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Abstract

A conjecture of Benjamini & Schramm from 1996 states that any finitely generated
group that is not a finite extension of Z has a non-trivial percolation phase. Our main
results prove this conjecture for certain groups, and in particular prove that any group
with a non-trivial homomorphism into the additive group of real numbers satisfies the
conjecture. We use this to reduce the conjecture to the case of hereditary just-infinite
groups.

The novelty here is mainly in the methods used, combining the methods of EIT and
evolving sets, and using the algebraic properties of the group to apply these methods.
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1 Introduction

Bernoulli percolation on a graph is the process where each edge of the graph is
deleted or kept independently. This model has its origin in statistical physics [10], but
gives rise to interesting and beautiful mathematics even in “non-realistic” geometries,
such as Cayley graphs of abstract groups. Especially interesting in these cases is
the relation between the algebraic properties of the group and the behavior of the
percolation process. One example which we do not tackle in this paper is the relation
between existence of a non-uniqueness infinite component phase and amenability (for
this, see e.g. [20, 28] and references therein). In this paper we are concerned with the
property of the existence of a non-trivial percolation phase, usually known as “pc < 1”.
We now introduce our results rigorously.

1.1 Percolation on groups

Let G be a finitely generated group. Let S be a finite symmetric generating set for G.
Let Γ = Γ(G,S) = (V (G,S), E(G,S)) be a right Cayley graph for G. (That is, the graph
whose vertices are elements of G and edges are defined by x ∼ y if x−1y ∈ S.) Denote
the unit element of G by 1. Let Pp the Bernoulli site percolation measure with parameter
p. (See [8, 16, 20] for background on percolation.) Let x↔∞ denote the event that x is
in an infinite component. Let pc(Γ) be the critical point for percolation on Γ, i.e.,

pc(Γ) = inf{p ∈ [0, 1] : Pp[1↔∞] > 0}.
*Institut des Hautes Études Scientifiques. E-mail: raoufi@ihes.fr
†Ben-Gurion University of the Negev. E-mail: yadina@bgu.ac.il

http://dx.doi.org/10.1214/16-ECP40
http://www.imstat.org/ecp/
mailto:raoufi@ihes.fr
mailto:yadina@bgu.ac.il


Indicable groups and pc < 1

Since the property pc(Γ) < 1 is invariant under quasi-isometries for bounded degree
graphs (see e.g. Theorem 7.15 in [20]), it does not depend on the specific choice of
Cayley graph Γ. Thus, we may write pc(G) < 1 without ambiguity. (This is in contrast
to the fact that the specific value of pc(Γ) depends vey much on the specific choice of
Cayley graph, see e.g. [16, Chapter 3.3].)

Conjecture 1 (Benjamini & Schramm [7]). For any finitely generated group G, pc(G) = 1

if and only if G has a finite index cyclic subgroup.

It is well known that if G has polynomial growth then the above conjecture is valid.
For example, by using Gromov’s theorem regarding groups of polynomial growth [17],
and the structure of nilpotent groups (see e.g. Chapter 7.9, proof of Theorem 7.18, in
[20]). Our results below give an alternative (and short) proof of this. See Remark 4
below. It should be noted that here are other methods to prove the polynomial growth
case existing in the literature, see [11].

The conjecture is also known to hold for groups of exponential growth, due to Lyons
[19]. Other works proving pc < 1 in the Cayley and non-Cayley graph setting include
[1, 3, 11, 30].

Here is our main theorem.

Theorem 2. Let G be a finitely generated group. If there exists a finitely generated
normal subgroup N �G with |N | =∞ and [G : N ] =∞, then pc(G) < 1.

As a consequence, we obtain a reduction of Conjecture 1 to studying the case of a
smaller family of groups, namely groups which are hereditary just-infinite. See Theorem
6 below for the definitions and precise statement.

1.2 Virtual characters

A group property P is a family of groups closed under isomorphism. Examples of
group properties include Abelian groups, nilpotent groups, exponential growth groups.
We say a group G is virtually P, if G has a subgroup of finite index that is in P.

By a character of a group G we refer to a non-trivial homomorphism from G to (R,+)

(the additive group of real numbers). By a virtual character of G we mean a character
of a finite index subgroup of G. (A group admitting a character is sometimes called
indicable. G admits a virtual character if and only if it is virtually indicable).

The above theorem implies the following corollary.

Corollary 3. If G admits a virtual character, then pc(G) < 1 unless G contains a finite
index infinite cyclic subgroup.

Remark 4. Corollary 3 implies that Conjecture 1 holds for groups of polynomial growth.
Indeed, any group of polynomial growth admits a virtual character, see [18] for an
elementary proof of this fact, and [26] for a one page proof. The common way to prove
Conjecture 1 for the polynomial growth case without our results, uses Gromov’s Theorem
with some additional structure of nilpotent groups. Specifically, one would need to show
that nilpotent groups of linear growth are virtually Z, and that all nilpotent groups
of super-linear growth have pc < 1. This is not difficult, but requires some algebraic
knowledge, see e.g. the proof of Theorem 7.18 in [20].

By using the same methods, in the case that the group has a virtual character, we can
show that if the group is transient itself, for p sufficiently close to 1 the infinite cluster is
transient.

To make this statement precise, let us define for a graph Γ,

pt(Γ) := inf{p ∈ [0, 1] : ∞ clusters are transient Pp−a.s. }.
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Indicable groups and pc < 1

Using indistinguishability [21], this quantity is well defined; i.e. infinite clusters are a.s.
either all transient or all recurrent. Of course pt(Γ) ≥ pc(Γ). It is simple to prove that for
a finitely generated group G, if pt(Γ) < 1 for some Cayley graph Γ of G then pt(Γ′) < 1

for any Cayley graph Γ′ of G. For completeness we show this in Lemma 13. Thus, as
with pc, we may write pt(G) < 1 without ambiguity.

Theorem 5. If G admits a virtual character then pt(G) < 1 unless G is virtually Z or
virtually Z2.

See also [27] for equivalent conditions for pt(G) < 1.

1.3 A reduction

As mentioned all groups of polynomial growth admit virtual characters (see e.g.
[18, 26]; this is in fact the standard main step toward proving Gromov’s Theorem
for polynomial growth groups). But there are many other groups that admit virtual
characters. Indeed, any group with infinite Abelianization.

The Grigorchuk group is an example of a torsion group of intermediate growth.
Being torsion, it cannot admit a virtual character. However, Theorem 2 still applies to
the Grigorchuk group, and many other groups of intermediate growth. In fact, most
examples of intermediate growth groups known are so called branch groups (see [4]),
for which it is quite simple to prove pc < 1: If G is a branch group, then G has a Cayley
graph containing N2 as a subgraph. See the proof of Theorem 6 below for the details.

In fact we can use the above results to reduce Conjecture 1 to a specific family of
groups. Albeit, these groups are exactly those for which there is a lack of examples,
so they are poorly understood in a sense. To state the reduction, we introduce some
notation.

A group G is just-infinite if any non-trivial quotient of G is finite; that is, any non-
trivial normal subgroup of G is of finite index. A standard example of a just-infinite group
is Z. However, this property is not hereditary; that is, one can have a just-infinite group
that has a finite index subgroup that is not just-infinite. A hereditary just-infinite
group is a group for which every finite index subgroup is just-infinite. Another example
of such a group is an infinite simple group. (Recently infinite finitely generated simple
groups of intermediate growth have been shown to exist in [25].) It is known that
the only elementary amenable just-infinite groups are Z or the infinite dihedral group.
Specifically, these have an infinite cyclic group of finite index. See [15] for the proof.

Our reduction of Conjecture 1 is:

Theorem 6. If Conjecture 1 holds for the class of hereditary just-infinite groups then
the conjecture holds for all finitely generated groups.

Proof. Assume first a special case: that G is just-infinite. Then, G is:

• Case (I): either a branch group,

• Case (II): or contains a subgroup of finite index that is the direct product Hd =

H × · · · ×H of d ≥ 1 copies of a hereditary just-infinite group H.

See [4] for background, definitions and the classification mentioned.

In Case (I), for any d ∈ N, there exists a group L, such that G contains a finite index
subgroup of the form Ld, see [4]. Thus, in any branch group, for any d, the group admits
a Cayley graph that contains a copy of Nd. Specifically, pc(G) < 1 when G is a branch
group (in fact pt(G) < 1).

In Case (II), if d > 1 then G again has a Cayley graph that contains a copy N2, so
pc(G) < 1.
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Indicable groups and pc < 1

Thus, we are only left with the case where G contains a finite index subgroup that
is hereditary just infinite. That is, we have shown that any just-infinite group G with
pc(G) = 1 admits a finite index hereditary just-infinite group.

Now for the general case: Let G be any finitely generated infinite group. Then, there
exists N �G such that G/N is just-infinite. See e.g. Claim 2 in the beginning of Section 5
of [9] for a simple method of proving this. If pc(G/N) < 1 then pc(G) < 1, by [7, Theorem
1]. So assume that pc(G/N) = 1. Since G/N is just-infinite, by the above it admits a finite
index hereditary just-infinite subgroup. If Conjecture 1 holds for hereditary just-infinite
groups, then G/N has a finite index subgroup isomorphic to Z. Thus, G admits a virtual
character, and Corollary 3 is applicable.

Acknowledgement. AR is supported by the NCCR SwissMAP, the ERC AG COMPASP,
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matics, University of Geneva. AY is supported by the Israel Science Foundation (grant no.
1346/15). This research was initiated while AY was visiting the Section of Mathematics,
University of Geneva, and the Centre Interfacultaire Bernoulli EPFL special semester
“Analytic and Geometric Aspects of Probability on Graphs”. AY expresses gratitude to
both the University of Geneva and the CIB for their wonderful hospitality and support.

2 Probabilistic tools

2.1 EIT

The proofs of our results are based on the method called EIT, or exponential intersec-
tion tails. Let µ be a probability measure on the set of infinite paths on a graph, starting
at some fixed origin. We say that µ satisfies EIT, if it has the following property:

(EIT) There exists a constant c > 0 such that for two independent paths γ and γ′ with
law µ, and any k ≥ 1,

µ⊗ µ
(
|γ ∩ γ′| ≥ k

)
≤ exp(−ck).

By |γ ∩ γ′| we refer to the number of vertices in the intersection of the traces of γ and γ′

(which is very different from the number of times at which both paths are at the same
vertex). That is, we are thinking of the traces of the paths as subsets, nothing more (so
vertices visited more than once are counted only once).

This method was introduced in [6]. There it is shown that:

Theorem 7. If there exists a measure µ satisfying EIT on a graph Γ, then pt(Γ) < 1 (so
also pc(Γ) < 1).

2.2 Method of evolving sets

The following is a consequence of Theorem 1.2 of Dembo, Huang, Morris, Peres [13].
Their theorem is proved using the method of evolving sets introduced by Morris and
Peres in [23]. This is a method to bound the heat kernel decay via the isoperimetric
properties of a graph. See [23] and e.g. [28, Chapter 8] for more details. The theorem is
basically stating the following rather intuitive fact: If instead of walking according to
some fixed time-independent transition matrix, one chooses some pre-determined time-
dependent transition matrices, as long as these have some sort of “uniform isoperimetric
dimension” at least d, then the heat kernel of this time-dependent walk must decay as
fast as the heat kernel in Zd (i.e. of order O(t−d/2)). In order to keep the notation as
simple as possible, we do not state the theorem in its full generality, but rather tailored
to the specific case we require it for.

Theorem 8. Let Γt = (Vt, Et) be a sequence of connected graphs on a common vertex
set Vt = V . We assume that the graphs Γt are all isomorphic.
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Indicable groups and pc < 1

Denote the degree of x ∈ V in the graphs Γt by degt(x). Suppose that supt,x degt(x) <

∞ (the degrees are uniformly bounded). Suppose further that degt(x) = degt+1(x) for all
t, x (the degrees of a vertex x are constant in t).

Suppose further that all Γt admit a d-dimensional isoperimetric inequality; that is,
there exist κ > 0, d > 1 such that for all t and all non-empty finite sets A ⊂ V we have

|∂tA|d ≥ κ|A|d−1,

where
∂tA = {{x, y} ∈ Et : x ∈ A , y 6∈ A}

is the edge boundary of A in the graph Γt.
Fix some γ > 0 and consider the time-dependent Markov chain (Xt)t which has

transition probabilities

P[Xt+1 = y | Xt = x] = γ · 1{x=y} + (1− γ) · 1
degt(x) · 1{{x,y}∈Et}. (2.1)

Then, there exist constants K,C > 0 such that for all s ≥ 0, t ≥ 1,

P[Xt+s = y | Xs = x] ≤ C · (Kt)−d/2.

For the reader interested in checking the details of this reference, we provide a short
“dictionary” to translate Theorem 1.2 of [13] into the above. The γ mentioned in Theorem
8 is the same γ as in [13]. For every t, π(t) from [13] is defined via π(t)(x, y) = 1{{x,y}∈Et}.
Then, in (1.4) of [13] we have β(t) = 1 for all t, because the degrees are constant in t.
Also, since all the graphs Γt are isomorphic, we have that κt from [13] is constant in t,
and positive when Γt admit a d-dimensional isoperimetric inequality. Thus, for this d we
have that ψd,β from [13] admits ψd,β(t) = κ′t for some κ′ > 0. (1.7) of [13] then gives the
assertion of Theorem 8.

As a consequence of this theorem we have that:

Corollary 9. Under the conditions of Theorem 8, let (Xt)t, (X
′
t)t be two independent

copies of the Markov chain defined in Theorem 8.
If for some d > 2 the graphs Γt admit a d-dimensional isoperimetric inequality, then

there exists a constant c > 0 such that for all k ≥ 1,

P
[
|{t : Xt = X ′t}| ≥ k

]
≤ e−ck.

Let us stress that this does not prove that the Markov chain (Xt)t above is EIT, since
we only bound the number of times two independent chains meet, rather than the total
number of vertices at which their traces intersect.

Proof. We will in fact prove the following: For any fixed sequence (xt)t we have for all
k ≥ 1,

P
[
|{t : Xt = xt}| ≥ k

]
≤ e−ck.

This is essentially Lemma 3.1 from [6], and we include a short sketch only for complete-
ness.

We choose m to be large enough so that (by Theorem 8) for any sequence (xt)t and
any t we have

∞∑
t=1

P[Xtm = xtm | X0, . . . , Xt] ≤
∞∑
t=1

C(Kt(m− 1))−d/2 =: β < 1.

Thus, for any `,
P[|{j : X`+jm = x`+jm}| ≥ r] ≤ βr.
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This implies that

P
[
|{t : Xt = xt}| ≥ k

]
≤
m−1∑
`=0

P
[
|{j : X`+jm = x`+jm}| ≥ k/m

]
≤ mβk/m.

The conclusion follows readily.

Remark 10. A specific case where the conditions of Theorem 8 hold is the following: Let
G be a finitely generated group, and let N �G be a finitely generated normal subgroup.
Suppose that for some (and hence every!) Cayley graph of N , we have a d-dimensional
isoperimetric inequality. Let S be the symmetric generating set of N inducing this Cayley
graph. For x ∈ G note that Sx = {x−1sx : s ∈ S} is again a generating set of N (because
N is normal in G). Also, the Cayley graph with respect to Sx is isomorphic to the original
Cayley graph with respect to S. So for any fixed sequence x1, x2, . . . , we have that the
sequence of Cayley graphs on N induced by the generating sets Sxt are all isomorphic.
Such a sequence will adhere to the conditions of Theorem 8.

3 Proof of Theorem 2

We separate the proof into three cases and treat each case separately:

• Case 1: N is not virtually Z nor virtually Z2.

• Case 2: N is virtually Z2.

• Case 3: N is virtually Z.

3.1 N is not virtually Z nor virtually Z2

Let H = G/N = 〈Nh±1
1 , Nh±1

2 , . . . , Nh±1
k 〉, where G = 〈h±1

1 , . . . , h±1
k 〉. Let N =

〈n±1
1 , n±1

2 , . . . , n±1
` 〉. Let Γ be the Cayley graph of G with respect to the generators

{h±1
i , n±1

j h±1
i | i = 1, . . . , k , j = 1, . . . , `}.

We construct a measure µ on the set of self-avoiding paths of Γ and prove it satisfies
EIT. First, fix a one-sided infinite self-avoiding path starting from the origin in the Cayley
graph of H with respect to the generators {Nh±1

1 , Nh±1
2 , . . . , Nh±1

k }. Let this path be
(Nuj)j≥1, where uj = s1s2 · · · sj , and for each i, si ∈ {h±1

1 , h±1
2 , . . . , h±1

k }. We emphasize
that the path is self-avoiding in H = G/N , meaning Nui = Nuj if and only if i = j. (Such
a path can be chosen because H = G/N is an infinite connected graph when viewed as a
Cayley graph with respect to the generators {Nh±1

1 , Nh±1
2 , . . . , Nh±1

k }.)
Define the measure µ on the paths as follows: Let (Xi)i≥1 be a sequence of indepen-

dent random variables each with uniform distribution on the set {1, n±1
1 , n±1

2 , . . . , n±1
` }.

Define γ(j) = X1s1X2s2 . . . Xjsj . Note that because of the choice of the generators,
γ = (γ(1), γ(2), . . . , ) is indeed a path on Γ. Hence, the measure on (Xi)i≥1 induces a
measure on the set of self-avoiding paths on Γ. Call this measure µ.

Now we prove that this measure µ satisfies EIT. Let γ, γ′ be two independent paths of
law µ, and write γ = (γ(1), γ(2), . . .), γ′ = (γ′(1), γ′(2), . . .) and γ(j) = X1s1X2s2 . . . Xjsj ,
γ′(j) = X ′1s1X

′
2s2 . . . X

′
jsj . First notice that if γ(i) = γ′(j) then i = j. This is due to the

fact that γ(i) ∈ Nui and γ′(j) ∈ Nuj , and (Nui)i is a self-avoiding path on H.
Define ui(x) = uixu

−1
i .

Yi = X1u1(X2)u2(X3) · · ·ui−1(Xi) and Y ′i = X ′1u1(X ′2)u2(X ′3) · · ·ui−1(X ′i).

Since γ(i) = Yiui, and similarly γ′(i) = Y ′i ui, we have that γ(i) = γ′(i) if and only if
Yi = Y ′i . Specifically,

{|γ ∩ γ′| ≥ k} = {|{i : Yi = Y ′i }| ≥ k}. (3.1)
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Indicable groups and pc < 1

(Yi)i can be viewed as a discrete time Markov chain on N with transition prob-
ability as in (2.1), where Et is the edge set of Cayley graph of N with generators
{ut−1(n±1

1 ), . . . , ut−1(n±1
` )}, and γ = 1

2`+1 . Eq. (3.1) implies that in order to prove that µ
satisfies EIT, it is enough to show that

µ⊗ µ
(
|{i : Yi = Y ′i }| ≥ k

)
≤ exp(−ck).

The above is a direct consequence of Theorem 8 (see also Corollary 9 and Remark 10)
once the assumption of isoperimetric inequality is satisfied.

The following well known theorem guarantees the required isoperimetric inequality
and the assertion follows (see also [28, Chapter 5.3]).

Theorem 11 (Gromov, also Coulhon, Sallof-Coste [12]). Let Γ be a Cayley graph of a
finitely generated group G. Let Br = |B(x, r)| be the number of elements in the ball of
radius r (with respect to the graph metric). Define ρ(n) = min{r : Br ≥ n}. Then, for
any non-empty finite set A ⊂ V (Γ),

|∂A| ≥ |A|
2ρ(2|A|)

.

If the volume growth of a Cayley graph Γ is super-quadratic (i.e. Br ≥ crd for
some d > 2) then ρ(n) ≤ Cn1/d and Γ satisfies a d-dimensional isoperimetric inequality.
Gromov’s theorem on groups of polynomial growth [17] together with the structure
of nilpotent groups imply that if the Cayley graph of N does not have super-quadratic
growth, then N must be virtually nilpotent with at most quadratic growth, which implies
that N must be either virtually Z2 or virtually Z.

This completes the first case where N is not virtually Z nor virtually Z2.

3.2 N is virtually Z2

In this case there exists a Cayley graph Γ of G which has a Cayley graph of N as a
subgraph. Note that pc(N) < 1 as pc(Z2) < 1, and because N is a subgraph of Γ, this
implies pc(Γ) < 1.

3.3 N is virtually Z

N admits a finite index infinite cyclic subgroup, say Z ≤ N . Suppose that [N :

Z] = k < ∞. Since there are only finitely many subgroups of index k in N , the set
{ϕ(Z) : ϕ ∈ Aut(N)} is finite. Thus, the subgroup Z̃ :=

⋂
ϕ∈Aut(N) ϕ(Z) has finite index

in N , and hence also finite index in Z. This implies that Z̃ is infinite cyclic (as an infinite
subgroup of Z). Also, by definition, Z̃ is a characteristic subgroup of N , and thus a
normal subgroup of G. By considering this normal subgroup of G instead of N , we may
assume without loss of generality that N is isomorphic to Z. Let N = 〈n〉.

First, we claim that there exists a finite index subgroup G1 of G, such that G1

commutes with N . Indeed, G1 acts on N ∼= Z by conjugation, so for any x ∈ G we must
have x−1nx ∈ {n, n−1}. Let G1 be the kernel of this map which is of index at most 2.

Since G1 is finite index in G, we may assume without loss of generality that G = G1;
that is, N is in the center of G (i.e. elements of N commute with all elements of G).

We claim that there exists a Cayley graph of G with Z × N as a subgraph. Thus,
pc(G) ≤ pc(Z×N) < 1 would follow.

Let H = G/N = 〈Nh±1
1 , Nh±1

2 , . . . , Nh±1
k 〉, where G = 〈h±1

1 , . . . , h±1
k 〉. Let Γ be the

Cayley graph of G with respect to the generators {h±1
i , n, n−1}. Like the first case, let

(Nuj)j≥1 be a self-avoiding path starting from the origin (u1 = 1) in the Cayley graph of
H with respect to the generators {Nh±1

1 , Nh±1
2 , . . . , Nh±1

k }. So, uj = s1s2 · · · sj , and for
each i, si ∈ {h±1

1 , h±1
2 , . . . , h±1

k }.
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We embed the graph Z × N into Γ, by the mapping φ : Z × N → Γ defined as
φ(i, j) = niuj . First note that φ is injective. If ni1uj1 = ni2uj2 , then projecting modulo
N would give us Nuj1 = Nuj2 , and because the path (Nuj)j≥1 is self-avoiding we get
j1 = j2. It implies that ni1 = ni2 , and hence i1 = i2. The map φ also maps two neighboring
vertices to neighboring vertices. Indeed, (i, j) and (i, j+ 1) are mapped to two neighbors,
because

φ(i, j + 1) = niuj+1 = niujsj+1 = φ(i, j)sj+1,

and sj+1 is in the generating set defining the Cayley graph Γ. Also, (i + 1, j) and (i, j)

are mapped to neighboring vertices. As G and N commute,

φ(i+ 1, j) = ni+1uj = ninuj = niujn = φ(i, j)n,

and n belongs to the generating set of the Cayley graph. This concludes the proof of the
embedding of Z×N into Γ.

4 Groups with a virtual character

First we mention the following theorem by Rosset (see also [15] for an extension).

Theorem 12 (Rosset [29]). If G has sub-exponential growth and N �G such that G/N
is solvable, then N is finitely generated.

Proof of Corollary 3. If G has exponential growth, as mentioned earlier, then pc(G) < 1.
So, we can assume that G has sub-exponential growth. By passing to finite index, we
may assume without loss of generality that G admits a character; i.e. there is a surjective
homomorphism from G onto Z. If N is the kernel of this homomorphism, then G/N = Z.
So Rosset’s Theorem (Theorem 12) implies that N is finitely generated.

If N is infinite then Theorem 2 is applicable.
If N is finite: then G acts on the finite subgroup N by conjugation. Let K = {x ∈ G :

∀ n ∈ N , x−1nx = n}. Then K is normal in G and of finite index (because G/K embeds
into permutations on |N | elements). By replacing G with K, we may then assume without
loss of generality that any element in G commutes with any element in N ; that is, N is
central in G. Now, since G/N = Z, there exists a ∈ G such that 〈Na〉 ∼= Z. Let M = 〈a〉.
This is an infinite subgroup of G and since a commutes with N it is also normal in G.
Since G/M is finite, we get that G is virtually Z in this case.

We now move to the proof of Theorem 5.

Proof of Theorem 5. As pt < 1 is invariant under quasi-isometries, without loss of gener-
ality, we can assume G has a character, and there exists N such that G/N = Z. If G has
exponential growth, it is known that pt < 1 (Lyons [19] constructs a subgraph of some
Cayley graph of G, which is a tree of exponential growth, taking a random geodesic
on this tree results in an EIT measure). So we can assume that G has subexponential
growth. Rosset’s Theorem (Theorem 12) implies that N is finitely generated.

As in the proof of Corollary 3, if N is finite then G is virtually Z.
Suppose N is not virtually Z or virtually Z2. The proof of Theorem 2 constructs a

measure which satisfies EIT. Hence, Theorem 7 implies that pt(G) < 1.
Before continuing, we mention a classical fact: If G/N = Z, then G ∼= N oZ. This is

true because Z is a free group. Now, if N is virtually Abelian, then by passing to a finite
index subgroup of G we may assume without loss of generality that N is Abelian. Thus,
G ∼= N oZ is solvable of subexponential growth, which then must be virtually nilpotent
by the classical results of Milnor [22] and Wolf [31]. The Bass-Guivarch formula ([5, 14])
implies that G has polynomial growth. By Theorem 9 of [2] (reproving an unpublished
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result of Benjamini & Schramm), if G has polynomial growth then either G is virtually Z
or virtually Z2, or pt(G) < 1. This concludes the proof.

Finally, we show that pt(G) < 1 is independent of the choice of generating set. This
proof is basically the same as the proof of Theorem 7.15 in [20] (stating that pc(G) < 1

does not depend on the choice of generating set) and we include it only for completeness.
Note that a similar proof works for any two bounded degree quasi-isometric graphs, and
for site percolation as well.

Lemma 13. Let Γ = (G,S) and Γ′ = (G,S′) be two Cayley graphs of a group G with
respect to finite symmetric generating sets S and S′. Then, pt(Γ) < 1 if and only if
pt(Γ

′) < 1.

Proof. Assume pt(Γ
′) < 1. For each s′ ∈ S′, fix s1, s2, .., sk elements of S such that

s′ = s1s2...sk. For an edge e′ = {x, xs′} ∈ E(Γ′), define Φ(e′) to be the path from x

to xs′ in Γ using edges {x, xs1}, {xs1, xs1s2}, ..., {xs1s2...sk−1, xs}. For a percolation
configuration ω ∈ 2E(Γ), define a percolation configuration φ(ω) ∈ 2E(Γ′) as follows:
φ(ω)(e′) = 1 if and only if ω(e) = 1 for all e ∈ Φ(e′). Let pt(Γ′) < q < 1. Theorem 7.14
of [20] states that there exists 0 < p < 1 such that when ω has the law of Pp the law
of its image φ(ω) stochastically dominates Pq. Hence assuming ω has the law of Pp, by
Rayleigh monotonicity (Chapter 2.4 of [20]), the infinite clusters of φ(ω) are almost sure
transient. However, construction of φ(ω) guarantees that there is a rough embedding
from infinite clusters of φ(ω) to infinite clusters ω, hence Theorem 2.17 of [20] implies
infinite clusters of ω are transient, and hence pt(Γ) ≤ p < 1.

Reversing the roles of Γ,Γ′ concludes the proof of the lemma.
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