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Abstract. The abundance of functional observations in scientific endeav-
ors has led to a significant development in tools for functional data anal-
ysis (FDA). This kind of data comes with several challenges: infinite-
dimensionality of function spaces, observation noise, and so on. However,
there is another interesting phenomena that creates problems in FDA. The
functional data often comes with lateral displacements/deformations in
curves, a phenomenon which is different from the height or amplitude vari-
ability and is termed phase variation. The presence of phase variability ar-
tificially often inflates data variance, blurs underlying data structures, and
distorts principal components. While the separation and/or removal of phase
from amplitude data is desirable, this is a difficult problem. In particular,
a commonly used alignment procedure, based on minimizing the L

2 norm
between functions, does not provide satisfactory results. In this paper we
motivate the importance of dealing with the phase variability and summa-
rize several current ideas for separating phase and amplitude components.
These approaches differ in the following: (1) the definition and mathematical
representation of phase variability, (2) the objective functions that are used
in functional data alignment, and (3) the algorithmic tools for solving esti-
mation/optimization problems. We use simple examples to illustrate various
approaches and to provide useful contrast between them.
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alignment, elastic metric, dynamic time warping, Fisher–Rao metric.
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1. INTRODUCTION

1.1 A First Look at Phase Variation in Functional
Data

Experimental units of data that are distributed over
lines and areas, known as functional data, are best rep-
resented as curves and surfaces, respectively; and we
expect that these will vary in height over any particular
point. But we often notice that the continuous substrate
of the data seems itself to be transformable, and that
these transformations vary across functional observa-
tions.

Figure 1 displays four peaks for each of four sam-
ples of wines in the part of the nuclear magnetic reso-
nance (NMR) spectrum corresponding to ethanol. Two
of these wines are red, one is white, and one is a rosé.
We notice that most of the variation across these four
samples is due to the peaks of the white and rosé wines
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FIG. 1. Circles correspond to intensities over an ethanol region of the NMR spectrum for two typical red wines, and asterisks indicate a
white and a rosé. The light solid lines are smooth fits of the data using order 6 B-spline basis functions with a knot at every sampling and a
light penalty (λ = 104) on the fourth derivative. The heavy dashed line is the mean intensity across 31 reds, 7 whites, and 2 rosés. The mean
has a far different shape from the quite similar shape of all the data curves, due to registration issues.

being displaced to the right relative to those for the red
wines. It is known that the pH level in a solution has
this effect on the location of the couplets, triplets, and
m-tuplets that NMR generates; and also that red wines
have pH’s from 3.3 to 3.5, while white pH’s are in the
range 3.0–3.3. Moreover, the effects of pH and other
factors are known to vary from one location in the spec-
trum to another, with displacements in opposing direc-
tions not being unusual.

The functional data analysis (FDA) literature refers
to lateral displacements in curve features as phase
variation, as opposed to amplitude variation in curve
height. As in music, we imagine that time can be
compressed or stretched over different intervals in a
single performance. Consequently, we distinguish be-
tween measured clock time and related but different
time scales. Relative to human growth time, for exam-
ple, puberty for girls occurs on average at the age of
11.7 years, but hormonal and other physiological fac-
tors shift this age forward and backward to the variable
clock times that parents actually see.

Few time-varying events are more important than
the weather. Figure 2 allows us to explore phase vari-
ation in Montreal’s daily temperature variation over
three winters, winter being the most dynamic period
in the Canadian climate year. We see here several im-
portant markers of phase variation. There are two mini-

mum temperatures in most winters, the first positioned
around January 15 and the January thaw that sepa-
rates them typically arrives on January 25. We notice,
too, the increased volatility in temperature in the two

FIG. 2. Temperature variation in Montreal, Canada, over three
winters. The solid curve is a smooth of the daily min/max aver-
ages, which are shown as dots. The dashed line is a strictly periodic
smooth of the data over the years 1960 to 1994. The vertical dotted
lines indicate the “orbital” year boundaries separated by 365.25
days. The upper dashed horizontal line is the temperature at which
growth begins for most crops on the prairies; and the lower dashed
line is the temperature below which ice is structurally sound. Note
strong variation from year to year.
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months in the dead of winter. The two horizontal lines
mark temperatures of great importance to Canada’s
economy. The five degree Celsius threshold is the point
at which cash crops in the Canadian prairies germi-
nate, and their total growth depends on, in addition to
precipitation, the total number of degrees above this
threshold prior to harvest. Minus seven degrees is the
threshold below which ice has enough structural in-
tegrity to support winter river crossings and year-round
ice dams around tailing ponds for the many mines in
the north. Global warming is altering the dates at which
these thresholds are crossed. The small plateaus in the
spring and fall mark out the arrival and departure of
snow, respectively. We see that winter arrived in both
1988 and 1989 particularly early, and with an intense
cold snap in 1989, while the 1987 winter was typical in
its timing. Summer phase variation, by contrast, seems
small. Predicting phase variation is of great importance
in weather prediction, crop management, and far north-
ern transportation.

Once recognized, one sees phase variation every-
where. Parents see children reaching puberty over a
wide range of ages, and perhaps wonder if there is
some connection between the timing of the pubertal
growth spurt and adult height. Growth implies positive
change, and Figure 3 displays the growth of ten girls
in the Berkeley growth study (Tuddenham and Snyder,

FIG. 3. The top panel plots the growth, understood as the first
derivative of height, of ten girls, and the bottom panel contains
the corresponding height-acceleration or growth-derivative curves.
The dashed curve in both plots is the cross-sectional mean. Both
these plots indicate both phase and amplitude variability.

1954) as the positive first derivative of height in the top
panel, as well as the acceleration of height or deriva-
tive of growth in the bottom panel. Musicians alter the
timing of notes in subtle ways to create tension and de-
fine mood, achieving in this way their unique auditory
signature as performers. Golfers and baseball players,
on the other hand, tend to find phase variation in their
swings to be an impediment to fine control over ampli-
tude variation, and train to the point where it is nearly
eliminated.

1.2 Clock Time, System Time, and the
Time-Warping Function

We can articulate the concept of phase variation by
distinguishing between clock time s and system time t .
That is, we envisage the spectra of wines, the weather,
and children as evolving over their respective con-
tinua at variable rates determined by processes that
we may at least partially understand and would like
to know more about. Consequently, when large-scale
phase variation is compared to the clock time, defined
these days in terms of the number of oscillations of
the cesium atom, we envisage a functional relation-
ship s = h(t) that can vary from one wine type to an-
other, over successive winters, and across children even
within the same family. However, the system times are
defined so that all girls will reach puberty at the same
age.

In most cases, we can expect that the mapping h, of-
ten called the time warping function, will be smooth
and strictly increasing, two properties captured in the
term diffeomorphism. In other words, we require that
the inverse function value h−1(s) exists everywhere
in the support of the functional data since we need to
use t = h−1(s) to align a feature such as the pubertal
growth spurt across multiple curves. As statisticians,
we look for ways to estimate the h’s associated with
different units of data distributed over the base contin-
uum, as well as ways of using discrete and continuous
covariate observations to explain and predict them.

Other conditions such as specified boundary behav-
ior are added as makes sense for the context at hand.
For example, the time taken to produce a sample of
handwriting will vary from replication to replication,
so that hi may map, say, the interval [0, T0] into the
interval [0, Ti] where T0 is a fixed template time. But
if the observation is also supposed to reflect when
the handwriting event took place, then simple shifts,
hi(t) = t + δi , will provide a better model. If the pro-
cess under study may reasonably be expected to have
one or more derivatives, then the chain rule requires
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that h, too, be differentiable to the same extent. In any
case, it seems unlikely that in many real-world appli-
cations the problem constraints will allow for sharp
jumps in h, so that smoothness can be added to mono-
tonicity as a property.

The following single-parameter expression for h

mapping [0, T ] into itself serves as an illustration and
is often useful: for β �= 0,

h(t |β) = T

[
eβt − 1

eβT − 1

]
and

(1)

h−1(s|β) = 1

β
log

[
s(eβT − 1) + T

T

]
.

The expression converges to the identity warp h(t) = t

as β → 0. This model, taken from Kneip and Ramsay
(2008), can also be derived from a later equation [equa-
tion (11)] by setting the function W(t) = βt .

Some warping functions corresponding to early and
late growth spurts are shown in Figure 4. The warping
function [of the type given in equation (1)] in each right
panel maps pubertal growth spurt on the growth (sys-
tem) time scale into the clock or observed time scale,
as indicated by the zero crossing of the growth deriva-
tive function in the left panel, that is, the peak of the
spurt, as shown by a circle. The early pubertal spurt
in the top panel is modeled using an h which moves
quickly through early growth phases relative to clock
time (i.e., curves downward) so as to produce the early
clock time of about nine years, whereas the bottom

FIG. 4. The top left panel displays the derivative of growth for
a girl with an early growth spurt, and the bottom left panel for a
girl with a late growth spurt. The top right panel plots a warping
function h that maps the growth time of the pubertal growth spurt,
indicated by the circle, into the early clock time in the left panel.
The bottom right panel shows the corresponding warping function
for the late growth spurt. This shows how phase variation is effec-
tively modeled by warping functions.

panel is better modeled with an upward curving h that
reflects slower transition through early growth phases
to reach the clock time of the late growth spurt of about
14 years.

1.3 The Problems that Come with Ignoring Phase
Variation

The presence of phase variation can play havoc with
classical data analyses that are designed for data struc-
tures without phase changes. The heavy dashed line in
Figure 1 is the average of the ethanol peaks across forty
wine samples, of which 31 are red. The heights of the
mean peaks are lower than almost all corresponding
sample peaks, their widths are substantially wider, and
no sample peak displays the step in the middle of the
down-slope of each average peak. That is, a statisti-
cal analysis as elementary as averaging takes the data
well outside of their normal modalities of variation,
causing it to fail as an effective data summary. A re-
cent review of chemometrics (Lavine and Workman,
2013) highlights the importance of aligning peaks in
spectral data as a first step, and warns spectroscopists
that getting this step right can be crucial to the qual-
ity of subsequent analyses. In fact, most familiar data
analyses are found to fail in the presence of phase vari-
ation; variances are inflated, fits by regression models
are degraded, and additional principal components are
required.

This paper began as a follow-up to a workshop on
curve registration at the Mathematical Biosciences In-
stitute at the Ohio State University in 2012 [see Marron
et al. (2014) and companion papers]. An effective
workshop raises many more questions than it answers,
and this workshop left us with much to consider. Is
there a clear distinction between amplitude and phase
variation, or is there variation that can be represented
either way? Can the transformation h be considered
as a full data object, or does it just represent nuisance
variation to be discarded once identified? When phase
data objects are meaningful, how can we incorporate
known covariates, such as pH in the NMR context,
into the estimation? Are “features” in a curve or sur-
face always things like peaks, points of inflection, and
threshold crossings, or can models define more general
properties that become invisible on the model side of
the equation when phase is properly incorporated and
estimated? Are traditional fitting criteria such as error
sums of squares still useful, or are they only usable
when there is no phase variation? What role should
derivatives play? Can the warping function h be as
complex as is required to align features, or is it wise to
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impose some regularity? When is it useful to develop
data analyses that reveal aspects of the joint variation
in phase and amplitude? We will discuss some of these
questions in this paper.

Section 2 defines some possible goals for curve and
surface alignment or registration, and discusses ways
of understanding what is amplitude and phase varia-
tion. Section 3 considers various optimization strate-
gies and statistical models that separate phase and am-
plitude variations. Section 4 provides some links for
downloading relevant softwares. Section 5 considers
what has been learned in working with these and other
data sets, and looks forward to future research and gen-
eralizations in this fascinating area.

2. VIEWPOINTS AND GOALS

2.1 The Identification of Phase Variation

In this paper we will use y1, y2, . . . , to denote the
observed functions with both phase and amplitude vari-
ability and x1, x2, . . . , to be the underling functions de-
noting only the amplitude variability, that is, after re-
moving phase variability, such that xi(t) = yi(hi(t)).

An important challenge is identifiability of ampli-
tude and phase variation, since which is which is apt
to depend very much on prior intuitions and knowl-
edge about how each type of variation is caused. For
example, while it may seem obvious that the peaks af-
ter age eight in the top panel of Figure 3 exhibit phase
variation, a close look at the lower panel shows that
a number of the growth-derivative functions display
more than one negative slope episode prior to the fi-
nal crossing of zero. What we are tempted to call early
spurts may only be due to the presence of a single
pre-pubertal spurt, and a late spurt may be due to two
or even more pre-pubertal spurts. This tends to sound
more like an amplitude-oriented explanation.

A simple example of this is a data set of linear func-
tions on R, y1, . . . , yn, having the same slope, but dif-
fering intercepts. Using the notation x(t) = y[h(t)],
that mode of variation could be entirely modeled as
linear shifts, hi(t) = ait + bi constructed so that x1 =
x2 = · · · = xn (i.e., all variation is in the phase varia-
tion), or it could equally well be modeled as hi(t) = t ,
the identity warp, with all of the variation in the orig-
inal data appearing in the intercepts of the yi , or the
variation could be split between these modes.

We have tied phase variation in the wine data to a
known causal factor, the pH level of the wine, but, for
the weather data, it seems to depend on intuition as to
whether spring came late in a particular year or whether

that year was simply unusually cold. Even an early ve-
locity peak defining the pubertal growth spurt can be
seen in part as a year of strong growth followed by a
year of weaker growth. It is not surprising, as a con-
sequence, that we see very little attention given to the
phase variation in the evolution of statistical method-
ology. In particular, the distinction between phase and
amplitude variation is generally not univocal, but in-
stead depends on both the application under study and
the goals of a particular analysis.

2.2 Types of Phase Variations

We have mentioned the linear shifts earlier, but there
are several possibilities when choosing a class of warp-
ings to specify phase variation. Depending on the ap-
plication context, one may prefer one class over the
others. We enumerate some possibilities below and il-
lustrate an example of each in Figure 5:

• Uniform Scaling: Here the warping of the time do-
main simply rescales it by a positive constant a ∈
R+, that is, h(t) = at for all t ∈ R+.

• Uniform Shift: In this case the time axis gets shifted
by a constant c ∈R, that is, h(t) = c + t .

• Linear or Affine Transform: A combination of the
previous two leads to a linear or affine transforma-
tion: h(t) = c + at , a ∈ R+ and c ∈ R.

• Diffeomorphisms: A general class that includes do-
main warpings is given by the set of diffeomor-
phisms of the domain to itself. While it is possi-
ble to define diffeomorphisms on the full real line,
practical considerations make it interesting to re-
strict warpings to compact intervals. The set of linear
transformations is contained in the set of diffeomor-
phisms if the domain is defined to be the full real
line.

While these are the main types of warping transfor-
mation, one can further enlarge the scope by including
functions that allow for some flat regions; an example
is shown in the rightmost column of Figure 5. Please
refer to Srivastava et al. (2011a) for a discussion on
the need for such functions and a rigorous approach to
handling them.

2.3 Some Goals for an Amplitude/Phase Analysis

We can distinguish three motivations for a model that
allows for phase variation. First, amplitude variation
could be the main focus, with phase variation being a
nuisance to be removed and then cast aside. The wine
NMR spectra in Figure 1 illustrate this nicely, in part
because the goal of the analysis is specifically to model
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FIG. 5. Illustrations of different types of warping functions applied to the same function y. The top row shows y(t) (solid line) and y(h(t))

(dashed line), and the bottom row shows the corresponding warping functions h(t).

the relative heights of the clearly visible peaks, the
widths of which tend to be proportional to their height.
Prairie crop scientists tend to focus on the total heat and
precipitation available to plants in the growing season
as predictors of crop yield, leaving the issue of when
the season starts and finishes to the producers to wres-
tle with. Auxologists, who study human growth, may
be preoccupied by the variation in the shape charac-
teristics of growth curves such as the variation in their
amplitudes, and see the variation in the timings of the
pubertal growth spurt as a nuisance to be eliminated by
lining up the corresponding peaks.

On the other hand, phase variation could instead con-
tain all of the interesting information, in contexts where
issues such as timing are more important than relative
peak heights, such as the locations of bursts in neu-
ronal spike train data. Crop producers know that they
have little control over heat and precipitation budgets,
but they can look for indicators of when they can sow
their seeds and when certain variants will mature. In
this situation, the time warp functions are the center of
attention.

Finally, both amplitude and phase variation, and in
fact the joint variation between these, can be central
issues in the analysis. It turns out, for example, that
there is a simple relation between the strength of a pu-
bertal growth spurt and its timing, namely, that early
spurts are stronger and later ones are weaker, resulting
in adult final heights that do not depend much on either
factor. That is, it appears that each child has a wired-in

capacity for growth, but that the distribution of the ex-
penditure of the growth energy over time can vary over
children with similar growth capacities.

2.4 The Role of the Model in the Amplitude/Phase
Partition

Assuming the relevance of phase variation, it will
be clear that both its nature and estimation strategies
will depend critically on the model being proposed for
the data. The cross-sectional mean is often the model
of choice in feature alignment strategies; peaks and
threshold crossings are considered aligned when the
mean curve is centrally located within the registered
curves at all points over the interval of observation.
More generally, the mean can be taken as one of many
template or gold-standard curves to be approached as
closely as possible in some sense by the application
of phase transformations. Alternatively, as described in
the next section, one can compute the mean under a dif-
ferent metric and use that as a model for alignment.
Finally, functional linear equations, low-dimensional
principal component representations, differential equa-
tions, and many other mathematical structures may
provide model spaces for amplitude variation that, si-
multaneously, identify what is meant by phase varia-
tion. That is, if a diffeomorphic transformation of the
substrate of the data, possibly within some predefined
class, can improve the fit of the model to the data, we
define it as phase. Models, of course, are usually cho-
sen to represent a conjecture or hypothesis about what
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generates the data, and in this sense the identification of
the amplitude/phase dichotomy is very much centered
on the science underlying the application.

2.5 Amplitude/Phase Separation via Equivalence
Classes

One way to study amplitude and phase variation is
through equivalence classes. The use of equivalence
classes is not new to statistics. In fact, they form the
core idea in statistical shape analysis (Dryden and Mar-
dia, 1998) and in Grenander’s work on pattern theory
(Grenander, 1993), including its applications to com-
putational anatomy (Grenander and Miller, 1998). In
Kendall’s shape analysis the experimental units are
configurations of (landmark) points in an appropri-
ate space, usually two- or three-dimensional Euclidean
space. To focus the analysis on the shape variation
in the data, nonshape aspects, such as location, rota-
tion, and perhaps scaling, are incorporated into equiv-
alence classes, where point configurations are identi-
fied with each other (i.e., called equivalent) when they
can be translated, rotated, and scaled into each other.
Then, one compares shapes of objects by comparing
their equivalence classes. While the past shape ap-
proaches were restricted to point sets and simple trans-
formations (rigid motions and global scales), the more
recent literature has studied continuous curves with
transformations that include time warpings (more pre-
cisely, reparameterizations) [see Younes et al. (2008)
and Srivastava et al. (2011b), among others].

In an entirely parallel fashion, one can define am-
plitude and phase variability in functional data using
equivalence classes. As laid out in Srivastava et al.
(2011a), the main idea is to understand amplitude vari-
ation through a quantity that incorporates all aspects
of phase variation inside it. This is done by defining
an equivalence relation, where curves are identified or
deemed equivalent when they can be time warped into
each other. Figure 6 shows some elements of an equiv-
alence class—a set of warps of a single three-peak
curve. The equivalence class is actually much bigger,
including all diffeomorphic time warps of this curve,
only some of which are shown here. These equivalence
classes are now taken as representing amplitudes be-
cause they model the essence of vertical variation in
a simple and natural way. The phase variation is in-
corporated within equivalence classes, while the am-
plitude variation appears across equivalence classes.
Further motivation for how equivalence classes provide
clear definitions for separation of amplitude and phase
is given in Section 3.4. (See also Vantini, 2012.)

FIG. 6. Different time warps of a function (left) form an equiva-
lence class from the perspective of defining its amplitude.

While the origins of these ideas lie in shape theory,
an understanding of these concepts can also be ob-
tained using the terminology of object-oriented data
analysis (OODA), as defined in Wang and Marron
(2007) and more recently discussed in Marron and
Alonso (2014). An important special case of OODA
is FDA, where functions are the data objects. A nat-
ural approach to the decomposition of amplitude and
phase variation is to model each with appropriate data
objects, with specific goals as laid out in Section 2.3.
In some situations, such as the wine NMR data in Fig-
ure 1, the phase variation can be viewed as a nuisance,
so the data objects of interest are registered curves,
that is, time warped to match their peaks. In other sit-
uations, for example, the temperature data shown in
Figure 2 and for human growth curve data in Fig-
ure 4, interesting data objects can be any of the regis-
tered amplitude curves, or the transformations used to
achieve registration (reflecting phase variation), or else
the concatenation of both, for situations where joint
amplitude–phase variation is key. In the same spirit,
the data objects in an equivalence-class approach are
the equivalence classes themselves.

3. SOME CURRENT CURVE REGISTRATION
METHODS

In this section we look at a few curve registration
techniques for estimating warping functions h. In the
first two sections, the focus is on using a template func-
tion x0 as a target, so that y(s) ≈ x0[h(t)] and, in-
versely, x0(t) ≈ y[h−1(s)]. We will see that the sense
in which the approximation is defined requires consid-
erable care, with least squares approximations com-
puted in the usual way not being a viable candidate.
The template x0 is often defined using an objective
function whose solution is iterative, starting with the
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cross-sectional mean and alternating between a regis-
tration and a recalculation of the cross-sectional mean
of the registered functions. Typically this process, often
referred to as Procrustes iterations, converges in only
a few steps.

3.1 Dynamic Time Warping (DTW)

Before examining current registration methods, it is
worthwhile mentioning dynamic time warping (DTW),
an early registration method applied to discrete se-
quences of phonemes (a basic unit of language). Sakoe
and Chiba (1978) devised an insertion/deletion algo-
rithm that is rather like that of isotonic regression
(Barlow et al., 1972). The underlying algorithm, which
is a dynamic programming algorithm, is an optimiza-
tion technique where one partitions the graph space us-
ing a finite grid and the warping h is restricted to be a
piecewise-linear function passing through the nodes of
this grid. Depending on the context, one may allow it to
have vertical jumps or be horizontal for multiple time-
steps. In the classical DTW, the dynamic programming
algorithm is applied to minimize the least-squares cost
function given in equation (2). DTW can be effective as
a feature alignment method, as it provides a globally
optimal solution, albeit on the restricted search space
(piecewise-linear h on a fixed grid). But the classical
DTW has the conceptual problem that it may not pro-
vide smooth differentiable time warps that many appli-
cations require. Also, the computational algorithm can
be greedy, in the sense of warping regions where no
alignment seems called for. These problems, in gen-
eral, can be handled by adding a regularization term to
the cost function.

3.2 Landmark Registration

In terms of functional data alignment, we begin with
the easiest situation in which each curve yi(s) has
clearly-defined features, the timings of which can be
used to estimate hi at a series of points (t�, hi�). This
requires, in turn, a consideration of what we might
mean by “feature.”

In the case of the wine data, there seems to be little
confusion. In most types of spectra, the presence of a
chemical compound is marked by a single peak, the lo-
cation of which is the desired landmark, and automatic
methods for peak detection are relatively easy to de-
vise. For multi-peak structures such as the NMR peaks
in Figure 1, the average of the peak locations would
serve the purpose. Alternatively, a template can be set
up for a peak shape, and a peak detector can be devised

by computing correlations with moving windows of the
curve shape with the template pattern.

Let us suppose that there is a gold standard tem-
plate spectrum x0 with L peaks occurring at times
t�, � = 0, . . . ,L + 1, where times t0 and tL+1 are the
endpoints of the observation interval. Then, for the ith
spectrum with peak locations at s�, we can estimate hi

by interpolating in some suitable way the pairs (s�, t�).
Polygonal lines might serve, or it may be important to
use a smoother interpolant having, perhaps, a specified
number of derivatives. Figure 4 offers an elementary
example of landmark registration, where the timing of
a girl’s pubertal growth spurt is the single landmark ti ,
shown as a circle in Figure 4, and the intervals (3, ti)

and (ti,18) for the ith girl are interpolated by the warp-
ing functions [formed using the expression in equa-
tion (1)].

Peak and valley locations can be translated into
crossings of zero in the curve’s first derivative with
negative and positive slopes, respectively. Other types
of crossings may also be important. For example, the
heavy-duty winter in Figure 2 can be defined as the av-
erage of the first crossing time with negative slope for
−7 deg C and the second crossing time with positive
slope. Prairie farmers would prefer the crossing of ger-
mination threshold of 5 deg C with positive slope, and,
in fact, do just that with daily soil temperature readings
in May.

The problem with landmarks, of course, is that they
are not always visible or one may be faced with other
types of feature time ambiguity such as two or more
closely spaced −7 deg C crossings in the temperature
data. Moreover, recording landmarks by hand is te-
dious, and fail-safe automatic detectors are sometimes
hard to set up. The choice of landmark can itself be
open to the kind of debate that scientists would prefer
to avoid. Finally, landmark registration is only discrete
evidence concerning the intrinsically continuous func-
tion hi , and as such ignores what happens in between
landmarks, where there may reside additional informa-
tion about h.

3.3 Registration Using L
2 Distance and

Correlational Criteria

Now we look at a classical approach to functional
registration that does not require the use of landmarks.
Let hi denote the time warping associated with the ith
data item yi ; this hi can be restricted to be an element
of a parametric family, defined by the value of one
or more parameters, or can be fully nonparametric as
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in a diffeomorphism. The one-parameter warps [equa-
tion (1)], along with simple shifts, scale changes, and
linear functions of t , are examples of simple paramet-
ric warping families, and we will propose more flexible
representations in Section 4. It seems natural to spec-
ify a loss function L that optimizes the congruence of a
set of clock-time functions yi to corresponding warped
versions of a template x0, that is, yi ≈ x0 ◦ hi , where
(x0 ◦ hi)(t) = x0(hi(t)).

The choice, however, of standard options such as

L(h;yi, x0) = ‖yi − x0 ◦ hi‖2

(2)
=

∫ [
yi(t) − x0

(
hi(t)

)]2
dt

will quickly prove disappointing if combined with a
flexible class of warping functions, as Figure 7 demon-
strates. In the left case, the minimization of the L

2

norm results in a reduction from 0.500 to 0.024, using a
piecewise-linear warping and a spike that nearly elimi-
nates the area under the registered curve corresponding
to intervals where the y has larger amplitude than x0.
In the registration process the amplitude characteristics
of y have been significantly distorted.

This pinching effect can be mitigated by using warp-
ing functions that are constrained to be smooth, ei-
ther by the use of a regularization strategy or by the
use of a small number of basis functions. The regis-
tration procedures proposed in Ramsay and Silverman
(2005), for instance, incorporate a penalization term

FIG. 7. The upper panels show a Gaussian density function x0
and its scaled version y, as dot-dashed and dotted curves, respec-
tively. The solid curve in the upper left panel results from minimiz-
ing the squared error criterion

∫ [y(t) − (x0 ◦ h)(t)]2 dt with the
optimal warping function h shown in the lower left panel. The solid
curve in the upper right panel results from minimizing the squared
error criterion

∫ [(y ◦ h)(s) − x0(s)]2 ds with the optimal warping
function h shown in the lower right panel.

that forces the choice of the warping functions toward
functions that do not differ significantly from the iden-
tity (corresponding to the case of no registration) or
from constant functions. Concerning instead the use
of simple parametric families for the class of warping
functions, the L

2 distance will work just fine for the
one-parameter shift-warp family, h(t) = t + δ. Such
a registration procedure performs perfectly for the ex-
ample in Figure 7, where the identity warp is returned
since the two peaked curves are already registered.

It thus appears fundamental to appropriately relate
the definitions of amplitude variation and of phase vari-
ation, that are jointly described by the loss function to
be optimized and the class of warping functions. This
motivates the simultaneous definition of phase and am-
plitude to avoid issues such as the one highlighted in
Figure 7. For instance, the loss function L to be op-
timized and the class of warping functions h may be
chosen so that for any two functions x1, x2, and any
warping function h, L satisfies the relation

L(x1, x2) = L(x1 ◦ h,x2 ◦ h).(3)

This invariance property guarantees that it is not possi-
ble to obtain a fictitious increment of the similarity be-
tween two functional data by simply warping them si-
multaneously with the same warping function, and has
been clarified in the context of different types of warp-
ings in different papers. For example, Sangalli et al.
(2009, 2010) and Vantini (2012) study this invariance
and then specify it in the context of linear or affine
transformations of the domain, while Srivastava et al.
(2011a) study it for diffeomorphisms.

Moreover, as already highlighted, the concepts of
amplitude variation and of phase variation are problem-
specific and depend on the application goals. For in-
stance, if two functional data x1 and x2 may be consid-
ered aligned when they are proportional, that is, when
x1 = αx2, then it is natural to use the loss function as-
sociated to the semi-norm∥∥∥∥ x1

‖x1‖ − x2

‖x2‖
∥∥∥∥,(4)

and the corresponding correlation measure

ρ(x1, x2) = 〈x1, x2〉√〈x1, x2〉〈x2, x2〉 .(5)

The class of linear warping functions h(t) = δ + γ t is
compatible, in the sense of equation (3), with the loss
function associated to (4) and (5), if these are com-
puted over the full real line. This definition of ampli-
tude/phase variation seems, for instance, well suited
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for the wine data, where the amplitude variation is well
described by the relative heights of the peaks, rather
than by their absolute heights, and where linear trans-
formations of the abscissa allows for a good alignment
of these peaks. This also holds for growth curve data,
where the emphasis is on growth velocities, rather than
on the height curves per se, and the children’s biolog-
ical clocks, with their pubertal spurts, are aligned by
aiming at proportional growth velocities. Ramsay and
Silverman (2005) used the size of the minimum eigen-
value of the order two cross-product matrix

L(h;y, x0)

(6)

=
⎡
⎢⎣

∫ {
x0(t)

}2
dt

∫
x0(t)y

[
h(t)

]
dt∫

x0(t)y
[
h(t)

]
dt

∫ {
y
[
h(t)

]}2
dt

⎤
⎥⎦ .

The minimum eigenvalue criterion essentially mea-
sures the linearity of the relationship between x0 and
y ◦h−1, and is the same thing as maximizing the corre-
lation [equation (5)] between the two functions or, cor-
respondingly, minimizing [equation (4)]. In other con-
texts, two functional data x1 and x2 may be considered
aligned when their first derivatives are proportional,
that is, Dx1 = αDx2 and, equivalently, x1 = αx2 + β .
Then it is natural to use the loss function in equations
(4) and (5), but applied to the first derivative instead.
Also, in this case, if the loss function is computed over
the full real line, then it is compatible in the sense
of equation (3) with the class of linear warping func-
tions h(t) = δ + γ t . And the same can of course be
said for the L

2 distance (2) with the shift-warp family
h(t) = δ + t . Sangalli, Secchi and Vantini (2014) re-
port other examples of loss-functions/class of warping
functions, that define concepts of amplitude and phase
variations that are appropriate in different applications.
In practice, the functional data are only available on
bounded intervals, that possibly differ from curve to
curve. These loss functions can then be computed over
the intersection of the domains of the two functional
data. In the case of the L

2 distance, normalizing the
distance by the length of the domain intersection helps
avoiding fictitious decrements of the distance as the in-
tersection becomes smaller.

It is also possible to consider much more flexible
representations of phase variation and still define loss
functions and class of warping functions satisfying the
property (3). Section 3.4 is devoted to the case where
the phase variation is described by arbitrary diffeomor-
phic transformations.

3.4 The Square-Root-Velocity Function and the
Fisher–Rao Metric

Standard fitting criteria such as least squares may
also be applied to transformations of the functional ob-
jects, most commonly first and second derivatives or
their combinations. However, one can go even further
by choosing newer metrics that are compatible with
the notion of equivalence classes mentioned earlier in
Section 2.4. Application of the concept of equivalence
classes as data objects in FDA needs some rethinking
of important concepts. First off, the classical notion of
metrics on curves needs to be extended to metrics on
equivalence classes. Some consideration of this point
highlights the challenges faced by classical approaches
in analyzing vertical and horizontal curve variation.
For example, as mentioned in the previous section, a
common approach to quantifying the vertical distance
between curves y1 and y2 is through L

2 norm between
y1 and warped y2, that is, infh ‖y1 − y2 ◦ h‖2. From a
theoretical perspective this quantity has several prob-
lems: it is not symmetric and does not satisfy the trian-
gle inequality. Moreover, from a conceptual perspec-
tive, there are problems with this formulation, as shown
in Figure 8 [constructed by Lu and Marron (2013)].
The top left panel of Figure 8 shows a toy example, us-
ing two single step functions as y1 and y2. One naive
approach to aligning these curves is to register y2 to
y1 using the simple piecewise-linear warp h2 shown
in the top right panel. The result of this is a reasonable
alignment shown in the top center panel. But an equally
good approach to aligning these curves is to warp y1
into y2, using the alternate piecewise-linear warp h1
shown in the bottom center panel. As shown in the bot-
tom left, this also gives a high quality of alignment.
The challenge in classical approaches is what should be
taken as the vertical distance between y2 between y1?
The (appropriately squared, etc.) region between the
aligned curves (representing the L

2 norm) in the top
center panel is clearly very different from that in the
bottom left panel. Now if we allow warping of both y1
and y2, then many other appealing registrations could
be found, for example, that in the bottom right panel,
all of which are quite reasonable. A big payoff of the
idea of equivalence classes as data objects is that it al-
lows a very simple and natural metric, which essen-
tially includes all of these reasonable alignments in its
formulation.

The core idea is to choose a metric that helps com-
pare equivalence classes, and not just individual func-
tions, since these classes provide an identifiable repre-
sentation of amplitude variability in this setting. This is
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FIG. 8. Toy example showing asymmetry of the L
2 norm naively applied to curve registration.

done in a straightforward way, by starting with a curve
metric that is invariant to identical warping of its two
arguments, as in equation (3). That is, it should satisfy

d(x1, x2) = d(x1 ◦ h,x2 ◦ h),(7)

for all warpings h. This is a particularization of equa-
tion (3) where a general loss function is replaced
by a distance function. Srivastava et al. (2011a) used
the nonparametric form of the Fisher–Rao metric [see
Srivastava, Jermyn and Joshi (2007) for a short intro-
duction to this metric] for this purpose. In fact, since
the original Fisher–Rao metric was defined only for
positive probability densities, they extended this no-
tion to include a larger class of functions. The actual
expression for this metric is complicated and thus is
not discussed in detail here, except we note that the re-
sulting Fisher–Rao distance, denoted by dFR, satisfies
the property stated in equation (7).

The key step in this formulation is to define a square
root velocity function (SRVF) transform,

SRVF(x) = sgn(Dx)

√(|Dx|),(8)

where sgn(u) = +1 if u ≥ 0 and −1 if u < 0 and
Dx is the first derivative of x. It should be noted that
SRVF is a one-to-one map up to a translation. That is, if
x(0) is known, then one can calculate x back uniquely
from its SRVF. The SRVF transforms of the ten growth
curves in Figure 3 are shown in Figure 9. In this par-
ticular case, since the x is defined to be the derivative
of growth, SRVF(x) refers to the acceleration curves
shown in the bottom panel of Figure 3. Consequently,

the SRVF curves cross the zero axis at the same loca-
tions, but now with very steep slope.

The main reason for introducing SRVF is that the
Fisher–Rao distance between any two functions is
given by the L

2 distance between their SRVFs, that
is,

dFR(x1, x2) = ∥∥SRVF(x1) − SRVF(x2)
∥∥.(9)

We refer the reader to Srivastava et al. (2011a) for the
details, but mention in passing that the proof hinges on
the fact that SRVF(x ◦ h) = (q ◦ h)

√
Dh, where q =

SRVF(x).
This nice mathematical structure leads to formal def-

initions of amplitude and phase in functional data. For
any two functions, x1 and x2, the actual registration

FIG. 9. The signed root velocity transforms of the ten female
growth curves displayed in Figure 3.
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problem is given by

inf
h

∥∥SRVF(x1) − SRVF(x2 ◦ h)
∥∥

(10)
= inf

h

∥∥SRVF(x1 ◦ h) − SRVF(x2)
∥∥.

This formulation avoids the issue discussed in the ex-
ample associated with Figure 8. It is important to note
that SRVF(x ◦ h) �= (SRVF(x) ◦ h) and, therefore, this
alignment is NOT simply a least-square alignment of
SRVFs. The infimum value in equation (10) represents
a comparison of the amplitudes of x1 and x2 and is ac-
tually a distance between the equivalence classes dis-
cussed in Section 2.5. If the optimal h on the left-hand
side is invertible, then its inverse is also the optimal
for the right-hand side of that equation. This has been
called inverse consistency in the image-processing lit-
erature. The optimal h denotes the (relative) phase be-
tween x1 and x2. The actual optimization over h in
equation (10) can be performed in many ways, depend-
ing on the problem. If h takes a nonparametric form,
a diffeomorphism of the domain, then the dynamic pro-
gramming algorithm mentioned earlier is applicable. If
some application calls for smooth phases, then some
common smoothing idea—either restrict to a paramet-
ric family or apply a regularization penalty—can be
applied, both at a loss of some mathematical struc-
ture. We emphasize that while some applications fa-
vor smooth solutions for warpings, some others, such
as activity recognition in computer vision, naturally fa-
vor warping functions that are close to being vertical or
horizontal over subdomains.

3.5 Representations of the Warping Function

The nature of warping functions leads to some inter-
esting representations. The evolution of time, whether
clock or system, is fundamentally a growth process,
and as such, like height, has a positive first derivative.
Two transformations of h play a number of useful roles
in the representation and study of phase variation. Us-
ing the notation Dh for the derivative of h, the log–
derivative transformation and its inverse

h(t) = C0 + C1

∫ t

0
expW(v)dv, C1 > 0 and

(11)
(logD)h(t) − logC1 = W(t)

allow us to represent any diffeomorphism h in terms of
the unconstrained log–derivative function W . A natu-
ral and effective method of computing h is to use nu-
merical differential equation solver methods to approx-
imate the solution of the linear forced differential equa-
tion Ds = exp[W(t)] using the initial value h0 = C0.

Moreover, from the equation h−1[h(t)] = t the solu-
tion of the complementary nonlinear unforced equation
Dt = exp[−W(t)] defines the inverse of the warping
function.

Since the log–derivative W is unconstrained and de-
fined over a closed interval, it is natural to use a basis
function expansion, with the B-spline basis being the
likely choice. In particular, the one-parameter model
[equation (1)] corresponds to W(t) = βt . The overall
smoothness of h can be controlled either by the num-
ber of basis functions used or by appending a rough-
ness penalty to a fitting criterion. It is essential that
any representation be expandable to include contribu-
tions from one or more covariates zj known or conjec-
tured to modulate phase. For example, it is well known
in climate modeling that proximity to oceans retards
the seasons by two to three weeks, so that a model for
phase variation across weather stations would include
this factor. Because of global warming, long-term time
itself is an important modifier of climate variables such
as seasonal temperature and precipitation. Covariates
can be easily incorporated by extending W to be a
function of a covariate such as W(t + αz) for W(t, z).

Another mathematical representation for warping
functions comes from the SRVF idea. Since Dh is as-
sumed to be positive, one can also use the positive
square root ψ(t) = √

Dh(t) as a representation of h.
Just like W earlier, one can use a basis expansion to
express ψ if h is not constrained any further. How-
ever, if h represents a time warping of a fixed interval,
for instance, [0,1], to itself, then that imposes an ad-
ditional constraint on h. In order to obtain the bound-
ary conditions h(0) = 0 and h(1) = 1, we require that∫ 1

0 ψ(t)2 dt = 1 or the L
2 norm of ψ is one. This is an

interesting geometric structure—the space of allowed
ψ functions is a unit sphere and its geometry can be ex-
ploited in the ensuing analysis. The spherical geometry
of this space of ψ functions has been used to perform
estimation and alignment of curves in several places,
including Veeraraghavan et al. (2009). This geometry
has also been helpful in developing PCA of warping
functions [Tucker, Wu and Srivastava (2013)] and in
alternatives to PCA in the form of principal nested
spheres [Jung, Dryden and Marron (2012)].

3.6 Registering Curves to Models

So far we have focused on pairwise registration of
functions, but the alignment of multiple functions is of-
ten more of concern in analyzing real data. While some
methods for multiple alignment are simple extensions
of the binary case, the others take a completely fresh
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approach and derive models tailored to such function
data objects. The former approach is generally based
on constructing a template of some kind and then reg-
istering individual functions to this template. This tem-
plate may be constructed in an iterative fashion, as
recursive improvements in alignments improve the re-
sulting template, and vice-versa.

A simple idea for constructing a template is the
cross-sectional mean, as mentioned earlier. At each it-
eration, one takes the currently aligned functions {xi ◦
hi} and computes their cross-sectional mean to up-
date the template x0 = 1

n

∑
xi ◦hi . (The cross-sectional

mean is, of course, the mean of functional objects un-
der the L

2 metric.) Then, one by one, the given func-
tions are aligned to this template to update hi ’s: hi =
argminh L(h;xi, x0). Depending on the nature of data,
the results of this process may be sensitive to the initial
conditions.

The same idea can be generalized to situations where
a metric different from the L

2 metric is used. In the
case where equivalence classes of functions are data
objects, one can compute the average of the corre-
sponding equivalence classes [x1], . . . , [xn], using the
notion of a Karcher or Fréchet mean. This can be done

under the Fisher–Rao distance mentioned in the previ-
ous section. The template is then taken to be the center
of the Karcher mean equivalence class, chosen so that
the average of the phases of x1, . . . , xn, with respect to
this center, is the identity hid . For further details of this
construction and an algorithm for computing the center
of an orbit, please refer to Srivastava et al. (2011a).

Shown in Figure 10 is an example of alignment us-
ing the SRVF framework applied to the wine NMR
spectra shown earlier. The top row shows the origi-
nal spectra, the aligned spectra, and the phase func-
tions obtained during the alignment. The bottom row
of Figure 10 shows the same data aligned using simple
shifts and minimizing the loss in (4), using as a tem-
plate one of the curves in the sample, the medoid curve,
as detailed, for example, in Sangalli, Secchi and Van-
tini (2014). For these data the amplitude variation is in
fact well described by the relative heights of the peaks
and the shifts-warp family is able to capture very well
the phase variation in the part of the spectra here con-
sidered, as also highlighted by the SRVF framework.
The associated shifts display a clear clustering in the
phase of the red wines vs the white and rosé wines.
Figure 11 shows the alignment of the growth veloci-
ties of the 54 girls in the Berkeley growth study, in the

FIG. 10. Alignment of a part of 40 wine NMR spectra shown earlier. Top row: using the SRVF framework. Bottom row: using shifts and
minimizing the loss in (4). A zoom of the warping functions, displayed on the bottom right panel, shows a neat separation in the phase
between the red wines (warping functions colored in red) and the white and rosé wines (warping functions colored in blue).
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FIG. 11. Alignment of the growth velocities of the 54 girls in the Berkeley growth study using the SRVF framework (top) with the original
data and the linear alignment (bottom).

time interval 3 to 18 years—the top row displays the
results obtained via the SRVF framework, while the
bottom row displays the results obtained on addition-
ally smoothed data using linear warpings and minimiz-
ing the loss in (4). The nonlinear warping in the SRVF
framework allows for a visibly better alignment of the
growth curves, showing that in many applicative con-
texts nonlinear warping is indeed necessary. The linear
warping, obtained after additional smoothing of data, is
nevertheless able to unveil some interesting features of
the data. For instance, Sangalli et al. (2010) carry out
linear warping of the growth curves of both the girls
and boys in the study, highlighting a neat separation of
boys and girls in the phase space and other interesting
aspects of the growth dynamics of the two groups.

Instead of using just one template, it is often bene-
ficial to divide data into smaller sets and use different
templates for alignment in these subsets. An instance
of this idea is when clustering and alignment are per-
formed together. For instance, Sangalli et al. (2010)
propose a k-mean alignment procedure that jointly per-
forms alignment and (unsupervised) clustering of func-
tional data. Other proposals in this context are given
by Tang and Müller (2009), Liu and Yang (2009),

Boudaoud, Rix and Meste (2010). Another set of pa-
pers (Tang and Müller, 2008, Liu and Müller, 2004,
Gervini and Gasser, 2004) takes the approach where
some data points serve as templates for others, and the
individual warping functions are averaged to find ulti-
mate warpings.

Kneip and Ramsay (2008) perform registration of
functional observations to the fits provided by a K-
dimensional principal components analysis. In other
words, the template is constructed individually for
each function using an orthonormal basis. As an il-
lustration, consider the 15 sections of mean-centered
log-transformed mass-spectrometry intensities in the
top panel of Figure 12. The large peaks on the right
are fairly well registered by a preliminary landmark
registration of the whole sequence, but we see sub-
stantial phase variation in the rest of these spectrum
sections that obscures important amplitude variation.
Three principal components were computed from these
data combined with a registration of each section yi to
its fit ŷi using a method currently under development,
as well as a principal components analysis without reg-
istration. The mean squared residuals for unregistered
and registered PCA’s were 0.0052 and 0.0038, respec-
tively, corresponding to a squared multiple correlation
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FIG. 12. Top: Fifteen mean-centered log10-transformations of sections of mass spectrometry analyses of blood samples. Bottom left: The
fits (dotted curve) to the data (solid curve) for two observations, y1 and y15, produced by three principal components and registration. Bottom
right: The corresponding warping functions display using di(t) = hi(t) − t .

0.47. That means nearly half of the variation around
the unregistered fit can be accommodated by modeling
phase variation. The bottom part of Figure 12 displays
the fits for y1 and y15 in its left panels, along with the
deformations di(t) = hi(t) − t associated with the reg-
istration in the right panels. The PCA is able to nicely
accommodate the amplitude variation, and its fits af-
ter time warping are well aligned with all of the peaks.
Choice of the number of components has an important
impact on this type of analysis. Combining registration

with model estimation or using multiple templates fur-
ther blurs the distinction between amplitude and phase
variation, suggesting that a successful analysis may de-
pend heavily on prior choices guided by knowledge
and intuitions about which type of variation is the pri-
mary focus.

In some contexts it also makes sense to combine the
registration problem with other inferences, such as a re-
gression problem, for a more comprehensive solution.
For instance, Hadjipantelis et al. (2015, 2014) study the
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problem of regression using phase and amplitude com-
ponents of the given functions.

4. AVAILABLE SOFTWARE

Software implementations of many of the meth-
ods illustrated here are available publicly. R and Mat-
lab code for implementation of the minimum eigen-
value method of Ramsay and Silverman can be found
at http://www.psych.mcgill.ca/misc/fda/downloads/
FDAfuns/. Matlab software for the extended Fisher–
Rao SRVF approach of Srivastava et al. (2011a) is
available at http://ssamg.stat.fsu.edu/software and the
R package is available from CRAN under fdasrvf. The
R package fdakma (Parodi et al., 2014) implementing
the k-mean alignment procedure described in Sangalli
et al. (2010) is available from CRAN.

5. DISCUSSION AND CONCLUSIONS

In this paper we highlight the concept of phase vari-
ability that is present in functional data and the pit-
falls of ignoring it in statistical analysis. After moti-
vating the importance of phase–amplitude separation,
or alignment of functional data, in statistical analyses
we proceed to summarize different ideas present in the
literature for accomplishing this task. Specifically, we
describe the problem of pinching associated with the
classical L2-norm-based matching, and present several
solutions to avoid this problem. These solutions in-
volve either restricting the amount of warping or using
an alternative metric to perform matching.

We note that while several methods exist for phase–
amplitude separation, this is not a completely solved
problem and forms an active area of research. A major
challenge comes from the lack of a single mathemati-
cal definition or algorithm that can work in all, or even
most, applications and contexts. For instance, one can
argue that the goals of warping in weather data will be
different from that in wine spectra. Similarly, while in
some cases a simple translation and scaling may be suf-
ficient for alignment of curves, the other cases require
genuine nonlinear warpings for proper alignment. In
some cases effective data analysis is done by seeking
the best possible peak/valley alignment, for example,
in spectral data. In those cases the Fisher–Rao method
is the most effective that we have seen so far. However,
in other cases too much peak alignment can be a dis-
traction, for example, the growth curve data. Therefore,
it seems more natural to tailor objective functions and
algorithms to the problem area.

Although we have focused on phase–amplitude sep-
aration of real-valued functions in this paper, this prob-
lem is prevalent in several other data object contexts.
For instance, the problem of registration of images is
considered a central issue in medical image registra-
tion. See Sotiras, Davatzikos and Paragios (2013) for a
recent survey of warping-based techniques in this prob-
lem area. The ideas presented in this paper can be ex-
tended to included higher-dimensional signals such as
images.
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