densities. We then change the definition of An and an in Algorithm 4.4 in a
similar manner. We similarly get the following proposition.

Proposition 4.37. Suppose Φ is a diffuse random measure and Ψ is a random measure
whose support is a.s. discrete in the setting of Theorem 4.8. One can construct an
allocation which is almost surely stable and (Φ,Ψ)-balancing.

We finish this section with two open problems.

Open Problem 4.38. Does there exist a stable allocation for any two measures ϕ and
ψ on Rd provided that ϕ is absolutely continuous with respect to the Lebesgue measure?

If a stable allocation exists and can be chosen as a measurable flow-adapted function
of (ϕ,ψ), then it leads to a solution of the following questions in a way similar to
theorems 4.9 and 4.14.

Open Problem 4.39. Let Φ and Ψ be ergodic random measures on Rd with equal
positive and finite intensities. Assume Φ is almost surely absolutely continuous with
respect to the Lebesgue measure. Does there always exist a flow-adapted allocation
which is almost surely (Φ,Ψ)-balancing?

Open Problem 4.40. Does there exists a non-randomized extra head scheme for any
ergodic random measure on Rd with a positive and finite intensity?

5 Proofs

Proof of Lemma 2.1. Assume P[Φ(V ) < ∞] = 2δ > 0 an let ε > 0 be arbitrary. This
implies that there exists R > 0 such that P[Φ(V \BR(0)) < ε] > δ. For a given r > 0,
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let B̃r ⊆ V \BR(0) be a ball with radius r, which exists by the assumption on V . By
stationarity we get

P[Φ(Br(0)) < ε] = P[Φ(B̃r) < ε] ≥ P[Φ(V \BR(0)) < ε] > δ.

By letting r →∞ we get P[Φ(Rd) ≤ ε] ≥ δ. Since ε is arbitrary, this gives P[Φ(Rd) = 0] ≥
δ, a contradiction.

Remark 5.1. By the definition of An we have∫
Rd

(An(x0, ξ)−Rn−1(x0, ξ))ψ(dξ) ≤ 1

and if an(x0) <∞, equality holds. Moreover, if ψ has infinite total mass, then one can
prove by induction that an(·) <∞ for all n. Similarly, by the definition of Rn we have∫

Rd
(An(x, ξ0)−Rn(x, ξ0))ϕ(dx) ≤ 1

and if rn(ξ0) < ∞, equality holds. Moreover, if equality holds at some stage n, then it
holds at all later stages; i.e. ξ0 is sated at stage n afterwards.

Proof of Lemma 4.5. It is clear that R1 ≥ R0. For n ≥ 2, assume Rn−1 ≥ Rn−2. We will
conclude an ≥ an−1, An ≥ An−1, rn ≤ rn−1 and Rn ≥ Rn−1, which proves the claim by
induction. By the same induction, it is easily proved that the functions depend on ϕ and
ψ in a measurable and flow-adapted manner.

Since 1−Rn−1 ≤ 1−Rn−2, (4.2) gives an(x0) ≥ an−1(x0). If we have an(x0) > an−1(x0)

or an(x0) =∞, then it is clear from the definition of An that An(x0, ·) ≥ An−1(x0, ·). Now,
suppose an(x0) = an−1(x0) =: t <∞. By (4.2) and (4.3) we get

cn(x0) = 1−
1−

∫
B◦

(1−Rn−1(x0, ξ))ψ(dξ)∫
∂B

(1−Rn−1(x0, ξ))ψ(dξ)
,

where B = Bt (x0) and 0
0 = 0 by convention. This equation and the fact that Rn−1 ≥ Rn−2

implies cn(x0) ≤ cn−1(x0) and hence An(x0, ·) ≥ An−1(x0, ·). Given An ≥ An−1, (4.4)
implies rn(ξ0) ≤ rn−1(ξ0). The proof of the fact that rn ≤ rn−1 implies Rn ≥ Rn−1 is
completely similar to the above proof.

Lemma 5.2. In the site-optimal transport density, if a site x0 desires a center ξ0, then
An(x0, ξ0) = 1 for sufficiently large n. Similarly, if ξ0 desires x0 then Rn(x0, ξ0) = 0 for
all n.

Proof. Suppose x0 desire ξ0. If there is a center ξ1 such that |ξ1 − x0| > |ξ0 − x0| and
f(x0, ξ1) > 0, then x0 has applied to ξ1 and so it has applied to all points closer than
ξ1 with weight 1. Hence x0 has applied to ξ0 with weight 1. In the other case, x0 is
unexhausted. It is enough to prove that an(x0) > |x0 − ξ0| for sufficiently large n. If this
is not true, an(x0) <∞ for all n and Remark 5.1 gives∫

Rd
(An(x0, ξ)−Rn−1(x0, ξ))ψ(dξ) = 1.

Since an(x0) < |x0 − ξ0|, An(x0, ·) − Rn−1(x0, ·) is bounded by 1B|x0−ξ0|(x0), which is
integrable with respect to ψ due to locally finiteness of ψ. So, Lebesgue’s dominated
convergence theorem gives

∫
Rd
fs(x0, ξ)ψ(dξ) = 1; i.e. x0 is exhausted, a contradiction.

Now, suppose that ξ0 desires x0. If ξ0 is unsated, then it has not rejected any weights.
So suppose there is a site x1 such that |x1 − ξ0| > |x0 − ξ0| and f(x1, ξ0) > 0. Therefore
rn(ξ0) ≥ |x1 − ξ0| for all n, or else ξ0 would fully reject x1 at all stages after stage n since
the rejection radius is non-increasing. Thus rn(ξ0) > |x0 − ξ0| for all n and so ξ0 has not
rejected any application weight of x0.
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Proof of Theorem 4.13. Let fs be the site-optimal transport density. By Lemma 4.5 we
get that fs depends on ϕ and ψ in a measurable and flow-adapted manner. We have

fs = lim
n→∞

An −Rn−1 = lim
n→∞

An −Rn.

Moreover, An ≥ Rn−1 and An ≥ Rn. By Remark 5.1 and Fato’s lemma, it follows that fs
is a sub-balancing transport density. Also, fs is constrained since fs ≤ 1. Now, suppose
that fs is unstable. So we can find a site x0 and a center ξ0 that desire each other. By
Lemma 5.2 we get that An(x0, ξ0) = 1 and Rn(x0, ξ0) = 0 for sufficiently large n. So
fs(x0, ξ0) = 1− 0 = 1, a contradiction.

Lemma 5.3. Let f be any stable constrained transport density for ϕ and ψ as in Defini-
tion 4.12. Let X ′ be the set of unexhausted sites and Ξ′ be the set of unsated centers.
If X ′ 6= ∅, then ψ(Ξ′) < 1 and if Ξ′ 6= ∅, then ϕ(X ′) < 1. In particular, we have either
ϕ(X ′) < 1 or ψ(Ξ′) < 1.

Proof. First, suppose X ′ 6= ∅ and ψ(Ξ′) ≥ 1. Let x0 ∈ X ′. Since x0 is unexhausted and
ψ(Ξ′) ≥ 1, we find a point ξ0 ∈ Ξ′ such that f(x0, ξ0) < 1. Now (x0, ξ0) is an unstable
pair since x0 is unexhausted and ξ0 is unsated, a contradiction. Similarly, if Ξ′ 6= ∅ we
conclude that ϕ(X0) < 1, which completes the proof.

Note that it is possible that both X ′ and Ξ′ in Lemma 5.3 have positive measure, as
shown in Example 6.2.

Lemma 5.4. Let Φ and Ψ be stationary random measures on Rd satisfying the assump-
tions of Theorem 4.14. For any flow-adapted sub-balancing transport density F we
have

λΦEΦ [Ψ0(F, t)] = λΨEΨ

[
Φ0(F, t)

]
. (5.1)

Intuitively, this means that the average mass that is transported to a typical center
from the sites of distance at most t is equal to the mass that is transported from a typical
site to the centers of distance at most t. This is a version of mass transport principles. A
more general equation can be found in [9].

Proof. Let H(ω, s) := Fω(0, s)1|s|<t. By Neveu’s exchange formula (2.4) we get

λΦEΦ [Ψ0(F, t)] = λΦEΦ

[∫
Rd
Fθ0(0, s)1|s|<tΨ(ds)

]
= λΨEΨ

[∫
Rd
Fθs(0,−s)1|−s|<tΦ(ds)

]
= λΨEΨ

[∫
Rd
Fθ0(s, 0)1|s|<tΦ(ds)

]
= λΨEΨ

[
Φ0(F, t)

]
.

Proof of Theorem 4.14. Let Φ1 and Ψ1 be the restrictions of Φ and Ψ to the set of
unexhausted sites and unsated centers respectively. Since F is flow-adapted, Φ1 and Ψ1

are also ergodic random measures. Using Definition 4.18, define

Ux(F ) := 1−Ψx(F,∞),

Uξ(F ) := 1− Φξ(F,∞).

By Lemma 5.4 for t =∞ we get

λΦEΦ [1− U0(F )] = λΨEΨ

[
1− U0(F )

]
.
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Thus
λΦEΦ [U0(F )]− λΨEΨ

[
U0(F )

]
= λΦ − λΨ. (5.2)

By (2.2), if B is a cube in Rd, then we have

λΦEΦ [U0(F )] =
1

Ld(B)
E

[∫
B

U0(Fθs)Φ(ds)

]
=

1

Ld(B)
E

[∫
B

Us(F )Φ(ds)

]
=

1

Ld(B)
E

[∫
B

Us(F )Φ1(ds)

]
,

where the last equality is due to the fact that Φ1 = 1{Us(F )>0}Φ. Since Us(F ) is bounded
and Φ1 is ergodic, we get that{

EΦ [U0(F )] = 0 ⇔ E [Φ1(B)] = 0⇔ Φ1(Rd) = 0, a.s.

EΦ [U0(F )] > 0 ⇔ E [Φ1(B)] > 0⇔ Φ1(Rd) =∞, a.s.
(5.3)

Similarly, {
EΨ

[
U0(F )

]
= 0 ⇔ E [Ψ1(B)] = 0⇔ Ψ1(Rd) = 0, a.s.

EΨ

[
U0(F )

]
> 0 ⇔ E [Ψ1(B)] > 0⇔ Ψ1(Rd) =∞, a.s.

(5.4)

Since F is stable almost surely, Lemma 5.3 gives that, almost surely, either Φ1(Rd) <∞
or Ψ1(Rd) < ∞. By ergodicity, either Φ1(Rd) < ∞ a.s. or Ψ1(Rd) < ∞ a.s. Hence,
according to (5.3) and (5.4), either EΦ [U0(F )] = 0 or EΨ

[
U0(F )

]
= 0. If we substitute

this in (5.2), we get  EΦ [U0(F )] = max{0, 1− λΨ

λΦ
},

EΨ

[
U0(F )

]
= max{0, 1− λΦ

λΨ
}.

(5.5)

These equalities, (5.3) and (5.4) complete the proof.

Proof of Theorem 4.8. By Lemma 4.5, the site-optimal transport density for Φ and Ψ

gives a flow-adapted transport kernel. Moreover, it is a stable constrained transport
density by Theorem 4.13. Now the theorem is a direct consequence of part (i) of
Theorem 4.14.

Proof of Theorem 4.9. Let H be any measurable function on M . Since PΦ = P, it is a
direct consequence of Corollary 4.7 in [9] that EΨ [H(Ψ)] = E [H(θY Ψ)] in case (i) and
EΨ [H(θY Ψ)] = E [H(Ψ)] in case (ii). This finishes the proof. In fact, case (i) is just
Example 4.8 in [9].

Proof of Proposition 4.17. Suppose ϕ assigns zero to all spheres and all affine hyper-
planes. So ϕ(∂B) = 0 for every ball B. Thus, (4.6) holds for all ξ. For 0 ≤ k < d,
by a k-dimensional sphere, we mean the intersection of the boundary of a ball with a
non-tangent affine subspace of dimension k + 1. We call a k-dimensional sphere S bad if
ψ(S\{s}) > 0 for every point s. A bad sphere is called minimal if it contains no other bad
spheres of lower dimension as a subset. If (4.5) fails for a site x, then x is equidistant
from the points of a minimal bad sphere. Since the set of points that are equidistant
from all points of a sphere is a proper affine subspace of Rd, it suffices to show that
there exist only a countable number of minimal bad spheres.

Let T be the set of atoms of ψ, which is countable due to locally finiteness of ψ.
zero-dimensional bad spheres are just pairs of atoms and so they are countable. Also, a
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positive-dimensional minimal bad sphere S contains at most one atom and so ψ(S\T ) > 0.
Suppose there are an uncountable number of minimal bad spheres. So, there exist R > 0

and ε > 0 such that there are infinitely many minimal bad spheres Si, i ∈ N such that
Si ⊆ BR (0) and ψ(Si\T ) > ε. For i 6= j, since Si ∩ Sj is not a bad sphere, we have
ψ ((Si\T ) ∩ (Sj\T )) = 0. Therefore ψ(BR (0)) ≥

∑
i ψ(Si\T ) =∞, a contradiction.

Proof of Proposition 4.20. The claim is a direct consequence of (5.5) and Birkhoff’s
theorem.

Proof of Theorem 4.21. (i) Suppose the statement is false and let n be the first stage that
f(x, ξ) +Rn(x, ξ) > 1 for a positive (µ⊗ ψ)-measure of pairs (x, ξ). By Fubini’s theorem
and Assumption 4.16 for µ and ψ we can find a set Ξ1 with ψ(Ξ1) > 0 such that for each
center ξ0 ∈ Ξ1, the set

T := Tξ0 :={x : f(x, ξ0) +Rn(x, ξ0) > 1}

has positive µ-measure and

∀r > 0,∃s ∈ ∂Br (ξ0) : µ(∂Br (ξ0) \{s}) = 0. (5.6)

By the definition of T , we have Rn(x, ξ0) > 1− f(x, ξ0) ≥ 0 for x ∈ T . So ξ0 has rejected
some weight from all sites in T at stage n and so ξ0 is sated at that stage. Thus, if we let
B := Bξ0 :=Brn(ξ0) (ξ0), we have∫

B

An(x, ξ0)−Rn(x, ξ0)ϕ(dx) = 1 (5.7)

and moreover, T is disjoint from the interior of B. Since
∫
Rd
f(x, ξ0)µ(dx) ≤ 1 and

µ ≥ ϕ, (5.7) gives ∫
B

[An −Rn − f ](x, ξ0)ϕ(dx) ≥ 0. (5.8)

Lemma 5.5. There is a subset B′ξ0 ⊆ B with positive ϕ-measure such that for all x ∈ B′ξ0
we have

(a) [An −Rn − f ](x, ξ0) > 0,

(b) x is closer than some point in T to ξ0.

To prove the lemma, we consider three cases. Note that if µ is absolutely continuous
w.r.t. the Lebesgue measure, then only the first case happens.

Case 1. Suppose µ(T ∩ ∂B) = 0 and thus µ(T\B) > 0. Since µ(T ) > 0 and f(x, ξ0) >

1−Rn(x, ξ0) ≥ 0 for all x ∈ T , we have
∫
T
f(x, ξ0)µ(dx) > 0. Thus, by the assumption of

this case, ∫
B

f(x, ξ0)µ(dx) ≤ 1−
∫
T

f(x, ξ0)µ(dx) < 1.

Therefore, the inequality in (5.8) is strict. Thus, the integrand is positive on a set with
non-zero ϕ-measure, which is the desired set.

Case 2. Suppose µ(T ∩ ∂B) > 0 but ϕ(T ∩ ∂B) = 0. By (5.6) we get µ(∂B\T ) = 0 and
thus ϕ(∂B\T ) = 0. So ϕ(∂B) = 0 and we can replace B by B◦ in (5.7) and (5.8). The
rest of the argument is similar to the previous case since B◦ ∩ T = ∅.

Case 3. Suppose ϕ(T ∩ ∂B) > 0. Since f +Rn > 1 on T × {ξ0}, we have∫
T∩∂B

[An −Rn − f ](x, ξ0)ϕ(dx) < 0.
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On the other hand, (5.6) gives ϕ(∂B\T ) = 0. Now (5.8) gives∫
B◦

[An −Rn − f ](x, ξ0)ϕ(dx) > 0.

So the integrand is positive on a set with positive ϕ-measure, which is the desired set.
This completes the proof of Lemma 5.5.

For x ∈ B′ξ0 , part (a) of Lemma 5.5 implies f(x, ξ0) < 1. By the definition of T we get
f(·, ξ0) > 0 on T . So ξ0, f -desires x because of part (b) of Lemma 5.5; i.e. it desires all
sites in B′ξ0 .

By Fubini’s theorem for the set {(x, ξ) : ξ ∈ Ξ1, x ∈ B′ξ} and Assumption 4.16 for µ
and ψ we get that there is a site x0 such that the set

Ξ2 := {ξ ∈ Ξ1 : x0 ∈ B′ξ}

has positive ψ-measure and

∀r > 0,∃s ∈ ∂Br (x0) : ψ(∂Br (x0) \{s}) = 0. (5.9)

Note that our construction of B′ξ0 is given in terms of some inequalities. So the above set
is measurable and Fubini’s theorem is valid. Let B1 be the smallest closed ball centered
at x0 (with possibly infinite radius) that contains Ξ2. Part (a) of Lemma 5.5 implies

1−Rn−1(x0, ξ) ≥ [An −Rn−1](x0, ξ) (5.10)

≥ [An −Rn](x0, ξ)

> f(x0, ξ) ≥ 0, ∀ξ ∈ Ξ2.

As a result, x0 has applied to all centers in Ξ2 at stage n. Therefore, An(x0, ·) ≡ 1 on
B◦1 . Furthermore, by the choice of n we could choose x0 such that ψ-a.e. we have
f(x0, ·) +Rn−1(x0, ·) ≤ 1. Thus

[An −Rn−1](x0, ·) ≥ f(x0, ·) on B◦1 . (5.11)

If ψ(Ξ2 ∩B◦1) > 0, (5.10) and (5.11) give∫
B◦1

f(x0, ξ)ν(dξ) <

∫
B◦1

[An −Rn−1](x0, ξ)ψ(dξ) ≤ 1,

where the second inequality is due to the definition of An. Therefore, by Remark 4.19
we get that x0, f -desires the centers in Ξ2 ∩ B◦1 . This gives an unstable pair for f , a
contradiction. So suppose ψ(Ξ2 ∩ B◦1) = 0. We should have ψ(Ξ2 ∩ ∂B1) > 0. But (5.9)
gives ψ(∂B1\Ξ2) = 0 and as before we get∫

B1

f(x0, ξ)ν(dξ) <

∫
B1

[An −Rn−1](x0, ξ)ψ(dξ) ≤ 1.

So x0, f -desires the centers in Ξ2 ∩ ∂B1, a contradiction.
(ii) If x fully applies to ξ, i.e. A(x, ξ) = 1, then we have fs(x, ξ) = 1 − R(x, ξ) by the

definition of fs. Hence, the claim is a direct consequence of (i).
(iii) Let X be the set of sites x such that for ψ-a.e. ξ the claim of (ii) holds for (x, ξ).

By (ii) we have µ(Xc) = 0. We prove that all sites in X satisfy the claim of (iii). Suppose
x0 ∈ X and νx0(f, t) > ψx0(fs, t). Therefore, ψx0(fs, t) < 1. It follows that either x0 is
fs-unexhausted or fs(x0, ·) is positive somewhere outside Bt (x0). Since fs is obtained
by the site-optimal Gale-Shapley algorithm, in both cases x0 has applied to all centers
in Bt (x0) with weight 1 (for the first case use Lemma 5.2 and for the second case
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note that x0 has applied to some center outside the ball). The definition of X implies
that f(x0, ·) ≤ fs(x0, ·), ψ-a.e. on Bt (x0). Since ν ≤ ψ, we get νx0

(f, t) ≤ ψx0
(fs, t), a

contradiction.
(iv) By the right-continuity of µξ(f, ·) and ϕξ(fs, ·), it is enough to prove the claim for

rational t. If this doesn’t hold, we can find t ∈ [0,∞] and S ⊆ Rd such that ψ(S) > 0 and
µξ(f, t) < ϕξ(fs, t) for all ξ ∈ S. For arbitrary ξ0 ∈ S, since µ ≥ ϕ, the set of sites

Tξ0 := {x ∈ Bt (ξ0) : f(x, ξ0) < fs(x, ξ0)}

has positive µ-measure. Moreover, we have µξ0(f, t) < 1 and f(·, ξ0) < 1 on Tξ0 . Therefore,
Remark 4.19 gives that ξ0, f -desires all points of Tξ0 . We will show that ξ0 can be chosen
such that some point of Tξ0 also f -desires ξ0 and contradiction follows.

Assumption 4.16 for µ and ψ, (ii) and Fubini’s theorem on {(x, ξ) : ξ ∈ S, x ∈ Tξ}
(which is measurable) imply that there exists a site x0 such that

(a) (5.9) holds,

(b) statement (ii) is valid for x = x0 and ψ-a.e. ξ,

(c) ψ(C) > 0, where C = {ξ ∈ S : x0 ∈ Tξ}.

In fact, these conditions are satisfied by µ-a.e. x0. Consider the smallest ball B centered
at x0 (possibly with infinite radius) that contains C. Since fs(x0, ·) > f(x0, ·) ≥ 0 on C,
we get that x0 has applied to the interior of B with full weight. Therefore, (b) implies

f(x0, ·) ≤ fs(x0, ·), ψ-a.e. on B◦.

Case 1. ψ(C ∩B◦) > 0. By the above equation we get∫
B◦
f(x0, ξ)ψ(dξ) <

∫
B◦
fs(x0, ξ)ψ(dξ).

Therefore
∫
B◦
f(x0, ξ)ν(dξ) < 1. So x0 f -desires all centers in C ∩ B◦ by Remark 4.19,

which gives an unstable pair for f , a contradiction.
Case 2. ψ(C ∩B◦) = 0. Therefore ψ(C ∩ ∂B) > 0. By (a) we get ψ(∂B\C) = 0. Since

fs(x0, ·) > f(x0, ·) on C we get as before∫
B

f(x0, ξ)ψ(dξ) <

∫
B

fs(x0, ξ)ψ(dξ).

Therefore νx0
(f, s) < 1, where s is the radius of B. So x0 f -desires the centers in C ∩ ∂B

by Remark 4.19, a contradiction again.

Proof of Proposition 4.23. Let f be an arbitrary stable constrained transport density for
ϕ and ψ. Corollary 4.22 implies that for ϕ-a.e. site x we have

ψx(fs, t) = ψx(f, t), ∀t ∈ [0,∞]. (5.12)

We can use this equation for t < as(x) (where as(x) is the application radius of x in the
site-optimal Gale-Shapley algorithm) and part (ii) of Theorem 4.21 to obtain that for
(ϕ⊗ ψ)-a.e. (x, ξ), if |x− ξ| < as(x), then fs(x, ξ) = f(x, ξ). Assumption 4.16 and (5.12)
for t = as(x) imply that this is also valid for |x− ξ| = as(x); i.e. for (ϕ⊗ ψ)-a.e. (x, ξ), if
|x− ξ| ≤ as(x), then fs(x, ξ) = f(x, ξ). Since fs(x, ·) ≡ 0 outside Bas(x) (x), we use (5.12)
for t =∞ to obtain that (ϕ⊗ ψ)-a.e. we have fs = f . This proves the claim.
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Proof of Theorem 4.24. We should prove that almost surely any two stable constrained
transport densities are equal except on a set with zero (Φω ⊗Ψω)-measure. Let fs and
fc be the site-optimal and the center-optimal transport densities respectively. We take
expectations in Corollary 4.22 and apply Lemma 5.4 to get

λΦEΦ [Ψ0(fs, t)] ≥ λΦEΦ [Ψ0(fc, t)] = λΨEΨ

[
Φ0(fc, t)

]
≥ λΨEΨ

[
Φ0(fs, t)

]
= λΦEΦ [Ψ0(fs, t)] .

Therefore, all inequalities are indeed equality. Hence

EΦ [Ψ0(fs, t)−Ψ0(fc, t)] = 0.

By an argument similar to (5.3) we get

E

[∫
Rd

Ψx(fs, t)−Ψx(fc, t)Φ(dx)

]
= 0.

Since the integrand is non-negative by Corollary 4.22, for a given t, we almost surely
have for Φω-almost every x ∈ Rd

Ψx(fs, t) = Ψx(fc, t).

Considering this for rational t and using right-continuity of Ψx(fs, ·) and Ψx(fc, ·) we get
that almost surely for Φω-a.e. x we have

Ψx(fs, t) = Ψx(fc, t), ∀t ∈ [0,∞].

Now, for a sample ω ∈ Ω such that the above equation holds for Φω-a.e. x and Assump-
tion 4.16 holds for Φω and Ψω, the claim is a direct consequence of Proposition 4.23.

Proof of Lemma 4.29. Remark 4.28 easily implies that the Voronoi territory of ξ is star-
shaped with center ξ. As an example for non-convex territories, let ψ be half of the
counting measure on the vertices of an equilateral triangle in the plane. Also, if ψ = L+δ0,
we see that the Voronoi territory of center 0 is not closed.

Now, suppose the support of ψ is a discrete set {ξ1, ξ2, . . .}. Let Di be the Voronoi
territory of a center ξi. In this case, Remark 4.28 gives that x ∈ Di if and only if
ψ(B◦|x−ξi| (x)) < 1. This easily implies that Di is closed. With the notations of Def-

inition 4.26, let A be the set of points x ∈ Rd such that ∂Bs(x) (x) contains more
than one atom of ψ. In each component of Ac, the set of atoms in Bs(x) (x) is fixed.
Therefore, all Voronoi territories are bound by A. Moreover, A ⊆ ∩i,jAi,j , where
Ai,j := {x : {ξi, ξj} ⊆ ∂Bs(x) (x)}. Each Ai,j is contained in a hyperplane. Therefore, it
suffices to prove that for each compact set K, only finitely many of the Ai,j ’s hit K. Let
S ⊃ K be a compact set such that ψ(S) > 1 (in the case ψ(Rd) = 1 the claim is trivial).
Each open ball B◦s(x) (x) for x ∈ K doesn’t contain S and therefore it is contained in a
compact set T which depends only on K and S. Now, if Ai,j hits K, then ξi and ξj lie in
T . It follows that such pairs (i, j) are finite and we are done.

Proof of Proposition 4.30. Suppose the Voronoi territory C of center ξ0 is unbounded.
According to Lemma 4.29, C is star-shaped and hence there is a half-line l starting at ξ0
which completely lies in C. For x ∈ l, Remark 4.28 gives ψ(B◦|x−ξ0| (x)) ≤ 1. By taking
union over x ∈ l, we find ψ(H) ≤ 1, where H is an open half-space orthogonal to l, a
contradiction.

Now, suppose Ψ is a stationary non-zero random measure. One can obtain from
Lemma 2.1 that every half-space has infinite Ψ-measure a.s. and the claim follows.
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Lemma 5.6. Let A ⊆ Rd, a ∈ Rd and r > 0. Let C be the set of points x such that
|x− a| < |x− a′|+ r for all a′ ∈ A. C is bounded if and only if Br (a) is contained in the
interior of Conv (A), where Conv (A) stands for the convex hull of A.

Proof. One has C is star-shaped with center a. Hence, it is unbounded if and only if it
contains a half-line {a+ tv : t ∈ [0,∞)} for some unit vector v ∈ Rd. This is equivalent to
A ⊆ {x : v · (x− a) ≤ r} for some unit vector v. Equivalently, Br (a) 6⊆ Conv (A)

◦.

Proof of Theorem 4.25. Using the ergodic decomposition theorem, we can assume that
P is an ergodic measure for the family (θs)s∈Rd .

(i) We call a center bad if its territory is unbounded. Let Ξ′ be the set of bad centers.
Suppose Ψ(Ξ′) 6= 0 with positive probability. By ergodicity, this happens almost surely.
Since F is flow-adapted, the restriction Ψ′ of Ψ to Ξ′ is an ergodic random measure
with positive intensity. Let ξ0 ∈ Ξ′ and let C be the Voronoi territory of ξ0 with respect
to 1

2Ψ′. We claim that the territory of ξ0 is a subset of C and contradiction follows
directly by applying Proposition 4.30 for Ψ′. If the claim is not true, let x0 6∈ C such that
F (x0, ξ0) > 0. By Remark 4.28 we get Ψ′(B◦|x0−ξ0| (x0)) ≥ 2 > 1. Therefore, there is a bad
center ξ1 ∈ B◦|x0−ξ0| (x0) such that F (x0, ξ1) < 1. Now x0 desires ξ1 since it prefers ξ1
over ξ0. Also ξ1 desires x0 since its territory is unbounded. So (x0, ξ1) is an unstable pair,
a contradiction.

(ii) By stationarity, it is enough to show that for a deterministic point z, the union of
the territories of the sites in B1 (z) has finite Ψ-measure almost surely. Call a lattice point
z ∈ Zd bad if this property doesn’t hold for z. Suppose by contradiction that 0 is bad
with positive probability. Then the set of bad lattice points form an ergodic simple point
process onZd with positive intensity. Let Z be the set of bad lattice points, which contains
z0 := 0. Since every half-space contains some element of Z, we have Conv(Z) = Rd.
Therefore, we can find z1, . . . , zn ∈ Z\{0} such that B2 (z0) ⊆ Conv (z1, . . . , zn). Let C0 be
the region defined in Lemma 5.6 for A = {z1, . . . , zn}, a = z0 and r = 2, which is bounded
by the claim of the lemma. For i = 1, . . . , n let Ci be the set of points x 6∈ C0 that are
closer to zi than other points of A. Let T be the union of the territories of the sites in
B1 (z0). Since z0 is a bad lattice point, we have Ψ(T ) = ∞. Since Ψ(C0) < ∞, there is
i > 0 and a bounded Borel set D ⊆ T ∩ Ci such that Ψ(D) > 1. Since zi is a bad lattice
point, there is a site xi ∈ B1 (zi) such that its territory contains some centers further
away than all of the centers in D. Since Ψ(D) > 1, we can find a center ξi ∈ D such that
F (xi, ξi) < 1. We claim that (xi, ξi) is an unstable pair.

Since ξi ∈ T , there is a site x0 ∈ B1 (z0) such that F (x0, ξi) > 0. The fact that ξi 6∈ C0

gives |ξi − z0| ≥ |ξi − zi|+ 2. Therefore |ξi − x0| > |ξi − xi| and thus ξi desires xi. On the
other hand, xi desires ξi since its territory contains centers further away than ξi by the
definition of xi. So (xi, ξi) is an unstable pair, a contradiction.

6 Examples

In the following examples we let Zd be the counting measure on Zd; i.e.

Zd =
∑
z∈Zd

δz.

Although Zd is not a stationary measure on Rd, in examples 6.4 and 6.5 we can translate
the measures by a random uniform element of [0, 1]d to obtain ergodic stationary random
measures. Therefore, the claims of Theorem 4.14, Theorem 4.8 and Theorem 4.24 are
valid in these examples.

Example 6.1. When ϕ = Ld and ψ is a counting measure, the transport kernel given
by the site-optimal transport density via Remark 4.3 coincides a.e. with the allocation
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(a) A1 (b) A1 −R1 (c) f

Figure 1: The supports of three functions in the setting of Example 6.2, which map
[0, α]× [0, α] to {0, 1}. The first axis stands for sites and the second axis stands for centers.
The dashed lines are the lines with distance 1

2 to the sides. The small segments in the

third figure have slope −φ or − 1
φ , where φ = 1+

√
5

2 .

presented in [3]. In this setting, definitions 4.2 and 4.12 also generalize the definitions
of allocations and stability in [3].

Example 6.2. Let ϕ and ψ be both the Lebesgue measure restricted on [0, α], where
α ≥ 3

2 . Figure 1(a) and 1(b) illustrate the first stage of Algorithm 4.4. It can be seen
that the site-optimal and the center-optimal transport densities agree a.e. with the
function depicted in Figure 1(c). Therefore, we can use Proposition 4.23 to see that this
is the unique stable constrained transport density for ϕ and ψ. Note that the sites (resp.
centers) that have distance less than 1

2 (1− 1
φ ) to the boundary are unexhausted (resp.

unsated), where φ is the golden number; i.e. it satisfies φ− 1
φ = 1.

Example 6.3. Let ϕ = L1 and ψ be the counting measure on a subset A ⊆ Z. For x ∈ R
and ξ ∈ A one has

fs(x, ξ) =

{
1, |x− ξ| ≤ 1

2

0, otherwise

It is easy to verify that fs is a balancing stable constrained transport density only when
A = Z.

Example 6.4. Let ϕ = L2 and ψ = Z1 ⊗ L1. Define

f(x, ξ) =

{
1, max{|x1 − ξ1| , |x2 − ξ2|} ≤ 1

2 ,

0, otherwise.

This function is a balancing constrained transport density, but is not stable since the
center ξ0 = (0, 0) and the site x0 = (a, 0) desire each other for 1

2 < a < 5
8 . However,

Algorithm 4.4 gives fs in one step, which is a balancing stable constrained transport
density. For x = (x1, x2) and ξ = (ξ1, ξ2), the site-optimal transport density is

fs(x, ξ) =

{
1, |x2 − ξ2| ≤ min{ 1

2 ,
5
4 − 2 |x1 − ξ1|},

0, otherwise.

The territory of each center is a hexagon as illustrated in Figure 2.

Example 6.5. Let ϕ = 2L1 and ψ = L1 + Z1. For 0 ≤ x ≤ 1
2 , the site-optimal transport

density is

fs(x, ξ) =


1, 0 < ξ ≤ 2x,

1− 2x, ξ = 0,

0, otherwise
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Figure 2: The territories of two sites x1 and x2 and a center ξ1 in Example 6.4. The
vertical solid lines represent Z×R. The dashed circles show the application radii of the
two sites and the vertical bold lines show their territories.

and for − 1
2 ≤ x ≤ 0 we have

fs(x, ξ) =


1, 2x ≤ ξ < 0,

1− 2 |x| , ξ = 0,

0, otherwise.

A similar equation holds for other values of x. By applying a random translation,
Theorem 4.8 holds and fs is a balancing stable constrained transport density.

Example 6.6. Let Φ and Ψ be jointly stationary ergodic counting measures (i.e. simple
point processes) in R, with positive and finite intensities λΦ and λΨ. The random
measures Φ′ := 1

λΦ
Φ and Ψ′ := 1

λΨ
Ψ have unit intensity, but there is no (Φ′,Ψ′)-balancing

allocation provided that λφ
λψ
6∈ Z (note that λφ

λψ
should be the number of pre-images of a

center). However, Theorem 4.8 shows that there is a flow-adapted balancing transport
kernel between them.

Example 6.7. In the setting of Example 6.6, let Φ′′ := Φ′ × Ld−1 and Ψ′′ := Ψ′ × Ld−1,
which are stationary ergodic random measures on Rd with unit intensity. Theorem 4.8
shows the existence of a flow-adapted (Φ′′,Ψ′′)-balancing transport kernel, but we claim
that there is no such allocation.

Let τ be a flow-adapted (Φ′′,Ψ′′)-balancing allocation. By translation invariance, we
get that for a site x, the vector τω(x) − x depends only on π1(x) and ω, where π1 is
projection on the first coordinate. It follows easily that the allocation on R defined by
x 7→ π1(τ((x, 0))) is (Φ′,Ψ′)-balancing, which is a contradiction by Example 6.6.

Example 6.8. Let ϕ be the Lebesgue measure on (0,∞) and ψ be the Lebesgue measure
on (−∞, 0). It is easy to see that fs(x, ξ) ∈ {0, 1} and fs(x, ξ) = 1 if and only if dxe = d−ξe,
where dae is the smallest integer not less than a.
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