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OPERATIONAL TIME AND IN-SAMPLE DENSITY FORECASTING

BY YOUNG K. LEE1,∗, ENNO MAMMEN2,†,
JENS P. NIELSEN3,‡ AND BYEONG U. PARK4,§
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Economics†, Cass Business School, City University London‡

and Seoul National University§

In this paper, we consider a new structural model for in-sample density
forecasting. In-sample density forecasting is to estimate a structured density
on a region where data are observed and then reuse the estimated structured
density on some region where data are not observed. Our structural assump-
tion is that the density is a product of one-dimensional functions with one
function sitting on the scale of a transformed space of observations. The
transformation involves another unknown one-dimensional function, so that
our model is formulated via a known smooth function of three underlying
unknown one-dimensional functions. We present an innovative way of esti-
mating the one-dimensional functions and show that all the estimators of the
three components achieve the optimal one-dimensional rate of convergence.
We illustrate how one can use our approach by analyzing a real dataset, and
also verify the tractable finite sample performance of the method via a simu-
lation study.

1. Introduction. In-sample forecasting is a recently introduced class of fore-
casting methods based on structured nonparametric models. The idea is that obser-
vations might fall in some set, say S, in R

2 and that S can be written as the union
of two subsets S1 and S2, where S1 is the set of observed observations and S2 is the
set of future observations whose distribution is the target for forecasting. In-sample
density forecasting assumes that the density restricted to S1 or to S2 can be de-
scribed by the same one-dimensional nonparametric functions. This assumptions
leads to the convenient forecasting strategy of estimating the structured density on
the observed data in S1 and then simply reusing the nonparametrically estimated
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one-dimensional components while estimating the density on S2. The strategy may
be put into practice by structuring the density in such a way that all components of
the structured density are estimable with the observations in S1. With this strategy,
forecasting can be performed without extrapolation of parameters. This is likely to
lead to more robust forecasting, because extrapolated parameters are often volatile.
For time series extrapolation in particular, see Lee and Carter (1992), for example.

Lee et al. (2015) and Mammen, Martínez Miranda and Nielsen (2015) consid-
ered the perhaps simplest possible in-sample forecaster, where the joint density
p has a multiplicative structure p(x, y) = f1(x)f2(y) for some unknown univari-
ate functions fj with S1 = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ t0}. In this setting, p is
the joint density of two random variables X and Y , where X represents the start
of something and Y is the development to some event from this starting point.
These variables are observed only if the event occurs by a fixed calendar time t0.
Thus, f1(x) measures how many individuals are exposed or under risk and f2(y)

represents duration or survival. The multiplicative form means that survival or du-
ration has the same distribution independent of X. As was pointed out in Lee et al.
(2015) and Mammen, Martínez Miranda and Nielsen (2015), this is a continuous
type in-sample forecaster that extends classical actuarial and mortality forecast-
ing methodologies based on multiplicative Poisson models being used every day
in virtually all nonlife insurance companies around the world. In a nonparametric
universe, the estimators resulting from the multiplicative Poisson models are struc-
tured histograms. Martínez-Miranda et al. (2013) showed the link between actuar-
ial parametric chain ladder-type models [Kuang, Nielsen and Nielsen (2009)] and
structured smoothing as considered in this paper.

The multiplicative structure f1(x)f2(y) may be too simple for many settings.
Nevertheless, the multiplicative model can be used as a baseline for more sophis-
ticated models that deviate from this simple structure. This paper illustrates how
powerful in-sample forecasting is when formulating, interpreting and analysing
extensions of the simple multiplicative model. Actuaries have long tried to intro-
duce the concept of operational time in the claims reserving modelling. The phrase
“operational time” is taken from the literature of Poisson processes. When trans-
forming the time axis with its operational time, an inhomogeneous Poisson process
is transformed to a homogenous one; see Mikosch (2009) among many others. In
the claims modelling framework, actuaries have been concerned about adjusting
for changes in the speed of claims finalization over time. Many actuarial confer-
ence proceeding papers have been devoted to this topic and still are to this day.
However, operational time or speed of claims finalization only had a short blos-
soming in the more formal academic actuarial literature; see Reid (1978), Taylor
(1981, 1982) and Zehnwirth (1982). We believe that the topic of operational time
died out in the actuarial literature, not because of lack of relevance, but because the
mathematical challenges of formulating and analysing it became too overwhelm-
ing.
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This paper introduces operational time to a general class of multiplicative mod-
els including actuarial, demographic and labour market applications taking ad-
vantage of the general in-sample forecasting formulation. We refer to Lee et al.
(2015), Mammen, Martínez Miranda and Nielsen (2015) and Wilke (2016) for
practical illustrations of multiplicative In-sample forecasting in actuarial science,
demographics and the labour market. An alternative to operational time could be
to add a calendar effect to the multiplicative model. While calendar effects are
popular to talk about in actuarial science, they cause a number of difficulties, the
most serious being the identifiability issue that some arbitrary linear trends can be
added to or subtracted from the underlying model without changing the underlying
model; see Kuang, Nielsen and Nielsen (2008a, 2008b, 2011). While the latter of
these three papers does suggest practical implementation of identified forecasting
procedures using calendar effects, there is still considerable uncertainty on how to
forecast calendar effects in practice in the simple multiplicative forecasting model.
Our Operational Time In-Sample Forecaster does not have any of these practical
problems. It is immediate to construct a practical forecaster based on the opera-
tional time extension of the simple multiplicative In-Sample Forecaster.

In this paper, we consider a transformation, say φ, and a density model given by
p(x, y) = f1(x)f2(yφ(x)) on S1. Our method and theory apply to a general type
of support set S1. The Operational Time In-Sample Forecaster can be understood
as a structured model formulated in a density framework rather than in the regres-
sion framework considered in Mammen and Nielsen (2003). The model is formu-
lated via a known smooth function of three one-dimensional unknown functions
φ,f1 and f2. The estimation of φ, as discussed in Section 3, involves the estima-
tion of the partial derivatives of the two-dimensional joint density function p by
kernel smoothing. A naive application of the standard theory of kernel smoothing
to the problem renders only a sub-optimal rate of convergence for the estimator
of φ. Based on an innovative asymptotic analysis, we show that our estimator of φ

achieves the optimal one-dimensional rate. Using this result, we also establish that
the component functions fj can be estimated with the optimal univariate rate.

There is a close relation between the multiplicative density model and the ad-
ditive regression model. Thus, our approach may be extended to fundamental
structured regression models studied in Jiang, Fan and Fan (2010), Yu, Park and
Mammen (2008), Lee, Mammen and Park (2010, 2012), Zhang, Park and Wang
(2013) among others. The multiplicative model with operational time corresponds
to nonparametric regression models of the form Z = m1(X) + m2(Yφ(X)) + ε or
Z = m1(X)+m2(Y +φ(X))+ ε. The latter model is related to the nonparametric
neural network models studied in Horowitz and Mammen (2007); see also recent
work on composite function models by Juditsky, Lepski and Tsybakov (2009) and
Baraud and Birgé (2014).

In-sample forecasting may be considered to be related to problems in survival
analysis. In contrast with survival analysis, in-sample forecasting does not require
full follow up of exposure and events, but is based only on the events that actually



OPERATIONAL TIME AND IN-SAMPLE DENSITY FORECASTING 1315

happened and on a retrospective observation of the onset of these events. There-
fore, there needs to be a lot less data to keep track of. For example, in-sample fore-
casting requires only keeping track of actual deaths of AIDS and retrospectively
observed onset of AIDS, while most of survival analysis techniques need full fol-
low up of how many individuals are under risk at any time (exposure), in addition
to actual deaths of AIDS. The reason that in-sample forecasting needs fewer data
requirements is that it estimates from data the equivalent of exposure in survival
analysis. Our model is in some way related to accelerated failure time models. If
one assumes that exposure is fully known and that one has only the components f2

and φ in the model, then our model compares to an accelerated failure time model
with X being a covariate; see Example VII 6.3 in Andersen et al. (1993). How-
ever, there are some differences. First of all, our approach is fully nonparametric.
Second, our data are right truncated. Thus, exposure is not observed and it is only
indirectly represented in our model via the component f1 and estimated from the
data. We therefore note that survival analysis techniques are not directly applicable
in our model or in the application discussed in Section 7 in particular.

2. The model. We observe a random sample {(Xi, Yi) : 1 ≤ i ≤ n} from a
density p supported on a subset I of the unit rectangle [0,1]2. The density p(x, y)

of (Xi, Yi) is a multiplicative function

(2.1) p(x, y) = f1(x)f2
(
yφ(x)

)
, (x, y) ∈ I,

where f1, f2 and φ are unknown nonnegative functions bounded away from zero
on their supports. We assume that f1 and φ are supported on [0,1]. We begin by
considering the triangular support set I = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1} of a
rectangle [0,1]2 since the main idea of our approach can be best conveyed through
the simple case. We discuss the method and theory for a general type of support
set in Section 5.

In model (2.1), if x indicates the beginning of some development and y is
the time this development takes, then φ(x) indicates a time transformation de-
pending on the beginning of the development. When φ(x) gets bigger (smaller),
time runs faster (slower) for the development beginning at x. From ad hoc analy-
ses of practical applications of the In-Sample Forecaster “Double Chain Ladder”
[Martínez Miranda, Nielsen and Verrall (2012)] to one of UK’s largest global non-
life insurers, it has become clear that speed of time was increasing for almost every
single dataset considered. This was the case for both the frequencies (number of
claims) and the severities (size of claims). In the practical application of our model
presented in Section 7 where frequencies from another nonlife insurer are consid-
ered, it can be concluded from our new operational time model, that speed of time
also here is increasing. One likely explanation is of course that administration time,
communication and reporting go faster as technology develops.
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We start with the identification of the function φ in the model (2.1). The idea is
also used for nonparametric estimation of the function, which we detail in the next
section. Note that

∂

∂x
logp(x, y) = f ′

1(x)

f1(x)
+ f ′

2(yφ(x))

f2(yφ(x))
yφ′(x),

∂

∂y
logp(x, y) = f ′

2(yφ(x))

f2(yφ(x))
φ(x).

To represent φ in terms of the two partial derivatives, we think of a suitable
contrast function w(·;x) : R → R for each x ∈ [0,1), having the property that∫ 1−x

0 w(y;x)dy = 0. Then we have∫ 1−x

0

(
∂

∂x
logp(x, y)

)
w(y;x)dy = A(x)φ′(x),

∫ 1−x

0

(
∂

∂y
logp(x, y)

)
yw(y;x)dy = A(x)φ(x),

where

A(x) =
∫ 1−x

0

f ′
2(yφ(x))

f2(yφ(x))
yw(y;x)dy.

If A(x) �= 0 for all x ∈ [0,1), then we get

φ′(x)

φ(x)
=

∫ 1−x
0 ( ∂

∂x
logp(x, y))w(y;x)dy∫ 1−x

0 ( ∂
∂y

logp(x, y))yw(y;x)dy
.

For the contrast function w, we take

w(y;x) = y
∂

∂y
logp(x, y) − 1

1 − x

∫ 1−x

0
y

∂

∂y
logp(x, y) dy.

Note that y∂ logp(x, y)/∂y = yφ(x)f ′
2(yφ(x))/f2(yφ(x)) is actually a function

of yφ(x), and that with the choice of w we get

1

1 − x

∫ 1−x

0

(
∂

∂y
logp(x, y)

)
yw(y;x)dy

= 1

τ(x)

∫ τ(x)

0

(
z · f ′

2(z)

f2(z)

)2
dz −

(
1

τ(x)

∫ τ(x)

0
z · f ′

2(z)

f2(z)
dz

)2
,

where τ(x) = (1 − x)φ(x). Thus, A(x) > 0 if zf ′
2(z)/f2(z) is not a function that is

constant a.e. on (0, τ (x)). Now, for x0 fixed,

ln
(
φ(x)/φ(x0)

) =
∫ x

x0

φ′(u)

φ(u)
du =

∫ x

x0

[ ∫ 1−u
0 ( ∂

∂u
logp(u, y))w(y;u)dy∫ 1−u

0 ( ∂
∂y

logp(u, y))yw(y;u)dy

]
du.
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We choose x0 = 0 and take the normalization φ(0) = 1. For j, k = 0,1,2, define

(2.2) Gjk(x) = 1

1 − x

∫ 1−x

0

(
∂

∂x
logp(x, y)

)j(
y

∂

∂y
logp(x, y)

)k

dy.

Then we get

(2.3) φ(x) = exp
[∫ x

0

G11(u) − G10(u)G01(u)

G02(u) − G01(u)2 du

]
.

To assure that A(x) > 0 for any x ∈ [0,1), we make the following assumption:

(A1) For any small c > 0, zf ′
2(z)/f2(z) is not a function that is constant a.e. on

(0, c).

Note that assumption (A1) concerns the behavior of the function zf ′
2(z)/f (z) near

z = 0 only, since a function is not constant on (0, c1) if the function is not on (0, c2)

for c2 < c1. The assumption is implied by the simpler one that there exists a small
c0 > 0 such that zf ′

2(z)/f (z) is strictly monotone on (0, c0), or that its derivative
is not zero at z = 0 in case it is continuously differentiable.

Next, we discuss the identifiability of the component functions f1 and f2. The
following arguments are based on the identifiability of φ, which we have just
proved. The two component functions f1 and f2 are identifiable only up to a mul-
tiplicative constant. Hence, we put the constraint on the first component that

(2.4)
∫ 1

0
f1(x) dx = 1.

Let μ1(x) = logf1(x) and μ2(z) = logf2(z). Suppose that μ1(x) + μ2(yφ(x)) =
0 for all (x, y) ∈ I . By differentiating both sides with respect to y, we get

φ(x)μ′
2
(
yφ(x)

) = 0.

Since we assume that φ(x) > 0 for all x ∈ [0,1], this implies μ′
2(yφ(x)) = 0 for

all (x, y) ∈ I . Thus, μ2 is constant on its domain, so is μ1. Due to the constraint
(2.4), we have μ1 ≡ 0 on [0,1] so that μ2 ≡ 0 on its domain as well.

THEOREM 1. Assume that the two component functions fj and the time trans-
formation φ in the model (2.1) are differentiable, nonnegative and bounded away
from zero on their supports. Assume also that (A1) holds. Then the three functions
φ, f1 and f2 are identifiable under the constraint (2.4).

3. Estimation of time transformation. Here, we describe the estimation of
the time transformation φ based on the local quadratic smoothing technique. Note
that Lee et al. (2015) suggested to use the local linear smoothing method since their
model involves only the estimation of the joint density function. Here, φ is identi-
fied through the partial derivatives of the joint density p, as is seen from (2.2) and
(2.3). Therefore, one may want to use local quadratic smoothing to ensure stable
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performance at the boundary area of I in the estimation of the partial derivatives.
Indeed, in our preliminary simulation study we found that local linear smoothing
produced quite bad estimates of the first partial derivatives.

To define the estimator of φ based on local quadratic smoothing, let

a(u, v;x, y) = (
1, (u − x)/h1, (v − y)/h2, (u − x)2/h2

1,

(u − x)(v − y)/h1h2, (v − y)2/h2
2
)


,

A(x, y) =
∫
I

a(u, v;x, y)a(u, v;x, y)
h−1
1 h−1

2 K

(
u − x

h1

)
K

(
v − y

h2

)
dudv,

where (h1, h2) is the bandwidth vector and K is a symmetric univariate probability
density function. Also, define

b̂(x, y) = n−1
n∑

i=1

a(Xi, Yi;x, y)h−1
1 h−1

2 K

(
Xi − x

h1

)
K

(
Yi − y

h2

)
.

The local quadratic density estimators of p(x, y), ∂
∂x

p(x, y) and ∂
∂y

p(x, y), re-
spectively, are then defined by η̂00(x, y), η̂10(x, y)/h1 and η̂01(x, y)/h2, respec-
tively, where

(3.1) (η̂00, η̂10, η̂01, η̂20, η̂11, η̂02)

 = A−1b̂.

The above estimators of the joint density p and its partial derivatives are similar in
spirit to the local linear density estimators studied in Cheng (1997). Putting these
into formula (2.2), we get the estimators Ĝjk(x) of Gjk(x), and thus the estimator
of φ defined by

(3.2) φ̂(x) = exp
[∫ x

0

Ĝ11(u) − Ĝ10(u)Ĝ01(u)

Ĝ02(u) − Ĝ01(u)2
du

]
.

The convergence rate of the estimator φ̂ depends on those of the estimators η̂jk

of the joint density and its partial derivatives. For simplicity of presentation we
write

pjk(x, y) = ∂j+k

∂xj ∂yk
p(x, y).

If p is twice partially continuously differentiable, then from an expansion of
p(u, v) for (u, v) around (x, y) one gets that Eη̂jk(x, y) − h

j
1h

k
2pjk(x, y) =

o(h2
1 + h2

2) for (j, k) with 0 ≤ j, k ≤ 1 and j + k ≤ 1. Furthermore, one

has η̂jk(x, y) − Eη̂jk(x, y) = Op(n−1/2h
−1/2
1 h

−1/2
2 ); see Ruppert and Wand

(1994) or Fan, Heckman and Wand (1995) among others. These imply that
the estimators of the first-order partial derivatives have the convergence rate
Op(n−1/2h

−3/2
1 h

−1/2
2 )+op(h1 +h−1

1 h2
2) or Op(n−1/2h

−1/2
1 h

−3/2
2 )+op(h2

1h
−1
2 +
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h2). Note that the estimator φ̂(x) involves two integrations of the estimators of the
first-order partial derivatives, one for each coordinate; see the definitions (2.2) and
(3.2). In the standard kernel smoothing theory, it is well known that a nontrivial
integration of a kernel estimator makes the stochastic part get smaller by an or-
der of h1/2, where h is the size of the bandwidth that is used for local smoothing
along the line of the integration. This is mainly because the “local average” turns
into a “global average” along the lines of the integration; see Mammen, Park and
Schienle (2014), for example. For the bias term, an integration does not reduce
the order of magnitude in general, however. A direct application of this standard
theory to φ̂(x) would give the rate Op(n−1/2 min{h1, h2}−1) + op(max{h1, h2}).
One may improve the rate for the bias part to Op(max{h1, h2}2) if one assumes
three times partial differentiability, which would lead to the two-dimensional rate
n−1/3 at best by choosing h1 ∼ h2 ∼ n−1/6.

In the theorem below, however, we show that our estimator φ̂ achieves the uni-
variate rate of convergence n−2/5 under the condition that p is twice partially
continuously differentiable. Before we state the theorem, here we give an intuition
behind and heuristic argument for the surprising results. Let m2(u) = logf2(e

u)

and m3(u) = logφ(u), where f2 is the second component function in our model
(2.1). For an arbitrarily small constant ε > 0, define a bivariate function Fε by

(3.3) Fε(x, t) =
∫ t+ε

t
logp

(
x, ez)dz −

∫ t

t−ε
logp

(
x, ez)dz

on {(x, t) : 0 ≤ x < 1, t ≤ log(1 − x) − ε}. Then Fε may be expressed in terms of
a univariate function and φ. Indeed, letting Hε(t) = ∫ ε

0 [m2(z + t) − m2(z − ε +
t)]dz, we get

Fε(x, t) =
∫ ε

0

[
m2

(
z + t + m3(x)

) − m2
(
z − ε + t + m3(x)

)]
dz

= Hε

(
t + m3(x)

)
.

Recall our normalization φ(0) = 1 for φ, so that m3(0) = 0. Thus, for t ≤
log τ(x) − ε we get

(3.4) Fε

(
x,−m3(x) + t

) = Hε(t) = Fε(0, t).

From the definition of Fε at (3.3) we note that Fε may be estimated with the
univariate rate, because of the integration. Now, due to (3.4) one may identify
m3, thus φ, by identifying Fε , provided that, for any x ∈ [0,1), one finds t0 <

log τ(x) − ε such that ∂Fε(x, t)/∂t is not zero at t = −m3(x) + t0. The latter also
means that m3 can be estimated with the same accuracy as Fε . The condition on
∂Fε(x, t)/∂t is implied by the assumption (A1). To see this, we note that

∂

∂t
Fε(x, t)

∣∣∣∣
t=−m3(x)+t0

= H ′
ε(t0) = m2(t0 + ε) − 2m2(t0) + m2(t0 − ε).
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Observing that m′
2(t) = etf ′

2(e
t )/f2(e

t ), the assumption (A1) is equivalent to
the condition that, for any C > 0, m′

2 is not a function that is constant a.e. on
(−∞,−C). Thus, (A1) implies that, for any C > 0, there exists t0 < −C − ε such
that H ′

ε(t0) �= 0.
We now state our theorem for the rate of φ̂(x). Below, we give a pointwise

convergence rate for x ∈ [0,1), excluding the point x = 1. Also, we present the
rates for the integrated squared and the uniform errors on an interval [0,1 − ε]
for an arbitrarily small ε > 0. The reason we exclude the point x = 1 is that the
marginal density of X vanishes at x = 1 even though the joint density f is bounded
away from zero on its support. This is due to the triangular shape of the support
set I . Thus, the consistent estimation of φ(x) as x approaches to the end point 1
is not possible. We make the following additional assumptions:

(A2) The joint density function p is twice partially continuously differentiable
and bounded away from zero;

(A3) The kernel K is supported on [−1,1], symmetric and Lipschitz continuous;
(A4) The bandwidths h1 and h2 are of order n−1/5.

THEOREM 2. Assume that the conditions of Theorem 1 and conditions (A2)–
(A4) are satisfied. Then we get for x ∈ [0,1) that

(3.5) φ̂(x) − φ(x) = Op

(
n−2/5)

.

Furthermore, for an arbitrarily small ε > 0, it holds that∫ 1−ε

0

(
φ̂(x) − φ(x)

)2
dx = Op

(
n−4/5)

,(3.6)

sup
x∈[0,1−ε]

∣∣φ̂(x) − φ(x)
∣∣ = Op

(
n−2/5

√
logn

)
.(3.7)

In the proof of Theorem 2 given in the Appendix, one sees that φ̂(x) is not a
local smoother. If one looks at the term J1(x) that is discussed at the end of the
proof, one finds that this quadratic form is of order Op(n−2/5) and not negligible
in the first order. By definition all observations (Xi, Yi) enter J1(x) with weights
of the same magnitude. Thus, this term does not rely only on local information.
The same holds for φ̂(x). It is calculated using all observations, not only those
(Xi, Yi) with Xi in a shrinking neighborhood of x. This makes φ̂ quite different
from a kernel smoother.

4. Estimation of component functions. Suppose we know the true time
transformation φ. Then we would convert the dataset (Xi, Yi) to (Xi,Zi) with
Zi = Yiφ(Xi), and estimate the component functions f1 and f2 from the con-
verted dataset. The density function of (Xi,Zi) equals p(x, z/φ(x))/φ(x), and
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the model (2.1) reduces to

(4.1) p

(
x,

z

φ(x)

)
= f1(x)f2(z).

Recall that we take the normalization φ(0) = 1. This means that time runs as real
time at the starting point, and that the set {(u, vφ(u)) : (u, v) ∈ I} includes the two
edge points (0,1) and (1,0) of the triangle I .

For the estimation of the component functions f1 and f2 at points x and z,
respectively, we need sufficient data Xi and Zi around x and z. We esti-
mate f1 and f2 on intervals where the marginal densities of Xi and Zi , re-
spectively, are bounded away from zero. Note that the marginal density of Xi

at x and that of Zi at z are given by
∫ (1−x)φ(x)

0 p(x, z/φ(x))/φ(x) dz and∫
x:τ(x)≥z p(x, z/φ(x))/φ(x) dx, respectively, where τ defined by τ(x) = (1 −

x)φ(x). We assume:

(A5) τ is strictly decreasing.

Condition (A5) simplifies the description of the method and the presentation of
its theory. In this case {x ∈ [0,1] : τ(x) ≥ z} = [0, τ−1(z)], and τ−1(z) = 0 holds
only for z = 1. The method we describe below and its theory are based on this
condition on τ . We discuss a general case at the end of this section.

The marginal density function of Xi equals zero at x = 1 and that of Zi is zero
at z = 1, even if the joint density p is bounded away from zero on its support. For
a set of (x, z) where we estimate the component functions f1 and f2, we take

I ≡ {(
u, vφ(u)

) : u ≤ 1 − ε, vφ(u) ≤ 1 − ε, (u, v) ∈ I
}

= {
(u,w) : 0 ≤ u ≤ 1 − ε,0 ≤ w ≤ (1 − ε) ∧ τ(u)

}(4.2)

for an arbitrarily small ε > 0. The projections of the set I onto x- and z-axis equal
[0,1 − ε]. Thus, we estimate both f1 and f2 on an interval [0,1 − ε]. Define
I1(z) = {x : (x, z) ∈ I } and I2(x) = {z : (x, z) ∈ I }. Note that

I1(z) = [
0, (1 − ε) ∧ τ−1(z)

]
, I2(x) = [

0, (1 − ε) ∧ (1 − x)φ(x)
]
.

Furthermore,

inf
z∈[0,1−ε] mes

(
I1(z)

)
> 0, inf

x∈[0,1−ε] mes
(
I2(x)

)
> 0,

where mes(A) denotes the Lebesgue measure of a set A. It follows that the
marginalization of p(x, z/φ(x)) along I1(z) and the one along I2(x) are bounded
away from zero for z ∈ [0,1 − ε] and x ∈ [0,1 − ε], respectively, that is,

inf
z∈[0,1−ε]

∫
I1(z)

p
(
x, z/φ(x)

)
dx > 0,

inf
x∈[0,1−ε]

∫
I2(x)

p
(
x, z/φ(x)

)
dz > 0,

(4.3)
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provided that p is bounded away from zero on I .
We take the marginalization technique of Lee et al. (2015) to estimate the com-

ponent functions. For now, we assume the true φ is known. Integrating both sides
of (4.1) along the lines I1(z) and I2(x) gives

f1(x) =
(∫

I2(x)
f2(z) dz

)−1 ∫
I2(x)

p
(
x, z/φ(x)

)
dz,

f2(z) =
(∫

I1(z)
f1(x) dx

)−1 ∫
I1(z)

p
(
x, z/φ(x)

)
dx.

(4.4)

The inverses in (4.4) are well defined for all x, z ∈ [1 − ε] due to (4.3). Set ϑ =∫
I p(x, z/φ(x))/φ(x) dx dz. Then ϑ−1f1(x)f2(z)φ(x)−1 is a density on I . Let p̂

be an estimator of the joint density p. Putting the constraint
∫ 1−ε

0 f1(x) dx = 1 on
the estimator of the first component f1, our estimator of (f1, f2) is defined to be
the solution (f̃1, f̃2) of the system of equations

f̃1(x) = θ̃1

(∫
I2(x)

f̃2(z) dz

)−1 ∫
I2(x)

p̂
(
x, z/φ(x)

)
dz,

f̃2(z) = θ̃2

(∫
I1(z)

f̃1(x) dx

)−1 ∫
I1(z)

p̂
(
x, z/φ(x)

)
dx,

(4.5)

where θ̃1 and θ̃2 are chosen so that

(4.6)
∫ 1−ε

0
f̃1(x) dx = 1,

∫
I
f̃1(x)f̃2(z)/φ(x) dx dz = ϑ̃,

and ϑ̃ = n−1 ∑n
i=1 I [Xi ≤ 1 − ε,Yiφ(Xi) ≤ 1 − ε].

Since φ, in the above construction of f̃1 and f̃2, is unknown, we replace it by
the estimator φ̂ studied in Section 3. For this, we define a version of I for a general
time transformation function ϕ by

I (ϕ) = {
(x, z) : 0 ≤ x ≤ 1 − ε,0 ≤ z ≤ (1 − ε) ∧ τ(x;ϕ)

}
with τ(x;ϕ) = (1 − x)ϕ(x), and those versions of I1(z) and I2(x), respectively,
by

I1(z, ϕ) = {
x ∈ [0,1 − ε] : τ(x;ϕ) ≥ z

}
, I2(x,ϕ) = [

0, (1 − ε) ∧ τ(x;ϕ)
]
.

Then the estimators f̂1 and f̂2 of the components f1 and f2, respectively, solve
the system of equations (4.5) subject to the constraints (4.6) with φ, I, I1(z), I2(x)

and ϑ̃ being replaced by φ̂, I (φ̂), I1(z, φ̂), I2(x, φ̂) and ϑ̂ = n−1 ∑n
i=1 I [Xi ≤ 1 −

ε,Yiφ̂(Xi) ≤ 1 − ε], respectively. We denote the constraining constants θ̃j in (4.5)
by θ̂j in this case.

For the estimator p̂ of the joint density p in (4.5), we suggest to use the local
linear estimator at this stage. This is because at this time we only need an estimator
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of the joint density itself, not its derivatives. Specifically, we estimate p by ξ̂00,
where (ξ̂00, ξ̂10, ξ̂01)


 = C−1d̂ with

C(x, y) =
∫
I

c(u, v;x, y)c(u, v;x, y)
g−1
1 g−1

2 K

(
u − x

g1

)
K

(
v − y

g2

)
dudv,

d̂(x, y) = n−1
n∑

i=1

c(Xi, Yi;x, y)g−1
1 g−1

2 K

(
Xi − x

g1

)
K

(
Yi − y

g2

)
,

and c(u, v;x, y) = (1, (u−x)/g1, (v−y)/g2)

. Here, the bandwidth pair (g1, g2)

may be different from (h1, h2) in the estimation of φ.
According to Lee et al. (2015), the estimators f̃j that are based on the true time

transformation φ have the following uniform convergence rate:

sup
u∈[0,1−ε]

∣∣f̃j (u) − fj (u)
∣∣ = Op

(
n−1/2 min{g1, g2}−1/2

√
logn + g2

1 + g2
2
)
.

Thus, if one takes g1 ∼ g2 ∼ n−1/5, then one gets the univariate rate
Op(n−2/5√logn). Our primary interest is to assess the effect of estimating φ

in the estimation of f1 and f2. The following theorem demonstrates that the esti-
mation of φ contributes to f̂j − fj an additional term that is of the same order as
the estimation error φ̂ −φ. To state the theorem, we think of a space of quadruples
where a quadruple in the space have two constants and two univariate functions.
Define a nonlinear operator G(η,g, φ), which maps the space of quadruples (η,g)

to itself, by G(η,g, φ)1 = 1 − ∫ 1−ε
0 f1(x)(1 + g1(x)) dx and

G(η,g, φ)2 = ϑ −
∫
I
f1(x)f2(z)

(
1 + g1(x)

)(
1 + g2(z)

) 1

φ(x)
dz dx,

G(η,g, φ)3(u)

=
∫
I2(u)

[
(1 + η1)p

(
u, z/φ(u)

) − f1(u)f2(z)
(
1 + g1(u)

)(
1 + g2(z)

)]
dz,

G(η,g, φ)4(u)

=
∫
I1(u)

[
(1 + η2)p̂

(
x,u/φ(x)

) − f1(x)f2(u)
(
1 + g1(x)

)(
1 + g2(u)

)]
dx.

Let G′(0,0, φ) denote the Fréchet derivative of G(·, ·, φ) at (0,0). It is an invertible
linear operator. Let �̃1 and �̃2 be the last two entries of G′(0,0, φ)−1δ̃, where
δ̃ = (0, δ̃2, δ̃3, δ̃4)


 and

δ̃2 = −
∫
I
f1(x)

(
f2

(
zφ(x)/φ̂(x)

) − f2(z)
)
/φ(x) dz dx,

δ̃3(x) = −
∫
I2(x)

f1(x)
(
f2

(
zφ(x)/φ̂(x)

) − f2(z)
)
dz,

δ̃4(z) = −
∫
I1(z)

f1(x)
(
f2

(
zφ(x)/φ̂(x)

) − f2(z)
)
dx.

(4.7)
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THEOREM 3. Assume that conditions of Theorem 1 hold and that the condi-
tions (A2), (A3) and (A5) are satisfied. Assume also that the bandwidths gj sat-
isfy gj → 0 and ng1g2/ logn → ∞. If supx∈[0,1−ε] |φ̂(x) − φ(x)| = Op(εn) and

sup(x,y)∈I |p̂(x, y) − p(x, y)| = Op(ε′
n), then f̂j (u) − fj (u) = f̃j (u) − fj (u) +

fj (u)�̃j (u) + Op(n−1/2 + ε2
n + ε′2

n + εng
2
1g−1

2 + εng2 + εnn
−1/2g

−3/2
2

√
logn) +

op(g2
1 + g2

2), for each fixed u ∈ [0,1), and also uniformly for u ∈ [0,1 − ε] for an
arbitrarily small ε > 0.

According to Theorem 2, εn = n−2/5√logn. Also, one has �̃j (u) = Op(n−2/5)

for each fixed u ∈ [0,1), and �̃j (u) = Op(n−2/5√logn) uniformly for u ∈
[0,1 − ε]. According to Theorem 4 of Lee et al. (2015), one has f̃j (u) − fj (u) =
Op(n−2/5) for each fixed u ∈ [0,1), and f̃j (u) − fj (u) = Op(n−2/5√logn) uni-
formly for u ∈ [0,1 − ε]. If we take the bandwidths g1 ∼ g2 ∼ n−1/5, then
ε′
n = n−3/10√logn. From Theorem 3, we obtain the following corollary.

COROLLARY 1. Assume the conditions of Theorems 2 and 3 hold. If g1 ∼
g2 ∼ n−1/5, then f̂j (u) − fj (u) = f̃j (u) − fj (u) + fj (u)�̃j (u) + op(n−2/5) for
each fixed u ∈ [0,1), and also uniformly for u ∈ [0,1 − ε] for an arbitrarily small
ε > 0.

The above corollary demonstrates that our estimators of the component func-
tions fj achieve the optimal uniform rate Op(n−2/5√logn) as well as the optimal
pointwise rate Op(n−2/5) in one-dimensional smoothing, under the condition that
the joint density is twice partially continuously differentiable.

As we mentioned earlier in this section, we describe our method of estimat-
ing fj and prove Theorem 3 under the assumption that τ is strictly decreas-
ing. In the general case without this assumption, the component function f2 sits
on the interval [0,maxx∈[0,1−ε] τ(x)], so that one may estimate f2 in an inter-
val [0,maxx∈[0,1−ε] τ(x) − ε] for an arbitrarily small ε > 0. In this case, the set
that corresponds to I1(u) will be a union of several intervals for some points u,
and the procedure may be described along the lines of our presentation, but
with more involved notation. The conclusion of Theorem 3 is also valid for f̂1
in the general case. For f̂2, it remains to hold uniformly for u in the interval
[0,maxx∈[0,1−ε] τ(x) − ε] with arbitrarily small neighborhoods of those points
u = τ(x) for x with τ ′(x) = 0, being excluded. This can be seen from the fact
that, in our proof of the theorem given in the supplement [Lee et al. (2016)], we
use the condition τ ′ �= 0 only for

mes
(
I1(z, φ̂)�I1(z,φ)

) = Op(εn).

To give more insight into how the theory depends on the shape of the function τ ,
we note that the second component function f2 is identified by the marginalization
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over the set I1(u) ≡ I1(u;φ), see the second equation at (4.4). This means that the
accuracy of estimating f2 depends on that of estimating φ through the difference
between the lengths of the sets I1(u) and I1(u; φ̂). If u is a point such that u =
τ(x0) for some x0 with τ ′(x0) = 0, then the estimation error of φ̂ is magnified in
the difference between the two lengths. To see this, suppose that τ ′′(x) < 0 and
φ̂(x) > φ(x) for x in a neighborhood of x0. Then, for a small constant c > 0,
I1(u) ∩ [x0 − c, x0 + c] = {x ∈ [x0 − c, x0 + c] : τ(x) ≥ u} = {x0} since

τ(x) � u + 1

2
τ ′′(x0)(x − x0)

2.

On the other hand, I1(u; φ̂) ∩ [x0 − c, x0 + c] ⊃ [x0 − dn, x0 + dn], where dn =
(constant) × (infx∈[x0−c,x0+c] |φ̂(x) − φ(x)|)1/2 since

τ(x, φ̂) � τ(x, φ̂) − τ(x,φ) + u + 1

2
τ ′′(x0)(x − x0)

2.

From the above discussion, we see that the remainder term in the uniform expan-
sion of f̂2 −f2 over the whole interval [0,1 − ε] in Theorem 3 has Op(εn) instead
of Op(ε2

n), provided that τ ′′(x) �= 0 for all x in (0,1).

5. Extension to general support set. In this section, we extend the method
and theory to a general type of support set I where the data (Xi, Yi) are observed.
Without of loss of generality, we assume that the projections of the support set I
onto the x- and y-axis equal [0,1]. For each x ∈ [0,1], define I2(x) = {y ∈ [0,1] :
(x, y) ∈ I}. In the case of the triangular support that we considered in Sections 2,
3 and 4, I2(x) = [0,1 − x]. Define

I1 = {
x ∈ [0,1] : mes

(
I2(x)

) �= 0
}
.

Then we get (2.3) for x ∈ I1 with Gjk(x) now being defined by

Gjk(x) = 1

mes(I2(x))

∫
I2(x)

(
∂

∂x
logp(x, y)

)j(
y

∂

∂y
logp(x, y)

)k

dy.

Condition (A1), for the identifiability of φ,f1 and f2, is now generalized to:

(A1′) For all x ∈ I1, zf ′
2(z)/f2(z) is not a function that is constant a.e. on {yφ(x) :

y ∈ I2(x)}.
We obtain the following analogue of Theorem 1 for the general support set I .

THEOREM 4. Assume that the two component functions fj and the time trans-
formation φ in the model (2.1) are differentiable, nonnegative and bounded away
from zero on their supports. Assume also that (A1′) holds and that the set I1 is
dense on [0,1]. Then the three functions φ, f1 and f2 are identifiable under the
constraint (2.4).
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The estimation of φ is defined as (3.2) with Ĝjk now being redefined by

Ĝjk(x) = 1

mes(I2(x))

∫
I2(x)

(
η̂10(x, y)/h1

η̂00(x, y)

)j(
y

η̂01(x, y)/h2

η̂00(x, y)

)k

dy.

Note that one can estimate φ(x) only for x with mes(I2(x)) > 0. This was the rea-
son we exclude the point x = 1 for the estimation of φ in the case of the triangular
support. In the general case we consider here, we exclude the point x /∈ I1. Also,
to get the L2 and the uniform convergence results as in Theorem 2, we consider
the set I1,ε = {x : mes(I2(x)) ≥ ε} for an arbitrarily small ε > 0.

THEOREM 5. Assume that the conditions of Theorem 4 and the conditions
(A2)–(A4) are satisfied. Then we get for x ∈ I1 that φ̂(x) − φ(x) = Op(n−2/5).
Furthermore, for an arbitrarily small ε > 0, it holds that∫

I1,ε

(
φ̂(x) − φ(x)

)2
dx = Op

(
n−4/5)

,

sup
x∈I1,ε

∣∣φ̂(x) − φ(x)
∣∣ = Op

(
n−2/5

√
logn

)
.

Now we extend the method of estimating the component functions fj to the
general support set. As in the case of the triangular support, one may estimate f1
and f2, respectively, only on the sets where the marginal densities of X and Z are
strictly positive. We find a version of the set I defined at (4.2). For a subset S of
the support {(x, yφ(x)) : (x, y) ∈ I} of the joint density of (X,Z), let

I1(z;S) = {
x : (x, z) ∈ S

}
, I2(x;S) = {

z : (x, z) ∈ S
}
.

Taking a small δ > 0 we choose I , the set where we estimate fj , to be the largest
subset S such that

mes
(
I1(z, S)

) ≥ δ, mes
(
I2(x, S)

) ≥ δ

for all x and z in the projections of S onto the x- and z-axis, respectively. We write
I1(z) = I1(z, I ) and I2(x) = I2(x, I ) for simplicity. We estimate fj on the set Ij ,
where

I1 = {
x : (

x, yφ(x)
) ∈ I for some y ∈ [0,1]},

I2 = {
z : (x, z) ∈ I for some x ∈ [0,1]}.

With these modified definitions of the sets I1(z) and I2(x), the estimators of fj

based on the true φ may be defined as at (4.4) and (4.5), now with the constraints∫
I1

f̃1(x) dx = 1,

∫
I
f̃1(x)f̃2(z)/φ(x) dx dz = ϑ̃,
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where ϑ̃ is redefined as ϑ̃ = n−1 ∑n
i=1 I [(Xi, Yiφ(Xi)) ∈ I ]. The estimators f̂j

based on φ̂ is then obtained by simply replacing I, I1(z), I2(x) and ϑ̃ in the defini-
tion of f̃j by I (φ̂), I1(z, φ̂), I2(z, φ̂) and ϑ̂ , respectively, where I (ϕ), I1(z, ϕ) and
I2(x,ϕ) for a general time transformation ϕ are defined as I, I1(z) and I2(x) with
φ being replaced by ϕ, and ϑ̂ = n−1 ∑n

i=1 I [(Xi, Yiφ̂(Xi)) ∈ I (φ̂)].
To state a version of Theorem 3, we redefine �̃j as at (4.7) with the new defi-

nitions of I, I1(z) and I2(x). We replace (A5) by the following assumption on the
support set I and the true time transformation φ:

(A5′) supu∈Ij
mes[Ij (u,ϕ)�Ij (u,φ)] ≤ C supx∈I1

|ϕ(x) − φ(x)| for some con-
stant C > 0, where A�B denotes the symmetric difference of two sets A

and B .

THEOREM 6. Assume that the conditions of Theorem 4 hold and that con-
ditions (A2), (A3) and (A5′) are satisfied. Assume also that the bandwidths gj

satisfy gj → 0 and ng1g2/ logn → ∞. If supx∈I1
|φ̂(x) − φ(x)| = Op(εn) and

sup(x,y)∈I |p̂(x, y) − p(x, y)| = Op(ε′
n), then f̂j (u) − fj (u) = f̃j (u) − fj (u) +

fj (u)�̃j (u) + Op(n−1/2 + ε2
n + ε′2

n + εng
2
1g−1

2 + εng2 + εnn
−1/2g

−3/2
2

√
logn) +

op(g2
1 + g2

2) uniformly for u ∈ Ij .

6. Simulation study. For the component functions fj in the model (2.1), we
considered f1(u) = 3/2−u,f2(u) = c(5/4−3u2/4). For the function φ, we made
two choices:

Model 1 φ(u) =
{
(u − 1/4)2 + 15/16, if 0 ≤ u ≤ 1/2;
−(u − 3/4)2 + 17/16, if 1/2 ≤ u ≤ 1,

Model 2 φ(u) = 1 − u2/2.

The constant c was chosen so that
∫
I f1(x)f2(yφ(x)) dx dy = 1, where I =

{(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1}. We generated 500 pseudo sample of sizes
n = 400 and 1000, from the two models.

For the estimation of φ, we computed our estimator on a grid of bandwidth
choice h1 = h2. For each grid point in the bandwidth range, we computed the
Monte Carlo estimates of MISE = E

∫ 1
0 (φ̂(u) − φ(u))2 du based on the 500

pseudo samples. We found that, in the first setting, the minimal value of MISE was
achieved by the bandwidth choice h1 = h2 = 2.40 for the sample size n = 400,
and h1 = h2 = 2.30 for the sample size n = 1000. In the second setting, the
bandwidth that gave the minimal MISE was h1 = h2 = 0.90 for n = 400 and
h1 = h2 = 0.76 for n = 1000. The panels in Figure 1 depict the boxplots of the val-
ues of MISE, ISB and IV computed using the bandwidths on the grids. Here, ISB =∫ 1

0 (Eφ̂(u) − φ(u))2 du and IV = ∫ 1
0 var(φ̂(u)) du, so that MISE = ISB + IV. We

report only the results for n = 400 in Figure 1. Those cases with outlying large
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FIG. 1. Boxplots for the values of MISE, ISB and IV of the estimator φ̂ computed using various
bandwidth choices, based on 500 pseudo samples of size n = 400.

values of MISE for the first model correspond to small bandwidths that produced
large values of IV. The results suggest that the variance of the estimator is more
influenced by the bandwidth choice than the bias part.

Using the estimates φ̂ based on the bandwidth choices h1 = h2 that gave the best
performance, we computed our estimates of the component functions f̂1 and f̂2.
For this estimation, we also took a grid of bandwidth choice g1 = g2. We computed
the mean integrated squared errors

MISEj = E

∫ 1

0

(
f̂j (u) − fj (u)

)2
du, j = 1,2

with the corresponding values of ISBj and IVj . Figure 2 shows the boxplots of the
values of MISEj computed using the bandwidths g1 = g2 on the grid. Here, we
also report the results for n = 400 only since the lessons are essentially the same.
Comparing the two settings in terms of the accuracy of estimating the component
functions fj , we find that they are not much different. This is because both settings

FIG. 2. Boxplots for the values of MISEj of the estimators f̂j computed using various bandwidth
choices of g for the two models, based on 500 pseudo samples of size n = 400.
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have the same component functions and are differ only in the specification of the
time transformation φ. The results in Figures 1 and 2 suggest that the level of
difficulty in the estimation of φ does not affect much the accuracy of the estimation
of the component functions fj .

The bandwidth that gave the minimal value of MISE1 + MISE2 in the first set-
ting was g1 = g2 = 0.52 for n = 400 and g1 = g2 = 0.44 for n = 1000. In the
case of the second setting, the best performance in terms of MISE1 + MISE2 was
achieved by g1 = g2 = 0.50 for n = 400 and g1 = g2 = 0.44 for n = 1000. The
values of MISEj , ISBj and IVj for these optimal bandwidths when n = 400 are
reported in Table 1. Also included in the table are the values of MISE, ISB and IV
of φ̂. Although our primary concern is the estimation of the component functions,
it is also of interest to see how good the produced two-dimensional density estima-
tor f̂1(x)f̂2(yφ̂(x)) behaves. For this, we include in the table the values of MISE,
ISB and IV of the two-dimensional estimates computed using the optimal band-
widths. For comparison, we also report the results for the two-dimensional local
quadratic estimate defined at (3.1) that does not use the structure of the density. For
this local quadratic estimator, we used its optimal bandwidth choice. The results
confirm that our two-dimensional density estimator has much better performance
than the local quadratic estimator, in both models.

One may be also interested in what happens if one ignores the presence of the
nonconstant φ and estimates fj with φ̂ ≡ 1, that is, estimates the simple product
model p(x, y) = f1(x)f2(y), (x, y) ∈ I . With the corresponding optimal band-
widths, the latter method produced (MISE, ISB, IV) = (0.0088,0.0026,0.0062)

for f1 and (0.0356,0.0168,0.0188) for f2 in the case of Model 1, and
(0.0093,0.0031,0.0062) for f1 and (0.0320,0.0136,0.0184) for f2 in the case
of Model 2. Comparing these with the results in Table 1, we see that estimating φ

reduced significantly the values of MISE for the second component f2, which ap-
pears to owe to the great reduction in ISB. Note that the accuracy of the estimation

TABLE 1
Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated variance

(IV) of the estimators, based on 500 pseudo samples of size n = 400

Component functions Joint density p

f1 f2 φ Proposed Local quad.

Model 1 MISE 0.0080 0.0269 0.0018 0.0137 0.0250
ISB 0.0025 0.0112 0.0017 0.0037 0.0216
IV 0.0055 0.0158 0.0001 0.0100 0.0034

Model 2 MISE 0.0085 0.0268 0.0799 0.0144 0.0180
ISB 0.0027 0.0078 0.0489 0.0039 0.0123
IV 0.0058 0.0190 0.0310 0.0105 0.0057
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TABLE 2
Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated variance

(IV) of the estimators for Model 3 (φ ≡ 1), based on 500 pseudo samples of size n = 400

Our approach Oracle

f1 f2 p f1 f2 p

MISE 0.0081 0.0269 0.0136 0.0076 0.0210 0.0136
ISB 0.0025 0.0109 0.0033 0.0022 0.0065 0.0039
IV 0.0056 0.0160 0.0103 0.0054 0.0145 0.0097

of the second component f2 relies on that of φ, and that the method with φ̂ ≡ 1
would produce a biased estimator of f2.

Another thing that is of interest is that how our approach performs when there
is no operational time, that is, the true φ ≡ 1. For this, we compared our approach
that involves estimating φ with the oracle estimators that make use of the knowl-
edge that φ ≡ 1. The results are contained in Table 2. In comparison with the oracle
estimators, our approach produced slightly less accurate estimators of the compo-
nent functions, but gave nearly the same MISE value for the estimator of the joint
density function.

We also undertook a sensitivity analysis to check what happens if the struc-
tural assumptions of the model are violated, that is, the density of (X,Y ) does
not consist of three one-dimensional components but is simply a two-dimensional
smooth density. For this we generated 500 samples of size n = 400 from a bivari-
ate normal distribution with mean (1/2,1/2) and variance (1/3,1/3) with corre-
lation 1/2, but truncated outside the parallelogram {(x, y) : −(y/2)+ (1/2) ≤ x ≤
−(y/2) + 1,0 ≤ y ≤ 1}. We compared the local linear and quadratic density esti-
mators of the truncated normal density with the structured estimator that is based
on the model (2.1). We found that, with the corresponding optimal bandwidths, the
local linear estimator was slightly better than the local quadratic estimator, and it
gave (MISE, ISB, IV) = (0.1015,0.0861,0.0154), while our structured estimation
produced a better result, (MISE, ISB, IV) = (0.0729,0.0570,0.0159). This result
suggests that the operational time φ introduced into the multiplicative density adds
a great deal of flexibility to the model so that it approximates quite well densities
violating the independence assumption.

In practical implementation of our method, one may employ a K-fold cross-
validation criterion to choose the bandwidths h and g. To be specific, one splits
the whole dataset into K (nearly) equal parts, {(Xi, Yi) : i ∈ Jk},1 ≤ k ≤ K . For
each partition Jk , one computes

CVk(h, g) =
∫
I
p̂h,g,−k(x, y)2 dx dy − 2

|Jk|
∑
i∈Jk

p̂h,g,−k(Xi, Yi),
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TABLE 3
Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated variance

(IV) of the estimators with tenfold cross-validated bandwidths,
based on 500 pseudo samples of size n = 400

Model 1 Model 2 Model 3

f1 f2 f1 f2 f1 f2

MISE 0.0074 0.0262 0.0078 0.0257 0.0075 0.0269
ISB 0.0028 0.0126 0.0033 0.0101 0.0030 0.0133
IV 0.0046 0.0136 0.0045 0.0156 0.0045 0.0136

where |Jk| is the size of the index set Jk and p̂h,g,−k denotes our structured den-
sity estimate computed from the dataset with the kth partition being deleted, that
is, from {(Xi, Yi) : i /∈ Jk}, based on the bandwidth choice (h, g). The above CV
criterion is common in density estimation; see Park and Marron (1990), for exam-
ple. It is an estimate of

∫
I(p̂h,g,−k(x, y)−p(x, y))2 dx dy + (irrelevant term). The

K-fold cross-validated choice is then defined by

(hcv, gcv) = (ĥ, ĝ) × (1 − 1/K)1/5,

where (ĥ, ĝ) is the minimizer of CV(h, g) = ∑K
k=1 CVk(h, g)/K . Note that the

correction factor (1 − 1/K)1/5 is needed since (ĥ, ĝ) is suitable for the sample
size n(1 − 1/K) rather than n.

To see how K-fold cross-validated bandwidths perform in this particular prob-
lem, we chose K = 10 and applied the method to the three models. The results
are summarized in Table 3. Comparing the results with those in Tables 1 and 2,
we find that the cross-validated bandwidth selector works fairly well, giving com-
parable performance with the MISE-optimal bandwidth. Motivated by this good
performance, we used the tenfold cross-validated bandwidth in our data example
in Section 7.

7. Motor insurance data. As an example of implementing our method, we
considered reported and outstanding claims from a motor insurance business line
in Cyprus. For each claim, the dataset includes (EntryDate), (ClaimStatus) and
(StatusDate). (EntryDate) is the date the claim was reported and entered the sys-
tem, (StatusDate) is the date of the last update of (ClaimStatus) that has three
categories: P for paid and settled; W for not paid but settled; O for open and not
settled. Among 58,453 claims reported during the period January 12, 2004, to
July 31, 2014, those claims with status O were deleted since for these claims the
date of settlement was not observed. The number of deleted claims was 1865, and
thus the number of the claims that we used to fit our model was 56,588.

In this example, (EntryDate) corresponds to the variable X, and the delay
time until settlement, (StatusDate)−(EntryDate), to the variable Y . To apply our
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model (2.1) with I = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}, we transformed the
daily claim data in the following way. We first enumerated the calendar dates
from 1 to 3854, with 1 corresponding to January 12, 2004, and 3854 to July
31, 2014, and then changed (EntryDate) and (StatusDate) to the respective inte-
gers on the new discrete scale. This would result in a dataset for the variables
[(EntryDate), (StatusDate) − (EntryDate)] on the discrete triangular {(j, k) : 1 ≤
j ≤ 3854,0 ≤ k ≤ 3853}. We then transformed them to (X,Y ) by

X = (EntryDate) − 1 + U1

3854
, Y = (StatusDate) − (EntryDate) + U2

3854
,

where (U1,U2) is a two-dimensional uniform random variate on the unit square
[0,1]2. Here, the perturbation by uniform random variates is done to make the con-
verted data (X,Y ) take values on the two-dimensional continuous time scale. This
gives a converted dataset {(Xi, Yi) : 1 ≤ i ≤ 56,588}. We applied to this dataset
our method of estimating the structured density p of (X,Y ).

We took a common bandwidth h = h1 = h2 for the estimation of the time trans-
formation φ, and a common bandwidth g = g1 = g2 for the estimation of the
component functions. We selected (h, g) by the tenfold cross-validated criterion
described in Section 6 (K = 10).

The results of the application of our method to the insurance claim data are
shown in Figure 3. In the left panel, the solid curve depicts the estimate of the time
transformation φ and the dashed (dotted) is a 90% (95%) pointwise bootstrap con-
fidence band for φ. The 100(1 − α) confidence bands [2φ̂(x) − Uα(x),2φ̂(x) −
Lα(x)] were based on 1000 bootstrap samples, where Lα(x) and Uα(x) are the
bootstrap estimates of the α/2 and (1 − α/2) quantiles, respectively, of the dis-
tribution of φ̂(x). We note that the confidence bands are narrowed down to the

FIG. 3. The estimate of the time transformation φ with 90% (dashed) and 95% (dotted) pointwise
confidence bands (left), the estimates of the first component function f1 (middle) and the second
component function f2 (right), obtained by applying the model (2.1) to the insurance claim data.
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point φ̂(x) = 1 at x = 0 because of our normalization φ̂(0) = 1 = φ(0), see (3.2).
The bootstrap confidence bands indicate that the underlying transformation φ is
not constant, so that the model (2.1) does not degenerate to the simple prod-
uct model p(x, y) = f1(x)f2(y) considered by Mammen, Martínez Miranda and
Nielsen (2015). The estimated φ suggests that the speed of time has an increasing
tendency and that speed of time has increased by around 10% over the 10-year
period considered. This is more or less in line with intuitive expectations to the
model on how much improved technology has speeded up the process of getting
incidents of claims settled. The decline of φ̂ after its peak might be because the
company overall has decreased the number of employees when it saw the benefits
of the advanced technology. The estimate of the first component measures busi-
ness exposure, thus the middle panel of Figure 3 indicates that the business line
had increasing exposure in the first half of the period, but ran out later and perhaps
was replaced by new products recorded in a separate dataset. The second compo-
nent that measures time to settlement follows more or less the usual pattern known
from motor insurance business lines that the claims development is quite fast.

One may use our estimated model to forecast the density on an unobserved
area. In general, let S be a subset of [0,1]2, outside of the observed area I , where
one wants to forecast the density. With the estimated density model p̂(x, y) =
f1(x)f̂2(yφ̂(x)), the relative mass of the probability on S with respect to that on I
is estimated by

(7.1) A(S) =
∫
S
f̂1(x)f̂2

(
yφ̂(x)

)
dx dy.

The number of future observations that fall in the area S is then forecasted by
N(S) = n · A(S), where n is the sample size, that is, the total number of ob-
servations in I . To apply the forecasting method to the motor insurance dataset
and evaluate its accuracy, we re-estimated the model (2.1) now using the data ob-
served until the year 2012. We forecasted the number of claims settled in the year
2013 according to the formula at (7.1). The actual number was 4547. Our ap-
proach produced 4487, while the forecasting based on the simple product model
p(x, y) = f1(x)f2(y) gave 4226.

APPENDIX

A.1. Proof of Theorem 2. In the following proof, we will use the symbol W

to denote functions that have bounded continuous partial derivatives, and W ∗ for
continuous bounded functions. The symbols will be used for different functions,
even in the same formula. They will denote univariate functions and bivariate func-
tions as well. Furthermore, for simplicity of notation, we assume that h1 = h2 = h.

Put �(x) = log φ̂(x) − log φ̂(h) − [logφ(x) − logφ(h)]. We will show that

(A.1) �(x) = Op

(
n−2/5)

, 0 ≤ x < 1.
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It can be shown by slightly modified and simpler arguments that

(A.2) log φ̂(h) − logφ(h) = Op

(
n−2/5)

.

The bounds (A.1) and (A.2) imply (3.5). For a proof of (3.6), one may show, in-
stead of (A.1) and (A.2), the slightly stronger claim

(A.3) sup
x∈[0,1−ε]

E�2(x) = O
(
n−4/5)

.

This can be done by a slightly more careful use of the arguments in the proof of
(A.1). For a proof of (3.7), one makes use of exponential inequalities for the terms
of the stochastic expansion that we will consider below in the proof of (A.1).

We now come to the proof of (A.1). By Taylor’s expansion, one gets that

�(x) =
∫ x

h

[
Ĝ11(u) − Ĝ10(u)Ĝ01(u)

Ĝ02(u) − Ĝ01(u)2

− G11(u) − G10(u)G01(u)

G02(u) − G01(u)2

]
du

= �1(x) + �2(x) + �3(x) + R(x),

(A.4)

where �1 comprises all linear terms of the form
∫ x
h W(u)(Ĝjk(u)−Gjk(u)) du of

a Taylor expansion of the integrand of the integral in (A.4). The second term �2
collects those terms of quadratic order,

∫ x
h W(u)(Ĝjk(u) − Gjk(u))(Ĝj ′k′(u) −

Gj ′k′(u)) du, and �3 contains all cubic terms. Among these linear, quadratic and
cubic terms, the most complex terms are those that involve Ĝ11. Note that Ĝ11
contains a product of two partial derivatives, whereas Ĝjk for (j, k) �= (1,1) in-
cludes at most one partial derivative. For the remainder term R, it holds that
R(x) = Op(n−2/5). This bound follows from

E
(
Ĝjk(u) − Gjk(u)

)4 = O
(
n−2/5)

and a bound on the variance of
∫ x
h (Ĝjk(u) − Gjk(u))4 du. One can show that the

bound on R holds uniformly for 0 ≤ x ≤ 1 − ε.
We now prove

(A.5)
∫ x

h
W(u)

(
Ĝ11(u) − G11(u)

)
du = Op

(
n−2/5)

.

Using the same arguments as for the proof of (A.5), one can show that the other
terms of �1 are of order Op(n−2/5). This implies that

(A.6) �1(x) = Op

(
n−2/5)

.

For the proof of (A.5), we redefine the vector a(u, v;x, y) in Section 3 as

a
(
u′, v′;u, v

) = (
1,

(
u′ − u

)2
/h2,

(
v′ − v

)2
/h2,(

u′ − u
)
/h,

(
v′ − v

)
/h,

(
u′ − u

)(
v′ − v

)
/h2)
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and also redefine b̂(u, v) and A(u, v) in accordance with this change. In this way,
it is easier to see how the inverse matrix A−1(u, v) looks like. Indeed, for (u, v) in
the interior region I0,

A(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ν2 ν2 0 0 0
ν2 ν4 ν2

2 0 0 0
ν2 ν2

2 ν4 0 0 0
0 0 0 ν2 0 0
0 0 0 0 ν2 0
0 0 0 0 0 ν2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where νj = ∫ 1
−1 zjK(z) dz are the complete moments of K . Note that the interior

of I in our problem is given by

I0 = {
(x, y) : x ≥ h1, y ≥ h2, x + y ≤ 1 − h1 − h2

}
.

From the structure of A(u, v) for (u, v) ∈ I0 we get, for example,

η̂10(u, v) = (
the fourth entry of A−1(u, v)b̂(u, v)

)
= ν−1

2 n−1h−2
n∑

i=1

(
Xi − u

h

)
K

(
Xi − u

h

)
K

(
Yi − v

h

)
.

(A.7)

Also, from the standard kernel smoothing theory we obtain that, now uniformly
for (x, y) ∈ I ,

(A.8) E
(
A−1(x, y)b̂(x, y)

) − η(x, y) = o
(
h2)

,

where η = (p,h2p20, h
2p02, hp10, hp01, h

2p11)

 and pjk(x, y) = ∂j+kp(x, y)/

∂xj ∂yk . The bound (A.8) follows directly from∫
I

a(u, v;x, y)h−2K

(
u − x

h

)
K

(
v − y

h

)(
p(u, v) − a(u, v;x, y)
η(x, y)

)
dudv

= o
(
h2)

.

Now, for the proof of (A.5) note that∫ x

h
W(u)

(
Ĝ11(u) − G11(u)

)
du

=
∫ x

h

∫ 1−u

0
W(u,v)

(
h−1η̂10(u, v) − p10(u, v)

)
dv du

+
∫ x

h

∫ 1−u

0
W(u,v)

(
h−1η̂01(u, v) − p01(u, v)

)
dv du

+
∫ x

h

∫ 1−u

0
W(u,v)

(
h−1η̂10(u, v) − p10(u, v)

)
× (

h−1η̂01(u, v) − p01(u, v)
)
dv du

+ R∗(x) + Op

(
n−2/5)

,

(A.9)
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where R∗ comprises integrals of products containing the factor (η̂00(u, v) −
p(u, v)). These terms can be analysed by standard kernel smoothing techniques
and they are all of order Op(n−2/5).

We prove that the first three terms on the right-hand side of (A.9) are of order
Op(n−2/5). For the study of the first term, we claim that∫ x

h

∫ h

0
W(u,v)

(
h−1η̂10(u, v) − p10(u, v)

)
dv du = Op

(
n−2/5)

,(A.10)

∫ x

h

∫ 1−u

1−u−2h
W(u, v)

(
h−1η̂10(u, v) − p10(u, v)

)
dv du = Op

(
n−2/5)

.(A.11)

For the proof of the claim (A.10), note that
∫ x
h W(u, v)(h−1η̂10(u, v) −

p10(u, v)) du behaves like the error of a one-dimensional kernel derivative esti-
mator and it is thus of order Op(n−1/2h−3/2 +h). Integration of the latter over the
interval [0, h] gives (A.10). The claim (A.11) can be verified similarly. Thus, for
getting that the first term at (A.9) is of order Op(n−2/5) it remains to show that∫ x

h

∫ 1−u−2h

h
W(u, v)

(
h−1η̂10(u, v) − p10(u, v)

)
dv du

= Op

(
n−2/5)

.

(A.12)

For the proof of the claim (A.12), we make use of the expression (A.7) for the
estimator of hp01(u, v). We observe h−1η̂10(u, v) = ∂p̃(u, v)/∂u with

p̃(u, v) = n−1
n∑

i=1

h−2L

(
Xi − u

h

)
K

(
Yi − v

h

)
,

L(v) = −ν−1
2

∫ v

−1
zK(z) dz.

(A.13)

Using that W has bounded continuous partial derivatives, we get by changing the
order of integration and by integration-by-part that∫ x

h

∫ 1−u−2h

h
W(u, v)

(
h−1η̂10(u, v) − p10(u, v)

)
dv du

=
∫ 1−3h

h

∫ x∧(1−v−2h)

h
W(u, v)

(
∂p̃(u, v)/∂u − p10(u, v)

)
dudv

=
∫ 1−3h

h
W(u, v)

(
p̃(u, v) − p(u, v)

)∣∣∣∣u=x∧(1−v−2h)

u=h

dv

−
∫ 1−3h

h

∫ x∧(1−v−2h)

h
W ∗(u, v)

(
p̃(u, v) − p(u, v)

)
dudv.

(A.14)

For the first term on the right-hand side of the second equation of (A.14) we get that
it behaves like a one-dimensional kernel estimator because the two-dimensional
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kernel estimator p̃(u, v), defined at (A.13), is integrated out along a line. Thus,
the first term is of order Op(n−2/5). Because the second term is also of order
Op(n−2/5), we establish (A.12).

From the arguments in the preceding two paragraphs, we conclude that the first
term on the right-hand side of (A.9) is of order Op(n−2/5). By similar arguments,
one can show that the second term is also of order Op(n−2/5). For the treatment
of the third term, we will show that∫ x

h

∫ 1−u−2h

h
W(u, v)

(
h−1η̂10(u, v) − p10(u, v)

)
× (

h−1η̂01(u, v) − p01(u, v)
)
dv du = Op

(
n−2/5)

.

(A.15)

By the consideration of additional boundary terms of the third terms, we conclude
that the third term is also of order Op(n−2/5). Thus, for (A.5) it remains to prove
(A.15). This also completes the proof of (A.6).

For the proof of (A.15), we put

p̄(u, v) = n−1
n∑

i=1

h−2K

(
Xi − u

h

)
L

(
Yi − v

h

)
.

Note that h−1η̂01(u, v) = ∂p̄(u, v)/∂v. Thus, the left-hand side of (A.15) equals∑4
k=1 Jk(x), where

J1(x) =
∫ x

h

∫ 1−u−2h

h
W(u, v)

(
∂p̃(u, v)

∂u
− E

∂p̃(u, v)

∂u

)

×
(

∂p̄(u, v)

∂v
− E

∂p̄(u, v)

∂v

)
dv du,

J2(x) =
∫ x

h

∫ 1−u−2h

h
W(u, v)

(
∂p̃(u, v)

∂u
− E

∂p̃(u, v)

∂u

)

×
(
E

∂p̄(u, v)

∂v
− p01(u, v)

)
dv du,

J3(x) =
∫ x

h

∫ 1−u−2h

h
W(u, v)

(
E

∂p̃(u, v)

∂u
− p10(u, v)

)

×
(

∂p̄(u, v)

∂v
− E

∂p̄(u, v)

∂v

)
dv du,

J4(x) =
∫ x

h

∫ 1−u−2h

h
W(u, v)

(
E

∂p̃(u, v)

∂u
− p10(u, v)

)

×
(
E

∂p̄(u, v)

∂v
− p01(u, v)

)
dv du.

It holds that J4(x) = O(n−2/5) because of the fact E∂p̃(u, v)/∂u − p10(u, v) =
O(n−1/5) and E∂p̄(u, v)/∂v − p01(u, v) = O(n−1/5), uniformly for (u, v) ∈ I .
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For J2, we get that

J2(x) = −
∫ x

h

∫ 1−u−2h

h
W ∗(u, v)n−1h−2

n∑
i=1

[
L′

(
Xi − u

h

)
K

(
Yi − v

h

)

− EL′
(

Xi − u

h

)
K

(
Yi − v

h

)]
dv du

= n−1
n∑

i=1

(
Wn(Xi,Yi;x) − EWn(Xi,Yi;x)

)

for some bounded function Wn. Thus, we have J2(x) = Op(n−1/2). The same
holds for J3. Therefore, for (A.15) it remains to show J1(x) = Op(n−2/5). For the
proof of this claim, we let

Rn,ij (x) = h−2
∫ x

h

∫ 1−u−2h

h
W(u, v)

[
L′

(
Xi − u

h

)
K

(
Yi − v

h

)

− EL′
(

Xi − u

h

)
K

(
Yi − v

h

)]
·
[
K

(
Xj − u

h

)
L′

(
Yj − v

h

)

− EK

(
Xj − u

h

)
L′

(
Yj − v

h

)]
dv du.

Then we can write

J1(x) = n−2h−4
∑

1≤i �=j≤n

Rn,ij + n−2h−4
n∑

i=1

Rn,ii = J1a + J1b.

Also, put

R∗
n,ij (x) = h−2

∫ x

h

∫ 1−u−2h

h
W(u, v)K

(
Xi − u

h

)
K

(
Yj − v

h

)

× L′
(

Xj − u

h

)
L′

(
Yi − v

h

)
dv du.

For i �= j , the random variable R∗
n,ij is bounded and satisfies

R∗
n,ij (x) = 0 if |Xi − Xj | ≥ 2h or |Yi − Yj | ≥ 2h.

By the definition of J1a , we get by using a simple inequality for second moments
of U-statistics that

EJ 2
1a ≤ n−4h−8 · 2 · ∑

1≤i �=j≤n

ER∗2
n,ij = O

(
n−2h−8h2) = O

(
n−4/5)

.

This gives J1a = Op(n−2/5). It remains to check J1b = Op(n−2/5). For checking
this claim, we note that h−1Rn,ii(x)I ((Xi, Yi) ∈ I∗(x)) is a bounded random vari-
able, where I∗(x) = {(u, v) ∈ I : 2h ≤ u ≤ x − h,2h ≤ v,u + v ≤ 1 − 4h}. This
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follows from the fact
∫ 1
−1 K(u)L′(u) du = 0 and from an expansion of W(u,v)

around u = Xi and v = Yi . Furthermore, we have that Rn,ii is a bounded random
variable and that P [(Xi, Yi) ∈ I∗∗(x)−I∗(x)] = O(h), where I∗∗(x) = {(u′, v′) ∈
I : (u′ −u, v′ −v) ∈ [−h,h]2 for some (u, v) with h ≤ u ≤ x,h ≤ v ≤ 1−u−2h}.
These properties of Rn,ii can be used to show J1b(x) = Op(n−2/5). This completes
the proof of (A.5).

For the statement of the theorem, it remains to check that �2(x) = Op(n−2/5)

and �3(x) = Op(n−2/5). The study of �2 leads to quadratic terms that are similar
to (A.15). All these terms can be treated as in the study of �1. Additionally, we
will have terms of the type∫ x

h

∫ 1−u−2h

h

∫ 1−u−2h

h
W(u, v)

(
h−1η̂01(u, v) − p01(u, v)

)
× W

(
u, v′)(h−1η̂10

(
u, v′) − p10

(
u, v′))dv dv′ du.

Because of the additional integration, the analysis of these terms is much easier
than the study of (A.15). The same argument applies to other terms of �2 and
�3. By lengthy but simple calculations, one may get �2(x) = Op(n−2/5) and
�3(x) = Op(n−2/5).

A.2. Proof of Theorem 5. Theorem 5 may be proved along the lines of the
proof of Theorem 5. To list the essential changes, the interior I0 is now given in a
general form by

I0 =
{
(x, y) ∈ I :

{(
u − x

h1
,
v − y

h2

)
: (u, v) ∈ I

}
⊃ [−1,1]2

}

and φ̂(h) and φ(h) in the definition of �(x) at (A.1) are replaced by φ̂(xmin,h)

and φ(xmin,h), respectively, where xmin,h = min{x : (x, y) ∈ I0 for some y}. The
integrals over the interval [h,x] at (A.4) and (A.5) are now over [xmin,h, x], the
integration at (A.9) needs to be over the set {(u, v) : xmin,h ≤ u ≤ x, v ∈ I2(u)},
the two integrals at (A.10) and (A.11) are put together to be the integral over
{(u, v) : xmin,h ≤ u ≤ x, (u, v) ∈ Ic

0}, and the integrals at (A.12), (A.14) and
(A.15) should be over I0(x) ≡ {(u, v) : xmin,h ≤ u ≤ x, (u, v) ∈ I0}. The sets
I∗ and I∗∗ at the end of the proof are redefined as I∗(x) = {(u, v) ∈ I : [u −
h,u + h] × [v − h, v + h] ⊂ I0(x)} and I∗∗(x) = {(u′, v′) ∈ I : (u′ − u, v′ − v) ∈
[−h,h]2 for some (u, v) ∈ I0(x)}.

SUPPLEMENTARY MATERIAL

Supplement to “Operational time and in-sample density forecasting” (DOI:
10.1214/16-AOS1486SUPP; .pdf). We provide the proofs of Theorems 3 and 6 in
the supplement.

http://dx.doi.org/10.1214/16-AOS1486SUPP
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