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THE ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT OF
CONFIGURATION MODEL RANDOM GRAPHS
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University of Nottingham and Lancaster University

For a supercritical configuration model random graph, it is well known
that, subject to mild conditions, there exists a unique giant component, whose
size Rn is O(n), where n is the total number of vertices in the random graph.

Moreover, there exists 0 < ρ ≤ 1 such that Rn/n
p−→ ρ as n → ∞. We show

that for a sequence of well behaved configuration model random graphs with
a deterministic degree sequence satisfying 0 < ρ < 1; there exists σ 2 > 0,
such that var(

√
n(Rn/n − ρ)) → σ 2 as n → ∞. Moreover, an explicit, easy

to compute, formula is given for σ 2. This provides a key stepping stone for
computing the asymptotic variance of the size of the giant component for
more general random graphs.

1. Introduction. The theoretical treatment of random graphs goes back to
Erdős and Rényi (1959). The Erdős–Rényi random graph is constructed as fol-
lows. Suppose that there are n vertices, labeled 1,2, . . . , n. An edge exists be-
tween vertices i and j with probability μ/(n − 1), independent of the remainder
of the graph, where it is assumed that 0 ≤ μ ≤ n − 1. Therefore, for any vertex i,
its degree is Bin(n − 1,μ/(n − 1)) [a binomial random variable with n − 1 trials
and success probability μ/(n − 1)] and as n → ∞ with μ fixed, the vertex de-
gree distribution converges to Po(μ) (a Poisson random variable with mean μ). It
is well known that for large n, the order of magnitude of the size of the largest
connected component, Rn, of the Erdős–Rényi random graph depends upon the
threshold parameter μ. If μ < 1 (subcritical), Rn = Op(logn), if μ = 1 (critical),

Rn = Op(n
2
3 ) and if μ > 1 (supercritical), there is a constant θ(μ) > 0 so that

Rn
p∼ θ(μ)n. [Here, Rn = Op(f (n)) means that there exists a constant C < ∞

such that P(Rn ≤ Cf (n)) → 1 as n → ∞ and Rn
p∼ f (n) means that Rn/f (n)

converges in probability to 1 as n → ∞.] If Rn
p∼ Cn, for some C > 0, we say that

a giant component exists. The size of the second largest component is Op(logn)

in the supercritical case, so there exists a unique giant component. For a sequence
of Erdős–Rényi random graphs {Gn}, indexed by the total number of vertices n, as
n → ∞ with fixed μ > 1, it can be shown that

1

n
Rn

p−→ ρ as n → ∞,
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where ρ is the nonzero solution to ρ = 1 − exp(−μρ) and
p−→ denotes conver-

gence in probability. Furthermore, a central limit theorem exists, with

√
n

(
1

n
Rn − ρ

)
D−→ N

(
0, σ 2

ER
)

as n → ∞,(1.1)

where σ 2
ER = ρ(1−ρ)

(1−μ(1−ρ))2 and
D−→ denotes convergence in distribution. See, for

example, Durrett (2007), Chapter 2, for a more detailed discussion of Erdős–Rényi
random graphs.

Many graphs observed in the social sciences, epidemiology and computing do
not have a Poisson (vertex) degree distribution, although the Erdős–Rényi random
graph provides a useful representation of the Reed–Frost epidemic in an homo-
geneously mixing population; see Barbour and Mollison (1990). Therefore, there
has been considerable interest in random graphs with arbitrary degree distribu-
tions. Random graphs with mixed Poisson degree distribution arise by letting each
vertex i have a connectivity parameter Ci with the probability of an edge exist-
ing between vertices i and j being proportional to CiCj . Mixed Poisson random
graphs have been studied in, for example, Chung and Lu (2002) and Britton, Dei-
jfen and Martin-Löf (2006), Section 3, with a central limit theorem for the size of
the giant component given by Neal (2007), Theorem 5.2. The mixed Poisson dis-
tribution has the property that its variance is greater than or equal to its mean, with
equality if and only if the distribution is Poisson. By contrast, the configuration
model considered in this paper allows for an arbitrary but specified vertex degree
distribution.

In Molloy and Reed (1995), the configuration model with a deterministic degree
sequence was considered. The configuration model was introduced in Bollobás
(1980) and we refer the reader to Bollobás (2001), Section 2.4, for further refer-
ences. Suppose that Dn

i is the degree of vertex i and suppose that Sn = ∑n
i=1 Dn

i

is even. Then to vertex i assign Dn
i half-edges and pair up half-edges uniformly at

random to form edges between vertices. This we term the Molloy–Reed (MR) ran-
dom graph. It is shown in Molloy and Reed (1995) that if 1

n

∑n
j=1 Dn

j (Dn
j − 2) →

κ > 0 as n → ∞ and there exists π = (π0, π1, . . .), satisfying
∑∞

i=0 πi = 1, such
that for i = 0,1, . . . ,

∑n
j=1 1{Dn

j =i}/n → πi as n → ∞, there exists a giant com-
ponent of size O(n), subject to there existing δ > 0 such that for all sufficiently
large n, �n = max{1≤i≤n} Dn

i ≤ n1/4−δ . In Molloy and Reed (1998), it was shown

that Rn
p∼ ρn, where ρ satisfies

ρ = 1 − f (z),(1.2)

and z is the solution in [0,1) of

z = 1

μ
f ′(z),(1.3)
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where f (s) = ∑∞
i=0 πis

i , f ′(s) = ∑∞
i=1 πiis

i−1 (s ∈ [0,1]) and μ = ∑∞
i=1 iπi .

The equations for ρ given in (1.2) and (1.3) are based on those given in Newman,
Strogatz and Watts (2001), where the deterministic degree sequence of Molloy and
Reed (1995) is replaced by taking Dn

1 ,Dn
2 , . . . ,Dn

n to be i.i.d. (independent and
identically distributed) according to a nonnegative integer-valued random variable,
D, with P(D = i) = πi (i = 0,1, . . .). Note that using an i.i.d. degree sequence can
result in an infeasible degree sequence, with

∑n
i=1 Dn

i being odd. In such an event,
the entire degree sequence may be resampled until a feasible degree sequence is
obtained or alternatively the final half-edge in the construction of the random graph
can simply be ignored. These equations are equivalent, but simpler, than those
given in Molloy and Reed (1998) for ρ, and both the MR and NSW (Newman–
Strogatz–Watts construction with i.i.d. degree sequence) random graphs have the
same asymptotic proportion of vertices, ρ, in the giant component for a given π .
The above construction of the MR and NSW graphs can lead to a nonsimple graph.
That is, the random graph contains imperfections, in that some individuals may be
linked to themselves and there may be multiple edges between pairs of individuals.
Provided that D has finite variance, such imperfections are sparse in the limit as
n → ∞, see Durrett (2007), Theorem 3.1.2. The results of this paper also hold if
the graph is conditioned on being simple, that is, having no such imperfections [cf.
Janson (2009b) and Britton, Janson and Martin-Löf (2007)].

The aim of the current work is to derive the (asymptotic) variance of the gi-
ant component for the MR random graph, var(

√
n(Rn/n − ρ)) → σ 2 as n → ∞

with an explicit, easy to compute formula for σ 2. This provides a key stepping
stone for computing the asymptotic variance of the size of the giant component for
more general random graphs such as the NSW random graph which we discuss
briefly in Section 7. Variance calculations for random graphs are limited, although
progress has been made in the near critical case, Riordan (2012). In Section 2,
we define a sequence of MR random graphs {Gn} and state the key result Theo-
rem 2.1, along with the weak conditions required on the degree sequence, which
are similar to the conditions stated in Molloy and Reed (1995). Also in Section 2,
we show that var(

√
n(Rn/n − ρ)) has the same asymptotic limit as n → ∞ as

var(Ũn/
√

n), where Ũn is the total number of vertices which belong to compo-
nents of size less than or equal to [nβ] and β is any fixed real number satisfying
0 < β < 1/12. In Section 3, we introduce a branching process approximation for
the construction of components in the random graph Gn which assists with com-
puting limn→∞ var(Ũn/

√
n). The branching process approximation is valid for

the initial growth of components and mimics similar branching process approxi-
mations used for epidemic models; see, for example, Whittle (1955) and Ball and
Donnelly (1995). In Section 4, we compute limn→∞ var(Ũn/

√
n) and this section

contains most of the technical details of the proof. Then in Section 5, we show that
the expression obtained for limn→∞ var(Ũn/

√
n) in Section 4 is equal to σ 2. In

Section 6, we consider the weakly supercritical case studied in Riordan (2012). In
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this case, ρ = 0 and σ 2 = ∞ but by indexing ρ and σ 2 by n, we show that σ 2
n ∼ 
n

(i.e. σ 2
n /
n → 1 as n → ∞), where 
n is defined in Riordan (2012), Theorem 1.1

(and Section 6) and shown to satisfy var(
√

n(Rn/n − ρn)) ∼ 
n. In Section 7,
we compare the asymptotic calculations with simulation studies for graphs of size
n = 200 and n = 1000 and conjecture the existence of a Gaussian central limit
theorem for the size of the giant component. We also outline how to compute the
asymptotic variance of the giant component of the NSW random graph, the details
of which will be presented elsewhere. Finally, in the Appendix we present some
useful results for Galton–Watson branching processes that are used in the proof of
Theorem 2.1.

2. Conditions on the degree sequence and statement of theorem. For
the asymptotic variance of the Molloy–Reed (MR) random graph, we need to
impose conditions upon the sequence of degree distributions {Dn}. Let D̄n =
(D̄n

1 , D̄n
2 , . . . , D̄n

n) denote the degrees of the vertices in Gn, where {Gn} is a se-
quence of Molloy–Reed random graphs. However, we do not at this stage assign a
particular degree to a given vertex but instead look to exploit the exchangeability of
vertices with Dn simply being a random permutation of D̄n with Dn

i denoting the
degree of vertex i. The following arguments are simpler using D̄n (and exchange-
ability) rather than using Dn. Thus, throughout the paper we take Gn to be con-
structed using D̄n with all n! vertex labellings equally likely. For j = 0,1, . . . , let
πn

j = ∑n
i=1 1{D̄n

i =j}/n with πn = (πn
0 , πn

1 , . . .) and let μn = ∑n
i=1 D̄n

i /n. We as-
sume that there exists a proper nonnegative, integer-valued random variable D with
P(D = j) = πj (j = 0,1, . . .) such that, for all j = 0,1, . . . , πn

j → πj as n → ∞.
Thus, the degree distributions are assumed to satisfy condition 1 of Molloy and
Reed (1995), being smooth and feasible. In Molloy and Reed (1995, 1998), addi-
tional conditions are placed on the sequence of degree distributions for them to be
well behaved. We place slightly stronger regularity conditions upon the sequence
of degree distributions as follows.

For k = 1,2,3, let Lk = ∑∞
j=0 jkπj (= E[Dk]), which we assume to be fi-

nite. (Note that μ = L1.) We require that ν = ∑∞
j=0 j (j − 1)πj/μ = (L2 − L1)/

L1 > 1 and π1 > 0. These ensure that the asymptotic degree sequence is supercrit-
ical (i.e., that a giant component exists in the sense defined in Section 1) and that
0 < z < 1 [where z satisfies (1.3)], respectively.

We require also that {D̄n} satisfies the following conditions.

(a) For all ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

(i) for all j ≥ 0,

j2∣∣πn
j − πj

∣∣ < ε;(2.1)

and
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(ii) for k = 1,2,3, ∣∣∣∣∣
∞∑

j=0

jkπn
j − Lk

∣∣∣∣∣ < ε.(2.2)

(b) There exists β > 0 such that for all ε > 0, there exists n0 ∈ N such that for all
n ≥ n0,

n2β
∞∑

j=0

j
∣∣πn

j − πj

∣∣ < ε.(2.3)

(c) There exists δ > 0 such that n−(1/4−δ)�n → 0 as n → ∞, where �n =
max1≤i≤n D̄n

i .

Note that condition (a)(i) implies Molloy and Reed (1995), condition 2.
Throughout this paper, we take β to be an arbitrary, positive constant satisfying
0 < β < 1/12 and condition (b). Immediate consequences of the above condi-
tions include Molloy and Reed (1995), condition 3(a): for all ε > 0, there exists
K and n1 such that |∑K

j=1 j (j − 2)πn
j − ∑∞

j=0 j (j − 2)πj | < ε for all n ≥ n1.

Also μn = ∑n
i=1 D̄n

i /n → μ(= E[D]), νn = ∑n
i=1 D̄n

i (D̄n
i − 1)/nμn → ν and

λn = ∑n
i=1 D̄n

i (D̄n
i − 1)(D̄n

i − 2)/nμn → λ(= (L3 − 3L2 + 2L1)/L1) < ∞ as
n → ∞.

THEOREM 2.1. For a Molloy–Reed random graph satisfying conditions (a)–
(c), ν > 1 and π1 > 0,

var
(√

n

(
Rn

n
− ρ

))
→ σ 2 as n → ∞,(2.4)

with

σ 2 = 1 − ρ − f
(
z2) + z2

1 − f ′′(z)/μ
{(

1 + z2)
μ − 2f ′(z2)}

(2.5)

+ z2

(1 − f ′′(z)/μ)2

{
z2μ + z2f ′′(z) − f ′(z2) − z2f ′′(z2)}

,

where ρ satisfies (1.2).

A couple of remarks concerning Theorem 2.1 are as follows. First, provided a
closed-form expression is available for the generating function f , the formula for
σ 2 is easy to compute being a function of ρ, z, μ, ν, f ′(z2), f ′′(z2) and f ′′(z)
only. Note that computing z usually requires numerical solution of a nonlinear
equation. Second, since f ′(s) is a convex function in s, z is the solution in [0,1)

of z = f ′(z)/μ and f ′(0) ≥ 0, we have that f ′′(z)/μ < 1.



1062 F. BALL AND P. NEAL

The initial observations in proving Theorem 2.1 are as follows. First, let Un =
n − Rn be the total number of vertices outside of the giant component and ob-
serve that to prove Theorem 2.1 it suffices to show that var(

√
n(Un/n − ω)) =

var(Un/
√

n) → σ 2 as n → ∞, where ω = 1 − ρ. We introduce Un as it is simpler
to study small components than the giant component as we can utilise a branch-
ing process approximation (Section 3) for the initial growth of such components.
However, working with Un directly is difficult, so we introduce a new process
Ũn defined below, which counts the total number of vertices in small components
(less than [nβ] vertices). For vertices i and j in the graph Gn, let i ↔ j denote that
vertices i and j belong to the same connected component. For n = 1,2, . . . and
i = 1,2, . . . , n, let Cn

i = {j : j ↔ i} with Cn
i = |Cn

i |. Note that either Cn
i = Cn

j or

Cn
i ∩ Cn

j = ∅. Let χn
i = 1{Cn

i ≤[nβ ]} and Ũn = ∑n
i=1 χn

i . Since the second largest
component of a supercritical random graph almost surely consists of at most
γ logn vertices for some 0 < γ < ∞ [Molloy and Reed (1995), Lemma 11], the
precise value of β is not important as the asymptotic behaviour of Ũn is the same
for any value of 0 < β < 1/12 and that is why reference to β in the notation of Ũn

is omitted. (The above holds for any 0 < β < 1.) Furthermore using the proof of
Molloy and Reed (1995), Lemma 11, it is trivial to show that nP (Un �= Ũn) → 0,
whence E[(Un − Ũn)

2]/n → 0 as n → ∞. Note that

var(Un/
√

n) − var(Ũn/
√

n)
(2.6)

= var
(
(Un − Ũn)/

√
n
) + 2 cov

(
(Un − Ũn)/

√
n, Ũn/

√
n
)
.

Now var((Un − Ũn)/
√

n) ≤ E[(Un − Ũn)
2]/n → 0 as n → ∞. Suppose that

var(Ũn/
√

n) → σ 2 as n → ∞, where σ 2 < ∞. Then a simple argument using
the Cauchy–Schwarz inequality shows that the right-hand side of (2.6) tends to 0
as n → ∞, whence∣∣var(Un/

√
n) − var(Ũn/

√
n)

∣∣ → 0 as n → ∞.

Thus, we proceed by introducing useful branching process approximations for the
construction of components (Section 3) before showing that var(Ũn/

√
n) → σ 2 as

n → ∞ (Section 4).

3. Branching process approximation. To study Ũn, it is helpful to introduce
approximating branching processes for the initial growth of components in the
random graph Gn. We begin by outlining the construction of a component in a
random graph with a coupled branching process approximation. We also consider
the limit, as n → ∞, of the approximating branching processes. At the end of the
section, we draw together the couplings of the size of a component in a random
graph and the (total) size of the approximating branching processes by providing
useful bounds on the probability that they are different.

Consider a subset of h of the n vertices in Gn and let Hn = (Hn
k1

,Hn
k2

, . . . ,Hn
kh

)

denote the degrees of the h vertices. Often, but not always, we will take h = n

and Hn = D̄n. Let θn
0 , θn

1 , . . . be independent with θn
0 drawn uniformly from
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{k1, k2, . . . , kh} and θn
1 , θn

2 , . . . distributed according to θn, where

P
(
θn = ki

) =
⎧⎪⎨
⎪⎩

Hn
ki

hμn(Hn)
, (i = 1,2, . . . , h),

0, otherwise,
(3.1)

with μn(Hn) = h−1 ∑h
i=1 Hn

ki
. Let Bn(Hn) denote the (Galton–Watson) branch-

ing process with one initial ancestor constructed from Hn as follows. The initial
ancestor in the branching process has Hn

θn
0

offspring and the j th individual born

in Bn(Hn) has Hn
θn
j

− 1 offspring. Now a component, Cn(Hn) can be constructed

from the h vertices in Hn using θn
0 , θn

1 , θn
2 , . . . as follows.

Let Vn
0 = {θn

0 }, En,U
0 be the set of the Hn

θn
0

half-edges belonging to θn
0 and En,F

0

be the empty set. For k = 0,1, . . . , at stage k in the construction, Vn
k ,En,U

k and En,F
k

are respectively the set of vertices currently in the component Cn(Hn), the set of
unattached half-edges and the set of formed complete edges. The construction now
proceeds sequentially through stages k = 1,2, . . . . The construction stops at stage
k if En,U

k−1 is empty, in which case the component Cn(Hn) is completely formed and
Cn(Hn) = Vn

k−1. Otherwise, a half-edge, E∗ say, is chosen uniformly at random

from En,U
k−1 and is attached to a half-edge belonging to vertex θn

k , subject to the
following conditions. If θn

k /∈ {θn
0 , θn

1 , . . . , θn
k−1}, then (i) Vn

k = Vn
k−1 ∪ {θn

k }, (ii)
the half-edge E∗ is paired with a half-edge from θn

k to form a complete edge,
which is added to the set En,F

k−1 to give En,F
k ; and (iii) En,U

k = (En,U
k−1 \ {E∗}) ∪F∗,

where F∗ is the set of the other Hn
θn
k

− 1 half-edges that emanate from θn
k . If θn

k ∈
{θn

0 , θn
1 , . . . , θn

k−1}, then an attempt is made to add the same vertex for a second (or
higher order) time. In that case, choose a half-edge uniformly at random from the
Hn

θn
k

half-edges that emanated originally from θn
k . If the chosen half-edge belongs

to En,U
k−1 \ {E∗}, then pair it with E∗ to form a complete edge; this creates a cycle in

Cn(Hn), so Vn
k = Vn

k−1 with En,F
k and En,U

k being defined in the obvious fashion.
Otherwise, a complete edge cannot be formed, in which case θn

k is not used in the
construction of Cn(Hn) and (Vn

k ,En,U
k ,En,F

k ) = (Vn
k−1,E

n,U
k−1,E

n,F
k−1).

Let Bn(Hn) denote the total size, including the initial ancestor, of the branching
process Bn(Hn). Let MA

n (Hn) = min{k : θn
k ∈ {θn

0 , θn
1 , . . . , θn

k−1}} and note that if
Bn(Hn) ≤ MA

n (Hn), then Cn(Hn)(= |Cn(Hn)|) = Bn(Hn). That is, the Bn(Hn)

individuals in the branching process Bn(Hn) correspond to distinct vertices in the
graph Gn. We make extensive use of the above coupling throughout the paper and
this is the key motivation for focusing upon Ũn, the total number of vertices in
small components.

It is also helpful to introduce a branching process B which represents the limit
as n → ∞ of the branching processes Bn

1(= Bn(D̄n)). Let D̃ be the random vari-
able with probability mass function P(D̃ = k) = kπk/μ(= kP (D = k)/E[D])
(k = 1,2, . . .). Let B denote the total size, including the initial ancestor, of the
branching (Galton–Watson) process B, having offspring distribution D for the ini-
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tial ancestor and D̃−1 for all subsequent individuals. The initial ancestor in Bn
1 has

k offspring with probability πn
k and subsequent individuals have k − 1 offspring

with probability kπn
k /μn. Since by condition (a)(i), πn

k → πk as n → ∞ for all
k ≥ 0, it follows that the offspring distribution of {Bn

1 } converges in distribution to

the offspring distribution of B. Hence, Bn
1 (= Bn(D̄n))

D−→ B , the total size of the
branching process B; see, for example, Lefèvre and Utev (1999), Proposition 2.1.
However, we shall require the following explicit coupling of B and Bn

1 which goes
beyond Lefèvre and Utev (1999), Proposition 2.1. Let Tn(D̄n) = 1

2
∑∞

j=0 |πn
j −πj |,

T̃n(D̄n) = 1
2

∑∞
j=1 | jπn

j

μn
− jπj

μ
| and T̂n(D̄n) = max{Tn(D̄n), T̃n(D̄n)}. Thus, Tn(D̄n)

is the total variation distance between the offspring distributions of the initial an-
cestor in the branching processes Bn

1 and B, and T̃n(D̄n) is the total variation dis-
tance between the offspring distributions of all subsequent individuals in these two
branching processes. Using the triangle inequality, straightforward algebraic ma-
nipulation yields

T̃n

(
D̄n) ≤ 1

2μ

∞∑
j=1

j
∣∣πn

j − πj

∣∣ + 1

2μ
|μ − μn| ≤ 1

μ

∞∑
j=1

j
∣∣πn

j − πj

∣∣.(3.2)

Hence,

T̂n

(
D̄n) ≤ 1

μ ∧ 2

∞∑
j=1

j
∣∣πn

j − πj

∣∣,(3.3)

where μ ∧ 2 = min{μ,2}. By the existence of a maximal coupling [see, e.g.,
Barbour, Holst and Janson (1992), Appendix A1], random variables Xn

1 and X1
having distributions given by P(Xn

1 = k) = πn
k and P(X1 = k) = πk (k = 0,1, . . .)

can be defined on a common probability space so that P(Xn
1 �= X1) = Tn(D̄n).

Similarly, for l = 2,3, . . . , random variables Xn
l and Xl having distributions given

by P(Xn
l = k) = kπn

k /μn and P(Xl = k) = kπk/μ (k = 1,2, . . .) can be de-
fined on a common probability space so that P(Xn

l �= Xl) = T̃n(D̄n). The branch-
ing processes B and Bn

1 can be defined on a common probability space using
independent realisations of (Xn

l ,Xl) (l = 1,2, . . .) in the obvious fashion. Let
MD

n = min{l : Xn
l �= Xl} and note that MD

n is stochastically larger than M̃D
n ∼

Geom(T̂n(D̄n)), a geometric distribution with support N and mean T̂n(D̄n)−1.
[A random variable X is said to be stochastically larger than a random variable Y

if, P(X ≤ x) ≤ P(Y ≤ x) for all x ∈ R.] It follows that, if B < MD
n , then Bn

1 = B .
Let Cn

1 = Cn(D̄n), corresponding to setting Dn
1 = D̄n

θn
0

, let Cn
1 = |Cn

1 | and let

MA
n = MA

n (D̄n). For x ∈ R, let [x] denote the greatest integer ≤ x. The above
couplings give that for any 1 ≤ k ≤ [nβ],

P(1{Cn
1 ≤k} �= 1{Bn

1 ≤k}) ≤ P
(
MA

n ≤ [
nβ])

= P

( ⋃
0≤i<j≤[nβ ]

{
θn
i = θn

j

})
(3.4)



ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 1065

≤ nβ(nβ + 1)

2

n∑
l=1

(
D̄n

l

nμn

)2

→ 0 as n → ∞,

by condition (a)(ii), and

P(1{Bn
1 ≤k} �= 1{B≤k}) ≤ P

(
MD

n ≤ [
nβ])

≤ P
(
M̃D

n ≤ [
nβ])

(3.5)

≤ nβ × 1

(μ ∧ 2)

∞∑
j=1

j
∣∣πn

j − πj

∣∣
→ 0 as n → ∞,

by condition (b). [Note that in (3.4), P(θn
0 = θn

1 ) = 1
n
,P (θn

1 = θn
2 ) = ∑n

l=1(D̄
n
l /

nμn)
2 and application of the Cauchy–Schwarz inequality shows that P(θn

0 =
θn

1 ) ≤ P(θn
1 = θn

2 ).] Equations (3.4) and (3.5) play a key role in the sequel and by
the triangle inequality imply that for any 1 ≤ k ≤ [nβ], P(1{Cn

1 ≤k} �= 1{B≤k}) → 0
as n → ∞.

4. Computing limn→∞ var(Ũn/
√

n).

4.1. Introduction. We are now in position to start in earnest the proof of (2.5).
Since all labellings of the vertices D̄n of the random graph Gn are exchangeable,
we have that

var(Ũn/
√

n) = 1

n

n∑
i=1

n∑
j=1

cov
(
χn

i ,χn
j

)
(4.1)

= var
(
χn

1
) + (n − 1) cov

(
χn

1 , χn
2
)
.

Since the degree sequences D̄n are well behaved [Molloy and Reed (1995, 1998)],

var
(
χn

1
) = E

[
χn

1
](

1 − E
[
χn

1
]) → ω(1 − ω)

(= ρ(1 − ρ)
)

as n → ∞.(4.2)

First, note that

(n − 1) cov
(
χn

1 , χn
2
)

= (n − 1)E
[
1{Cn

1 ≤[nβ ]}
(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]
= (n − 1)E

[
1{2∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]
(4.3)

+ (n − 1)E
[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]
.
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The first term on the right-hand side of (4.3) is equal to

(n − 1)E
[
1{2∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1 − E[1{Cn

2 ≤[nβ ]}]
)]

(4.4)
= (n − 1)E[1{2∈Cn

1 }1{Cn
1 ≤[nβ ]}]

(
1 − E

[
χn

2
])

.

The following lemma provides the limit of the right-hand side of (4.4), and hence
also of the first term on the right-hand side of (4.3), as n → ∞. Note that {B < ∞}
is the event that the branching process B goes extinct.

LEMMA 4.1.

(n − 1)E[1{2∈Cn
1 }1{Cn

1 ≤[nβ ]}]
(
1 − E

[
χn

2
]) → E

[
(B − 1)1{B<∞}

]
ρ,(4.5)

as n → ∞.

PROOF. Since (1 − E[χn
2 ]) → ρ as n → ∞, it suffices to show that

(n − 1)E[1{2∈Cn
1 }1{Cn

1 ≤[nβ ]}] → E
[
(B − 1)1{B<∞}

]
as n → ∞.

Note first that, by exchangeability, P(2 ∈ Cn
1 |Cn

1 = k) = (k − 1)/(n − 1) (k =
1,2, . . . , n). Hence,

(n − 1)E[1{2∈Cn
1 }1{Cn

1 ≤[nβ ]}] = (n − 1)

[nβ ]∑
k=1

P
(
2 ∈ Cn

1 |Cn
1 = k

)
P

(
Cn

1 = k
)

= (n − 1)

[nβ ]∑
k=1

k − 1

n − 1
P

(
Cn

1 = k
)

(4.6)

= E
[(

Cn
1 − 1

)
1{Cn

1 ≤[nβ ]}
]
.

Exploiting the couplings of Cn
1 , Bn

1 and B as at the end of Section 3, we have that∣∣E[(
Cn

1 − 1
)
1{Cn

1 ≤[nβ ]}
] − E

[
(B − 1)1{B<[nβ ]}

]∣∣
≤ nβP

((
Cn

1 − 1
)
1{Cn

1 ≤[nβ ]} �= (B − 1)1{B≤[nβ ]}
)

(4.7)
≤ nβP

(
MA

n ≤ [
nβ]) + nβP

(
MD

n ≤ [
nβ])

≤ nβ

(
nβ(nβ + 1)

2

n∑
i=1

(
D̄n

i

nμn

)2
+ nβ × 1

(μ ∧ 2)

∞∑
j=1

j
∣∣πn

j − πj

∣∣).

By conditions (a)–(c), the right-hand side of (4.7) converges to 0 as n → ∞.
Thus, the lemma follows by showing that∣∣E[

(B − 1)1{B≤[nβ ]}
] − E

[
(B − 1)1{B<∞}

]∣∣ → 0 as n → ∞.
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Note that ∣∣E[
(B − 1)1{B≤[nβ ]}

] − E
[
(B − 1)1{B<∞}

]∣∣
= E

[
(B − 1)1{[nβ ]<B<∞}

]
(4.8)

=
∞∑

j=[nβ ]+1

(j − 1)P (B = j,B < ∞).

By Markov’s inequality P(B = j,B < ∞) ≤ E[B31{B<∞}]/j3 and since the
branching process B is super-critical, Lemma A.2 ensures that E[B31{B<∞}] <

∞. Therefore, it follows that the right-hand side of (4.8) converges to 0 as n → ∞
and the lemma is proved. �

We turn to the second term on the right-hand side of (4.3). Let Hn denote a
set of distinct vertices in Gn. Then, conditioning on the cardinality Cn

1 of Cn
1 and

exploiting exchangeability,

(n − 1)E
[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]

= (n − 1)

[nβ ]∑
k=1

P
(
Cn

1 = k
)
E

[
1{2/∈Cn

1 }
(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)|Cn
1 = k

]

= (n − 1)

[nβ ]∑
k=1

P
(
Cn

1 = k
) ∑
Hn:|Hn|=k

P
(
Cn

1 = Hn|Cn
1 = k

)
(4.9)

× E
[
1{2/∈Cn

1 }
(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)|Cn
1 =Hn]

= (n − 1)

[nβ ]∑
k=1

P
(
Cn

1 = k
) ∑
Hn:|Hn|=k

P
(
Cn

1 = Hn|Cn
1 = k

)

× {
E

[
1{2/∈Cn

1 }1{Cn
2 ≤[nβ ]}|Cn

1 = Hn] − E
[
1{2/∈Cn

1 }|Cn
1 = Hn]

E[1{Cn
2 ≤[nβ ]}]

}
.

We note that |Hn| = k implies that

E
[
1{2/∈Cn

1 }|Cn
1 =Hn] = n − k

n − 1
,

which in turn gives

E
[
1{2/∈Cn

1 }1{Cn
2 ≤[nβ ]}|Cn

1 = Hn]
= P

(
Cn

2 ≤ [
nβ]|2 /∈ Cn

1 ,Cn
1 = Hn) × P

(
2 /∈ Cn

1 |Cn
1 = Hn)

(4.10)

= n − k

n − 1
P

(
Cn

2 ≤ [
nβ]|2 /∈ Cn

1 ,Cn
1 = Hn)

.
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Therefore, it follows from (4.9) and (4.10) that

(n − 1)E
[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]

=
[nβ ]∑
k=1

(n − k)P
(
Cn

1 = k
) ∑
Hn:|Hn|=k

P
(
Cn

1 = Hn|Cn
1 = k

)
(4.11)

× {
P

(
Cn

2 ≤ [
nβ]|2 /∈ Cn

1 ,Cn
1 = Hn) − P

(
Cn

2 ≤ [
nβ])}

.

The final term on the right-hand side of (4.11) is difficult to analyse directly. There-
fore, we exploit further couplings of the component construction to the branching
process approximation to derive the limiting behaviour of (4.11). In Section 4.2,
we show that, as n → ∞, the limit of (4.11) is the same as the limit of n times
the difference between the extinction probabilities of two sequences of branching
processes, the latter being far more amenable to analysis. Then in Section 4.3, we
obtain the limit of the difference between the extinction probabilities.

4.2. Recasting the limit of (4.11). Let D̄n−Hn denote the set of vertices in Gn

excluding those vertices in a given set of vertices, Hn. Suppose that 2 /∈ Hn and
let Čn

2 and B̌n
2 denote respectively the component containing vertex 2 and the asso-

ciated branching process constructed using vertices D̄n−Hn . For the present, Hn is
an arbitrary but specified set of vertices that satisfies |Hn| ≤ [nβ]. Throughout the
remainder of this section, Hn will be equated with Cn

1 and we will construct Čn
2 and

the associated branching process B̌n
2 using the vertices not in Cn

1 . Let Cn,I
2

D= Cn
2 and

Bn,I
2

D= Bn
2 denote the component containing vertex 2 and the associated branching

process constructed using vertices D̄n, independently of the construction of Cn
1 . Let

Čn
2 , B̌n

2 , C
n,I
2 and B

n,I
2 denote the cardinalities of the appropriate sets. We outline

how the above four processes can be usefully coupled on a common probability
space. Let hn = n − |Hn|, μH

n = {nμn − ∑
i∈Hn D̄n

i }/hn and

P
(
θ̌ n = i

) =
⎧⎪⎨
⎪⎩

D̄n
i

hnμH
n

(
i ∈ {1,2, . . . , n} \Hn)

,

0, otherwise.
(4.12)

Let θ̌ n
0 , θ̌n

1 , . . . be independent with θ̌ n
0 distributed uniformly on {1,2, . . . , n} \Hn

and θ̌ n
k

D= θ̌ n for k ≥ 1. Then Čn
2 and B̌n

2 can be constructed using D̄n−Hn and

θ̌ n
0 , θ̌n

1 , . . . in an analagous fashion to that described in Section 3. Let QA
n (k) =∑k−1

i=0
∑k

j=i+1 1{θ̌ n
i =θ̌ n

j } be the total number of matches in {θ̌ n
0 , θ̌n

1 , . . . , θ̌n
k }. Then

if B̌n
2 = k and QA

n (k − 1) = 0, we have that Čn
2 = B̌n

2 , that is, the addition
of each new individual in the branching process corresponds to the addition of
a new vertex to the component containing vertex 2. (Recall that B̌n

2 includes
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the initial ancestor.) A key observation going forward is that given a set Hn,

Čn
2

D= Cn
2 |Cn

1 = Hn,2 /∈ Cn
1 .

To couple (Bn,I
2 ,Cn,I

2 ) with (B̌n
2 , Čn

2 ), we use independent (given Hn) Bernoulli
random variables Un

0 ,Un
1 , . . . ,Un

[nβ ]+1. Let P(Un
0 = 1|Hn) = |Hn|/n, the prob-

ability that a randomly chosen vertex belongs to Hn and for k ≥ 1, let P(Un
k =

1|Cn
1 ) = ∑

j∈Hn D̄n
j /(nμn), the probability that a randomly chosen edge belongs

to a vertex in Hn. For k ≥ 0, set θ
n,I
k = θ̌ n

k if Un
k = 0. If Un

0 = 1, draw θ
n,I
0 uni-

formly at random from Hn and for k ≥ 1, if Un
k = 1, set θ

n,I
k = j with proba-

bility D̄n
j /

∑
i∈Hn D̄n

i (j ∈ Hn). It is straightforward to show that θ
n,I
0

D= θn
0 and

for k ≥ 1, θ
n,I
k

D= θn. Then construct (Bn,I
2 ,Cn,I

2 ) as before using θ
n,I
0 , θ

n,I
1 , . . . .

Let QB
n (k) = ∑k

i=0 Un
i , the total number of times in the first k + 1 chosen

vertices, a vertex from Hn appears in the construction of Bn,I
2 . Note that if

B̌n
2 = k and QB

n (k − 1) = 0 then B
n,I
2 = B̌n

2 . Also if Čn
2 = k, QA

n (k) ≤ 1 and
QB

n (k) = 0, then C
n,I
2 = Čn

2 , since we need to take into account that there may
exist 0 ≤ i < j ≤ k such that θ̌ n

i = θ̌ n
j . [If Čn

2 = k and there is at most one

match among {θ̌ n
0 , θ̌n

1 , . . . , θ̌n
k } then {θ̌ n

0 , θ̌n
1 , . . . , θ̌n

k } determines Čn
2 . It then fol-

lows that Cn,I
2 = Čn

2 (whence C
n,I
2 = Čn

2 ), since QB
n (k) = 0 implies θ

n,I
j = θ̌ n

j

(j = 0,1, . . . , k).] Finally, if B
n,I
2 = k with QA

n (k − 1) = 0 and QB
n (k − 1) ≤ 1

then C
n,I
2 = B

n,I
2 , since QA

n (k − 1) = 0 and QB
n (k − 1) ≤ 1 ensure that all

the individuals in Bn,I
2 correspond to distinct vertices in Cn,I

2 . [If QA
n (k − 1) =

QB
n (k − 1) = 0 then θ

n,I
0 , θ

n,I
1 , . . . , θ

n,I
k−1 are clearly distinct. If QA

n (k − 1) = 0 and

QB
n (k − 1) = 1, then there exists 0 ≤ j0 ≤ k − 1 such that θ

n,I
j0

∈ Hn and θ
n,I
j = θ̌ n

j

for j = 0,1, . . . , k − 1 (j �= j0). Now θ̌ n
j /∈ Hn (j = 0,1, . . . , k − 1), so since

θ̌ n
0 , θ̌n

1 , . . . , θ̌n
k−1 are distinct then so are θ

n,I
0 , θ

n,I
1 , . . . , θ

n,I
k−1.]

LEMMA 4.2.

lim
n→∞(n − 1)E

[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]
= lim

n→∞(n − 1)E
[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn,I
2 ≤[nβ ]}]

)]
(4.13)

= lim
n→∞E

[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }

× (n − 1)
{
E

[
1{B̌n

2 ≤[nβ ]}|Hn = Cn
1
] − E[1{Bn,I

2 ≤[nβ ]}]
}]

,

provided that the final limit exists and is finite.

PROOF. The first equality follows from E[1{Cn,I
2 ≤[nβ ]}] = E[1{Cn

2 ≤[nβ ]}].
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Using (4.11) and a similar decomposition for the right-hand side of (4.13), we
have that ∣∣(n − 1)E

[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn,I
2 ≤[nβ ]}]

)]
− (n − 1)E

[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }

× {
E

[
1{B̌n

2 ≤[nβ ]}|Hn = Cn
1
] − E[1{Bn,I

2 ≤[nβ ]}]
}]∣∣

(4.14)

=
∣∣∣∣∣
[nβ ]∑
k=1

(n − k)P
(
Cn

1 = k
) ∑
Hn:|Hn|=k

P
(
Cn

1 =Hn|Cn
1 = k

)

× ({
P

(
Cn

2 ≤ [
nβ]|2 /∈ Cn

1 ,Cn
1 =Hn) − P

(
C

n,I
2 ≤ [

nβ])}
− {

P
(
B̌n

2 ≤ [
nβ]|Hn) − P

(
B

n,I
2 ≤ [

nβ])})∣∣∣∣∣.
Note that {Čn

2 |Hn = Cn
1 } D= {Cn

2 |2 /∈ Cn
1 ,Cn

1 = Hn}, from the construction of Čn
2 , so

P
(
Cn

2 |2 /∈ Cn
1 ,Cn

1 = Hn) = P
(
Čn

2 |Hn = Cn
1
)
.

Therefore, it follows that the right-hand side of (4.14) is less than or equal to

max
{Hn;|Hn|≤nβ }

(n − 1)
∣∣{P (

Čn
2 ≤ [

nβ]|Hn) − P
(
C

n,I
2 ≤ [

nβ])}
(4.15)

− {
P

(
B̌n

2 ≤ [
nβ]|Hn) − P

(
B

n,I
2 ≤ [

nβ])}∣∣.
We start by considering fixed Hn with |Hn| ≤ [nβ].

Using the above couplings, we have that, for k = 1,2, . . . , [nβ],
P

(
Čn

2 = k|Hn) = P
(
B̌n

2 = k,QA
n

([
nβ]) = 0,QB

n

([
nβ]) ≤ 1|Hn)

+ P
(
C

n,I
2 = k,QA

n

([
nβ]) = 1,QB

n

([
nβ]) = 0|Hn)

+ P
(
Čn

2 = k,QA
n

([
nβ]) + QB

n

([
nβ]) ≥ 2|Hn)

.

Since the distribution of C
n,I
2 is independent of Hn, we have that, for k =

1,2, . . . , [nβ],
P

(
C

n,I
2 = k

) = P
(
C

n,I
2 = k|Hn)

= P
(
B

n,I
2 = k,QA

n

([
nβ]) = 0,QB

n

([
nβ]) ≤ 1|Hn)

+ P
(
C

n,I
2 = k,QA

n

([
nβ]) = 1,QB

n

([
nβ]) = 0|Hn)

+ P
(
C

n,I
2 = k,QA

n

([
nβ]) + QB

n

([
nβ]) ≥ 2|Hn)

.
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Also, for k = 1,2, . . . , [nβ],
P

(
B̌n

2 = k|Hn) = P
(
B̌n

2 = k,QA
n

([
nβ]) = 0,QB

n

([
nβ]) ≤ 1|Hn)

+ P
(
B

n,I
2 = k,QA

n

([
nβ]) = 1,QB

n

([
nβ]) = 0|Hn)

+ P
(
B̌n

2 = k,QA
n

([
nβ]) + QB

n

([
nβ]) ≥ 2|Hn)

.

Therefore, using a similar decomposition for P(B
n,I
2 = k), it is straightforward to

show that

(n − 1)
∣∣{P (

Čn
2 ≤ [

nβ]|Hn) − P
(
C

n,I
2 ≤ [

nβ])}
− {

P
(
B̌n

2 ≤ [
nβ]|Hn) − P

(
B

n,I
2 ≤ [

nβ])}∣∣(4.16)

≤ 2(n − 1)P
(
QA

n

([
nβ]) + QB

n

([
nβ]) ≥ 2|Hn)

.

We study the right-hand side of (4.16) in order to bound the right-hand side of
(4.14).

Given Hn, we have that QA
n ([nβ]) and QB

n ([nβ]) are independent. Therefore,
the right-hand side of (4.16) is bounded above by

2
{
(n − 1)P

(
QA

n

([
nβ]) ≥ 2|Hn) + (n − 1)P

(
QB

n

([
nβ]) ≥ 2|Hn)

(4.17)
+ (n − 1)P

(
QA

n

([
nβ]) = 1|Hn)

P
(
QB

n

([
nβ]) = 1|Hn)}

.

We are interested in the case Hn = Cn
1 , where |Cn

1 | ≤ [nβ]. Under condition (c),

for all sufficiently large n, �n = max{1≤i≤n} D̄n
i ≤ n

1
4 , and consequently, we have

that, for k ≥ 0, |∑i∈Hn(D̄n
i )k| ≤ nβn

k
4 . Since β < 1/12, it follows from condition

(a)(ii) that, for k = 1,2,3, n−1 ∑
i /∈Hn(D̄n

i )k > 1
2Lk and n−1 ∑n

i=1(D̄
n
i )k ≤ 2Lk ,

for all sufficiently large n.
For QA

n ([nβ]) ≥ 2, we require that either there exist distinct i, j, k ∈ {0,1, . . . ,

[nβ]} such that θ̌ n
i = θ̌ n

j = θ̌ n
k or there exist distinct i, j, k, l ∈ {0,1, . . . , [nβ]} such

that θ̌ n
i = θ̌ n

j and θ̌ n
k = θ̌ n

l . Without loss of generality, we may assume that i < j, k

in the first case and i < j, k, l in the second case. There are therefore two cases to
consider i = 0 and i ≥ 1. For i = 0,

P
(
θ̌ n

0 = θ̌ n
j = θ̌ n

k |Hn) = ∑
l /∈Hn

{
1

n − |Hn| ×
(

D̄n
l∑

m/∈Hn D̄n
m

)2}

≤ 8

L2
1n

3

n∑
l=1

(
D̄n

l

)2 ≤ 16L2

L2
1n

2
,

for all sufficiently large n. For i ≥ 1,

P
(
θ̌ n
i = θ̌ n

j = θ̌ n
k |Hn) = ∑

l /∈Hn

(
D̄n

l∑
m/∈Hn D̄n

m

)3

≤ 8

L3
1n

3

n∑
l=1

(
D̄n

l

)3 ≤ 16L3

L3
1n

2
,
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for all sufficiently large n. Using the independence of θ̌ n
i , θ̌n

j , θ̌n
k , θ̌n

l , we have that
for i ≥ 1,

P
(
θ̌ n
i = θ̌ n

j , θ̌n
k = θ̌ n

l |Hn) = P
(
θ̌ n
i = θ̌ n

j |Hn)
P

(
θ̌ n
k = θ̌ n

l |Hn)
=

( ∑
r /∈Hn

(
D̄n

r∑
m/∈Hn D̄n

m

)2)2

≤ 16

L4
1n

4

(
n∑

r=1

(
D̄n

r

)2

)2

≤ 64L2
2

L4
1n

2
,

for all sufficiently large n, and by similar arguments for i = 0,

P
(
θ̌ n

0 = θ̌ n
j , θ̌n

k = θ̌ n
l |Hn) ≤ 64L2

L2
1n

2
,

for all sufficiently large n. Since β < 1/12 and the bound for i ≥ 1 is the larger in
both cases,

(n − 1)P
(
QA

n

([
nβ]) ≥ 2|Hn)

≤ n − 1

n2

{([
nβ] + 1

)3 16L3

L3
1

+ ([
nβ] + 1

)4 64L2
2

L4
1

}
(4.18)

→ 0 as n → ∞.

Similarly, for all sufficiently large n,

√
n − 1P

(
QA

n

([
nβ]) = 1|Hn) ≤

√
n − 1([nβ] + 1)2

n

8L2

L2
1

(4.19)
→ 0 as n → ∞.

Now turning to QB
n ([nβ]), we have that

(n − 1)P
(
QB

n

([
nβ]) ≥ 2|Hn)

≤
[nβ−1]∑

i=0

[nβ ]∑
j=i+1

(n − 1)P
(
Un

i = 1,Un
j = 1|Hn)

=
[nβ−1]∑

i=0

[nβ ]∑
j=i+1

(n − 1)P
(
Un

i = 1|Hn)
P

(
Un

j = 1|Hn)
(4.20)

≤ (n − 1)

{[
nβ] |Hn|

n

∑
j∈Hn D̄n

j

nμn

+ [
nβ]2

(∑
j∈Hn D̄n

j

nμn

)2}

≤ (n − 1)

{
n3β�n

n2μ/2
+ n2β (nβ�n)

2

n2μ2/4

}
(for all sufficiently large n)

≤ n4β+ 1
2

n

(
2

μ
+ 4

μ2

)
→ 0 as n → ∞.
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Similarly, for all sufficiently large n, we have that
√

n − 1P
(
QB

n

([
nβ]) = 1|∣∣Hn

∣∣ ≤ nβ) ≤ √
n − 1

( |Hn|
n

+ [
nβ] ∑

j∈Hn

D̄n
j /nμn

)

≤ √
n − 1

(
nβ

n
+ 2n2β+ 1

4

nμ

)
(4.21)

→ 0 as n → ∞.

Therefore, it follows from (4.18)–(4.21) that for any Hn satisfying |Hn| ≤ [nβ],
(4.17) converges to 0 as n → ∞; moreover, this convergence is uniform over such
Hn. Hence, the right-hand side of (4.14) converges to 0 as n → ∞ and the lemma
follows. �

For a branching process, it is far simpler to study its extinction probability than
the probability that its total size is less than [nβ]. The following lemma provides
useful bounds between these two probabilities as n → ∞.

LEMMA 4.3.

(n − 1)E
[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }

(
E

[
1{B̌n

2 <∞}|Hn = Cn
1
]

(4.22)
− E

[
1{B̌n

2 ≤[nβ ]}|Hn = Cn
1
])] → 0

and

(n − 1)E
[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }

(
E[1{Bn,I

2 <∞}] − E[1{Bn,I
2 ≤[nβ ]}]

)] → 0(4.23)

as n → ∞.

PROOF. We prove (4.22) with (4.23) following by similar but simpler argu-
ments.

Given that Cn
1 ≤ [nβ], it follows from conditions (a)–(c) that there exists δ > 0

such that for all sufficiently large n, regardless of the set Cn
1 , ν̌n = ∑

i /∈Cn
1
D̄n

i (D̄n
i −

1)/
∑

i /∈Cn
1
D̄n

i > 1+δ and λ̌n = ∑
i /∈Cn

1
D̄n

i (D̄n
i −1)(D̄n

i −2)/
∑

i /∈Cn
1
D̄n

i < λ+1 <

∞. Therefore, it follows by Corollary A.4 that for any l ∈ N, there exists a finite
constant A∗

l = Al,λ+1,δ such that for sufficiently large n, E[(B̌n
2 )l1{B̌n

2 <∞}] ≤ A∗
l .

By Markov’s inequality for any l ∈ N and for all sufficiently large n,

E
[
1{B̌n

2 <∞}|Hn = Cn
1
] − E

[
1{B̌n

2 ≤[nβ ]}|Hn = Cn
1
]

= P
(
B̌n

2 < ∞) − P
(
B̌n

2 ≤ [
nβ]

, B̌n
2 < ∞)

= P
(
B̌n

2 >
[
nβ]|B̌n

2 < ∞)
P

(
B̌n

2 < ∞)
(4.24)

≤ [
nβ]−l

E
[(

B̌n
2
)l|B̌n

2 < ∞]
P

(
B̌n

2 < ∞)
≤ [

nβ]−l
A∗

l .
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By choosing any l > 1/β , we can bound from above the left-hand side of (4.22)
by (n − 1)[nβ]−lA∗

l → 0 as n → ∞. �

By Lemma 4.3 and the triangle inequality, we have that

lim
n→∞E

[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }

× (n − 1)
{
E

[
1{B̌n

2 ≤[nβ ]}|Hn = Cn
1
] − E[1{Bn,I

2 ≤[nβ ]}]
}]

(4.25)
= lim

n→∞E
[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }

× (n − 1)
{
E

[
1{B̌n

2 <∞}|Hn = Cn
1
] − E[1{Bn,I

2 <∞}]
}]

,

should the latter limit exist. Thus, we have reformulated the limit, as n → ∞,
of (4.11) in terms of the limiting behaviour of the extinction probabilities of two
sequences of branching processes. Moreover, there is a straightforward coupling
between the two branching processes which is exploited in Section 4.3.

4.3. Comparing extinction probabilities of coupled branching processes. Let
y̌n = P(B̌n

2 < ∞|Hn = Cn
1 ,Cn

1 ≤ [nβ]) and yn = P(B
n,I
2 < ∞) denote the ex-

tinction probabilities of the branching processes B̌n
2 and Bn,I

2 , respectively. Then

y̌n = f̌n(žn) and yn = fn(zn), where for s ≥ 0, f̌n(s) = 1
n−Cn

1

∑
j /∈Cn

1
s
D̄n

j , fn(s) =
1
n

∑n
j=1 s

D̄n
j = ∑∞

k=0 πn
k sk , and žn and zn satisfy

žn = 1

μ̌n

f̌ ′
n(žn),

(4.26)

zn = 1

μn

f ′
n(zn)

with μ̌n = 1
n−Cn

1

∑
j /∈Cn

1
D̄n

j , f̌ ′
n(s) = d

ds
f̌n(s) and f ′

n(s) = d
ds

fn(s). Note that for

all 0 ≤ s ≤ 1, f̌n(s)|{Cn
1 ≤ [nβ]}, fn(s)

p−→ f (s), f̌ ′
n(s)|{Cn

1 ≤ [nβ]}, f ′
n(s)

p−→
f ′(s), μ̌n|{Cn

1 ≤ [nβ]},μn
p−→ μ and ν̌n|{Cn

1 ≤ [nβ]}, νn
p−→ ν as n → ∞, where

ν̌n = 1
(n−Cn

1 )μ̌n

∑
j /∈Cn

1
D̄n

j (D̄n
j − 1). Then, using Britton, Janson and Martin-Löf

(2007), Lemma 4.1, it is straightforward to show that žn|{Cn
1 ≤ [nβ]}, zn

p−→ z as
n → ∞.

For k = 0,1, . . . , let bn
k denote the total number of vertices in Cn

1 with degree
k. Let Hn

1 = ∑∞
k=1 kbn

k , the sum of the degrees of the members of Cn
1 . If Cn

1 con-
tains no cycles, then Hn

1 = 2(Cn
1 − 1). Using MA

n and MA,2
n = min{k > MA

n ; θn
k ∈

{θn
0 , θn

1 , . . . , θn
k−1}}, it is straightforward to show that P(Hn

1 = 2(Cn
1 − 1)|Cn

1 ≤
[nβ]) → 1 and there exists ε > 0 such that n1+εP (Hn

1 > 2Cn
1 |Cn

1 ≤ [nβ]) → 0 as
n → ∞ [cf. (3.4) and (4.18), resp.]. In words, if Cn

1 is small (≤ [nβ]) then with high
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probability it contains no cycles and the probability of containing 2 or more cycles
is very small. For k = 0,1, . . . , let π̌n

k = 1
n−Cn

1

∑
j /∈Cn

1
1{D̄n

j =k}, so for 0 ≤ s ≤ 1,

f̌n(s) = ∑∞
k=0 π̌n

k sk .
The limit, as n → ∞, of the right-hand side of (4.25) is computed in Lemma 4.6

following a preliminary lemma and corollary. A key observation in obtaining the
limit is that, using the coupling of Cn

1 , Bn
1 and B, it is easily shown that, for k =

0,1, . . . ,

bn
k |{Cn

1 ≤ [
nβ]} D−→ bk|{B < ∞} as n → ∞,(4.27)

where bk denotes the total number of individuals having degree k in the branching
process B, where an individual has degree k if it has k − 1 offspring (k offspring
in the case of the initial ancestor).

LEMMA 4.4.

n(žn − zn)|{Cn
1 ≤ [

nβ]} D−→ 1

1 − f ′′(z)/μ
× 1

μ

∞∑
k=0

kbk

(
z − zk−1)∣∣∣{B < ∞}

as n → ∞.

PROOF. First, note that

n(žn − zn) = n

{
1

μ̌n

∞∑
k=1

kπ̌n
k žk−1

n − 1

μn

∞∑
k=1

kπn
k zk−1

n

}

= n

μ̌nμn

(μn − μ̌n)

∞∑
k=1

kπ̌n
k žk−1

n + n

μn

∞∑
k=1

k
(
π̌n

k − πn
k

)
žk−1
n(4.28)

+ n

μn

∞∑
k=1

kπn
k

(
žk−1
n − zk−1

n

)
.

Since Cn
1 |{Cn

1 ≤ [nβ]} D−→ B|{B < ∞} and Hn
1 |{Cn

1 ≤ [nβ]} D−→ 2(B −
1)|{B < ∞} as n → ∞, we have that

n(μn − μ̌n)|{Cn
1 ≤ nβ} =

(
− Cn

1

n − Cn
1

) n∑
i=1

D̄n
i + n

n − Cn
1
Hn

1

∣∣∣{Cn
1 ≤ nβ}

D−→ −Bμ + 2(B − 1)|{B < ∞} as n → ∞.

Then, since μ̌n|{Cn
1 ≤ nβ},μn

p−→ μ, žn|{Cn
1 ≤ nβ} p−→ z and f̌ ′

n(žn)|{Cn
1 ≤

nβ} p−→ f ′(z) as n → ∞, where z and f ′(z) are defined in (1.3), we have that

n

μ̌nμn

(μn − μ̌n)

∞∑
k=1

kπ̌n
k žk−1

n

∣∣∣{Cn
1 ≤ nβ}

(4.29)
D−→ 1

μ2

{
2(B − 1) − Bμ

}
f ′(z)|{B < ∞} as n → ∞.
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Similarly,

n

μn

∞∑
k=1

k
(
π̌n

k − πn
k

)
žk−1
n

∣∣∣{Cn
1 ≤ nβ}

= n

μn

∞∑
k=1

k

(∑
j /∈Cn

1
1{D̄n

j =k}
n − Cn

1
−

∑n
j=1 1{D̄n

j =k}
n

)
žk−1
n

∣∣∣{Cn
1 ≤ nβ}

= 1

μn

∞∑
k=1

k

( ∑
j /∈Cn

1

1{D̄n
j =k}

(
n

n − Cn
1

− n

n

)
− ∑

j∈Cn
1

1{D̄n
j =k}

)
žk−1
n

∣∣∣{Cn
1 ≤ nβ}

(4.30)

= 1

μn

∞∑
k=1

k

{(
1

n − Cn
1

∑
j /∈Cn

1

1{D̄n
j =k}

)
Cn

1 − bn
k

}
žk−1
n

∣∣∣{Cn
1 ≤ nβ}

D−→ 1

μ

∞∑
k=1

k(πkB − bk)z
k−1

∣∣∣{B < ∞}

= Bf ′(z)
μ

− 1

μ

∞∑
k=1

kbkz
k−1 as n → ∞.

(Convergence in distribution of the infinite sum can be justified by exploiting that,
for any z0 ∈ (0,1),

∑∞
k=k0

kzk−1 → 0 as k0 → ∞ uniformly in z ∈ [0, z0].)
Turning to the third term on the right-hand side of (4.28), by the mean value

theorem, for fixed n, there exists ϕn lying between zn and žn such that

n

μn

∞∑
k=1

kπn
k

(
žk−1
n − zk−1

n

) = (žn − zn)
n

μn

∞∑
k=1

k(k − 1)πn
k ϕk−2

n .(4.31)

Now žn|{Cn
1 ≤ nβ} and zn both converge in probability to z as n → ∞, hence so

does ϕn. It then follows that 1
μn

∑∞
k=1 k(k − 1)πn

k ϕk−2
n |{Cn

1 ≤ nβ} p−→ 1
μ
f ′′(z) as

n → ∞. As noted in the paragraph following Theorem 2.1, f ′′(z)/μ < 1. There-
fore combining (4.29), (4.30) and (4.31) with (4.28), we have that

n(žn − zn)|{Cn
1 ≤ nβ}

D−→ 1

1 − f ′′(z)/μ

{
f ′(z)
μ2

{
2(B − 1)

} − 1

μ

∞∑
k=1

kbkz
k−1

}∣∣∣{B < ∞}

= 1

1 − f ′′(z)/μ
× 1

μ

∞∑
k=1

kbk

(
z − zk−1)∣∣∣{B < ∞} as n → ∞,

since z = f ′(z)/μ and 2(B − 1) = ∑∞
k=1 kbk . �
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COROLLARY 4.5.

n(y̌n − yn)|{Hn = Cn
1 ,Cn

1 ≤ [
nβ]}

D−→
{
Bf (z) −

∞∑
k=1

bkz
k + z

1 − f ′′(z)/μ
×

∞∑
k=1

kbk

(
z − zk−1)}∣∣∣{B < ∞}(4.32)

as n → ∞.

PROOF. Note that

n(y̌n − yn) = n
(
f̌n(žn) − fn(žn)

) + n
(
fn(žn) − fn(zn)

)
.(4.33)

It is straightforward using a similar argument to (4.30) to show that

n
(
f̌n(žn) − fn(žn)

)|{Cn
1 ≤ [

nβ]}
= n

∞∑
k=1

(
π̌n

k − πn
k

)
žk
n

∣∣∣{Cn
1 ≤ [

nβ]}
(4.34)

D−→
∞∑

k=1

(Bπk − bk)z
k
∣∣∣{B < ∞} as n → ∞.

By the mean value theorem, there exists ϕ2
n

p−→ z as n → ∞, such that

n
(
fn(žn) − fn(zn)

) = f ′
n

(
ϕ2

n

)
n(žn − zn).(4.35)

The corollary then follows by substituting (4.34) and (4.35) into (4.33), and then

using Lemma 4.4 and z = f ′(z)/μ. [It is easily shown that f ′
n(ϕ

2
n)

p−→ f ′(z) as
n → ∞.] �

LEMMA 4.6.

E
[
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 } × (n − 1)

{
E

[
1{B̌n

2 <∞}|Hn = Cn
1
] − E[1{Bn,I

2 <∞}]
}]

→ E

[{
Bf (z) −

∞∑
k=1

bkz
k + z

1 − f ′′(z)/μ
×

∞∑
k=1

kbk

(
z − zk−1)}

1{B<∞}
]

(4.36)

as n → ∞.

PROOF. The lemma follows from Corollary 4.5 by showing that{
1{Cn

1 ≤[nβ ]}1{2/∈Cn
1 }(n − 1)

{
E

[
1{B̌n

2 <∞}|Hn = Cn
1
] − E[1{Bn,I

2 <∞}]
}}

(4.37)

= n − 1

n
× {

1{Cn
1 ≤[nβ ]}1{2/∈Cn

1 }n(y̌n − yn)
}

is uniformly integrable.
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For k = 1,2, . . . , let φn
k = k

nμn

∑
j /∈Cn

1
1{D̄n

j =k} and let �n
k = 1

n

∑
j /∈Cn

1
1{D̄n

j =k}.

Let φ̂n = Hn
1

nμn
and �̂ n = Cn

1
n

. For 0 ≤ s ≤ 1, let gn(s) = ∑∞
k=1 φn

k sk−1 and let

hn(s) = ∑∞
k=0 �n

k sk . Let Bn,A and Bn,B be branching processes coupled to B̌n
2

and Bn,I
2 such that if θn

k /∈ Cn
1 , the kth individual in all four branching processes

has D̄n
θn
k

− 1 (k ≥ 1) offspring. (The 0th individual is the initial ancestor and has

D̄n
θn

0
offspring.) If θn

k ∈ Cn
1 , let the kth individual in Bn,A have no offspring, whilst

the kth individual in Bn,B has infinitely many offspring. Let ŷn and ȳn denote the
extinction probabilities of Bn,A and Bn,B , respectively. Then ŷn and ȳn are given
by

ŷn = hn(ẑn) + �̂ n,

ȳn = hn(z̄n),

where ẑn and z̄n are the smallest solutions in [0,1] of

ẑn = gn(ẑn) + φ̂n,

z̄n = gn(z̄n).

Then ŷn ≥ ȳn, ẑn ≥ z̄n and |n(y̌n − yn)| ≤ n(ŷn − ȳn), since ŷn and ȳn form upper
and lower bounds for the extinction probabilities of the branching processes B̌n

2

and Bn,I
2 . Noting that d

ds
gn(s) is increasing in s, and simple algebraic manipulation

gives

n(ẑn − z̄n) ≤ Hn
1

μn(1 − g′
n(ẑn))

.

Thus,

∣∣n(y̌n − yn)
∣∣ ≤ Cn

1 + h′
n(1)

Hn
1

μn(1 − g′
n(ẑn))

≤ Cn
1 + Hn

1

1 − g′
n(ẑn)

,(4.38)

since h′
n(1) ≤ μn.

Fix 0 < ε < min{1, ν −1} and K = 2f ′′′(1)/L1 = 2λ < ∞. It is straightforward
using Lemma A.3 to show that for all sufficiently large n, 1 − g′

n(ẑn) > ε2/(4K).
Therefore, since n1+εP (Hn

1 > 2Cn
1 ) → 0 as n → ∞, we have that for all suffi-

ciently large n,

E
[∣∣n(y̌n − yn)

∣∣1+ε1{|Cn
1 |≤[nβ ]}1{2/∈Cn

1 }
]

(4.39)

≤ 1 + E
[(

Cn
1
)1+ε1{|Cn

1 |≤[nβ ]}
](

1 + 8Kμ

ε2

)1+ε

.

By (3.4) and (3.5) at the end of Section 3, n2βP (1{Cn
1 ≤[nβ ]} �= 1{B≤[nβ ]}) → 0 as

n → ∞. The lemma follows, since Lemma A.2 proves that E[B21{B<∞}] < ∞.
�



ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 1079

5. Computing σ 2. From (4.1) and (4.3), we have that

var(Ũn/
√

n)

= 1

n

n∑
i=1

n∑
j=1

cov
(
χn

i ,χn
j

)
(5.1)

= var
(
χn

1
) + (n − 1)E

[
1{2∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]
+ (n − 1)E

[
1{2/∈Cn

1 }1{Cn
1 ≤[nβ ]}

(
1{Cn

2 ≤[nβ ]} − E[1{Cn
2 ≤[nβ ]}]

)]
.

Therefore, it follows from Section 4 [specifically (4.1), (4.2) and Lemmas 4.1, 4.2,
4.3 and 4.6] that limn→∞ var(Ũn/

√
n) is equal to

ρ(1 − ρ) + E
[
(B − 1)1{B<∞}

]
ρ

(5.2)

+ E

[{
Bf (z) −

∞∑
k=1

bkz
k + z

1 − f ′′(z)/μ
×

∞∑
k=1

kbk

(
z − zk−1)}

1{B<∞}
]
.

We proceed by showing that (5.2) is equal to σ 2, which completes the proof of
Theorem 2.1. In order to complete this, we need three preliminary lemmas for the
branching process B.

Let B̃ denote a single-type branching process with one initial ancestor and off-
spring distribution D̃ − 1, where P(D̃ = k) = kπk/μ (k = 1,2, . . .). Let Y and X

be nonnegative integer valued random variables with probability mass functions
P(Y = l) = zlπl/ω and P(X = l) = zl−2lπl/μ (l = 0,1, . . .), where ω and z are
the extinction probabilities of the branching processes B and B̃, respectively. In the
branching process B, the offspring of the initial ancestor and subsequent individ-
uals, conditional upon extinction of B, are distributed according to Y and X − 1,
respectively. [Note that P(X = 0) = 0.] We start by deriving the expected value
of bk [the total number of individuals having degree k in the branching process B;
see (4.27)] conditional upon extinction of the branching process.

LEMMA 5.1. For k = 0,1, . . . ,

E[bk1{B<∞}] = P(B < ∞)P (Y = k) + E
[
(B − 1)1{B<∞}

]
P(X = k).(5.3)

PROOF. Let Z0,Z1, . . . , be independent with Z0
D= Y and Zi

D= X − 1 (i =
1,2, . . .). Let T = min{n : Z0 + Z1 + · · · + Zn = n}. Then T is the total size
(not including the initial ancestor) of the branching process B conditioned on ex-
tinction. Fix k ∈ Z+. Let V0 = 1{Z0=k} − P(Y = k) and Vn = 1{Z0=k} − P(Y =
k) + ∑n

i=1(1{Zi=k−1} − P(X = k)) (n = 1,2, . . .). Then {V0,V1, . . .} is a mar-
tingale with respect to {Z0,Z1, . . .}. Also, T is a stopping time with respect to
{Z0,Z1, . . .}, E[T ] < ∞ as the branching process is subcritical and E[|Vn+1 −
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Vn||Z0,Z1, . . . ,Zn] ≤ 1 for all n. Thus, by Corollary 3.1 on page 260 of Karlin
and Taylor (1975),

E[VT ] = E[V0] = 0.

Now,

VT = bk − P(Y = k) − T P (X = k),

so

E[bk|B < ∞] = P(Y = k) + P(X = k)E[T ].(5.4)

Equation (5.3) follows immediately from (5.4), since E[T ] = E[(B − 1)|B < ∞]
and E[bk1{B<∞}] = E[bk|B < ∞]P(B < ∞). �

LEMMA 5.2.

E
[
(B − 1)1{B<∞}

] = z2μ

1 − f ′′(z)/μ
.

PROOF. Let B̃ denote the total size of the branching process B̃. Then

E[B̃|B̃ < ∞] = 1 + E

[
X−1∑
i=1

B̃i

∣∣∣B̃ < ∞
]
,

where B̃1, B̃2, . . . are i.i.d. according to B̃ (and independent of X) and the sum is
vacuous if X = 1. Thus,

E[B̃|B̃ < ∞] = 1 + E[X − 1]E[B̃|B̃ < ∞],
whence, since E[X − 1] = f ′′(z)/μ < 1 (see remarks after Theorem 2.1)

E[B̃|B̃ < ∞] = 1

1 − E[X − 1] = 1

1 − f ′′(z)/μ
.

Now

E
[
(B − 1)1{B<∞}

] = E
[
(B − 1)|B < ∞]

P(B < ∞)

= E

[
Y∑

i=1

B̃i

∣∣∣B < ∞
]
P(B < ∞)(5.5)

= E[Y ]E[B̃|B̃ < ∞]P(B < ∞),

where

E[Y ] =
∞∑
l=0

l
zlπl

ω
= zf ′(z)

ω
= z2μ

ω
,

by (1.3). The lemma follows since P(B < ∞) = ω. �
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LEMMA 5.3. For any 0 ≤ s ≤ 1,

∞∑
k=0

skE[bk1{B<∞}] = f (sz) + szf ′(sz)
1 − f ′′(z)/μ

and
∞∑

k=1

ksk−1E[bk1{B<∞}] = zf ′(sz) + zf ′(sz)
1 − f ′′(z)/μ

+ sz2f ′′(sz)
1 − f ′′(z)/μ

.(5.6)

PROOF. Using (5.3) and Lemma 5.2,

∞∑
k=0

skE[bk1{B<∞}] = ω

∞∑
k=0

sk zkπk

ω
+ z2μ

1 − f ′′(z)/μ

∞∑
k=1

sk zk−2kπk

μ

= f (sz) + sz

1 − f ′′(z)/μ

∞∑
k=1

k(sz)k−1πk(5.7)

= f (sz) + sz

1 − f ′′(z)/μ
f ′(sz).

The proof of the lemma is completed by noting that (5.6) follows by differentiating
(5.7) with respect to s. �

We complete the proof of Theorem 2.1 by noting that ω = f (z) and, by (5.2)
and Lemmas 5.2 and 5.3, we have that

lim
n→∞ var

(
Ũn√

n

)

= ρ(1 − ρ) + E
[
(B − 1)1{B<∞}

]
ρ

+ E

[{
Bf (z) −

∞∑
k=1

bkz
k + z

1 − f ′′(z)/μ
×

∞∑
k=1

kbk

(
z − zk−1)}

1{B<∞}
]

= ρ(1 − ρ) + ρz2μ

1 − f ′′(z)/μ
(5.8)

+
{
ω + z2μ

1 − f ′′(z)/μ

}
ω − f

(
z2) − z2f ′(z2)

1 − f ′′(z)/μ

+ z

1 − f ′′(z)/μ

{
z

(
zf ′(z) + zf ′(z)

1 − f ′′(z)/μ
+ z2f ′′(z)

1 − f ′′(z)/μ

)

−
(
zf ′(z2) + zf ′(z2)

1 − f ′′(z)/μ
+ z3f ′′(z2)

1 − f ′′(z)/μ

)}
.
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Straightforward algebraic manipulation, using ω + ρ = 1, ω = f (z) and f ′(z) =
zμ, gives

lim
n→∞ var

(
Ũn√

n

)
= ρ(1 − ρ) + (1 − ρ)2 + z2μ

1 − f ′′(z)/μ
− f

(
z2)

+ z2

1 − f ′′(z)/μ
(−f ′(z2) + zf ′(z) − f ′(z2))

(5.9)

+ z2

(1 − f ′′(z)/μ)2

{
z2μ + z2f ′′(z) − f ′(z2) − z2f ′′(z2)}

= σ 2

as required.

6. The weakly supercritical case. The weakly supercritical case, studied in
Riordan (2012), corresponds to νn ↓ 1 as n → ∞, sufficiently slowly such that
n1/3(νn − 1) → ∞ as n → ∞. In Riordan (2012), Theorem 1.1, it is shown that√

n(Rn/n−ρn) is asymptotically normal with mean 0 and var(
√

n(Rn/n−ρn)) ∼
2μn/(νn −1), where ρn and zn denote the solutions to (1.2) and (1.3), respectively,
with {πi} replaced by {πn

i }, μ replaced by μn, and f (s) and its derivatives replaced
by fn(s) = ∑∞

i=0 πn
i si and its derivatives [cf. (4.26)]. Similarly, let σ 2

n be given by
(2.5), with z,ρ,μ and f replaced by zn, ρn,μn and fn, respectively. We proceed
by showing that

σ 2
n ∼ 2μn

νn − 1
,(6.1)

whence from Riordan (2012), Theorem 1.1, it follows that var(
√

n(Rn/n −
ρn)) ∼ σ 2

n . We assume that conditions (a)–(c) in Section 2 hold, and also that∑∞
j=0 j4πj < ∞ and

∑∞
j=0 j4πn

j → ∑∞
j=0 j4πj as n → ∞.

Let δn = 1 − zn, then δn → 0 (zn → 1) as n → ∞. Using (1.3), we have that
zn = 1

μn
f ′

n(zn), whence, using Maclaurin’s theorem,

1 − δn = 1

μn

∞∑
i=1

iπn
i (1 − δn)

i−1

= 1

μn

∞∑
i=1

iπn
i

(
1 − (i − 1)δn + (i − 1)(i − 2)

2
δ2
n

)
+ o

(
δ2
n

)
(6.2)

= 1 − νnδn + λn

2
δ2
n + o

(
δ2
n

)
.
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Recall that zn is the smallest solution in [0,1] of s = 1
μn

f ′
n(s). Thus, (6.2) implies

that δn = 2(νn − 1)/λn + o(δn). Therefore, it follows from (1.2) that

ρn = 1 −
∞∑
i=0

(1 − δn)
iπn

i = 1 −
∞∑
i=0

(1 − iδn)π
n
i + o(δn)

(6.3)

= μnδn + o(δn) = 2μn

λn

(νn − 1) + o(δn).

Thus, ρn ∼ 2(νn − 1)μn/λn, in agreement with Riordan (2012) equation (1.11). It
is straightforward using a binomial expansion to show that, for k = 1,2,

fn

(
zk
n

) =
∞∑
i=0

πn
i (1 − δn)

ki

(6.4)

=
∞∑
i=0

πn
i (1 − kiδn) + o(δn) = 1 − kδnμn + o(δn),

and, similarly, that

f ′
n

(
zk
n

) = μn(1 − kδnνn) + o(δn),(6.5)

f ′′
n

(
zk
n

) = μn(νn − kδnλn) + o(δn).(6.6)

Since δnλn ∼ 2(νn − 1), it follows from (6.6) that

1 − f ′′
n (zn)/μn = 1 − {

νn − 2(νn − 1) + o(δn)
}

(6.7)
= νn − 1 + o(δn).

Therefore, turning to σ 2
n [cf. (2.5)], it follows from (6.3) and (6.4) that

(6.8) 1 − ρn − fn

(
z2
n

) = μnδn + o(δn);
using (6.5) and (6.7) that

(6.9)
z2
n

1 − f ′′
n (zn)/μn

{(
1 + z2

n

)
μn − 2f ′

n

(
z2
n

)} = 2δnμn(2νn − 1)

νn − 1
+ o(1);

and, using (6.5)–(6.7), that

z2
n

(1 − f ′′
n (zn)/μn)2

{
z2
nμn + z2

nf
′′
n (zn) − f ′

n

(
z2
n

) − z2
nf

′′
n

(
z2
n

)}

= 2δnμn(νn − 1) + δnμnλn + o(δn)

(νn − 1)2(6.10)

= 2μn(1 + δn) + o(δn)

νn − 1
.
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Substituting (6.8)–(6.10) into the equation for σ 2
n [cf. (2.5)] yields

(νn − 1)σ 2
n = δnμn(νn − 1) + 2δnμn(2νn − 1) + 2μn(1 + δn) + o(δn)

νn − 1

= 2μn + o(δn)

δn

,

since νn − 1 ∼ δn, and (6.1) follows.

7. Concluding remarks. The main interest in the variance of the giant com-
ponent of a configuration model random graph is for a given degree sequence D̄n,
where n is finite. Therefore, we briefly illustrate that the asymptotic expressions
are applicable for moderate n by considering n = 200 and n = 1000. For four
different distributions, D, given below, we generate D̄n mimicking D. That is,
we ensure that D̄n satisfies [nP (D = k)] ≤ ∑n

i=1 1{D̄n
i =k} < [nP (D = k)] + 1 for

k = 0,1, . . . . Then using D̄n, we simulated 10,000 random graphs and recorded
the size of the giant component in each graph. For each D̄n, the mean proportion
(ρn) and scaled variance (σ 2

n ) of the giant component from the simulated graphs
are compared with ρ and σ 2, the formulae for the mean and variance, respectively,
given by the asymptotic results. The results are presented in Table 1 for the four
degree distributions:

(1) P(D = 1) = P(D = 3) = 1/2;
(2) D ∼ Geom(q) with q = 0.5 and support N, i.e. P(D = k) = 0.5k (k =

1,2, . . .);
(3) D ∼ Po(μ) with μ = 2, i.e. P(D = k) = e−22k/k! (k = 0,1, . . .);
(4) P(D = k) ∝ k−m (k = 2,3, . . . , n) and P(D = 1) = 2P(D = 3) with

m = 4.

Table 1 shows that there is good agreement for n = 1000 between the theoretical
calculations of the mean and variance of the giant component and the results ob-
tained via simulation. Although larger discrepancies are observed for n = 200, the
theoretical results are still useful in this case.

TABLE 1
Simulation results against theoretical (asymptotic) calculations

Theoretical n = 200 n = 1000

D ρ σ 2 |ρn − ρ| |σ 2
n − σ 2| |ρn − ρ| |σ 2

n − σ 2|
1 0.8148 0.2936 0.0053 0.0456 0.0008 0.0051
2 0.7639 0.3416 0.0017 0.0152 0.0002 0.0050
3 0.7968 0.1365 0.0017 0.0025 0.0002 0.0016
4 0.8906 0.3530 0.0057 0.0346 0.0035 0.0167
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FIG. 1. Histogram of Rn with n = 1000, based upon a sample of size 10,000, together with density
plot of N(nρ,nσ 2), both with degree distribution 1.

A natural extension of Theorem 2.1 is to seek a central limit theorem for the
size of the giant component Rn [cf. (1.1)], that is,

√
n(Rn/n − ρ)

D−→ N(0, σ 2)

as n → ∞. This is supported by the simulation study as illustrated by Figure 1
where, for degree distribution 1, a histogram of the simulated Rn is plotted, to-
gether with the density of the N(nμ,nσ 2) distribution. Similar plots were ob-
served for the other three degree distributions mentioned above. Further support
for the existence of a central limit theorem is given in Figure 2 as follows. For
each of the four degree distributions and for n = 200,300, . . . ,1000, 10,000 ran-
dom graphs were simulated. For n = 200,300, . . . ,1000 and i = 1,2, . . . ,10,000,
the size Ri

n of the giant component and the normalised squared difference Ni
n =

(Ri
n −nρ)2/(nσ 2) were recorded. The latter were grouped into batches of 10 with,

for j = 1,2, . . . ,1000, Sj
n = ∑10j

i=10j−9 Ni
n. If a central limit theorem exists then S1

n

will converge in distribution to a χ2
10 distribution as n → ∞. In Figure 2, the empir-

ical 5%, 50% and 95% quantiles for (S1
n, S2

n, . . . , S1000
n ) (n = 200,300, . . . ,1000)

are plotted for each degree distribution, with the three horizontal lines denoting the
corresponding quantiles of the χ2

10 distribution. Figure 2 shows convergence of the
Sn quantiles towards the χ2

10 quantiles as n increases.
A key extension of the results of this paper is the asymptotic variance of the gi-

ant component of a Newman–Strogatz–Watts (NSW) random graph model, where
the deterministic sequence D̄n is replaced by taking D̄1, D̄2, . . . , D̄n to be i.i.d. ac-
cording to a nonnegative integer-valued random variable, D. As noted in Section 1,
the degree sequence might be infeasible with

∑n
i=1 D̄n

i being odd, in which case,
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FIG. 2. Empirical 5%, 50% and 95% quantiles for each degree distribution (1—dot; 2—squares;
3—diamonds; 4—triangles) and corresponding χ2

10 quantiles (lines).

we simply ignore the last half-edge in the construction of the random graph. For the
NSW random graph, we can again show that var(

√
n(Rn/n−ρ)) and var(Ũn/

√
n)

have the same asymptotic limit (should one exist) as n → ∞. However, in comput-
ing var(Ũn/

√
n) = var(χn

1 ) + (n − 1) cov(χn
1 , χn

2 ), we need to take into account
variability in D̄n. As above, it is straightforward to show that var(χn

1 ) → ρ(1 − ρ)

as n → ∞. However, for (n − 1) cov(χn
1 , χn

2 ), we use the law of total covariance,
writing

(n − 1) cov
(
χn

1 , χn
2
)

= (n − 1)E
[
cov

(
χn

1 , χn
2 |D̄n)] + (n − 1) cov

(
E

[
χn

1 |D̄n]
,E

[
χn

2 |D̄n])
(7.1)

= E
[
(n − 1) cov

(
χn

1 , χn
2 |D̄n)] + var

(√
n − 1E

[
χn

1 |D̄n])
,

since, by exchangeability, E[χn
2 |D̄n] = E[χn

1 |D̄n]. That is, the covariance com-
prises two parts, variation in the construction, and hence in the size of the gi-
ant component of Gn given D̄n (this is the variation which is observed for the
MR random graph) and variance in the (mean) size of the giant component of Gn

due to variability in D̄n. For ε, δ > 0 and n = 1,2, . . . , let Kn
ε,δ denote the event

that (i) n−(1/4−δ)�n < ε, (ii) (2.1) holds for all j ≥ 0 and (iii) (2.3) holds for
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k = 1,2,3, with the components of D̄n drawn independently according to D. Note
that the conditions ν > 1 and π1 > 0 are conditions upon D, which are satisfied
if E[D(D − 1)] > E[D] and P(D = 1) > 0. It is relatively straightforward, but
lengthy, to show that provided that there exists γ > 0, such that E[D8+γ ] < ∞,
then there exists δ > 0, such that for all ε > 0, nP ((Kn

ε,δ)
C) → 0 as n → ∞, from

which it is straightforward to show that the first term on the right-hand side of (7.1)
converges to σ 2

1 = σ 2 − ρ(1 − ρ) as n → ∞. It can also be shown that

var
(√

n − 1E
[
χn

1 |D̄n])
→ f

(
z2) − f (z)2 +

(
z

1 − f ′′(z)/μ

)2
(7.2)

× {
z2(

f ′′(z2) + f ′′(1) − 3μ
) + f ′(z2)(

3 − 2f ′′(z)/μ
)}

as n → ∞. This gives for the NSW random graph that var(
√

n(Rn/n − ρ)) →
σ 2

NSW, where

σ 2
NSW = ρ(1 − ρ) + z2

1 − f ′′(z)/μ
μ

(
1 + z2)

(7.3)

+ z4

(1 − f ′′(z)/μ)2

(
μ(ν − 2) + f ′′(z)

)
.

The details of the proof of (7.3) will be presented elsewhere along with other ex-
tensions such as the variance of the size of a Reed–Frost epidemic which becomes
established on a (MR or NSW) random graph, Britton, Janson and Martin-Löf
(2007), Section 2.3, and the size of the giant component of a percolation model on
a random graph, Janson (2009a).

APPENDIX: RESULTS FOR GALTON–WATSON BRANCHING PROCESSES

In this section, we present various useful results for Galton–Watson branching
processes utilised in the proof of Theorem 2.1.

Let B be a Galton–Watson branching process where the initial ancestor has off-
spring distribution Y and all subsequent individuals have offspring distribution X.
For 0 ≤ s ≤ 1, let f (s) = E[sY ] and g(s) = E[sX]. Let B denote the total size,
including the initial ancestor, of the branching process B. Then B = 1 + ∑Y

i=1 B̃i

where B̃1, B̃2, . . . are i.i.d. copies of B̃ , the total size, including the initial ancestor,
of the branching process B̃ in which all individuals have offspring distribution X.
Further, B̃1, B̃2, . . . are independent of Y . Let p be the probability that the branch-
ing process B goes extinct. Then p = f (z) where z is the smallest solution in [0,1]
of s = g(s). We assume throughout that P(X = 0) > 0 implying that z > 0.

We present two lemmas concerning the moments of the total size of branching
processes. Lemma A.1 is for subcritical branching processes. Lemma A.2 is for su-
percritical branching processes conditioned upon extinction and follows straight-
forwardly from Lemma A.1.
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LEMMA A.1. Suppose that there exists k ∈ N, such that E[Xk] < ∞ and
E[X] < 1. Then E[B̃k] < ∞.

If in addition E[Y k] < ∞, then E[Bk] < ∞.

PROOF. Note that, for E[X] < 1,

E[B̃] = 1 + E[X]E[B̃]
= 1

1 − E[X] .

We now prove that E[B̃k] < ∞ by induction on k.
Let B̃1, B̃2, . . . be i.i.d. according to B̃ . Then

E
[
B̃k] = E

[(
1 +

X∑
i=1

B̃i

)k]

= E

[
k∑

j=0

(
k

j

)(
X∑

i=1

B̃i

)j]
(A.1)

=
k∑

j=0

(
k

j

)
E

[
E

[(
X∑

i=1

B̃i

)j ∣∣∣X
]]

.

Since for all j ∈ N, (
∑X

i=1 B̃i)
j ≤ Xj−1 ∑X

i=1 B̃
j
i [as f (x) = xj is convex], it

follows that

E

[(
X∑

i=1

B̃i

)j]
= E

[
E

[(
X∑

i=1

B̃i

)j ∣∣∣X
]]

(A.2)

≤ E

[
E

[
Xj−1

X∑
i=1

B̃
j
i

∣∣∣X
]]

= E

[
Xj−1

X∑
i=1

E
[
B̃

j
i

]]

= E
[
Xj ]

E
[
B̃j ]

.(A.3)

Therefore,

E
[
B̃k] ≤

k−1∑
j=0

(
k

j

)
E

[
Xj ]

E
[
B̃j ] + E

[(
X∑

i=1

B̃i

)k]
.(A.4)

Now

E

[(
X∑

i=1

B̃i

)k]
= E

[
E

[(
X∑

i=1

B̃i

)k∣∣∣X
]]

,
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where the inner expectation consists of Xk terms of which X are E[B̃k]. The

remaining Xk − X terms are of the form
∏M

j=1 E[B̃lj
ij

], where M ≥ 2 and
l1, l2, . . . , lM ≥ 1 with l1 + l2 +· · ·+ lM = k. By Jensen’s inequality, for 1 ≤ l < k,
E[B̃l] = E[(B̃k−1)l/(k−1)] ≤ E[B̃k−1]l/(k−1), so

E

[(
X∑

i=1

B̃i

)k]
≤ E[X]E[

B̃k] + E
[
Xk − X

]
E

[
B̃k−1] k

k−1 .

Hence, since E[X] < 1,

E
[
B̃k] ≤ 1

1 − E[X]
{

k−1∑
j=0

(
k

j

)
E

[
Xj ]

E
[
B̃j ] + E

[
Xk − X

]
E

[
B̃k−1] k

k−1

}
,

which is finite by induction.

A similar argument based upon B
D= 1 + ∑Y

i=1 B̃i completes the proof of the
lemma. �

LEMMA A.2. Suppose that E[X] > 1. Then for any k ∈ N,

E
[
Bk1{B<∞}

]
< ∞.

Consequently, for any α,β > 0,

nα(
P(B < ∞) − P

(
B ≤ [

nβ])) → 0 as n → ∞.(A.5)

PROOF. Fix k ∈ N. Let Ŷ and X̂ be integer-valued random variables with
P(Ŷ = l) = zlP (Y = l)/p and P(X̂ = l) = zl−1P(X = l) (l = 0,1, . . .). Then
E[Ŷ k] < ∞ and E[X̂k] < ∞. Let B̂ be a branching process where the initial ances-
tor has Ŷ offspring and all subsequent individuals offspring distribution X̂. Then
E[X̂] = g′(z) < 1 implying that B̂ is a subcritical branching process, and further-

more, letting B̂ denote the total size of B̂, B|{B < ∞} D= B̂; see, for example,
Waugh (1958), Section 6. Thus,

E
[
Bk1{B<∞}

] = E
[
Bk|B < ∞]

P(B < ∞) = E
[
B̂k]P(B < ∞),(A.6)

and the right-hand side of (A.6) is finite by Lemma A.1.
Fix α,β > 0 and take l ∈ N such that l > α/β . Then note that

P(B < ∞) = P
(
B ≤ [

nβ]) + P
([

nβ]
< B < ∞)

= P
(
B ≤ [

nβ]) + P
(
B >

[
nβ]|B < ∞)

P(B < ∞),

since {B ≤ [nβ]} ⊂ {B < ∞}. However, by (A.6) and Markov’s inequality, P(B >

[nβ]|B < ∞)P (B < ∞) ≤ ([nβ])−lP (B < ∞)E[B̂l] and (A.5) follows. �

It is well known that for supercritical branching processes z < 1, and moreover,
g′(z) < 1. However, g′(z) can be arbitrarily close to 1. Lemma A.3 provides a
useful upper bound for g′(z) in terms of the first and second moment of X.
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LEMMA A.3. Suppose that there exists ε > 0 such that g′(1)(= E[X]) ≥
1 + ε. Then if g′′(1)(= E[X(X − 1)]) < ∞, we have that z ≤ 1 − ε

g′′(1)
and

g′(z) ≤ 1 − ε2

4g′′(1)
.

PROOF. Since g′′(s) is increasing in s, we have by the mean value theorem
that, for all w > 1 − ε/g′′(1), g′(w) > 1. Hence, for all w > 1 − ε/g′′(1), g(w) <

w, implying that z ≤ 1 − ε/g′′(1).
Let y = 1 − ε

2g′′(1)
. Then similarly, g′(y) ≥ g′(1)− (1 −y)g′′(1) giving g′(y) ≥

1 + ε/2. Since g′(s) is increasing in s, by the mean value theorem,

g′(z)(y − z) ≤ g(y) − g(z) = g(y) − z,

and

1 − g(y) = g(1) − g(y) ≥ g′(y)(1 − y)
(A.7)

≥
(

1 + ε

2

)
(1 − y).

Thus, y − g(y) ≥ (1 − y)ε/2, giving (since y − z ≤ 1)

g′(z) ≤ g(y) − z

y − z
= 1 − y − g(y)

y − z

≤ 1 − ε

2
(1 − y) = 1 − ε2

4g′′(1)
,

as required. �

Corollary A.4 follows from Lemma A.3 and is required for the proof of
Lemma 4.3.

COROLLARY A.4. For any k ∈ N and any 0 < ε < L < ∞, there exists a
constant Ak,L,ε < ∞ such that for any supercritical branching process B with
E[X] ≥ 1 + ε and E[X(X − 1)] ≤ L,

E
[
Bk1{B<∞}

] ≤ Ak,L,ε.

PROOF. For k ∈ N and 0 < ε < L < ∞, let Ck,L,ε = ∑∞
i=0 ik(1 − ε/L)i and

Dk,L,ε = ∑∞
i=0 ik(1 − ε/L)i−1. Then Ck,L,ε and Dk,L,ε are both finite. Therefore,

by Lemma A.3,

E[X̂] =
∞∑
i=0

iP (X = i)zi−1 = g′(z) ≤ 1 − ε2

4L
,(A.8)
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E
[
X̂k] ≤

∞∑
i=0

ikzi−1 ≤
∞∑
i=0

ik(1 − ε/L)i−1 = Dk,L,ε,(A.9)

E
[
Ŷ k] ≤ 1

p

∞∑
i=0

ikzi ≤ 1

p

∞∑
i=0

ik(1 − ε/L)i = Ck,L,ε/p,(A.10)

where X̂ and Ŷ are defined as in Lemma A.2.
Recall the branching process B̃, defined at the start of the Appendix. Let B̌

denote the total size of B̃, conditional upon B̃ going extinct. Then it is straightfor-
ward, using the proof of Lemma A.1, (A.8) and (A.9), to show that there exists a
constant Ãk,L,ε , such that

E
[
B̌k] ≤ Ãk,L,ε.(A.11)

Following (A.4), we have that

E
[
B̂k] ≤

k∑
l=0

(
k

l

)
E

[
Ŷ l]E[

B̌l].(A.12)

From (A.10), (A.11) and (A.12), there exists a constant Ak,L,ε , such that E[B̂k] ≤
Ak,L,ε/p. Finally, note that

E
[
Bk1{B<∞}

] = P(B < ∞)E
[
B̂k] ≤ p

Ak,L,ε

p
= Ak,L,ε,

as required. �
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