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CONSISTENT PARAMETER ESTIMATION FOR LASSO AND
APPROXIMATE MESSAGE PASSING

BY ALI MOUSAVI∗, ARIAN MALEKI† AND RICHARD G. BARANIUK∗

Rice University∗ and Columbia University†

This paper studies the optimal tuning of the regularization parameter in
LASSO or the threshold parameters in approximate message passing (AMP).
Considering a model in which the design matrix and noise are zero-mean
i.i.d. Gaussian, we propose a data-driven approach for estimating the regu-
larization parameter of LASSO and the threshold parameters in AMP. Our
estimates are consistent, that is, they converge to their asymptotically optimal
values in probability as n, the number of observations, and p, the ambient
dimension of the sparse vector, grow to infinity, while n/p converges to a
fixed number δ. As a byproduct of our analysis, we will shed light on the
asymptotic properties of the solution paths of LASSO and AMP.

1. Introduction.

1.1. Motivation. Consider the problem of estimating a vector βo ∈ R
p from a

set of undersampled random linear measurements y = Xβo + w, where X ∈ R
n×p

is the design matrix and w ∈ R
n denotes noise. One of the successful recovery al-

gorithms, called the LASSO [12, 33], employs the following optimization problem
to obtain an estimate of βo:

(1) β̂λ = arg min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖1.

A rich literature has provided a detailed analysis of this algorithm [1, 3, 4,
6–9, 13, 14, 17–19, 23–27, 30, 31, 34–39, 41] in nonasymptotic and asymptotic
regimes. The nonasymptotic studies consider p and n to be large but finite num-
bers and characterize the reconstruction error as a function of p and n. These anal-
yses provide qualitative guidelines on how to design compressive sensing (CS) and
machine learning systems. However, they suffer from loose constants and are inca-
pable of providing quantitative recommendations. Therefore, inspired by the sem-
inal work of Donoho and Tanner [17], researchers have started performing asymp-
totic analyses of LASSO. In addition to providing sharp quantitative guidelines,
these studies have led to new recovery algorithms such as Approximate Message
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Passing (AMP) [15]. AMP finds the solution of LASSO through the following
inexpensive iterations:

βt+1 = η
(
βt + X∗zt ; τ t ),

(2)

zt = y − Xβt + |I t |
n

zt−1.

Here, t is the index of iteration, βt is the estimate of βo at iteration t and I t �
{i : βt

i �= 0}. η is the soft thresholding function applied component-wise to the
elements of the vector; for a ∈ R, η(a; τ) � (|a| − τ)+ sign(a). τ t is called the
threshold parameter.

Despite significant progress in the theoretical analysis of the estimates of
LASSO and AMP, little is known about the practically important problem of the
optimal tuning of the regularization parameter in LASSO or the threshold param-
eters in AMP. Our main objective in this paper is to study this problem under the

assumption Xij
i.i.d.∼ N(0,1/n) and wi

i.i.d.∼ N(0, σ 2
w). We propose a data-driven

tuning scheme whose estimates converge to the optimal values of λ for LASSO
and τ 1, τ 2, . . . for AMP under the asymptotic setting n → ∞, p → ∞, while n/p

converges to a fixed number δ. As a byproduct of our analysis, several intriguing
asymptotic features of the solution paths of LASSO and AMP, such as the quasi-
convexity of the mean square error of LASSO in terms of λ, will be discovered.
Note that in certain applications, the i.i.d. model for X is not appropriate, and
hence our results cannot be applied.

1.2. Related work on parameter tuning. Both the tuning of the regularization
parameter of LASSO and the threshold parameters of AMP have been studied in
the literature. The proposed methods fall into the following three different cate-
gories:

(i) General model selection ideas such as cross validation are probably the
most popular approach in practice [11]. For a review of these schemes, see Chap-
ter 7 of [21]. While very useful in applications, these ideas have their own limita-
tions. We summarize some of their limitations in the context of our paper: (i) AMP
has many free parameters (the threshold parameters at every iteration) and if we
blindly apply these techniques their estimate of the risk will suffer from high vari-
ance and will lead to poor estimates of the threshold parameters. (ii) There are very
few papers that have studied the accuracy of these generic model selection tech-
niques in the high dimensional settings. For the case of LASSO, there has been a
few papers tackling this issue [11, 22]. These two papers have analyzed the per-
formance of the cross validation (or methods inspired by cross validation) in the
regime where p and n are both large but finite. Their results suffer from limita-
tions similar to the ones we discussed in Section 1.1. In this paper, we employ one
of the standard model selection techniques, namely Stein unbiased risk estimate
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(SURE), in our asymptotic framework and show how the properties of the solution
path of AMP and LASSO enable us to not only obtain an efficient parameter tun-
ing scheme, but also prove the consistency of these schemes under the asymptotic
setting.

(ii) The second approach employs the upper bounds derived in the literature on
the risk of estimators, such as LASSO. For instance, [5, 10] suggest the regular-
ization parameter λ to be in the form of cσw

√
logp (when the sparsity level of βo

is much smaller than p), where c is a fixed number that does not depend on the
dimension of the problem or σw . Such approaches suffer from the following lim-
itations: (i) They are usually based on the minimax principle, and hence might be
considered as a pessimistic approach for tuning. (ii) The constants of these calcu-
lations are loose (even though the bounds are usually order-optimal), and hence a
tuning that is based on such bounds does not lead to good performance in practice.

(iii) The third approach, which is the closest to our paper, is based on asymp-
totic analyses of recovery algorithms. These methods employ asymptotic settings
to obtain an accurate estimate of the reconstruction error of a recovery algorithm.
Then this analysis is employed to obtain the optimal value of the parameters [15,
16]. The main drawback of this approach is that the signal model is assumed to be
known. Since an accurate signal model is not available in practice, the least favor-
able signals are considered in the analyses which result in a pessimistic tuning of
the parameters. Our tuning approach is data-driven and adapts itself to the statistics
of the signal.

2. Asymptotic framework. In this section, we review the asymptotic frame-
work under which we study LASSO and AMP. Furthermore, we review some of
the existing results that will be used later in our analysis.

2.1. Notation. Capital letters denote both matrices and random variables. We
sometimes denote β with β(p) to emphasize its dependency on the ambient di-
mension. For a matrix X, X∗, σmin(X) and σmax(X) denote the transpose of X,
the minimum and the maximum singular values, respectively. Calligraphic let-
ters such as A denote sets. For a vector β ∈ R

p , βi , ‖β‖q � (
∑ |βi |q)1/q and

‖β‖0 = |{i : |βi | �= 0}| represent the ith component, �q and �0 norms, respectively.
The notation EB denotes the expected value with respect to the randomness in
the random variable B . The two functions φ and 
 denote the probability density
function and cumulative distribution function of the standard normal distribution.
We will also use notation

p→ and
a.s.→ for the convergence in probability and almost

sure, respectively. Finally, I(·) denotes the indicator function.

2.2. LASSO in the asymptotic framework. In this paper, we analyze the prop-
erties of the solution of LASSO and AMP when (i) the measurement matrix has
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i.i.d. N(0,1/n) entries,1 (ii) w has i.i.d. N(0, σ 2
w) elements and (iii) the ambient

dimension and the number of measurements are large. Here is the formal defini-
tion of this framework [4, 16]: Let n,p → ∞ while δ = n

p
is fixed. We write the

vectors and matrices as βo(p),X(p), y(p), and w(p) to emphasize on the ambient
dimension of the problem. Clearly, the number of rows of the matrix X is equal to
δp, but we assume that δ is fixed and, therefore, we do not include n in our notation
for X. The same argument is applied to y(p) and w(p). Now we define a specific
type of a sequence.

DEFINITION 2.1. A sequence of instances {βo(p),X(p),w(p)} is called a
standard converging sequence if the following conditions hold: (i) The empirical
distribution of βo(p) ∈ R

p converges weakly to a probability measure pβ with
bounded second moment. Further, 1

p
‖βo(p)‖2

2 converges to the second moment of

pβ . (ii) The elements of w are i.i.d. N(0, σ 2
w). (iii) The elements of X(p) are i.i.d.

N(0, 1
n
).

For the purposes of this paper, pβ is not necessarily a sparsity promoting prior.
For each problem instance βo(p),X(p) and w(p), we solve the LASSO and obtain
β̂λ(p) as the estimate. We now evaluate certain measures of performance for this
estimate, such as the MSE. The following theorem, conjectured in [16] and proved
in [3], plays a pivotal role in our analysis.

THEOREM 2.2. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Suppose that β̂λ(p) is the solution of the LASSO problem. Then for any
pseudo-Lipschitz function2 ψ :R2 →R, almost surely

(3) lim
p→∞

1

p

∑
i

ψ
(
β̂λ

i (p),βo,i(p)
) = EB,W

[
ψ

(
η(B + σ̂W ;χσ̂ ),B

)]
,

where B and W are two independent random variables with distributions pβ and
N(0,1), respectively. η is the soft thresholding operator, and σ̂ and χ satisfy the
following equations with σw being the variance of the input noise:

σ̂ 2 = σ 2
w + 1

δ
EB,W

[(
η(B + σ̂W ;χσ̂ ) − B

)2]
,(4)

λ = χσ̂

(
1 − 1

δ
P

(|B + σ̂W | > χσ̂
))

.(5)

1With the recent advances in high dimensional statistics [2], our results can be easily extended to
sub-Gaussian matrices. However, for notational simplicity we focus on the Gaussian setting here.

2A function ψ : R2 → R is pseudo-Lipschitz of order k if there exists a constant L > 0 such that

for all x, y ∈R
2 we have |ψ(x) − ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)k‖x − y‖2.



CONSISTENT PARAMETER ESTIMATION FOR LASSO 2431

Theorem 2.2 will provide the first step in our analysis of the LASSO’s solution
path. Before we proceed to the implications of this theorem, let us explain some
of its interesting features. Suppose that β̂λ has i.i.d. elements, and each element
is in law equal to η(B + σ̂W ;χσ̂ ), where B∼pβ and W∼N(0,1). Also, assume

that βo,i
i.i.d.∼ pβ . If these two assumptions were true, then we could use strong law

of large numbers (SLLN) and argue that (3) were true under some mild conditions
(as required for the SLLN). While this heuristic is not quite correct, and the ele-
ments of β̂λ

i are not necessarily independent, at the level of calculating limp→∞
1
p

∑N
i=1 ψ(βo,i(p), β̂λ

i (p)) (ψ being pseudo-Lipschitz) this theorem confirms the
heuristic. Note that the key elements that have led to this heuristic is the random-
ness in the X and the large size of the problem.

REMARK 2.3. We are also interested in limp→∞ ‖β̂λ‖0
p

that is limp→∞
1
p

∑N
i=1 ψ(βo,i(p), β̂λ

i (p)) when ψ(u, v) = I(v �= 0). However, the ψ function is
not pseudo-Lipschitz, and hence Theorem 2.2 does not apply. However, as con-
jectured in [16] and proved in [3], we can still claim that if β̂λ(p) denotes the
sequence of solutions of the LASSO problem for a standard converging sequence
of instances {βo(p),X(p),w(p)}, then

lim
p→∞

1

p

∑
i

I
(
β̂λ

i (p) �= 0
) = P

(∣∣η(B + σ̂W ;χσ̂ )
∣∣ > 0

)
,

where χ , τ and σ̂ satisfy (4) and (5).

2.3. AMP in the asymptotic setting. In this section, we review some back-
ground on the asymptotic analysis of AMP. This section is mainly based on the
results in [4, 15, 16], and the interested reader is referred to these papers for further
details. The following result originally conjectured in [15, 16] and finally proved
in [4], helps us characterize different discrepancy measures for the AMP estimates.

THEOREM 2.4. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Suppose that βt(p) is the estimate of AMP at iteration t . Then for any
pseudo-Lipschitz function ψ : R2 →R we have

lim
p→∞

1

p

∑
i

ψ
(
βt

i (p),βo,i(p)
) = EB,W

[
ψ

(
η
(
B + σ tW ; τ t ),B)]

,

almost surely where B and W are two independent random variables with distribu-
tions pβ and N(0,1), respectively. Furthermore, starting with (σ 0)2 = E[B2]/δ,
σ t satisfies

(
σ t+1)2 = σ 2

w + 1

δ
EB,W

[(
η
(
B + σ tW ; τ t ) − B

)2]
.(6)



2432 A. MOUSAVI, A. MALEKI AND R. G. BARANIUK

Equation (6) is known as the state evolution (SE) for AMP, and σ t is called the
state of AMP at iteration t . Similar to the discussion for LASSO in Section 2.2,
we can establish that almost surely

(7) lim
p→∞

‖βt(p)‖0

p
= P

(∣∣B + σ tW
∣∣ ≥ τ t ),

even though ψ(u, v) = I (v �= 0) is not a pseudo-Lipschitz function [4].
One major feature of AMP that will be employed in this paper is that if we

set τ t “appropriately,” then the fixed point of AMP corresponds to the solution of
LASSO in the asymptotic regime. One such choice of parameters is the fixed false
alarm threshold given by τ t = χσ t , where σ t satisfies (6) and χ is a fixed number.
The following result, conjectured in [15, 16] and later proved in [3] formalizes this
statement.

THEOREM 2.5 ([3]). Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let βt(p) be the estimate of the AMP algorithm with parameter τ t = χσ t ,
where σ t satisfies (6). Assume that limt→∞(σ t )2 = σ̂ 2. Finally, let β̂λ denote the
solution of the LASSO with parameter λ that satisfies λ = χσ̂ (1 − P(|B + σ̂W | ≥
χσ̂ )). Then, almost surely

lim
t→∞ lim

p→∞
1

p

∥∥β̂λ(p) − βt(p)
∥∥2

2 = 0.

3. Main contributions. We start this section with our contributions regarding
AMP. We will then use these results to explain our approach for consistently tuning
the regularization parameter of LASSO.

3.1. Solution path and optimal tuning of AMP. This section summarizes our
contributions on the approximate message passing algorithm.

3.1.1. Solution path of AMP. The parameters τ 1, τ 2, . . . have a major impact
on both the final reconstruction error, limt→∞ ‖βt − βo‖2

2/p and the convergence
rate of AMP to its final solution. Ideally, one would like to select the parameters
in a way that the final reconstruction error is the smallest, and at the same time
the algorithm converges to this solution at the fastest achievable rate, that is, if
we stop the algorithm after T iterations, the estimate it returns is the best possible
estimate for T iterations of AMP. There are two main challenges here: (i) It is not
clear if these two criteria can be satisfied simultaneously. (ii) To obtain the min-
imum of limp→∞ ‖βt − βo‖2

2/p, we have to solve a computationally demanding
optimization problem on τ 1, τ 2, . . . , τ t .

To address these two challenges, we study the solution path of AMP in terms
of the parameters τ 1, . . . , τ t . We will show that under the asymptotic settings de-
scribed in the previous section, achieving the fastest convergence rate at every iter-
ation is equivalent to achieving the minimum of limt→∞ limp→∞ ‖βt − βo‖2

2/p.
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Furthermore, we will prove that the optimization of τ 1, τ 2, . . . , τ t does not need
to be done jointly. Below we formalize these statements. We start with the def-
inition of the optimal threshold parameters of AMP. We overload the notation
σ t (τ 1, τ 2, . . . , τ t−1) to emphasize on the fact that the state of AMP at iteration
t depends on all the parameters τ 1, τ 2, . . . , τ t−1.

DEFINITION 3.1. A sequence of threshold parameters τ ∗,1, τ ∗,2, . . . , τ ∗,T −1

is called asymptotically optimal for iteration T , if and only if

σT (
τ ∗,1, . . . , τ ∗,T −1) ≤ σT (

τ 1, τ 2, . . . , τ T −1)
,

∀τ 1, τ 2, . . . , τ T −1 ∈ [0,∞)T −1.

Note that in the above definition we have assumed that the optimal value of
σT is achieved by (τ ∗,1, . . . , τ ∗,T −1). This assumption is violated for the case
βo = 0. While we can generalize the definition to include this case, for notational
simplicity we skip this special case.

REMARK 3.2. According to Theorem 2.4, we have limp→∞ 1
p
‖βt − βo‖2

2 =
EB,W [η(B+σ tW ; τ t )−B]2 = δ((σ t+1)2 −σ 2

w), almost surely. Hence, the optimal
parameters, introduced in Definition 3.1, minimize the asymptotic MSE, also.

According to Definition 3.1, it seems that in order to tune AMP optimally,
we need to know the number of iterations T we plan to run it (i.e., usually
not known in practice) and then perform a joint optimization over the parame-
ters τ 1, τ 2, . . . , τ T −1 (i.e., computationally infeasible). The following theorem re-
solves both issues.

THEOREM 3.3. Let τ ∗,1, τ ∗,2, . . . , τ ∗,T −1 be asymptotically optimal for iter-
ation T . Then, τ ∗,1, τ ∗,2, . . . , τ ∗,t−1 are asymptotically optimal for any iteration
t < T .

See the proof of this Theorem in Section 4.1. An intriguing implication of this
result is that the sequence τ ∗,1, τ ∗,2, . . . achieves not only the minimum MSE as
t → ∞, but also the fastest convergence rate toward the final solution. Note that
Theorem 3.3 provides the first simplification for the tuning of the threshold pa-
rameters; if τ ∗,1, τ ∗,2, . . . , τ ∗,t−1 are optimally tuned for iteration t − 1, then τ ∗,t

minimizes

RB

(
σ t , τ t ;pβ

)
� E

(
η
(
Bo + σ tW ; τ t ) − Bo

)2
.(8)

In other words, the greedy method that finds the threshold parameter that mini-
mizes the asymptotic mean square error of the next iteration only (assuming that
AMP will stop after that iteration) leads to the optimal threshold parameters, de-
fined in Definition 3.1. Before we proceed further, we discuss an important prop-
erty of RB(σ t , τ t ;pβ) that will be used later.
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FIG. 1. The dashed black curve denotes the risk function corresponding to noiseless measurements
and the solid blue curve indicates its estimate. For the simulation details, refer to the supplementary
file [29].

DEFINITION 3.4. A quasi-convex function f : R → R is called bowl-shaped
if and only if there exists a unique and finite x0 ∈ R at which f achieves its mini-
mum, that is, f (x0) ≤ f (x), ∀x ∈ R.

LEMMA 3.5. If P(B = 0) < 1, then RB(σ t , τ t ;pβ) is a bowl-shaped function
of τ t . Furthermore, the derivative of RB(σ t , τ t ;pβ) with respect to τ t is only zero
at the optimal value of τ t

This result is similar to Lemma A.5 that is proved in the supplementary material.
You may see an example of RB(σ t , τ t ;pβ) in Figure 1. This lemma confirms that
the optimal value of τ t exists and is unique. Furthermore, we can use fast convex
optimization algorithms such as bisection or gradient descent to find τ ∗,t . We will
clarify this point in the next section.

Despite the success of Theorem 3.3 and Lemma 3.5 in reducing the computa-
tional complexity of the optimal tuning of τ 1, . . . , τ t , one major challenge has still
remained; The distribution of Bo is not known, and hence E(η(Bo + σ tW ; τ t ) −
Bo)

2 must be estimated from data. In the next section, we present an asymptotically
consistent estimate of this quantity (for a standard converging sequence discussed
in Definition 2.1).

3.1.2. Stein unbiased risk estimate and optimal tuning of AMP. A major ob-
stacle in using the results of the last section for tuning the threshold parameters of
AMP is the lack of knowledge of pβ in most applications. Hence, we consider the
following estimate of RB(σ t , τ t ;pβ):

R̂t
h,p

(
τ t , τ t−1, . . . , τ 1)

� 1

p

∥∥η̃h

(
βt + X∗zt ; τ t ) − (

βt + X∗zt )∥∥2
2 + (

σ t )2

(9)

+ 2

p

(
σ t )2[

1∗(
η̃′

h

(
βt + X∗zt ; τ t ) − 1

)]
,
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where η̃h(u; τ) = η(u; τ) ∗ 1√
2πh

e
− u2

2h2 , with ∗ and h denoting the convolution
operator and a small number, respectively. The role of this convolution is to smooth
out the soft thresholding function. We would like to emphasize three aspects of this
risk estimate:

1. The dependence of R̂t
h,p on τ 1, τ 2, . . . , τ t−1 might not be clear from the expres-

sion we have written in (9). However, βt , zt and σ t depend on τ 1, τ 2, . . . , τ t−1.
2. R̂t

h,p is inspired by the Stein unbiased risk estimate (SURE). Since SURE can
be applied to any weakly differentiable function, the introduction of the smooth-

ing kernel 1√
2πh

e
− u2

2h2 seems to be unnecessary. Our simulation results agree
with this observation, also. However, we require this modification for prov-
ing P(supτ t |R̂t

h,p(τ t , . . . , τ 1) − RB(σ t , τ t ;pβ)| > ε) → 0. This uniform con-
vergence is the base of the tuning approach we propose in this section and is
proved in Section 4.2.2. Hence, the introduction of h might be unnecessary and
an artifact of our proof technique.

3. Note that (σ t )2 is employed in R̂t
h,p(τ t , τ t−1, . . . , τ 1) despite the fact that it

is not known in practice. It is straightforward to use Lemma 1 of [4] to show
that 1

n
(zt )∗zt → (σ t )2, almost surely.3 Hence, we can replace (σ t )2 in (9) with

1
n
(zt )∗zt and all the discussions of this section will be still valid. However, for

notational simplicity we assume that σ t is given.

Let T 1,T 2, . . . denote some known compact intervals in R such that τ ∗,i ∈ T i .
Combining Theorem 3.3 and the risk estimate, R̂t

h,p(τ t , τ t−1, . . . , τ 1), we obtain
the following algorithm for tuning the parameters of AMP:

(i) Let τ̂ 1
p,h = arg minτ 1∈T 1 R̂1

h,p(τ 1).

(ii) Fix, τ 1, τ 2, . . . , τ t−1 to τ̂ 1
p,h, τ̂

2
p,h, . . . , τ̂

t−1
p,h , and calculate βt , zt , R̂t

h,p(τ t ,

τ̂ t−1
p,h , . . . , τ̂ 1

p,h), and

(10) τ̂ t
p,h � arg min

τ t∈T t
R̂t

h,p

(
τ t , τ̂ t−1

p,h , . . . , τ̂ 1
p,h

)
.

Compared with the original AMP algorithm, the only extra calculation that needs
to be done for the optimal tuning is the univariate optimization (10) at each it-
eration. For the moment, we suppose that we can solve this univariate optimiza-
tion problem efficiently (grid search can be applied at every iteration, however we
will describe more efficient algorithms later). Under this assumption, the following
Theorem proves the consistency of τ̂ t

p,h.

THEOREM 3.6. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let τ ∗,t denote the optimal threshold according to Definition 3.1. Then,
for any fixed iteration t , limh→0 limp→∞ τ̂ t

p,h = τ ∗,t in probability.

3This estimate has been introduced elsewhere [25].
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The proof of this theorem is discussed in Section 4.2. The tuning algorithm we
described above can be implemented in practice, but requires an exhaustive search
over each T t . Since RB(σ t , τ t ;pβ) is a quasi-convex function of τ t , we can em-
ploy a bisection method or gradient descent to reduce the computations further.
However, the algorithm has to work with the risk estimate R̂t

h,p(τ t , τ̂ t−1
p,h , . . . , τ̂ 1

p,h)

that is not necessarily quasi-convex. Hence, the last challenge is to modify these al-
gorithms in a way that they can work on R̂t

h,p(τ t , τ̂ t−1
p,h , . . . , τ̂ 1

p,h). Here, we present
an approximate bisection algorithm, but the interested reader may also see the
performance of an approximate gradient descent algorithm in our unpublished re-
port [28].

We assume that T t = [τ t , τ t ]. We select two small numbers ε and �, set
τ = (τ + τ)/2, and do the following: If (R̂t

p,h(τ + �) − R̂t
p,h(τ ))/� < −ε, then

set τ t = τ and repeat the process. If (R̂t
p,h(τ + �) − R̂t

p,h(τ ))/� > ε, then set
τ t = τ and repeat the process. Otherwise, stop the process and return τ . This is a
slight modification of the bisection method that is popular in optimization. We can
analyze the performance of this algorithm under the asymptotic settings.

THEOREM 3.7. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let τ̂ t
B,p denote the value of τ at which our bisection algorithm stops.

Then there exists τ̄ ∈ [τ̂ t
B,p, τ̂ t

B,p + �] such that with probability one

limh→0 limp→∞ | ∂RB(σ,τ̄ ;pβ)

∂τ
| < ε.

This result is a straightforward application of Theorem 4.4 and is skipped here.
We have shown in the supplementary material [29] that (i) The performance of the
bisection method is not sensitive to the exact value of ε and �, and (ii) These two
parameters are easy to tune. For a discussion on the choice of these parameters
and the problem size at which these algorithms work, refer to Section G of the
supplementary material.

3.2. Connection to optimal tuning of λ in LASSO. In the last section, we
showed how the threshold parameters of AMP can be optimized. In this section,
we study a connection between the estimates of the optimally-tuned AMP and the
solution of LASSO for the optimal value of λ. Suppose that we run AMP with the
optimal parameters τ ∗,1, τ ∗,2, . . . defined in Definition 3.1, and obtain β1∗ , β2∗, . . . .

PROPOSITION 3.8. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let β̂λ(p) denote the solution of LASSO with regularization parameter λ.
Then limt→∞ limp→∞ 1

p
‖βo(p) − βt∗(p)‖2

2 = infλ limp→∞ 1
p
‖β̂λ(p) − βo(p)‖2

2.

The proof of this result can be found in Section B of the supplementary material.
This theorem implies that the final solution the optimal AMP converges to, has the



CONSISTENT PARAMETER ESTIMATION FOR LASSO 2437

same MSE as the solution of LASSO with the optimal value of the regularization
parameter λ.

In Theorem 3.8, the threshold parameters of AMP are set to τ ∗,1, τ ∗,2, . . . . In
the last section, we showed how a consistent estimates of these parameters can
be obtained. Our next theorem proves that the estimates of AMP with such data-
dependent thresholds are close to βt∗(p), and hence have similar MSE as the solu-
tion of LASSO with the optimal regularization parameter.

PROPOSITION 3.9. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let τ̂ 1, τ̂ 2, . . . , τ̂ t denote data-driven threshold parameters that satisfy
τ̂ i → τ ∗,i in probability for every i ∈ {0,1,2, . . . , t}. Let β̃t denote the estimate
of AMP with thresholds τ̂ 1, τ̂ 2, . . . , τ̂ t . Then, in probability

lim
p→∞

1

p

∥∥β̃t (p) − βt∗(p)
∥∥2

2 = 0.

The proof of this result can be found in Section C of the supplementary material.

3.3. Solution path and optimal tuning of LASSO. As discussed in Section 3.2,
one may use the optimally-tuned AMP to reach the solution of LASSO with the
optimal value of λ. In this section, we propose a direct method to find the optimal
value of λ in LASSO. The approach we develop in this section can be used for a
wide range of regularizers.

Similar to the previous section, we first review some of the properties of
LASSO’s solution path that will be used for tuning λ. The two main problems
that we address are: (Q1) How does 1

p
‖β̂λ‖0 change as λ varies? (Q2) How does

1
p
‖β̂λ − βo‖2

2 change as λ varies? The first question is about the number of active
(nonzero) elements in the solution of the LASSO, and the second one is about the
mean squared error (MSE). Intuitively speaking, one would expect the size of the
active set to shrink as λ increases and the mean squared error to be a bowl-shaped
function of λ. Unfortunately, the peculiar behavior of LASSO breaks this intuition.
See Figure 2 for a counter-example. This figure exhibits the number of active el-
ements in the solution as we increase the value of λ. It is clear that the size of
the active set is not monotonically decreasing. The details of this simulation are
described in the supplementary material [29].

Such pathological examples have discouraged further investigation of these
problems in the literature. One of the main objectives of this paper is to show that
such examples are quite rare, and if we consider the asymptotic setting (that was
described in Section 2.2), then we can provide quite intuitive answers to the two
questions raised above. Let us summarize our results here in a nonrigorous way:
considering the asymptotic setting with Xij ∼ N(0,1/n) and wi ∼ N(0, σ 2

w), (A1)
1
p
‖β̂λ‖0 is a decreasing function of λ and (A2) 1

p
‖β̂λ − βo‖2

2 is a quasi-convex
function of λ. These results are formally stated below.
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FIG. 2. The number of active elements in the LASSO’s solution as a function of λ. The size of
the active set at one location grows as we increase λ, and hence this function does not match the
intuition. For the details of this experiment, see the supplementary material [29].

THEOREM 3.10. Let {βo(p),X(p),w(p)} denote a standard converging se-
quence of problem instances as defined in Definition 2.1. If β̂λ(p) is the solution
of LASSO with regularization parameter λ, then

d

dλ

(
lim

p→∞
1

p

p∑
i=1

I
(
β̂λ

i (p) �= 0
))

< 0.

Furthermore, limp→∞ 1
p

∑p
i=1 I(β

λ
i (p) �= 0) ≤ δ no matter how we select λ > 0.

We summarize the proof of this theorem in Section D of the supplementary
material. Intuitively, Theorem 3.10 claims that, as we increase the regularization
parameter λ, the number of elements in the active set, that is, ‖β̂λ‖0 is decreasing.
Also, according to the condition limp→∞ 1

p

∑p
i=1 I(β

λ
i (p) �= 0) ≤ δ, the largest

it can get is δ = n/p. Note that the fact that ‖β̂λ‖0 ≤ n is true even under the
nonasymptotic settings. For more information, refer to [20]. Since the number of
active elements is a decreasing function of λ, δ appears only in the limit λ →
0. Figure 3 plots the number of active elements as a function of λ for a setting
described in Section G.8.2 of supplementary material [29].

Our next result is regarding the behavior of the MSE in terms of the regulariza-
tion parameter λ. Figure 4 exhibits the behavior of MSE as a function of λ. The
detailed description of this problem instance can be found in Section G.8.3 of the
supplementary material [29].

THEOREM 3.11. Let {βo(p),X(p),w(p)} denote a standard converging se-
quence of problem instances as defined in Definition 2.1. If β̂λ(p) is the solution
of LASSO with regularization parameter λ, then limp→∞ 1

p
‖β̂λ(p) − βo(p)‖2

2 is
a quasi-convex function of λ. Furthermore, if pβ(B = 0) �= 1, then the function is
bowl-shaped.
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FIG. 3. The number of active elements in the solution of LASSO as a function of λ. The size of the
active set decreases monotonically as we increase λ. See the supplementary material [29] for the
details.

For the proof, see Section E of the supplementary material. Our next goal is to
show how one can estimate the optimal value of λ for LASSO. We start with the
definition of the optimal value of λ.

DEFINITION 3.12. Let {βo(p),X(p),w(p)} denote a standard converging se-
quence of problem instances as defined in Definition 2.1. Also, let β̂λ(p) be the
solution of LASSO with regularization parameter λ. A regularization parameter
λ∗ is called asymptotically optimal for LASSO if and only if λ∗ achieves the min-
imum of the almost sure limit of

lim
p→∞

‖β̂λ(p) − βo(p)‖2
2

p
.

According to Theorem 3.11 if βo �= 0, then λ∗ exists and is unique.

REMARK 3.13. Since Xij ∼ N(0, 1
n
) λ∗, minimizes both the asymptotic out-

of-sample prediction error and the asymptotic mean square error.

FIG. 4. Behavior of the MSE as a function of λ of LASSO for two different noise variances. See the
supplementary material [29] for details.
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The main obstacle in finding λ∗ is the estimation of limp→∞ 1
p
‖β̂λ −βo‖2

2. The
following theorem plays a pivotal role in estimating this quantity.

THEOREM 3.14. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let βt and zt denote the estimates of AMP with parameter τ t = χσ t ,
where σ t satisfies (6). Assume that limt→∞(σ t )2 = σ̂ 2, where σ̂ is a fixed point
of (4). Let β̂λ denote the solution of the LASSO with parameter λ that satisfies
λ = χσ̂ (1 − P(|B + σ̂W | ≥ χσ̂ )). Then, almost surely

lim
t→∞ lim

p→∞
1

p

∥∥∥∥βt + X∗zt − β̂λ − X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

∥∥∥∥2

2
= 0.

The proof of this theorem is presented in Section F of the supplementary mate-
rial. It is important to note that the term βt + X∗zt appears in the estimate of the

risk in (9). Hence, from Theorem 3.14 we expect the quantity β̂λ + X∗(y−Xβ̂λ)

1−‖β̂λ‖0
n

to

appear in the estimate of limp→∞
‖β̂λ−βo‖2

2
p

. The following remarks enable us to

construct an estimate of limp→∞ 1
p
‖β̂λ − βo‖2

2:

(i) R̂h,p(τ t , τ t−1, . . . , τ 1) converges almost surely to E(η(Bo + σ tW ; τ t ) −
Bo)

2, which is in turn the almost sure limit of ‖βt − βo‖2
2/p.

(ii) According to Theorem 2.5 if τ t = χσ t , then the almost sure limit of
limt→∞ limp→∞ ‖β̂λ − βt‖2

2/p is zero. This implies that the almost sure limit of
limp→∞ ‖β̂λ −βo‖2

2/p is equal to the almost sure limit of limt→∞ limp→∞ ‖βt −
βo‖2

2/p.

If we combine these two facts and Theorem 3.14 with (9), we obtain the following
expression as an estimate of limp→∞ ‖β̂λ − βo‖2

2/p:

r̃h,p(λ) � 1

p

∥∥∥∥η̃h

(
β̂λ + X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

;χσ̂

)
−

(
β̂λ + X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

)∥∥∥∥2

2

(11)

+ σ̂ 2 + 2

p
σ̂ 2

[
1∗

(
η̃′

h

(
β̂λ + X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

;χσ̂

)
− 1

)]
.

Note that this expression is still not a proper estimator for limp→∞ ‖β̂λ − βo‖2
2/p

for the following reasons: (i) σ̂ is not known. (ii) The value of χ corresponding to
λ is not known. We address both issues below:

1. Estimating σ̂ : Similar to the proof of Theorem 3.14, we can show that al-

most surely ‖zt − y−Xβ̂λ

1−‖β̂λ‖0/n
‖2/

√
p → 0. This is in fact part of the proof

of Theorem 3.14. It is straightforward to use Lemma 1 of [4] to prove that
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(zt )∗zt/n → (σ t )2. Since χ is picked such that σ t → σ̂ , we can use an esti-

mate ‖ y−Xβ̂λ

1−‖β̂λ‖0/n
‖2

2/n for σ̂ 2.

2. According to Theorem 3.14, χσ̂ (1 − P(|B + σ̂W | ≥ χσ̂ )) = λ. Furthermore,

according to Remark 2.3, ‖β̂λ‖0
p

→ P(|B + σ̂W | ≥ χσ̂ ) almost surely. Hence,

we can estimate χσ̂ with λ

1−‖β̂λ‖0
p

.

In summary, we obtain the following estimate for limp→∞
‖β̂λ−βo‖2

2
p

:

R̃h,p(λ) � 1

p

∥∥∥∥η̃h

(
β̂λ + X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

; λ

1 − ‖β̂λ‖0
p

)
−

(
β̂λ + X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

)∥∥∥∥2

2

(12)

+ σ̂ 2 + 2

p
σ̂ 2

[
1∗

(
η̃′

h

(
β̂λ + X∗(y − Xβ̂λ)

1 − ‖β̂λ‖0
n

; λ

1 − ‖β̂λ‖0
p

)
− 1

)]
,

where σ̂ 2 = ‖ y−Xβ̂λ

1−‖β̂λ‖0/n
‖2/n. Based on this estimate, we propose the following

approach for evaluating λ∗. Suppose that � is a compact subset of R with λ∗ ∈ �.
Define λ̂ = arg minλ∈� R̃h,p(λ). The following result proves the consistency of λ̂.

THEOREM 3.15. Consider a standard converging sequence {βo(p),X(p),

w(p)}. Let λ∗ denote the optimal regularization parameter according to Defini-
tion 3.12. Then limh→0 limp→∞ λ̂ = λ∗ in probability.

Since the proof is similar to the proof of Theorem 3.6, we skip it. Note that
we do not have to solve the LASSO for many different values of λ. According to
Theorem 3.11, the risk is quasi-convex, and hence other methods such as bisection
can help as well. Since the approach is similar to what we discussed for AMP, we
do not repeat it here.

4. Proofs of the main results.

4.1. Proof of Theorem 3.3. We start with the following lemma that will be
used in our proofs.

LEMMA 4.1. [32] If g : R → R is a weakly differentiable function and W ∼
N(0,1), then

E
(
g(Bo + σW ; τ) − Bo

)2 = E
(
g(Bo + σW ; τ) − Bo − σW

)2 + σ 2

+ 2σ 2
E

(
g′(Bo + σW ; τ) − 1

)
.
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We call this result Stein’s lemma in this paper. We first prove one of the main
features of the risk function defined in (8).

LEMMA 4.2. If P(B �= 0) �= 0, then infτ RB(σ, τ ;pβ) is an increasing func-
tion of σ .

PROOF. First, we prove this lemma for the modified risk function defined as
R̄B(σ,χ;pβ) � EW,Bo((η(Bo + σW ;σχ) − Bo)

2). Then we will switch to the
original risk function RB(σ, τ ;pβ).

According to Lemma A.3 (in the supplementary material), the risk function
R̄B(σ,χ;pβ) is a concave function of σ 2. Therefore, the derivative of the risk
function is a decreasing function of σ 2. Hence, if we prove that the derivative is
positive when σ → ∞, then for any fixed χ the risk function is an increasing

function of σ . Therefore, we first prove that limσ→∞ ∂R̄B(σ,χ;pβ)

∂σ 2 ≥ 0:

∂R̄B(σ,χ;pβ)

∂σ 2

= 1

2σ

∂

∂σ
EW,Bo

((
η(Bo + σW ;σχ) − Bo

)2)

= 1

2σ
EW,Bo

(
2
(
η(Bo + σW ;σχ) − Bo

)(
(W − χ)I(Bo + σW > σχ)

+ (W + χ)I(Bo + σW < −σχ)
))

(a)= EW,Bo

(
σWδ(Bo + σW − σχ) + I(Bo + σW > σχ)

− 2σχδ(Bo + σW − σχ) + τ 2
I(Bo + σW > σχ)

− σWδ(Bo + σW + σχ) + I(Bo + σW < −σχ)
(13)

+ χ2
I(Bo + σW < −σχ) − 2σχδ(Bo + σW + σχ)

)
= EBo

((
σχ − Bo

σ

)
φ

(
σχ − Bo

σ

)
+

(
σχ + Bo

σ

)
φ

(
σχ + Bo

σ

))

+EBo,W (
(
1 + χ2)(

I(Bo + σW > σχ) + I(Bo + σW < −σχ)
)

−EBo

(
2χ

(
φ

(
σχ − Bo

σ

)
+ φ

(
σχ + Bo

σ

)))

= (
1 + χ2)

EBo

(



(
Bo

σ
− χ

)
+ 


(−Bo

σ
− χ

))

− χEBo

(
φ

(
Bo

σ
− χ

)
+ φ

(
Bo

σ
+ χ

))

− 1

σ
EBo

(
Bo

(
φ

(
Bo

σ
− χ

)
− φ

(
Bo

σ
+ χ

)))
,
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where (a) holds because of the Stein’s lemma (Lemma 4.1). As a result of (13), we
can write

lim
σ→∞

∂RB(σ,χ;pβ)

∂σ 2

= lim
σ→∞

((
1 + χ2)

EBo

(



(
Bo

σ
− χ

)
+ 


(−Bo

σ
− χ

))

− χEBo

(
φ

(
Bo

σ
− χ

)
+ φ

(
Bo

σ
+ χ

))
(14)

− 1

σ
EBo

(
Bo

(
φ

(
Bo

σ
− χ

)
− φ

(
Bo

σ
+ χ

))))

= 2
(
1 + χ2)


(−χ) − 2χφ(χ)
(b)= 2

(
1 + χ2)

Q(χ) − 2χφ(χ)

(c)
> 2χφ(χ) − 2χφ(χ) = 0,

where in (b), Q(χ) �
∫ ∞
χ φ(w)dw and in (c) we have used the well-known

lower-bound for the Q-function (
χ

1+χ2 )φ(χ) < Q(χ). Now, since R̄B(σ,χ;pβ) =
EW,Bo((η(Bo + σW ;σχ) − Bo)

2) is an increasing function of σ for any fixed χ ,
if σ1 < σ2, then we can write

(15) EW,Bo

(
η(Bo + σ1W ;σ1χ) − Bo

)2
< EW,Bo

(
η(Bo + σ2W ;σ2χ) − Bo

)2
.

We can take the infimum from both sides of the inequality in (15) and obtain

inf
χ
EW,Bo

(
η(Bo + σ1W ;σ1χ) − Bo

)2

(16)
< inf

χ
EW,Bo

(
η(Bo + σ2W ;σ2χ) − Bo

)2
.

Since P(B �= 0) �= 0, according to Lemma A.5 (in the supplementary mate-
rial), EW,Bo(η(Bo + σ2W ;σ2χ) − Bo)

2 is a bowl shaped function of χ , and
hence, infχ EW,Bo(η(Bo + σ2W ;σ2χ) − Bo)

2 is achieved at a finite value of χ̄2.
According to (15), EW,Bo(η(Bo + σ1W ;σ1χ̄2) − Bo)

2 is strictly smaller than
infχ EW,Bo(η(Bo + σ2W ;σ2χ) − Bo)

2, and hence (16) is also correct with strict
inequality. Let τ = σχ and suppose that τ ∗ = σ2χ

∗ is the threshold by which the
infimum of the right-hand side (RHS) of (16) is achieved. Then we have

inf
τ
EW,Bo

((
η(Bo + σ1W ; τ) − Bo

)2)
= inf

χ
EW,Bo

((
η(Bo + σ1W ;χσ1) − Bo

)2)

≤ EW,Bo

((
η

(
Bo + σ1W ;

(
τ ∗

σ2

)
σ1

)
− Bo

)2)
(17)

< EW,Bo

((
η
(
Bo + σ2W ; τ ∗) − Bo

)2)
= inf

τ
EW,Bo

((
η(Bo + σ2W ; τ) − Bo

)2)
,
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which means infτ RB(σ, τ ;pβ) = EW,Bo((η(Bo +σW ; τ)−Bo)
2) is an increasing

function of σ . �

Having completed the proof of Lemma 4.2, the proof of Theorem 3.3 is per-
formed using an induction argument. Suppose that τ ∗,1, τ ∗,2, . . . , τ ∗,T −1 is op-
timal for iteration T . Our goal is to show that τ ∗,1, τ ∗,2, . . . , τ ∗,T −2 is optimal
for iteration T − 1 as well. Now we use a contradiction argument. Suppose
that τ ∗,1, τ ∗,2, . . . , τ ∗,T −2 is not optimal for iteration T − 1; then there exists
τ 1, τ 2, . . . , τ T −2 such that

σT −1(
τ 1, . . . , τ T −2)

< σT −1(
τ ∗,1, τ ∗,2, . . . , τ ∗,T −2)

.

Define τ ∗∗,T −1 as

arg min
τ

EBo,W

[(
η
(
Bo + σT −1(

τ 1, . . . , τ T −2)
W ; τ ) − Bo

)2]
.

We can now prove that

σT (
τ 1, . . . , τ T −2, τ ∗∗,T −1)

< σT (
τ ∗,1, τ ∗,2, . . . , τ ∗,T −1)

.

From Theorem 2.4, we have

(18)
(
σ t+1)2 = σ 2

w + 1

δ
EBo,W

[(
η
(
Bo + σ tW ; τ t ) − Bo

)2]
.

Since σT −1(τ 1, . . . , τ T −2) < σT −1(τ ∗,1, τ ∗,2, . . . , τ ∗,T −2), Lemma 4.2 combined
with (18) prove that σT (τ 1, . . . , τ T −2, τ ∗∗,T −1) < σT (τ ∗,1, τ ∗,2, . . . , τ ∗,T −1),
that contradicts the optimality of τ ∗,1, τ ∗,2, . . . , τ ∗,T −1. Therefore, we conclude
that if τ ∗,1, τ ∗,2, . . ., τ ∗,T −1 is optimal for iteration T , then it is optimal for every
iteration t < T . The rest of the induction argument is similar, and hence for the
sake of brevity we skip it.

4.2. Proof of Theorem 3.6.

4.2.1. Roadmap of the proof. We break the rather long proof of this theorem
into two steps:

1. First, we prove that the risk estimate presented in (9) provides a consistent
estimate of the risk RB(σ t , τ t ;pβ). Since we would like to optimize the risk
estimate over the parameter τ t , we require a uniform notion of consistency, that
is,

lim
h→0

lim
p→∞ sup

τ t∈T t

∣∣R̂t
h,p

(
τ t ) − RB

(
σ t , τ t ;pβ

)∣∣ = 0,

in probability. Note that the convergence is uniform on T t . After discussing
several useful lemmas, we prove this claim in Theorem 4.4.

2. Once we prove this claim, we use the properties of the solution path of AMP,
in particular Theorem 3.3, to show the consistency of our parameter tuning
scheme across t iterations.
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4.2.2. Uniform convergence of the risk estimate. We start with a few lemmas
that will be later used to prove

lim
h→0

lim
p→∞ sup

τ t∈T t

∣∣R̂t
h,p

(
τ t ) − RB

(
σ t , τ t ;pβ

)∣∣ = 0,

in probability. Our first lemma is concerned with the pointwise (with respect to τ t )
convergence of the risk estimate to RB(σ t , τ t ;pβ).

LEMMA 4.3. Let {βo(p),X(p),w(p)} be a standard converging sequence.
Furthermore, let R̂t

h,p(τ t ) denote the estimate of the risk at iteration t of AMP as
defined in (9). Then

lim
p→∞ R̂t

h,p

(
τ t , τ t−1, . . . , τ 1) = EBo,W

[(
η̃h

(
Bo + σ tW ; τ t ) − Bo

)2]
,(19)

almost surely, where Bo and W are two independent random variables with distri-
butions pβ and N(0,1), respectively, and σ t satisfies (6).

PROOF. By applying Lemma 4.1 to the right-hand side of (19), we can rewrite
it as

EBo,W

[(
η̃h

(
Bo + σ tW ; τ t ) − Bo

)2]
= EBo,W

[(
η̃h

(
Bo + σ tW ; τ t ) − (

Bo + σ tW
))2] + (

σ t )2(20)

+ 2
(
σ t )2

EBo,W

[(
η̃′

h

(
Bo + σ tW ; τ t ) − 1

)]
.

Similarly, we can decompose the left-hand side (LHS) of (19) to

R̂t
h,p

(
τ t , τ t−1, . . . , τ 1) = 1

p

∥∥η̃h

(
βt + X∗zt ; τ t ) − (

βt + X∗zt )∥∥2
2 + (

σ t )2

(21)

+ 2

p

(
σ t )2[

1∗(
η̃′

h

(
βt + X∗zt ; τ t ) − 1

)]
.

Let X(:,i) denote the ith column of X. Define

bt � βt + X∗zt − βo.(22)

Considering the following function:

ψ1
(
bt
i , βo,i

)
�

(
η̃h

(
bt
i + βo,i; τ t ) − (

bt
i + βo,i

))2

(23)
= (

η̃h

(
βt

i + X∗
(:,i)zt ; τ t ) − (

βt
i + X∗

(:,i)zt ))2
.

It is straightforward to use Lemma 1 of [4] to prove

(24) lim
p→∞

1

p

p∑
i=1

ψ1
(
bt
i , βo,i

) = EBo,W

[(
η̃h

(
Bo + σ tW ; τ t ) − (

Bo + σ tW
))2]

,
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almost surely. Furthermore, it is straightforward to note that the derivative of η̃h is
bounded, and hence by Lemma 1 of [4] almost surely

lim
p→∞

1∗(η̃′
h(β

t + X∗zt ; τ t ) − 1)

p
= E

(
η̃′

h

(
Bo + σ tW ; τ t ) − 1

)
.(25)

Combining (20), (24) and (25) completes the proof. �

Lemma 4.3 is only concerned with the pointwise convergence of the risk. The
next theorem proves the uniform convergence. Define

(26) Rt
A

(
τ t , τ t−1, . . . , τ 1)

� RB

(
τ t , σ t ;pβ

)
,

where σ t is derived from the iterations of (6). This new notation will be useful in
our proofs.

THEOREM 4.4. Let {βo(p),X(p),w(p)} be a standard converging sequence.
Furthermore, let R̂t

h,p(τ t , τ t−1, . . . , τ 1) denote the estimate of the Bayes risk at
iteration t of AMP as defined in (9). Let T t ⊂R denote a compact set. Then

lim
h→0

lim
p→∞ sup

τ t∈T t

∣∣R̂t
h,p

(
τ t , τ t−1, . . . , τ 1) − Rt

A

(
τ t , τ t−1, . . . , τ 1)∣∣ = 0(27)

in probability, for every τ 1, . . . , τ t−1 ∈ T 1 × · · · × T t−1.

PROOF. We first define the the following function:

Rt
A,h

(
τ t , τ t−1, . . . , τ 1)

� E
(
η̃h

(
B + σ tW ; τ t ) − B

)2
,

where B and W are two independent random variables with distributions pβ and
N(0,1), respectively, and σ t satisfies (6). Note that this is the asymptotic risk of
AMP for the smoothed version of the soft thresholding function. By the triangle
inequality, we have∣∣R̂t

h,p

(
τ t , τ t−1, . . . , τ 1) − Rt

A

(
τ t , τ t−1, . . . , τ 1)∣∣

≤ ∣∣R̂t
h,p

(
τ t , τ t−1, . . . , τ 1) − Rt

A,h

(
τ t , τ t−1, . . . , τ 1)∣∣(28)

+ ∣∣Rt
A,h

(
τ t , τ t−1, . . . , τ 1) − Rt

A

(
τ t , τ t−1, . . . , τ 1)∣∣.

Hence, we first prove that

(29) lim
p→∞ sup

τ t∈T t

∣∣R̂t
h,p

(
τ t , τ t−1, . . . , τ 1) − Rt

A,h

(
τ t , τ t−1, . . . , τ 1)∣∣ = 0,

in probability for every h > 0 and every τ 1, . . . , τ t−1. Second, we prove that

(30) lim
h→0

sup
τ∈T t

∣∣Rt
A,h

(
τ t , τ t−1, . . . , τ 1) − Rt

A

(
τ t , τ t−1, . . . , τ 1)∣∣ = 0.
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Combining these two results will establish the theorem. To establish (29), we start
with the following definitions whose importance will become clear later:

Uh,p(bi, βo,i, τ, σ ) �
(
η̃h(bi + βo,i; τ) − (bi + βo,i)

)2 + σ 2

+ 2σ 2[(
η̃′

h(bi + βo,i; τ) − 1
)]

,(31)

Ū (bi, βo,i, ρ, τ, σ ) � sup
τ̃ :|τ̃−τ |≤ρ

Uh,p(bi, βo,i, τ̃ , σ ) −EUh,p(σW,B, τ̃ , σ ),

where B and W are two independent random variables with distributions pβ and
N(0,1), respectively. The following remarks clarify some of the main features and
connections of these definitions:

1. It is straightforward to verify that

R̂t
h,p

(
τ t , τ t−1, . . . , τ 1) = 1

p

p∑
i=1

Uh,p

(
bt
i , βo,i, τ

t , σ t ),
where bt = βt + X∗zt − βo and βt is the estimate of AMP with threshold pa-
rameters τ i at the ith iteration.

2. According to Lemma 4.3, 1
p

∑p
i=1 Uh,p(bt

i , βo,i, τ
t , σ t )

a.s.→ Rt
A,h(τ

t , τ t−1,

. . . , τ 1).
3. According to Lemma 4.1, RA,h(τ

t , τ t−1, . . . , τ 1) = EUh,p(σ tW,B, τ, σ t ),
where the expectation is with respect to two independent random variables
W ∼ N(0,1) and B ∼ pβ .

The next four lemmas prove several basic properties of RA,h, Uh,p and Ūh,p

that will be useful later in our proof.

LEMMA 4.5. Rt
A,h(τ

t , τ t−1, . . . , τ 1) is a continuous function of τ t , for every

τ 1, τ 2, . . . , τ t−1 ∈ T 1 × T 2, . . . ,T t−1.

PROOF. The proof is a straightforward application of the dominated conver-
gence theorem:

lim
τ̃ t→τ t

Rt
A,h

(
τ̃ t , τ t−1, . . . , τ 1)

= lim
τ̃ t→τ t

EUh,p

(
σ tW,B, τ̃ t , σ t )

(a)= E lim
τ̃ t→τ t

Uh,p

(
σ tW,B, τ̃ t , σ t ) (b)= EUh,p

(
σ tW,B, τ t , σ t ).

Equality (a) is due to the fact that Uh,p is a bounded function of both σ tW and B ,
and hence dominated convergence theorem can be applied. Equality (b) uses the
continuity of Uh,p with respect to τ t . �
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LEMMA 4.6. Let T denote a compact subset of R. Uh,p(bi, βo,i, τ, σ ) is a
Lipschitz function of (bi, βo,i) with Lipschitz constant:

LU �
√

2 max
τ∈T 2τ

(
sup
ζ

∣∣η̃′
h(ζ ; τ)

∣∣ + 1
)

+ 2σ 2 sup
ζ̃

∣∣η̃′′
h(ζ̃ ; τ)

∣∣.

It is important to note that both |η̃′
h(ζ ; τ)| and |η̃′′

h(ζ̃ ; τ)| are bounded functions
of ζ and ζ̃, respectively, for a fixed τ . Since T is a compact set, LU is bounded as
well.

PROOF. Define si � bi + βo,i and s̃i � b̃i + β̃i :∣∣Uh,p(bi, βo,i, τ, σ ) − Uh,p(b̃i, β̃o,i , τ, σ )
∣∣

= ∣∣(η̃h(si; τ) − si
)2 + 2σ 2η̃′

h(si; τ) − (
η̃h(s̃i; τ) − s̃i

)2 + 2σ 2η̃′
h(s̃i; τ)

∣∣
(a)= ∣∣(η̃′

h(ζ ; τ) + 1
)
(si − s̃i )

(
η̃h(si; τ) − si + η̃h(s̃i; τ) − s̃i

)∣∣(32)

+ 2σ 2∣∣η̃′′
h(ζ̃ ; τ)

∣∣∣∣(si − s̃i )
∣∣

(b)≤ 2τ
(
sup
ζ

∣∣η̃′
h(ζ ; τ)

∣∣ + 1
)

+ 2σ 2
(
sup
ζ̃

∣∣η̃′′
h(ζ̃ ; τ)

∣∣)∣∣(si − s̃i )
∣∣.

Note that equality (a) is derived from the mean value theorem. To obtain inequality
(b) we used the fact that |ηh(s, τ ) − s| ≤ τ . Finally, to show that the function is

Lipschitz we employ the inequality |si − s̃i | ≤
√

2
√

(bi − b̃i)2 + (βt
i − β̃i)2. �

LEMMA 4.7. Ū(bi, βo,i, ρ, τ, σ ) is also a Lipschitz function of (bi, βo,i) with
Lipschitz constant LU defined in Lemma 4.6.

PROOF. From Lemma 4.6, we have

Uh,p(bi, βo,i, τ̃ , σ ) ≤ Uh,p(b̃i, β̃o,i , τ̃ , σ ) + LU

√
(bi − b̃i )2 + (

βt
i − β̃i

)2
.

By subtracting the constant (in terms of bi and βo,i ) EUh,p(σ tW,B, τ̃ , σ ) and
taking the supremum with respect to τ̃, we obtain

Ū (bi, βo,i, ρ, τ, σ ) ≤ Ū (b̃i , β̃o,i, ρ, τ, σ ) + LU

√
(bi − b̃i)2 + (

βt
i − β̃i

)2
.

The proof of the other direction is similar. �

LEMMA 4.8. Let W and B denote two independent random variables with
distributions N(0,1) and pβ , respectively. Then limρ→0 EŪ (σW,B,ρ, τ, σ ) = 0.
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PROOF. Since Ū is a bounded function, we can exchange the order of limρ→0
and E. Hence,

lim
ρ→0

EŪ (σW,B,ρ, τ, σ ) = E lim
ρ→0

Ū (σW,B,ρ, τ, σ )

(a)= EUh,p

(
σ tW,B, τ, σ

) −EUh,p

(
σ tW̃ , B̃, τ, σ

)
(33)

= 0.

Note that to obtain equality (a) we use the continuity of Uh,p in τ . �

Lemma 4.8 implies that for any ε > 0, there exists ρτ0 such that if |τ −τ0| < ρτ0 ,
then EŪ (σ tW,B,ρ, τ ) < ε. Note that we have a subscript τ0 for ρτ0 to empha-
size on the fact that ρ is dependent on the choice of τ0. Define B(c, ρ) = {τ ∈
T ||τ − c| ≤ ρ}. Consider the set of all the balls B(τ, ρτ ) for every τ ∈ T . This set
forms a covering of T . Since T is compact, it has a finite subcover. Let B(τ ∗

1 , ρ∗
1 ),

B(τ ∗
2 , ρ∗

2 ), . . . ,B(τ ∗
M,ρ∗

M) denote this finite subcover. We have

P

(
sup
τ

1

p

p∑
i=1

Uh,p

(
bt
i , βo,i, τ, σ

t ) − RA,h

(
τ, τ t−1, . . . , τ 1)

> 2ε

)

≤ P

(
max

i

1

p

p∑
i=1

Ūh,p

(
bt
i , βo,i, ρ

∗
i , τ ∗

i , σ t ) > 2ε

)
(34)

< M max
i

P

(
1

p

p∑
i=1

Ūh,p

(
bt
i , βo,i, ρ

∗
i , τ ∗

i , σ t ) > 2ε

)
.

Note that the first inequality is due to the definition of Ūh,p and the second in-
equality is a simple application of the union bound. The last step of the proof is to
show that

P

(
1

p

p∑
i=1

Ūh,p

(
bt
i , βo,i, ρ

∗
i , τ ∗

i , σ t ) > 2ε

)
→ 0,(35)

as p → ∞. Note that if we combine Lemma 4.7 and Lemma 1 of [4] we obtain

(36) P

(
1

p

p∑
i=1

Ūh,p

(
bt
i , βo,i, ρ

∗
i , τ ∗

i , σ t )−EŪh,p

(
σ tW,B,ρ∗

i , τ ∗
i , σ t ) > ε

)
→ 0,

as p → ∞. Furthermore, from the construction of the covering we have

max
i=1,...,M

EŪh,p

(
σ tW,B,ρ∗

i , τ ∗
i , σ t ) < ε.(37)

Hence, by combining (36) and (37) we obtain (35). �

At this point, we refer the reader to (28). So far, we have proved (29).
Hence, if we prove (30), it will establish (28) and will complete the proof
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of Theorem 4.4. Hence, in this step our goal is to prove that the function
supτ t∈T t |Rt

A,h(τ
t , τ t−1, . . . , τ 1) − Rt

A(τ t , τ t−1, . . . , τ 1)|, is a continuous func-
tion of h. In Lemma 4.5, we showed that Rt

A,h(τ
t , τ t−1, . . . , τ 1) is a continu-

ous function of τ t . It is straightforward to use the same argument to show that
it is a continuous function of (h, τ t ). Therefore, we can show that the function
|Rt

A,h(τ
t , τ t−1, . . . , τ 1) − Rt

A(τ t , τ t−1, . . . , τ 1)| is also a continuous function of
(h, τ ). We require the following standard result from analysis.

LEMMA 4.9. Let f (h, τ ) denote a continuous function from R
2 to R. Also,

assume that T is a compact subset of R. Then, limh→ho supτ∈T f (h, τ ) =
supτ∈T f (ho, τ ).

This is a standard result and its proof can be found elsewhere. For instance,
it is equivalent to Lemma 12 in [40]. According to this lemma, supτ∈T f (h, τ )

is a continuous function of h. Applying Lemma 4.9 to |Rt
A,h(τ

t , τ t−1, . . . , τ 1)

−Rt
A(τ t , τ t−1, . . . , τ 1)| proves (30).

4.2.3. Consistency of the parameter tuning. At this point, we remind the
reader that as we discussed in Section 4.2.1 we broke the proof of Theorem 3.6
in two steps. The first step was to prove:

lim
h→0

lim
p→∞ sup

τ t∈T
∣∣R̂t

h,p

(
τ t , τ t−1, . . . , τ 1) − Rt

A

(
τ t , τ t−1, . . . , τ 1)∣∣ = 0(38)

in probability, for every τ 1, . . . , τ t−1 ∈ T 1 × · · · × T t−1, that was established in
Theorem 4.4. In this section, we would like to prove the second step, that is, the
consistency of τ̂ 1

p,h, τ̂
2
p,h, . . . , τ̂

t
p,h. For the proof, we employ an induction. As a

base of induction, we first prove that τ̂ 1
p,h → τ ∗,1 in probability. First, note that

from the proof of Lemma A.5 (in the supplementary material), we conclude that
for every ε > 0 we have

inf
τ :|τ−τ∗,1|>ε

R1
A(τ) > R1

A

(
τ ∗,1)

.

In the rest of the proof, we assume that infτ :|τ−τ∗,1|>ε R1
A(τ) − R1

A(τ ∗,1) = 2γ ,
where γ > 0 is a fixed number. We proved in Theorem 4.4 that

(39) sup
τ∈T

∣∣R1
A,h(τ ) − R1

A(τ)
∣∣ → 0,

as h → 0. Hence, we can find ho such that for every h < ho, supτ∈T |R1
A,h(τ ) −

R1
A(τ)| < γ/2. This implies that for h < h0

R1
A,h

(
τ ∗,1)

< R1
A

(
τ ∗,1) + γ /2,(40)

inf
τ :|τ−τ∗,1|>ε

R1
A,h(τ ) > inf

τ :|τ−τ∗,1|>ε
R1

A(τ) − γ /2.(41)
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In Theorem 4.4, we proved that

P

(
sup
τ

∣∣R̂1
h,p(τ ) − R1

A,h(τ )
∣∣ > γ/2

)
→ 0,

as p → ∞. As a result, we conclude that

P
(
R̂1

h,p

(
τ ∗,1)

> R1
A,h

(
τ ∗,1) + γ /2

) → 0,(42)

P

(
inf

τ :|τ−τ∗,1|>ε
R̂1

h,p(τ ) < inf
τ :|τ−τ∗,1|>ε

R1
A,h(τ ) − γ /2

)
→ 0.(43)

Hence, by combining (40) and (42) we conclude that

(44) P
(
R̂1

h,p

(
τ ∗,1)

> R1
A

(
τ ∗,1) + γ

) → 0.

It is also straightforward to combine (41) and (43) and obtain

(45) P

(
inf

τ :|τ−τ∗,1|>ε
R̂1

h,p(τ ) < inf
τ :|τ−τ∗,1|>ε

R1
A,h(τ ) − γ

)
→ 0.

Combining (44) and (45) proves that if h < h0, then

(46) P
(∣∣τ̂ 1

p,h − τ ∗,1∣∣ > ε
) → 0,

as p → ∞. Now we use an induction to show that if τ̂ 1
p,h

p→ τ ∗,1, τ̂ 2
p,h

p→
τ ∗,2, . . . , τ̂ t

p,h

p→ τ ∗,t , then τ̂ t+1
p,h

p→ τ ∗,t+1. To keep the notation simpler, we only
prove this claim for t = 1. The proof for an arbitrary t is the same. Our proof uses
the following steps:

1. We first prove that |R̂2
h,p(τ 2, τ̂ 1

p,h) − R2
A(τ 2, τ ∗,1)| p→ 0. Note that the main

reason this cannot be derived from Theorem 4.4 is that now we have used a data-
dependent threshold τ̂ 1

p,h in the first iteration. In Theorem 4.4, the threshold
does not depend on data.

2. Next, we prove that supτ 2∈T 2 |R̂h,p(τ 2, τ̂ 1
p,h) − RB(τ 2, τ ∗,1)| p→ 0. Using the

proof technique in Theorem 4.4 and the fact that we have already proved

|R̂h,p(τ 2, τ̂ 1
p,h) − RB(τ 2, τ ∗,1)| p→ 0, the proof of this statement is straight-

forward and will be skipped.

3. Finally, we use the fact that supτ 2∈T 2 |R̂h,p(τ 2, τ̂ 1
p,h) − RB(τ 2, τ ∗,1)| p→ 0 and

the proof technique developed in (46) to show that τ̂ 2
p,h → τ 2,∗. Note that by

Theorem 3.3 we already know that even though τ 1 is set to τ ∗,1, the optimal
choice of τ 2 can still be achieved. Since this is exactly the same as the proof of
(46), we will skip the proof.

We only prove the first of the above three steps. First, note that∣∣R̂2
h,p

(
τ 2, τ̂ 1

p,h

) − R2
A

(
τ 2, τ ∗,1)∣∣ ≤ ∣∣R̂2

h,p

(
τ 2, τ̂ 1

p,h

) − R̂2
h,p

(
τ 2, τ ∗,1)∣∣

+ ∣∣R̂2
h,p

(
τ 2, τ ∗,1) − R2

A,h

(
τ 2, τ ∗,1)∣∣(47)

+ ∣∣R2
A,h

(
τ 2, τ ∗,1) − R2

A

(
τ 2, τ ∗,1)∣∣.
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We consider each of the three terms on the right and prove that they converge
to zero in probability. R̂2

h,p(τ 2, τ 1) is differentiable in terms of τ 1 and τ 2. Further-
more, the derivative is bounded with probability one. Hence, by the mean value
theorem we have

∣∣R̂2
h,p

(
τ 2, τ̂ 1

p,h

) − R̂2
h,p

(
τ 2, τ ∗,1)∣∣ ≤ C

∣∣τ̂ 1
p,h − τ ∗,1∣∣,

where C is an upper bound on the derivative of R̂h,p in terms of τ 1. Hence, it is
straightforward to use the base of the induction and prove that

P
(∣∣R̂2

h,p

(
τ 2, τ̂ 1

p,h

) − R̂2
h,p

(
τ 2, τ ∗,1)∣∣ > ε

)
≤ P

(
sup

(τ1,τ2)∈T1×T2

(
R̂2

h,p

)′
(τ2, τ1) > C

)
+ P

(
C

∣∣τ̂ 1
p,h − τ ∗,1∣∣ > ε

)
.

Since both probabilities go to zero as p → ∞, we conclude that

(48) P
(∣∣R̂2

h,p

(
τ 2, τ̂ 1

p,h

) − R̂2
h,p

(
τ 2, τ ∗,1)∣∣ > ε

) → 0.

Furthermore, according to Theorem 4.4 we have

(49)
∣∣R̂2

h,p

(
τ 2, τ ∗,1) − R2

A,h

(
τ 2, τ ∗,1)∣∣ p→ 0.

By combining (48) and (49), we obtain |R̂2
h,p(τ 2, τ̂ 1

p,h) − R2
A,h(τ

2, τ ∗,1)| p→ 0.

The proof of |R2
A,h(τ

2, τ ∗,1)−R2
A(τ 2, τ ∗,1)| → 0 as h → 0, is a straightforward

application of the continuity of R2
A,h(τ

2, τ ∗,1) with respect to (h, τ 2) and is hence
skipped. This completes our proof of the consistency of τ̂ 2

p,h.

5. Conclusions. In this paper, we have characterized the performance of
LASSO and AMP for estimating a sparse vector from undersampled, noisy ob-
servations. By considering a model in which the design matrix and noise are
zero-mean i.i.d. Gaussian, we proposed a computationally efficient, data-driven
approach for estimating the free parameters of LASSO and AMP. We have shown
that our estimates are consistent in the sense that they converge to their asymptoti-
cally optimal values in probability. Finally, we have proved asymptotic properties
of the solution path of LASSO and AMP.

SUPPLEMENTARY MATERIAL

Supplement to “Consistent parameter estimation for LASSO and approx-
imate message passing” (DOI: 10.1214/16-AOS1529SUPP; .pdf). This supple-
mentary material includes the proof of theorems and simulation results.

https://doi.org/10.1214/16-AOS1529SUPP
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