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Abstract: Consider a non–linear function G(Xt) where Xt is a stationary
Gaussian sequence with long–range dependence. The usual reduction prin-
ciple states that the partial sums of G(Xt) behave asymptotically like the
partial sums of the first term in the expansion of G in Hermite polynomi-
als. In the context of the wavelet estimation of the long–range dependence
parameter, one replaces the partial sums of G(Xt) by the wavelet scalo-
gram, namely the partial sum of squares of the wavelet coefficients. Is there
a reduction principle in the wavelet setting, namely is the asymptotic be-
havior of the scalogram for G(Xt) the same as that for the first term in
the expansion of G in Hermite polynomial? The answer is negative in gen-
eral. This paper provides a minimal growth condition on the scales of the
wavelet coefficients which ensures that the reduction principle also holds
for the scalogram. The results are applied to testing the hypothesis that
the long-range dependence parameter takes a specific value.
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1. Introduction

Let X = {Xt}t∈Z be a centered stationary Gaussian process with unit variance
and spectral density f(λ), λ ∈ (−π, π). Such a stochastic process is said to have
short memory or short–range dependence if f(λ) is bounded around λ = 0 and
long memory or long–range dependence if f(λ) → ∞ as λ→ 0. We will suppose
that {Xt}t∈Z has long memory with memory parameter 0 < d < 1/2, that is,

f(λ) ∼ |λ|−2df∗(λ) as λ→ 0 (1.1)

where the short range part f∗ of the spectral density is a bounded spectral
density which is continuous and positive at the origin. The parameter d is also
called the long-range dependence parameter.

A standard assumption in the semi-parametric setup is

|f∗(λ)− f∗(0)| ≤ Cf∗(0) |λ|β λ ∈ (−π, π), (1.2)
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where β is some smoothness exponent in (0, 2]. This hypothesis is semi–parametric
in nature because the function f∗ plays the role of a “nuisance function”. It is
convenient to set

f(λ) = |1− e−iλ|−2df∗(λ), λ ∈ (−π, π]. (1.3)

Consider now a process {Yt}t∈Z, such that

(
∆KY

)
t
= G(Xt), t ∈ Z, (1.4)

for K ≥ 0, where (∆Y )t = Yt − Yt−1, {Xt}t∈Z is Gaussian with spectral den-
sity f satisfying (1.3) and where G is a function such that E[G(Xt)] = 0 and
E[G(Xt)

2] < ∞. While the process {Yt}t∈Z is not necessarily stationary, its
K-th difference ∆KYt is stationary. Nevertheless, as in [31] one can speak of the
“generalized spectral density” of {Yt}t∈Z, which we denote fG,K . It is defined
as

fG,K(λ) = |1− e−iλ|−2K fG(λ), (1.5)

where fG is the spectral density of {G(Xt)}t∈Z.
Note that G(Xt) is the output of a non–linear filter G with Gaussian input.

According to the Hermite expansion of G and the value d, the time series Y
may be long–range dependent (see [9] for more details). We aim at developing
efficient estimators of the memory parameter of such non–linear time series.

Since the 80’s many methods for the estimation of the memory parameter
have been developed. Let us cite the Fourier methods developed by Fox and
Taqqu [18] and Robinson [23, 22]. Since the 90’s, wavelet methods have become
very popular. The idea of using wavelets to estimate the memory parameter of
a time series goes back to [30] and [13, 14, 15, 17]. See also [2, 3, 6, 4, 7]. As
shown in [16, 2, 29] and [5] in a parametric context, the memory parameter of a
time series can be estimated using the normalized limit of its scalogram (2.15),
that is the average of squares of its wavelet coefficients computed at a given
scale. It is well–known that, when considering Gaussian or linear time series,
the wavelet–based estimator of the memory parameter is consistent and asymp-
totically Gaussian (see [20] for a general framework in the Gaussian case and
[25] for the linear case). This result is particulary important for statistical pur-
pose since it provides confidence intervals for the wavelet–based estimator of
the memory parameter.

The application of wavelet–based methods for the estimation of the memory
parameter of non-Gaussian stochastic processes has been much less treated in
the literature. See [1] for some empirical studies. In [8] is considered the case of
the Rosenblatt process which is a non-Gaussian self-similar process with station-
ary increments living in the second Wiener chaos, that is, it can be expressed as
a double iterated integral with respect to the Wiener process. In this case, the
wavelet–based estimator of the memory parameter is consistent but satisfies a
non–central limit theorem. More precisely, conveniently renormalized, the scalo-
gram which is a sum of squares of wavelet coefficients converges to a Rosenblatt
variable and thus admits a non–Gaussian limit. This result, surprisingly, also
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holds for a time series of the form Hq0(Xt) where Xt is Gaussian with unit
variance and Hq0 denotes the q0-th Hermite polynomial with q0 ≥ 2 (see [11]).

The general case G(Xt) is expected to derive from the case G = Hq0 . Namely,
one could expect that some “reduction theorem” analog to the one of [26] holds.
Recall that the classical reduction theorem of [26] states that if G(X) is long–
range dependent then the limit in the sense of finite–dimensional distributions of∑[nt]

k=1G(Xk) adequately normalized, depends only on the first term cq0Hq0/q0!
in the Hermite expansion of G. The reduction principle then states that there
exist normalization factors an → ∞ as n→ ∞ such that

1

an

[nt]∑

k=1

G(Xk) and
1

an

[nt]∑

k=1

cq0
q0!

Hq0(Xk),

have the same non–degenerate limit as n → ∞. A reduction principle was es-
tablished in [9], Theorem 5.1 for the wavelet coefficients of a non–linear time
series of the form G(Xt). In applications, the wavelet coefficients are not used
directly but only through the scalogram. For example, [12] use the scalogram
to compare Fourier and wavelet estimation methods of the memory parameter.
The difficulty is that the scalogram is a quadratic function of the wavelet coeffi-
cients involving not only the number of observations but also the scale at which
the wavelet coefficients are computed. In practice, however, the scalogram is
easy to obtain and one can take advantage of the structure of sample moments
to investigate statistical properties. Its use is well–illustrated numerically in [1]
who consider a number of statistical applications.

The following is a natural question:

Does a reduction principle hold for the scalogram?

In [10] we illustrated through different large classes of examples, that the
reduction principle for the scalogram does not necessarily hold and that the
asymptotic limit of the scalogram may even be Hermite process of order greater
than 2. It is then important to find sufficient conditions for the reduction princi-
ple to hold. In this case, the normalized limit of the scalogram of the time series
G(Xt) would be the same as the time series cq0Hq0(X)/q0! studied in [11] and
therefore will be asymptotically Gaussian if q0 = 1 and a Rosenblatt random
variable if q0 ≥ 2. In Theorem 3.2, we prove that the reduction principle holds
at large scales, namely if

nj ≪ γνcj as j → ∞, (1.6)

that is, if the number of wavelet coefficients nj at scale j (typically N2−j, where
N is the sample size) does not grow as fast as the scale factor γj (typically 2j)
to the power νc, as the sample size N and the scale index j go to infinity. The
critical exponent νc depends on the function G under consideration and may
take the value νc = ∞ for some functions, in which case the reduction principle
holds without any particular growth condition on γj and nj besides nj → ∞
and γj → ∞ as j → ∞.
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The paper is organized as follows. In Section 2, we introduce long–range de-
pendence and the scalogram. The main Theorem 3.2, which states that under
Condition (1.6) the reduction principle holds is stated in Section 3 with the
critical exponent νc given in Section 4 and examples provided in Section 5. Sec-
tion 6 contains statistical applications. Numerical experiments can be found in
Section 7. The decomposition of the scalogram in Wiener chaos is described in
Section 8. That section contains Theorem 8.2 on which Theorem 3.2 is based.
Several proofs are in Section 9. Section 10 contains technical lemmas. The in-
tegral representations are described in Appendix A and the wavelet filters are
given in Appendix B. Appendix C depicts the multiscale wavelet inference set-
ting.

For the convenience of the reader, in addition to providing a formal proof of
a given result, we sometimes describe in a few lines the idea behind the proof.

2. Long–range dependence and the multidimensional wavelet
scalogram

The centered Gaussian sequence X = {Xt}t∈Z with unit variance and spectral
density (1.3) is long–range dependent because d > 0 and hence its spectrum
explodes at λ = 0.

The long–memory behavior of a time series Y of the form (1.4) is well–known
to depend on the expansion of G in Hermite series. Recall that if E[G(X0)] = 0
and E[G(X0)

2] < ∞ for X0 ∼ N (0, 1), G(X) can be expanded in Hermite
polynomials, that is,

G(X) =

∞∑

q=1

cq
q!
Hq(X). (2.1)

One sometimes refer to (2.1) as an expansion in Wiener chaos. The convergence
of the infinite sum (2.1) is in L2(Ω),

cq = E[G(X)Hq(X)], q ≥ 1, (2.2)

and

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
,

are the Hermite polynomials. These Hermite polynomials satisfy H0(x) = 1,
H1(x) = x,H2(x) = x2 − 1 and one has

E[Hq(X)Hq′(X)] =

∫

R

Hq(x)Hq′ (x)
1√
2π

e−x2/2dx = q!1{q=q′}.

Observe that the expansion (2.1) starts at q = 1, since

c0 = E[G(X)H0(X)] = E[G(X)] = 0, (2.3)

by assumption. Denote by q0 ≥ 1 the Hermite rank of G, namely the index of
the first non–zero coefficient in the expansion (2.1). Formally,

q0 = min{q ≥ 1, cq 6= 0}. (2.4)
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One has then
+∞∑

q=q0

c2q
q!

= E[G(X)2] <∞. (2.5)

In the special case where G = Hq, whether {Hq(Xt)}t∈Z is also long–range
dependent depends on the respective values of q and d. We show in [9], that the
spectral density of {Hq(Xt)}t∈Z behaves like |λ|−2δ+(q) as λ→ 0, where

δ+(q) = max(δ(q), 0) where δ(q) = qd− (q − 1)/2. (2.6)

We will also let δ+(0) = δ(0) = 1/2. For q ≥ 1, δ+(q) is the memory parameter of
{Hq(Xt)}t∈Z. It is a non–increasing function of q. Therefore, since 0 < d < 1/2,
{Hq(Xt)}t∈Z, q ≥ 1, is long–range dependent1 if and only if

δ(q) > 0 ⇐⇒ d >
1

2
(1 − 1/q), (2.7)

that is, d must be sufficiently close to 1/2. Specifically, for long–range depen-
dence,

q = 1 ⇒ d > 0, q = 2 ⇒ d > 1/4, q = 3 ⇒ d > 1/3, q = 4 ⇒ d > 3/8.
(2.8)

From another perspective,

δ(q) > 0 ⇐⇒ 1 ≤ q < 1/(1− 2d), (2.9)

and thus {Hq(Xt)}t∈Z is short–range dependent if q ≥ 1/(1− 2d).
Recall that the Hermite rank of G is q0 ≥ 1, that is the expansion of G(Xt)

starts at q0. We always assume that {Hq0(Xt)}t∈Z has long memory, that is,

q0 < 1/(1− 2d). (2.10)

The condition (2.10), with q0 defined as the Hermite rank (2.4), ensures such
that {Yt}t∈Z = {∆−KG(Xt)}t∈Z is long-range dependent with long memory
parameter

d0 = K + δ(q0) ∈ (K,K + 1/2). (2.11)

More precisely, we have the following result which also determines a Hölder
condition on the short-range part of the spectral density. This condition shall
involve q0 defined in (2.11), and, if G is not reduced to cq0Hq0/(q0!), it also
involves the index of the second non-vanishing Hermite coefficient denoted by

q1 = inf{q > q0 : cq 6= 0}.

If there is no such q1 we let δ+(q1) = 0 in (2.12).

1In our context, the values d = 1/2 − 1/(2q), q ≥ 1, constitute boundary values which
introduce logarithmic terms and will be omitted for simplicity. See Remark 3.3.
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Theorem 2.1. Let Y be defined as above. Then the generalized spectral density
fG,K of Y can be written as

fG,K(λ) = |1− e−iλ|−2d0f∗
G(λ),

where d0 is defined by (2.11) and f∗
G is bounded, continuous and positive at the

origin. Moreover, for any ζ > 0 satisfying

ζ ≤ min(β, 2(δ(q0)− δ+(q1)) and, if q0 ≥ 2, ζ < 2δ(q0), (2.12)

there exists a constant C > 0 such that

|f∗
G(λ) − f∗

G(0)| ≤ Cf∗
G(0) |λ|ζ , λ ∈ (−π, π). (2.13)

Proof. See Section 9.1.

Idea behind the proof of Theorem 2.1. Starting with the regularity of the nuisance
function f∗ in (1.1), one derives that of f∗

Hq
and, more generally, that of f∗

G,

taking advantage of the fact that the terms in the expansion of G(X) in Hermite
polynomials are uncorrelated.

Remark 2.1. The exponent ζ in (2.12) will affect the bias of the mean of the
scalogram (see (6.6)). The higher ζ, the lower the bias. Since in (2.12), ζ is
required to satisfy a non–strict and a strict inequality (if q0 ≥ 2), we cannot
provide an explicit expression for ζ. However, in most cases one has q0 = 1 or
δ+(q1) > 0 and hence one can set ζ = min(β, 2(δ(q0) − δ+(q1))) which then
satisfies both inequalities in (2.12).

Our estimator of the long memory parameter of Y is defined from its wavelet
coefficients, denoted by {Wj,k, j ≥ 0, k ∈ Z}, where j indicates the scale index
and k the location. These wavelet coefficients are defined by

Wj,k =
∑

t∈Z

hj(γjk − t)Yt, (2.14)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative decimation factors applied
at scale index j. The properties of the memory parameter estimator are directly
related to the asymptotic behavior of the scalogram Snj ,j , defined by

Snj ,j =
1

nj

nj−1∑

k=0

W 2
j,k, (2.15)

as nj → ∞ (large sample behavior) and j → ∞ (large scale behavior). More
precisely, we will study the asymptotic behavior of the sequence

Snj+u,j+u = Snj+u,j+u − E(Snj+u,j+u) =
1

nj+u

nj+u−1∑

k=0

(
W 2

j+u,k − E(W 2
j+u,k)

)
,

(2.16)
adequately normalized as j, nj → ∞.
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There are two perspectives. One can consider, as in [9], that the wavelet co-
efficients Wj+u,k are processes indexed by u taking a finite number of values.
A second perspective consists in replacing the filter hj in (2.14) by a multidi-
mensional filter hℓ,j , ℓ = 1, . . . ,m and thus replacing Wj,k in (2.14) by

Wℓ,j,k =
∑

t∈Z

hℓ,j(γjk − t)Yt, ℓ = 1, . . . ,m,

(see Appendix C for more details). We adopted this second perspective in [11, 10]
and we also adopt it here since it allows us to compare our results to those
obtained in [25] in the Gaussian case.

We use bold faced symbolsWj,k and hj to emphasize the multivariate setting
and let

hj = {hℓ,j, ℓ = 1, . . . ,m}, Wj,k = {Wℓ,j,k, ℓ = 1, . . . ,m},

with

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KG(Xt), j ≥ 0, k ∈ Z. (2.17)

We then will study the asymptotic behavior of the sequence

Snj ,j =
1

nj

nj−1∑

k=0

(
W2

j,k − E[W2
j,k]
)
, (2.18)

adequately normalized as j → ∞, where, by convention, in this paper,

W2
j,k = {W 2

ℓ,j,k, ℓ = 1, . . . ,m}. (2.19)

The squared Euclidean norm of a vector x = [x1, . . . , xm]T will be denoted by
|x|2 = x21 + · · ·+ x2m and the L2 norm of a random vector X is denoted by

‖X‖2 =
(
E
[
|X|2

])1/2
. (2.20)

We now summarize the main assumptions of this paper in the following set
of conditions.

Assumptions A. {Wj,k, j ≥ 1, k ∈ Z} are the multidimensional wavelet coef-
ficients defined by (2.17), where

(i) {Xt}t∈Z is a stationary Gaussian process with mean 0, variance 1 and
spectral density f satisfying (1.3).

(ii) G is a real-valued function whose Hermite expansion (2.1) satisfies condi-
tion (2.10), namely q0 < 1/(1− 2d), and whose coefficients in the Hermite
expansion satisfy the following condition: for any λ > 0

cq = O((q!)de−λq) as q → ∞. (2.21)
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(iii) the wavelet filters (hj)j≥1 and their asymptotic Fourier transform ĥ∞

satisfy the standard conditions (W-1)–(W-3) with M vanishing moments.
See details in Appendix B.

We shall prove that, provided that the number of vanishing moments of the
wavelet is large enough, these assumptions yield the following general bound for
the centered scalogram.

Theorem 2.2. Suppose that Assumptions A hold with M ≥ K + δ(q0). Then
for any two diverging sequences (γj) and (nj), we have, as j → ∞,

∥∥Snj ,j

∥∥
2
= O

(
γ2d0

j n
−(1/2−d)
j

)
. (2.22)

Proof. Theorem 2.2 is proved in Section 9.2.

Idea behind the proof of Theorem 2.2. One decomposes Snj ,j further in terms

S
(q,q′,p)
nj ,j

as in (8.3) and applies the bounds obtained in part in Proposition 8.1.

It is important to note that Theorem 2.2 holds whatever the relative growth
of (γj) and (nj) but it only provides a bound. This bound will be sufficient
to derive a consistent estimator of the long memory parameter K + δ(q0), see
Theorem 6.1 below.

Obtaining a sharp rate of convergence of the centered scalogram and its
asymptotic limit is of primary importance in statistical applications but this can
be quite a complicated task. We exhibit several cases in [11, 10] that underline
the wild diversity of the asymptotic behavior of the centered scalogram. In
general the nature of the limit depends on the relative growth of (γj) and (nj).
We will show, however, that if nj ≪ γνcj , where νc is a critical exponent, then
the reduction principle holds. In this case, the limit will be either Gaussian or
expressed in terms of the Rosenblatt process which is defined as follows.

Definition 2.1. The Rosenblatt process of index d with

1/4 < d < 1/2, (2.23)

is the continuous time process

Zd(t) =

∫ ′′

R2

ei(u1+u2) t − 1

i(u1 + u2)
|u1|−d|u2|−d dŴ (u1)dŴ (u2), t ∈ R. (2.24)

The multiple integral (2.24) with respect to the complex-valued Gaussian

random measure Ŵ is defined in Appendix A. The symbol
∫ ′′

R2 indicates that
one does not integrate on the diagonal u1 = u2. The integral is well-defined
when (2.23) holds because then it has finite L2 norm. This process is self–similar
with self-similarity parameter

H = 2d ∈ (1/2, 1),

that is for all a > 0, {Zd(at)}t∈R and {aHZd(t)}t∈R have the same finite–
dimensional distributions, see [27]. When t = 1, Zd(1) is said to have the Rosen-
blatt distribution. This distribution is tabulated in [28].
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3. Reduction principle at large scales

We shall now state the main results and discuss them. They are proved in the

following sections. We use
L−→ to denote convergence in law.

The following result involving the case

G =
cq0
q0!

Hq0 , cq0 6= 0, q0 ≥ 1,

is proved in Theorem 3.2 of [11] and will serve as reference:

Theorem 3.1. Suppose that Assumptions A(i) and A(iii) hold with M ≥ K +
δ(q0), where δ(·) is defined in (2.6). Assume that Y is a non–linear time series
such that ∆KY =

cq0
q0!
Hq0(X), with q0 ≥ 1 and q0 < 1/(1 − 2d). Define the

centered multivariate scalogram Sn,j related to Y by (2.16) and let (nj) and
(γj) be any two diverging sequences of integers.

(a) Suppose q0 = 1 and that (γj) is a sequence of even integers. Then, as
j → ∞,

n
1/2
j γ

−2(d+K)
j Snj ,j

L−→ c21N (0,Γ), (3.1)

where Γ is the m×m matrix with entries

Γℓ,ℓ′ = 4π(f∗(0))2
∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

|λ+ 2pπ|−2(K+d)[ĥℓ,∞ĥℓ′,∞](λ+ 2pπ)

∣∣∣∣∣∣

2

dλ,

1 ≤ ℓ, ℓ′ ≤ m.
(3.2)

(b) Suppose q0 ≥ 2. Then as j → ∞,

n1−2d
j γ

−2(δ(q0)+K)
j Snj ,j

L−→ c2q0
(q0 − 1)!

f∗(0)q0 Lq0−1 Zd(1), (3.3)

where Zd(1) is the Rosenblatt process in (2.24) evaluated at time t = 1,
f∗(0) is the short-range spectral density at zero frequency in (1.1) and
where for any p ≥ 1, Lp is the deterministic m-dimensional vector

[Lp(ĥℓ,∞)]ℓ=1,...,m with finite entries defined by

Lp(g) =

∫

Rp

|g(u1 + · · ·+ up)|2
|u1 + · · ·+ up|2K

p∏

i=1

|ui|−2d du1 · · ·dup, (3.4)

for any g : R → C.

Thus Theorem 3.1 states that in the case G = Hq0 , q0 ≥ 1 the limit of
the scalogram is either Gaussian or has a Rosenblatt distribution2. Our main
result Theorem 3.2 states that beyond this simple case, the limits continue to be
either Gaussian or Rosenblatt under fairly general conditions, involving nj and

2This case corresponds to L = {0} using the notation introduce in (4.1) below.
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γj , namely that nj ≪ γνcj as j → ∞ where νc is a positive (possibly infinite)
critical exponent given in Definition 4.1, see Section 4 for details.

Theorem 3.2. Suppose that Assumptions A hold with M ≥ K + δ(q0), where
δ(·) is defined in (2.6) and that

d /∈ {1/2− 1/(2q) : q = 1, 2, 3, . . .}. (3.5)

Define the centered multivariate scalogram Sn,j related to Y by (2.16). Let (nj)
be any diverging sequence of integers such that, as j → ∞,

nj ≪ γνcj , (3.6)

where νc is given in Definition 4.1 below. Then, the following limits hold de-
pending on the value of q0.

(a) If q0 = 1 and γj even, then, the convergence (3.1) holds.
(b) If q0 ≥ 2, then, the convergence (3.3) holds.

Proof. We shall prove in Theorem 8.2, see (8.9), that, under Conditions (3.5)

and (3.6), Snj ,j can be reduced to a dominating term S
(q0,q0,q0−1)
nj ,j

in the sense of

the L2 norm (2.20). This dominating term depends only on the term cq0Hq0(X)/
(q0!) of the expansion of G(X). We can then apply Theorem 3.1 to conclude.

This result extends Theorem 3.1 stated above, where G was restricted to
G =

cq0
q0!
Hq0 . While extending the result to a much more general function G,

Theorem 3.2 involves two additional conditions. Condition (3.5) is merely here
to avoid logarithmic corrections, see Remark 3.3 below. Condition (3.6) is re-
strictive only when νc is finite, in which case it imposes a minimal growth of the
analyzing scale γj with respect to that of nj . We say that the reduction princi-
ple holds at large scales. The main interest of having a reduction principle is to
conclude that the same asymptotic analysis is valid as in the case G =

cq0
q0!
Hq0 .

Remark 3.1. In practice such a result can be used as follows: If d, G are both
known, νc can be evaluated numerically. We then get a practical condition, albeit
asymptotic, for the reduction principle. See Section 6.3 for an application.

Remark 3.2. The case where G is unknown is much more complicated. In this
case, there is to our knowledge, no practical way to estimate νc nor even the
Hermite rank of the time series. There is, nevertheless, a situation where one
can obtain easily the associated critical index νc. This is when the time series Y
is stationary with K = 0 and G is even. In this case the Hermite rank is greater
or equal to 2 and νc = ∞ (see Section 5 for more details).

Remark 3.3. The values d = 1/2− 1/(2q), q ≥ 1, constitute boundary values
which already appear in the classical reduction theorem, see [26]. These bound-
ary values also exist in our context. If d = 1/2− 1/(2q), q ≥ 1, one gets similar
results but with logarithm terms. In fact, one can show that if one drops the
restriction (3.5), then the conclusion of Theorem 3.2 holds if

1) nj ≪ γνcj (log γj)
−4.

2) For any ε > 0, log γj = o(nε
j) as j → ∞.
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The technical condition 2) is very weak and condition 1) is the same as (3.6) up
to a logarithmic correction. We assume (3.5) for simplicity of the exposition.

Remark 3.4. We provided in [10] several examples for which different limits are
obtained. In these examples one does not have (3.6) and consequently different
terms in the decomposition in Wiener chaos of the scalogram dominate and
provide different limits. Since the limits are not the same as when G = Hq0 , the
reduction principle does not hold in these cases.

4. Critical exponent

The precise description of the critical exponent given below involves a number
of sequences, in particular, the subsequence of Hermite coefficients cq, q ≥ 1
that are non-vanishing. We denote this subsequence by {cqℓ}ℓ∈L where (qℓ)ℓ∈L

is a (finite of infinite) increasing sequence of integers such that

qℓ = index of the (ℓ+ 1)th non–zero coefficient, ℓ ∈ L. (4.1)

Thus the indexing set L is a set of consecutive integers starting at 0 with same
cardinality as the set of non-vanishing coefficients. We set

I0 = {ℓ ∈ L : ℓ+ 1 ∈ L, qℓ+1 − qℓ = 1}, (4.2)

that is, qℓ and qℓ+1 take consecutive values when ℓ ∈ I0. The set I0 could be
either empty (there are no consecutive values of qℓ) or not empty. Then we set

ℓ0 =

{
min(I0) ≥ 0, when I0 is not empty,

∞, when I0 is empty.
(4.3)

When ℓ0 is finite (that is, I0 is not empty), qℓ0 is the smallest index q such that
two Hermite coefficients cq, cq+1 are non–zero.

We define similarly for any r ≥ 0

Ir = {ℓ ∈ L : qℓ+1 = qℓ + r + 1}. (4.4)

which involves the terms distant by r + 1. Finally, we extend the definition of
ℓ0 in (4.3) to any r ≥ 0 by

ℓr = min(Ir). (4.5)

We also define
R = {r ≥ 0 : Ir 6= ∅ and δ(r + 1) > 0}. (4.6)

Thus r ∈ R describes the gaps r + 1 where Hr+1(Xt) is long-range dependent.
Since by (2.6), δ(r + 1) > 0 is equivalent to r + 1 < 1/(1− 2d), we have

R ⊂ {0, 1, . . . , [1/(1− 2d)]− 1}. (4.7)

Finally, let

Jd = {ℓ ∈ L : δ(qℓ+1 − qℓ) > 0} =
{
ℓ ∈ L : qℓ+1 < qℓ + (1− 2d)−1

}
, (4.8)
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where we used the expression for δ(q) in (2.6). Note that

Jd =
⋃

r∈R

Ir , (4.9)

and thus
Jd 6= ∅ ⇐⇒ R 6= ∅. (4.10)

We illustrate these quantities in the following example.

Illustration Suppose

G(x) = c1H1(x) +
c3
3!
H3(x) +

c4
4!
H4(x) +

c5
5!
H5(x) +

c24
24!

H24(x),

where c1, c3, c4, c5 and c24 are non-zero constants. Then

q0 = 1, q1 = 3, q2 = 4, q3 = 5, q4 = 24 and L = {0, 1, 2, 3, 4},
I0 = {1, 2}, I1 = {0}, I2 = · · · = I17 = ∅, I18 = {3},
ℓ0 = 1, ℓ1 = 0, ℓ18 = 3.

To determine R we need to involve d. Here q0 = 1 so d can take any value in
(0, 1/2) to satisfy Condition (2.10) which guarantees that G(X) is long-range
dependent. We need to consider the gaps of size 1, 2 and 19, namely, r = 0, 1
and 18. Consequently, by (2.6) and using the fact that δ(q) is decreasing,

a) If d ∈ (0, 1/4], or equivalently δ(2) ≤ 0, then R = {0}.
b) If d ∈ (1/4, 9/19], or equivalently δ(2) > 0 and δ(19) ≤ 0, then R = {0, 1}.
c) If d ∈ (9/19, 1/2), or equivalently δ(19) > 0, then R = {0, 1, 18}.

Finally, by (4.9), we get for Jd the following subsets of L. In Case a): Jd =
I0 = {1, 2}, Case b): Jd = I0 ∪ I1 = {0, 1, 2} and Case c): Jd = I0 ∪ I1 ∪ I18 =
{0, 1, 2, 3}.

These sets and indices enter in the following definition.

Definition 4.1. The critical exponent is

νc =





∞, if L = {0},

∞, if q0 = 1, d ≤ 1/4 and I0 = ∅,

d+1/2−2δ+(qℓ0)

d , if q0 = 1, d ≤ 1/4 and I0 6= ∅,

1−2δ+(q1−1)
2d−1/2 , if q0 = 1, d > 1/4, 1 ∈ L and Jd = ∅,

min
(

1−2δ+(q1−1)
2d−1/2 ,

2d+1/2−2δ+(qℓr )−δ(r+1)
δ(r+1) : r ∈ R

)
,

if q0 = 1, d > 1/4 and Jd 6= ∅,

∞, if q0 ≥ 2 and I0 = ∅,

1 +
4(δ(q0)−δ+(qℓ0 ))

1−2d , if q0 ≥ 2 and I0 6= ∅.
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The exponent νc depends on d and on the function G through the expansion
coefficient indices (qℓ)ℓ∈L defined in (4.1). In fact one has

Proposition 4.1. Every possible sequence (qℓ)ℓ∈L and every value of d satis-
fying (2.10) give rise to a νc ∈ (0,∞].

Proof. See Section 9.3.

The value νc = ∞ is the simplest case since then the reduction principle
holds whatever the respective growth rates of the diverging sequences (nj) and
(γj) are. This happens for instance when there are no consecutive non–zeros
coefficients (I0 = ∅) and either q0 = 1 and d ≤ 1/4 or q0 ≥ 2 (which implies
d > 1/4).

5. Examples

In this section, we examine some specific cases of functions G. We always assume
that G satisfies Assumption A(ii).

5.1. G is even

If G is an even function then q0 ≥ 2 and I0 = ∅ because the Hermite expansion
has only even terms. Hence νc = ∞ and the reduction principle applies for any
diverging sequences (nj) and (γj).

5.2. G is odd

If G is an odd function then we have again I0 = ∅ since the Hermite expansion
has no even terms. But unlike the even case, we may have q0 = 1. If it is not
the case, then q0 ≥ 3 so that νc = ∞ and the reduction principle applies for
any diverging sequences (nj) and (γj). If q0 = 1 and d ≤ 1/4, we find again
νc = ∞. If q0 = 1 and d > 1/4, the formula of the exponent νc is more involved
and takes various possible forms, see Section 5.4 for one of the possible cases,
namely I0 = ∅, q0 = 1 and δ(q1) > 0.

5.3. I0 6= ∅ and q0 ≥ 2

This corresponds to the class studied in Section 3.1 of [10] with the additional
condition δ(qℓ0 + 1) > 0 (see (3.3) in this reference). Using this additional
condition, we have δ(qℓ0) > 0 since δ(q) is decreasing. Hence δ+(qℓ0) = δ(qℓ0) and

νc = 1 +
4(δ(q0)− δ+(qℓ0))

1− 2d
= 1 +

4(δ(q0)− δ(qℓ0))

1− 2d
= 1 + 2(qℓ0 − 2q0).

This value of νc corresponds to the exponent ν defined in (3.4) and appearing in
Theorem 3.1 of [10]. This theorem shows that if the opposite condition to (3.6)
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holds, namely, γνcj ≪ nj , then the reduction principle does not apply since the
limit is Gaussian instead of Rosenblatt. We say that the reduction principle does
not apply at small scales. In Theorem 3.2, the reduction principle is proved even
when δ+(qℓ0 +1) = 0, but whether the reduction principle does apply or not at
small scales, namely if γνcj ≪ nj , remains an open question.

5.4. I0 = ∅, q0 = 1 and δ(q1) > 0

The expansion of G contains H1 but does not contain any two consecutive
polynomials. This corresponds to the class studied in Section 3.2 of [10] (see
(3.8) in this reference). The exponent νc simplifies as follows. First observe that
δ(q1) > 0 implies δ+(q1 − 1) > 0, so that q1 ∈ R, and also δ(2) > 0 and hence
d > 1/4. We thus need to focus on the term of νc in Definition 4.1 involving
min. Using (2.6), for the first term in the min

1− 2δ+(q1 − 1)

2d− 1/2
=

(q1 − 1)(1− 2d)

δ(2)
, (5.1)

which corresponds to the exponent ν2 in (3.10) of [10]. Now focus on the second
term in the min. Take any r ∈ R and consider ℓr defined in (4.5). Note that qℓr is
the smallest Hermite polynomial index of the expansion of G such that the next
one appears after a gap equal to r+1. There are only two possibilities: (a) either
qℓr = q0 = 1, (b) or qℓr ≥ q1. In case (a), we have r + 1 = qℓr+1 − qℓr = q1 − 1
and thus

2d+ 1/2− 2δ+(qℓr )− δ(r + 1)

δ(r + 1)
=

1/2− δ(q1 − 1)

δ(q1 − 1)
, (5.2)

which corresponds to the exponent ν1 in (3.10) of [10]. In case (b), using r+1 ≥ 2
(since I0 = ∅) and qℓr ≥ q1, we get

2d+ 1/2− 2δ+(qℓr )− δ(r + 1)

δ(r + 1)
≥ 2d+ 1/2− 2δ+(q1)− δ(2)

δ(2)

=
q1(1− 2d)

δ(2)
>

(q1 − 1)(1− 2d)

δ(2)
,

which already appeared in (5.1). Therefore with (5.1) and (5.2) and Defini-
tion 4.1 of νc for q0 = 1 and d > 1/4, we get

νc = min

(
(q1 − 1)(1− 2d)

δ(2)
,
1/2− δ(q1 − 1)

δ(q1 − 1)

)
,

which corresponds to min(ν1, ν2) using the definitions in (3.10) of [10]. Hence
the reduction principle established in Theorem 3.2 under the condition nj ≪ γνcj
corresponds to the cases nj ≪ γν1j and nj ≪ γν2j of Theorems 3.3 and 3.5 in
[10], respectively. These two theorems further show that when the additional
condition δ(q1) > 0 holds the reduction principle does not hold under the oppo-
site condition γνcj ≪ nj , illustrating the fact that the reduction principle may
not hold at small scales.
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6. Application to wavelet statistical inference

6.1. Wavelet inference setting

Suppose that we observe a sample Y1, . . . , YN of Y . Recall that Y has long
memory parameter d0 = K + δ(q0). In this section, we assume that we are
given an unidimensional wavelet filter gj satisfying Assumptions (W-1)–(W-3)
in Appendix B (see also (C.1) and (C.6)). Then one can derive the wavelet
estimator

d̂0 =

p∑

i=0

wi log σ̂
2
j+i, (6.1)

where w0, . . . , wp are weights satisfying

p∑

i=0

wi = 0 and

p∑

i=0

iwi = 1/(2 log 2), (6.2)

and (σ̂2
j )i≤j≤i+p denotes the multiscale scalogram obtained from Y1, . . . , YN ,

(σ̂2
j )i≤j≤i+p = Snj ,j =

1

nj

nj−1∑

k=0

W2
j,k, (6.3)

(see Appendix C for more details). In this setting, (γj) and (nj) are specified as
follows

γj = 2j and nj = N2−j +O(1). (6.4)

As usual in this setting the asymptotics are to be understood as N → ∞ with
a well chosen diverging sequence j = jN such that

lim
N→∞

N2−j = ∞, (6.5)

and thus (nj) diverge as N → ∞. We refer to [20, Theorem 1] for the asymptotic
behavior of the mean of the scalogram

E
[
σ̂2
j

]
= C 22d0j

(
1 +O(2−ζj)

)
, (6.6)

where C is a positive constant and ζ is an exponent satisfying the conditions
of Theorem 2.1. This relation follows from Theorem 2.1, provided that M ≥
d0 − 1/2. Choosing weights such that the conditions in (6.2) hold then yields

p∑

i=0

wi logE
[
σ̂2
j+i

]
= d0 +O(2−ζj). (6.7)

6.2. Consistency

We now state a consistency result.

Theorem 6.1. Consider the wavelet estimation setting (6.1)–(6.5) and suppose

that Assumptions A hold with M ≥ K + δ(q0). Then, as N → ∞, d̂0 converges
to d0 in probability.
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Proof. By (6.1), we have

d̂0 −
p∑

i=0

wi logE
[
σ̂2
j+i

]
=

p∑

i=0

wi log

(
1 +

σ̂2
j+i − E

[
σ̂2
j+i

]

E
[
σ̂2
j+i

]
)
. (6.8)

The numerators in the last ratio are the components of Snj ,j by (6.3). By The-
orem 2.2 and (6.4), we have

Snj ,j = OP

(
γ2d0

j n
−(1/2−d)
j

)
= OP

(
22d0j (N2−j)−(1/2−d)

)
.

Hence, with (6.8) and (6.6), we get that

d̂0 −
p∑

i=0

wi logE
[
σ̂2
j+i

]
= OP ((N2−j)−(1/2−d)).

Applying (6.7) then yields

d̂0 = d0 +OP

(
(N2−j)−(1/2−d)

)
+O(2−ζj). (6.9)

The result then follows from (6.5).

Remark 6.1. We note that this consistency result applies without any knowl-
edge of G or β.

6.3. Hypothesis testing

Consider again a sample Y1, . . . , YN of Y and suppose now that G is known and
has Hermite rank q0.

Denote by d̃0 the estimator that would be obtained instead of d̂0 if we had
G replaced by cq0Hq0/(q0!). We shall apply Theorem C.1 and Theorem C.2 of
Appendix C. Theorem C.1 (case q0 = 1) derives from Theorem 2 of [24] and
Theorem C.2 (case q0 ≥ 2) derives from Theorem 4.1 of [11]. We obtain the
following: for conveniently chosen diverging sequences j = (jN ), there exists
some renormalization sequence (uN ) such that as N → ∞,

uN(d̃0 − d0)
(L)→ U(d,K, q0), (6.10)

with

uN =

{
(N2−j)1/2 if q0 = 1,
(N2−j)1−2d if q0 ≥ 2,

(6.11)

and where U(d,K, q0) is a centered Gaussian random variable if q0 = 1 and a
Rosenblatt random variable if q0 ≥ 2. The precise distribution of U(d,K, q0) is
given in Theorems C.1 and C.2. Beside the chosen wavelet, the distribution of
U only depends on d, K and q0.

As application of the reduction principle in this setting, we use (6.10) to
define a statistical test procedure which applies to a general G. Let d∗0 be a given
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possible value for the true unknown memory parameter d0 of Y and consider
the hypotheses

H0 : d0 = d∗0 against H1 : d0 ∈ (0, K̄ + 1/2) \ {d∗0}.
Here K̄ denotes a known maximal value for the true (possibly unknown) inte-
gration parameter K. So to insure that the number M of vanishing moments
satisfiesM ≥ d0, it suffices to impose M > K̄. Since G is assumed to be known,
for the given value d∗0, one can define the parameters d∗, K∗ and ν∗c defined as
d, K and νc by replacing d0 by d∗0.

Let α ∈ (0, 1) be a significance level. Define the statistical test

δs =

{
1 if |d̂0 − d∗0| > sN (α),

0 otherwise.
(6.12)

where sN (α) is the (1− α/2) quantile of U(d∗,K∗, q0)/uN .
The following theorem provides conditions for the test δs to be consistent

with asymptotic significance level α, namely, that its power goes to 1 and its
first type error goes to α as N goes to ∞.

Theorem 6.2. Suppose that Assumptions A(i), (ii) hold with M > K̄ and
that the unidimensional wavelet filter gj satisfies Assumptions (W-1)–(W-3).
Assume additionally that (3.5) holds. Let j = (jN ) be a diverging sequence such
that (6.5) holds. Suppose moreover that, as N → ∞,

N2−j ≪ 2jν
∗

c , (6.13)

and that there exists a positive exponent ζ satisfying (2.12) and

2−ζj ≪ u−1
N , (6.14)

with uN defined as in (6.11). Then, if (3.6) is satisfied, δs is a consistent test
with asymptotic significance level α.

Remark 6.2. Observe that the different conditions that have to be simultane-
ously satisfied by (jN ) can be reformulated as follows:

• limN→∞ jN = ∞ and limN→∞N2−jN = ∞.
• N2−jN ≪ 2jNζ′

with

ζ′ =

{
min(ν∗c , 2ζ) if q0 = 1,
min(ν∗c , ζ/(1 − 2d)) otherwise.

In particular, one can easily check that since ν∗c and ζ are both positive so is ζ′.
Hence these conditions are not incompatible.

Proof. See Section 9.5.

Idea behind the proof of Theorem 6.2. Condition (6.13) states that nj ≪ γ
ν∗

c

j

and will insure that the reduction principle holds under H0. Condition (6.14)
will ensure that the bias is negligible under H0. These conditions will allow us
through Relation (9.26) to transfer the problem to the case G(x) =

cq0
q0!
Hq0(x)

which was treated in [11].
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7. Numerical experiments

7.1. General setting

We now investigate the performance of the proposed estimation and test proce-
dures based on Monte Carlo simulations. The raw samples, wavelet transforms
and wavelet estimators are generated and computed using the LRD toolbox
documented in [12]. The quantiles of the Rosenblatt distribution are computed
using [28]. Each Monte Carlo simulation mentioned below is based on 1000
independent draws of samples (Yt)1≤t≤N .

We consider two models, both obtained by non-linear transformation of a
sample (Xt)1≤t≤N generated according to a Gaussian ARFIMA(0, d, 0) ditri-
bution with zero mean and unit variance. In both models we take K = 0 to
simplify the setting.

Model 1 In this model, we set Yt = H1(Xt) + 1/(2
√
3)H3(Xt). This model is a

particular instance of the example of Section 5.2 with q0 = 1, hence
d0 = d. Let us restrict our experiments to d ∈ (1/4, 1/2) so that we fall
in the case investigated in Section 5.4 and thus, using q1 = 3 and the
computations of Section 5.4, we find νc = (1 − 2d)/(2d − 1/2), which
is decreasing from ∞ to 0 as d goes from 1/4 to 1/2.

Model 2 Here we set Yt = 1/
√
2H2(Xt) + 1/(2

√
3)H3(Xt). This model is a

particular instance of the example described in Section 5.3 with q0 =
qℓ0 = 2. Then d ∈ (1/4, 1/2) ensures that d0 = δ(2) = 2d − 1/2 > 0.
Moreover, by Definition 4.1, νc = 1.

For each model and each sample length N , any statistical procedure based on
the statistic d̂0 defined in (6.1) raises the question of the choice of the minimal
scale index j and of the weights wi, i = 0, . . . , p. We first explain how we choose
j and then the weights.

7.2. Choice of the scale index j

The asymptotic behaviors (Gaussian or Rosenblatt) derived in Section 6.3 hold
only if the bias is negligible (Condition (6.14)) and if the reduction principle
hold (Condition (6.13)), which is summarized in Remark 6.2 using the expo-
nent ζ′. We chose to set j = [log2N/(ζ

′ +1)] in our experiments, which neither
guarantees that the bias is negligible nor that the reduction principle holds but
which corresponds to a limit value, sufficiently largely above which both condi-
tions hold. In Tables 1 and 2, we display the obtained values of j corresponding
to particular d’s and N = 212 or N = 215.

7.3. Choice of the weights wi, i = 0, . . . , p

Recall that the weights wi in 6.2 influence the asymptotic variance of d̂0. We
compare two possible choices. First the two-scales regression, for which p = 1 and
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Table 1

Model 1: scale index j depending on d
and N

d=0.3 d=0.35 d=0.4
N = 212 5 5 7
N = 215 6 6 9

Table 2

Model 2: scale index j depending on d
and N

d=0.3 d=0.35 d=0.4 d=0.45
N = 212 8 6 6 6
N = 215 10 7 7 7

Table 3

Performances of two-scales regression
estimator (Model 1, N = 212)

bias std MSE

d=0.3 -0.0555 0.1973 0.0420
d=0.325 -0.0650 0.1946 0.0421
d=0.35 -0.1190 0.2041 0.0451
d=0.375 -0.0693 0.2801 0.0832
d=0.4 -0.0884 0.3858 0.1565

Table 4

Performances of two-scales regression
estimator (Model 2, N = 212)

d0 bias std MSE

d=0.35 0.2 -0.0464 0.3132 0.1001
d=0.375 0.25 -0.0682 0.3160 0.1044
d=0.4 0.3 -0.0615 0.3041 0.0961

d=0.425 0.35 -0.0640 0.3099 0.1001
d=0.45 0.4 -0.0638 0.3083 0.0991

Table 5

Performances of two-scales regression
estimator (Model 1, N = 215)

bias std MSE

d=0.3 -0.0340 0.0881 0.0089
d=0.325 -0.0885 0.1374 0.0267
d=0.35 -0.0418 0.1019 0.0121
d=0.375 -0.0460 0.1452 0.0232
d=0.4 -0.0412 0.2703 0.0747

Table 6

Performances of two-scales regression
estimator (Model 2, N = 215)

d0 bias std MSE

d=0.35 0.2 -0.0272 0.1776 0.0323
d=0.375 0.25 -0.0335 0.1776 0.0326
d=0.4 0.3 -0.0316 0.1842 0.0349

d=0.425 0.35 -0.0874 0.4067 0.1728
d=0.45 0.4 -0.0428 0.1670 0.0297

Table 7

Performances of four-scales regression
estimator (Model 1, N = 212)

bias std MSE

d=0.3 -0.0542 0.0862 0.0104
d=0.325 -0.0593 0.0846 0.0107
d=0.35 -0.0588 0.0880 0.0112
d=0.375 -0.0813 0.1295 0.0234
d=0.4 -0.1298 0.2147 0.0629

Table 8

Performances of four-scales regression
estimator (Model 2, N = 212)

d0 bias std MSE

d=0.35 0.2 -0.0653 0.1494 0.0266
d=0.375 0.25 -0.0862 0.1608 0.0333
d=0.4 0.3 -0.0809 0.1566 0.0310

d=0.425 0.35 -0.0920 0.1559 0.0328
d=0.45 0.4 -0.0867 0.1596 0.0329

the conditions in (6.2) imply w1 = 1/(2 log 2) and w0 = −1/(2 log 2). Second, the
four-scales regression, which corresponds to p = 3, with Abry-Veitch weights.
These weights have been introduced in the seminal paper [29] and provides close
to optimal choice in the linear case, see [12]. Tables 3, 4, 5 and 6 display the
obtained bias, variance, and MSE (mean square error) for Model 1 and Model 2
with sample lengths N = 212 and N = 215 = 32768 for the two-scales regression.
We see that the four-scales regression clearly achieves better performances for
both models. Hence, in the following experiments, we set the weights to the
four-scales Abry-Veitch weights.
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Table 9

Performances of four-scales regression
estimator (Model 1, N = 215)

bias std MSE

d=0.3 -0.0338 0.0402 0.0028
d=0.325 -0.0878 0.1112 0.0201
d=0.35 -0.0368 0.0425 0.0032
d=0.375 -0.0363 0.0619 0.0051
d=0.4 -0.0513 0.1289 0.0192

Table 10

Performances of four-scales regression
estimator (Model 2, N = 215)

d0 bias std MSE

d=0.35 0.2 -0.0302 0.0811 0.0075
d=0.375 0.25 -0.0722 0.1026 0.0157
d=0.4 0.3 -0.0462 0.0891 0.0101

d=0.425 0.35 -0.0455 0.0831 0.0090
d=0.45 0.4 -0.0409 0.0856 0.0090

7.4. Finite-sample performances for testing d0 = d∗

0
against d0 6= d∗

0

We now evaluate the performances of the statistical test defined in (6.12) and
studied in Section 6.3 for testing H0 : d0 = d∗0 against H1 : d0 6= d∗0. Recall

that the test statistic is |d̂0 − d∗0|. The threshold sN (α) yielding the asymptotic
significance level α is derived in Theorem 6.2 under some condition on the scale
index j (see Remark 6.2). In the case of Model 1 , the asymptotic distribution is
Gaussian, the rate is uN = (N2−j)1/2 and the asymptotic variance is the same
as for Gaussian processes, so can be computed by relying on the Toolbox de-
tailed in [12]. We display in Tables 11 and 12 the finite-sample rejection rate for
standard values of the asymptotic level α. We can see that the asymptotic anal-
ysis provides an underestimated significance level, which amounts to say that
the variance of the estimator d̂0 is underestimated by its theoretical asymptotic
value. This can be explained by the fact that the asymptotic one is based on
the reduction principle and thus approximates the variance of all non-Gaussian
terms of the Wiener chaos decomposition of the scalogram by zero. These exper-
iments show that this approximation is not so sharp for a finite sample, although
it slightly improves as N grows. The case of Model 2 is more complicated as
it involves a Rosenblatt distribution and more complicated constants, namely
the Lq(ĝ∞) for q = q0, q0 − 1 in (C.13) and (C.14). To circumvent the numeri-
cal computation of the asymptotic variance we rely on the following Bootstrap
procedure.

Table 11

Rejection rates under H0 for different values of d∗
0
and α for Model 1 with N = 212

d∗
0

0.3 0.325 0.35 0.375 0.4

α = 0.01 0.0700 0.2730 0.0750 0.0830 0.1290
α = 0.05 0.1770 0.3540 0.2320 0.1800 0.2340
α = 0.1 0.2420 0.4290 0.3130 0.2670 0.3090

Table 12

Rejection rates under H0 for different values of d∗
0
and α for Model 1 with N = 215

d∗
0

0.3 0.325 0.35 0.375 0.4

α = 0.01 0.0730 0.0700 0.0930 0.0730 0.0590
α = 0.05 0.1780 0.1840 0.1830 0.1590 0.1530
α = 0.1 0.2630 0.2460 0.2620 0.2390 0.2150
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Table 13

Rejection rates under H0 for different values of d∗
0
and different levels α for Model 2 and

N = 212)

d∗
0

0.1 0.15 0.2 0.25 0.3 0.35 0.4

α = 0.01 0.3130 0.664 0.679 0.695 0.633 0.669 0.616
α = 0.05 0.407 0.689 0.707 0.721 0.667 0.7 0.637
α = 0.1 0.480 0.726 0.738 0.75 0.694 0.735 0.669

Table 14

Rejection rates under H0 for different values of d∗
0
and different levels α for Model 2

N = 215)

d∗
0

0.1 0.15 0.2 0.25 0.3 0.35 0.4

α = 0.01 0.318 0.4210 0.3230 0.3860 0.4470 0.4250 0.4250
α = 0.05 0.435 0.5110 0.4280 0.4770 0.4840 0.4580 0.4450
α = 0.1 0.508 0.5760 0.4970 0.5290 0.5430 0.4980 0.4820

Step 1 We pick m sub-samples of the original time series of 2N−L consecutive
observations, randomly with replacement.

Step 2 For ℓ = 1, . . . ,m, we compute an estimator d̂0(ℓ) based on the ℓth sub–

sample (with the same j and weights wi as for d̂0).

Step 3 We compute the empirical variance v̂L of the sample d̂0(ℓ), ℓ = 1, . . . ,m
obtained in Step 2 and set the empirical variance of the full sample
estimate d̂0 to v̂ = 2−L(1−2d∗

0)v̂L.

In our experiments we chose L = 3 and m = 50. The factor 2−L(1−2d∗)

relating v̂ to v̂L is inherited from the rate uN defined in (6.11) in the case q0 = 2
under H0 (since we are in the case of Model 2 ). The threshold associated to the

significance level α is then set by approximating (d̂0 − d∗0)/
√
v̂ as a Rosenblatt

random variable with unit variance. We display a four–scales regression (see
Tables 13 and 14). The obtained rejection rate are again larger than α because
of the approximation of the scalogram by its sole Rosenblatt term in its Wiener
chaos decomposition.

Next we evaluate the power of the statistical test. We focus on the power
function, that is, the power as a function of the true d0 for the test corresponding
to the null hypothesis H0 with d∗0 = 0.4 for Model 1 and d∗0 = 0.3 for Model 2 ,
data length N = 215 and significance level α = 0.05. Recall that the test is
based on the reduction principle. In particular, its definition only depends on
the the first term of the Hermite expansion of G. Hence we found it interesting to
compare the powers of the test procedure, computed for Model 1 and Model 2 ,
with the powers obtained with data generated by changing the function G of
each of these models into its first Hermite expansion term. So for Model 1 , we
compare the power function with the one obtained by directly applying the test
to (Hq0 (Xt))t=1,...,N , that is to (Xt)t=1,...,N and for Model 2 , we compare the
power function with the one obtained by applying the test to (H2(Xt))t=1,...,N .
In each case the data length is N = 215. The results are displayed in Figures 1
and 2. We also display some ROC curves in Figure 3 for Model 1 and Figure 4
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Fig 1. Rejection rates as a function of d0 for two data sets: (Xt)1≤t≤N (blue bottom
curve), Model 1 (red top curve), d∗

0
= 0.4, N = 215.
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Fig 2. Rejection rates as a function of d0 for two data sets: (H2(Xt))1≤t≤N (blue bottom
curve), Model 2 (red top curve), d∗

0
= 0.3, N = 215.
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Fig 3. ROC curves for Model 1 and d∗
0
= 0.4 for three data sets: d0 = 0.3 (blue top curve),

d0 = 0.325 (green middle curve), d0 = 0.35 (red bottom curve). N = 215.
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Fig 4. ROC curves for Model 2 and d∗
0
= 0.3 for three data sets: d0 = 0.15 (blue top curve),

d0 = 0.2 (green middle curve), d0 = 0.25 (red bottom curve). N = 215.

for Model 2 . The data length N also equals in each case 215. The higher the
curve the better. We see that, as expected, the power increases, as d0 goes
away from d∗0. Moreover, comparing red and blue plots, we see that the power
deteriorates when additional terms are added in the Hermite expansion of G.

8. Decomposition in Wiener chaos

As in [9] and [10], we need the expansion of the scalogram into Wiener chaos.
The wavelet coefficients can be expanded in the following way:

Wj,k =
∞∑

q=1

cq
q!
W

(q)
j,k , (8.1)

where W
(q)
j,k is a multiple integral of order q. Then, using the same convention

as in (2.19), we have

W2
j,k =

∞∑

q=1

(
cq
q!

)2 (
W

(q)
j,k

)2
+ 2

∞∑

q′=2

q′−1∑

q=1

cq
q!

cq′

q′!
W

(q)
j,kW

(q′)
j,k , (8.2)

where the convergence of the infinite sums hold in L1(Ω) sense.

Each W
(q)
j,k is a multiple integral and consequently so is Snj ,j in (2.18). (Basic

facts about Multiple integrals and Wiener chaos are recalled in Appendix A).
In Proposition 4.2 of [10], we gave the following explicit expression of the

Wiener chaos expansion of the scalogram.

Proposition 8.1. For all j, {Wj,k}k∈Z is a weakly stationary sequence. More-
over, for any j ∈ N, Snj ,j can be expanded into Wiener chaos as follows

Snj ,j =
1

nj

nj−1∑

k=0

W2
j,k − E[W2

j,0]



Large scale reduction principle and application to hypothesis testing 177

=

∞∑

q=1

(
cq
q!

)2 q−1∑

p=0

p!

(
q

p

)2

S
(q,q,p)
nj ,j

+ 2

∞∑

q′=2

q′−1∑

q=1

cq
q!

cq′

q′!

q∑

p=0

p!

(
q

p

)(
q′

p

)
S
(q,q′,p)
nj ,j

, (8.3)

where, for all q, q′ ≥ 1 and 0 ≤ p ≤ min(q, q′), S
(q,q′,p)
nj ,j

is of the form

S
(q,q′,p)
nj ,j

= Îq+q′−2p

(
g
(q,q′,p)
nj,j

)
, (8.4)

and where the infinite sums converge in the L1(Ω) sense. The function g
(q,q′,p)
nj ,j

(ξ),

ξ = (ξ1, . . . , ξq+q′−2p) ∈ Rq+q′−2p, in (8.4) is defined as follows:

g
(q,q′,p)
nj ,j

(ξ) = Dnj
(γj{ξ1 + · · ·+ ξq+q′−2p})×

∏q+q′−2p
i=1 [

√
f(ξi)1(−π,π)(ξi)]

× κ̂
(p)
j (ξ1 + · · ·+ ξq−p, ξq−p+1 + · · ·+ ξq+q′−2p),

(8.5)
where f denotes the spectral density of the underlying Gaussian process X and
for any integer n,

Dn(u) =
1

nj

nj−1∑

k=0

eiku =
1− einju

nj(1− eiu)
, (8.6)

denotes the normalized Dirichlet kernel, and for ξ1, ξ2 ∈ R, if p 6= 0,

κ̂
(p)
j (ξ1, ξ2) =

∫

(−π,π)p

(
p∏

i=1

f(λi)

)
ĥ
(K)
j (λ1 + · · ·+ λp + ξ1)

× ĥ
(K)
j (λ1 + · · ·+ λp − ξ2) d

pλ, (8.7)

and, if p = 0,

κ̂
(p)
j (ξ1, ξ2) = ĥ

(K)
j (ξ1)ĥ

(K)
j (ξ2). (8.8)

The random summand S
(q,q′,p)
nj ,j

is expressed in (8.4) as a Wiener–Itô integral

of order q + q′ − 2p and q + q′ − 2p will be called the order of S
(q,q′,p)
nj ,j

.

The limits involved in Theorem 3.1 are those given by the term S
(q0,q0,q0−1)
nj ,j

as proved in Propositions 5.3 and 5.4 of [10]. A sufficient condition to get the
reduction principle is that the other terms are negligible with respect to this
term. Theorem 3.2 is then a direct consequence of the following main result:

Theorem 8.2. Suppose that Assumptions A hold with M ≥ K + δ(q0), where
δ(·) is defined in (2.6) and that (3.5) holds. Define the centered multivariate
scalogram Sn,j related to Y by (2.16). Suppose that (γj) and (nj) are any di-
verging sequences of integers. Then Condition (3.6) implies, as j → ∞,

∥∥∥Snj ,j − S
(q0,q0,q0−1)
nj ,j

∥∥∥
2
≪ ‖S(q0,q0,q0−1)

nj ,j
‖2. (8.9)
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Proof. Theorem 8.2 is proved in Section 9.4.

Idea behind the proof of Theorem 8.2. One uses the expansion (8.3). The norms
of the relevant terms are bounded in Proposition 8.3. We then deduce bounds

for the difference ‖Snj ,j − S
(q0,q0,q0−1)
nj ,j

‖2 in Proposition 8.4. The main task in
the proof of Theorem 8.2 is to show that these bounds are negligible compared

to the leading term ‖S(q0,q0,q0−1)
nj ,j

‖2 whose asymptotic behavior is also given in
Proposition 8.4.

Our results are based on L2(Ω) upper bounds of the terms ‖S(q,q′,p)
nj ,j

‖2 es-

tablished in Proposition 5.1 of [10]. To recall this result, we introduce some
notations.

For any s ∈ Z+ and d ∈ (0, 1/2), set

Λs(a) =

s∏

i=1

(ai!)
1−2d, ∀a = (a1, . . . , as) ∈ N

s. (8.10)

For any q, q′, p ≥ 0, define α, β and β′ as follows:

α(q, q′, p) =

{
min (1− δ+(q − p)− δ+(q

′ − p), 1/2) if p 6= 0,
1
2 if p = 0,

(8.11)

β(q, p) = max (δ+(p) + δ+(q − p)− 1/2, 0) , (8.12)

β′(q, q′, p) = max (2δ+(p) + δ+(q − p) + δ+(q
′ − p)− 1,−1/2) . (8.13)

Notice that for any q ≥ 0, β(q, 0) = δ+(q) and that, by definition of β, β′, we
have, for all 0 ≤ p ≤ q ≤ q′, we have

β′(q, q′, p) ≤ β(q, p) + β(q′, p). (8.14)

Define the function ε on Z+ as

ε(p) =

{
0 if for any s ∈ {1, . . . , p}, s(1− 2d) 6= 1,

1 if for some s ∈ {1, . . . , p}, s(1− 2d) = 1.
(8.15)

We first recall Proposition 5.1 of [10] where Part (i) corresponds to p ≥ 1 and
Part (ii) to p = 0.

Proposition 8.3. Suppose that Assumptions A hold.

(i) There exists C > 0 such that for for all n, γj ≥ 2 and 1 ≤ q ≤ q′ and
1 ≤ p ≤ min(q, q′ − 1),

‖S(q,q′,p)
n,j ‖2 ≤ C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2γ2Kj

×[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ]

× (lognj)
ε(q+q′−2p)

(log γj)
3ε(q′).

(8.16)
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(ii) Assume that M ≥ K +max(δ+(q), δ+(q
′)). Then there exists some C > 0

such that for all n, γj ≥ 2 and 1 ≤ q ≤ q′,

‖S(q,q′,0)
nj,j

‖2 ≤ C
q+q′

2 Λ1(q)
1/2Λ1(q

′)1/2n
−1/2
j γ

2K+δ+(q)+δ+(q′)
j (log γj)

ε(q′)
.

(8.17)

Note that under Condition (3.5) we have ε(p) = 0 for all p ≥ 1 in (8.15).
Thus the logarithmic terms vanish in (8.16) and (8.17). Moreover, if p = 0 then
Λ2(q, 0) = Λ1(q), α(q, q

′, 0) = 1/2, β(q, 0) = δ+(q) and β′(q, q′, 0) = δ+(q) +
δ+(q

′). Therefore, if Condition (3.5) holds, the bounds (8.16) and (8.17) imply
the following common bound

‖S(q,q′,p)
n,j ‖2 ≤ C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2γ2Kj

× [n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ]. (8.18)

Consider now the decomposition

Snj ,j = S
(q0,q0,q0−1)
nj ,j

+
(
Snj ,j − S

(q0,q0,q0−1)
nj ,j

)
.

The following result provides the sharp rate of the first term and a bound on
the second one, relying on Wiener chaos decomposition (8.3).

Proposition 8.4. Assume that Assumptions A hold with M ≥ K + δ+(q0) and
suppose that Condition (3.5) holds. Let (nj) and (γj) be any diverging sequences.
Then, there exists a positive constant C such that, for all j ≥ 1,

∥∥∥Snj ,j − S
(q0,q0,q0−1)
nj ,j

∥∥∥
2

≤ C γ2Kj sup
(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ], (8.19)

where we denote

A0 = {(q, q′, p) : 1 ≤ q ≤ q′, 0 ≤ p ≤ min(q, q′−1), cq×cq′ 6= 0}\{(q0, q0, q0−1)}.
(8.20)

Moreover, the two following assertions hold:

(i) If q0 = 1, as j → ∞,

‖S(q0,q0,q0−1)
nj,j

‖2 = ‖S(1,1,0)
nj,j

‖2 ∼ C n
−1/2
j γ

2(d+K)
j , (8.21)

where C is a positive constant.
(ii) If q0 ≥ 2, as j → ∞,

‖S(q0,q0,q0−1)
nj,j

‖2 ∼ Cn−1+2d
j γ

2(δ(q0)+K)
j , (8.22)

where C is a positive constant.
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Proof. By Proposition 8.1 and (8.20), applying the Minkowski inequality, we
have

∥∥∥Snj ,j − S
(q0,q0,q0−1)
nj ,j

∥∥∥
2
≤ 2

∑

(q,q′,p)∈A0

|cq|
q!

|cq′ |
q′!

p!

(
q

p

)(
q′

p

)
‖S(q,q′,p)

nj ,j
‖2.

The bound (8.18) implies that

∑

(q,q′,p)∈A0

|cq|
q!

|cq′ |
q′!

p!

(
q

p

)(
q′

p

)
‖S(q,q′,p)

nj ,j
‖2

≤


 ∑

(q,q′,p)∈A0

|cq|
q!

|cq′ |
q′!

p!

(
q

p

)(
q′

p

)
C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2




× γ2Kj sup
(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ].

By Lemma 8.6 of [10], the last two displays yield (8.19).
We now prove (8.21) and (8.22). First consider the case where q0 = 1. This

asymptotic equivalence (8.21) is related to the convergence (3.1) and follows
from its proof, see e.g. [20]. Since q0 = 1, we have c1 6= 0. Moreover in Con-

dition (W-3) on the wavelet filters recalled in Appendix B, ĥℓ,∞ are functions
that are non-identically zero and which are continuous as locally uniform limits
of continuous functions. Therefore

∑
ℓ Γ

2
ℓ,ℓ > 0 and we get (8.21).

Now consider the case where q0 ≥ 2. The bound (8.22) is then related to
Theorem 3.2((b)) where the weak convergence is stated and follows from its
proof, see [11].

9. Proofs

9.1. Proof of Theorem 2.1

The generalized spectral density fG,K of Y is related to the spectral density fG
of G(X) by (1.5). By definition of d0, the result shall then follow if we prove
the existence of a bounded function f∗

G such that

fG(λ) = |1− e−iλ|−2δ(q0) f∗
G(λ), (9.1)

and satisfying all the properties stated in Theorem 2.1.
We now prove (9.1). To this end, we consider the following decomposition of

G(X) as the sum of two uncorrelated processes,

G(X) = G1(X) +G2(X) =:
∑

1≤q<1/(1−2d)

cq
q!
Hq(X) +

∑

q≥1/(1−2d)

cq
q!
Hq(X).

The proof of Proposition 6.2 in [9] shows that G2(X) admits a bounded spectral
density fG2

. We first consider the case where G1 reduces to the term cq0Hq0/q0!.
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Since the two processes Hq0(X) and G2(X) are uncorrelated, one has

fG(λ) =
c2q0
q0!

fHq0
(λ) + fG2

(λ).

We can then set

f∗
G(λ) =

c2q0
q0!

f∗
Hq0

(λ) + |1− e−iλ|2δ(q0)fG2
(λ).

Let us check f∗
G has the properties stated in the theorem. Relation (9.1) follows

from the definition of f∗
G and f∗

Hq0
. To prove the other properties stated in

Theorem 2.1, we distinguish the two cases q0 = 1 and q0 ≥ 2. If q0 = 1,
fHq0

= f , f∗
Hq0

= f∗ and then ζ ≤ β, one has

|f∗
Hq

(λ)− f∗
Hq

(0)| ≤ C|λ|ζ , (9.2)

for some C > 0. If q0 ≥ 2, Lemma 10.1 yields that there exists a bounded
function f∗

Hq0
such that

fHq
(λ) = |1− e−iλ|−2δ(q)f∗

Hq
(λ) (9.3)

Moreover for any ζ ∈ (0, 2δ(q)) such that ζ ≤ β, one has

|f∗
Hq

(λ)− f∗
Hq

(0)| ≤ C|λ|ζ , (9.4)

for some C > 0. In any case, the boundedness of fG2
and the properties of f∗

Hq0

(equation (9.2) if q0 = 1 or (9.3), (9.4) if q0 ≥ 2) then imply that (2.13) holds
in the case G1 = cq0Hq0/q0!, that is if δ+(q1) = 0.

We now deal with the case whereHq1 has also long memory, namely δ+(q1)> 0.
Since the terms Hq(X) for q < 1/(1−2d) are all pairwise uncorrelated, the spec-
tral density of long-range dependent part G1(X) reads as follows

fG1
(λ) =

∑

1≤q<1/(1−2d)

c2q
q!
fHq

(λ).

We now apply Equation (10.2) of Lemma 10.1 successively to each q < 1/(1−2d).
Hence

fG1
(λ) = |1− e−iλ|−2δ(q0)


 ∑

1≤q<1/(1−2d)

c2q
q!
|1− e−iλ|2δ(q0)−2δ(q)f∗

Hq
(λ)


 .

Since fG = fG1
+ fG2

, we then get (9.1) with

f∗
G(λ) =


 ∑

1≤q<1/(1−2d)

c2q
q!
|1− e−iλ|2δ(q0)−2δ(q)f∗

Hq
(λ)


 + |1− e−iλ|2δ(q0)fG2

(λ).
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Since |1 − e−iλ| = 0 for λ = 0, we have f∗
G(0) = c2q0f

∗
Hq0

(0)/q0!. We now prove

that under Condition (2.12) on ζ, we get (2.13). Indeed,

|f∗
G(λ) − f∗

G(0)| ≤
c2q0
q0!

|f∗
Hq0

(λ)− f∗
Hq0

(0)|

+


 ∑

q1≤q<1/(1−2d)

c2q
q!
|1− e−iλ|2δ(q0)−2δ(q)f∗

Hq
(λ)




+ |1− e−iλ|2δ(q0)fG2
(λ).

Using the boundedness of f∗
Hq

for any q ≥ q1, we deduce that for some C > 0
and any q ≥ q1,

|1− e−iλ|2δ(q0)−2δ(q)f∗
Hq

(λ) ≤ C|λ|2δ(q0)−2δ(q1), (9.5)

whereas by Lemma 10.1 applied with q = q0, we deduce that for any ζ ∈
(0, 2δ(q0)) such that ζ ≤ β, one has

|f∗
Hq0

(λ) − f∗
Hq0

(0)| ≤ L|λ|ζ . (9.6)

We now combine (9.5) and (9.6) and deduce that for any ζ ∈ (0, 2δ(q0)) such
that ζ ≤ min(β, 2δ(q0)− 2δ(q1)), one has

|f∗
G(λ)− f∗

G(0)| ≤ L′|λ|ζ , (9.7)

for some L′ > 0.

9.2. Proof of Theorem 2.2

The bound (2.22) follows the same lines as the proof of Proposition 8.4. It is a
consequence of Proposition 8.1, Proposition 8.3, Lemma 8.6 of [10] and of the
following bounds:

α(q, q′, p) ≥ 1/2− d and equality implies q′ = q + 1 and p = q,

β(q, p) ≤ δ(q0) and equality implies q = q0,

β′(q, q′, p) ≤ 2δ(q0) and equality implies q = q′ = q0.

The two first bounds follow from Lemma 8.3 in [10], and the last one from (8.14).
The equality cases are used to get rid of the logarithmic corrections appearing
in (8.16) and (8.17) since q′ = q + 1 and p = q imply ε(q + q′ − 2p) = ε(1) = 0
and q = q′ = q0 implies ε(q′) = ε(q0) = 0. This concludes the proof.

9.3. Proof of Proposition 4.1

We want to show we always have νc > 0. By definition of δ and δ+ in (2.6), we
have δ(q) ≤ δ(1) = d for all q ≥ 1, and since d > 0, δ+(q) ≤ d. With d < 1/2,
this implies that d + 1/2 − 2δ+(qℓ0) ≥ 1/2 − d > 0 and thus the third line of
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the definition of νc is positive. For the same reason, 1 − 2δ+(q1 − 1) ≥ 1 − 2d
and the fourth line of the definition of νc is positive. In addition, for any r ≥ 0,
2d + 1/2 − 2δ+(qℓr ) − δ(r + 1) ≥ 1/2 − d and δ(r + 1) < 1/2 so that, for any
r ∈ R,

2d+ 1/2− 2δ+(qℓr )− δ(r + 1)

δ(r + 1)
≥ 1− 2d > 0,

which ensures that the quantities inside the min are uniformly lower-bounded
by a positive value. Finally, for the last line, we separate the cases δ+(qℓ0) = 0
and δ+(qℓ0) = δ(qℓ0). In the first case, we have 4(δ(q0) − δ+(qℓ0)) = 4δ(q0) =
2− 2q0(1 − 2d) and so

4(δ(q0)− δ+(qℓ0))

1− 2d
= 2(1/(1− 2d)− q0) > 0,

as a consequence of (2.10). In the second case, we have 4(δ(q0) − δ+(qℓ0)) ≥
4(δ(q0)− δ(qℓ0)) = 2(qℓ0 − q0)(1− 2d) and so

4(δ(q0)− δ+(qℓ0))

1− 2d
≥ 2(qℓ0 − q0) ≥ 0,

which is non-negative by definition of qℓ0 . Hence the last line defining νc is at
least one, hence is positive, which concludes the proof.

9.4. Proof of Theorem 8.2

By Proposition 8.4, it is sufficient to show that the right-hand side of (8.19)
is negligible with respect to the right-hand side of (8.21) if q0 = 1 or to the
right-hand side of (8.22) if q0 ≥ 2, that is, respectively,

lim
j→∞

n
1/2
j γ−2d

j sup
(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] = 0, (9.8)

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] = 0.

(9.9)

We now distinguish the two cases q0 = 1, q0 ≥ 2.

9.4.1. Proof of Theorem 8.2 in the case q0 = 1

In this case, we need to show that Condition (3.6) implies (9.8).
By Lemma 8.3 (4) in [10], we have, for all 0 ≤ p ≤ q ≤ q′, β(q, p)+ β(q′, p) ≤

δ+(q) + δ+(q
′). We may thus write

sup
(q,q′,p)∈A0

γ
β(q,p)+β(q′,p)
j ≤ sup

(q,q′,p)∈A0

γ
δ+(q)+δ+(q′)
j

≤ γ
sup{δ+(q)+δ+(q′): 1≤q≤q′, (q,q′) 6=(1,1)}
j ,



184 M. Clausel et al.

since for q0 = 1, the triplet (q0, q0, q0 − 1) = (1, 1, 0) is excluded from A0. Using
Lemma 10.2, we obtain, as j → ∞,

sup
(q,q′,p)∈A0

n
−1/2
j γ

β(q,p)+β(q′,p)
j = o

(
n
−1/2
j γ2dj

)
. (9.10)

Inserting this in (9.8), we only need to show that (3.6) implies

lim
j→∞

n
1/2
j γ−2d

j sup
(q,q′,p)∈A0

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = 0. (9.11)

Observe that, by definition, α(q, q′, p) ≤ 1/2. We shall therefore partition A0

into A0 = A1 ∪ A2, where

A1 = {(q, q′, p) ∈ A0 : α(q, q′, p) = 1/2}
A2 = {(q, q′, p) ∈ A0 : α(q, q′, p) < 1/2}.

Since α(q, q′, p) = 1/2 for (q, q′, p) ∈ A1, we get with (8.14) that

sup
(q,q′,p)∈A1

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j ≤ sup

(q,q′,p)∈A0

n
−1/2
j γ

β(q,p)+β(q′,p)
j = o

(
n
−1/2
j γ2dj

)
,

as j → ∞ by (9.10).
IfA2 = ∅ we conclude that (9.11) holds. By Lemma 10.4, we note thatA2 = ∅

if and only if d ≤ 1/4 and I0 defined by (4.2) is an empty set. Hence, from now
on, we assume that A2 6= ∅, that is, either d ≤ 1/4 and I0 6= ∅, or d > 1/4. It
only remains to show that, under these conditions, (3.6) implies

lim
j→∞

n
1/2
j γ−2d

j sup
(q,q′,p)∈A2

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = 0. (9.12)

To compute the sup, we first optimize on p, then on q′, and finally on q.

Optimization on p By Lemma 10.3, if (q, q′, p) ∈ A2 for a given (q, q′), then
α(q, q′, p) is minimal and β′(q, q′, p) is maximal for the largest possible p, which
corresponds to p = q − 1 if q′ = q and to p = q if q′ > q. For such a p, we have,
if q = q′,

α(q, q′, p) = α(q, q, q − 1) = min(1 − 2d, 1/2),

and if q′ > q,
α(q, q′, p) = α(q, q′, q) = 1/2− δ+(q

′ − q).

Since being in A2 implies α(q, q′, p) < 1/2, we must have 1− 2d < 1/2 (that is
d > 1/4) if q = q′ and δ(q′ − q) > 0 if q′ > q. To separate the cases q = q′ and
q 6= q′, we define

A2,1 =

{
∅ if d ≤ 1/4,

{(q, q, q − 1) : q ≥ 2, cq 6= 0} if d > 1/4.

and
A2,2 = {(q, q′, q) : q′ > q ≥ 1, cqcq′ 6= 0, δ(q′ − q) > 0}.
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Note that in A2,1 we set q ≥ 2 to avoid (q, q, q − 1) = (1, 1, 0). Recall that the
indices of the non-zero coefficients cq are labeled as qℓ, see (4.1). Then

{(q, q, q − 1) : q ≥ 2, cq 6= 0} = {(qℓ, qℓ, qℓ − 1) : ℓ ∈ L, ℓ ≥ 1},

and, similarly,

A2,2 = {(qℓ, qℓ′ , qℓ) : ℓ, ℓ′ ∈ L, 0 ≤ ℓ < ℓ′, δ(qℓ′ − qℓ) > 0}.

Defining

Aj := sup
(ℓ,ℓ′)

n
−1/2+δ(qℓ′−qℓ)
j γ

β′(qℓ,qℓ′ ,qℓ)
j , (9.13)

where the supℓ,ℓ′ is taken over (ℓ, ℓ′) ∈ L2 such that ℓ < ℓ′ and δ(qℓ′ − qℓ) > 0,
and

Bj := sup
ℓ
γ
β′(qℓ,qℓ,qℓ−1)
j , (9.14)

where the supℓ is taken over all ℓ ∈ L such that ℓ ≥ 1, we thus obtain the two
following assertions.

• If d ≤ 1/4, the sup over A2 can be restricted to A22. This gives

sup
(q,q′,p)∈A2

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = Aj , (9.15)

• If d > 1/4, the sup over A2 has to be performed over A21 and A22. This
gives

sup
(q,q′,p)∈A2

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = max

(
n−1+2d
j Bj , Aj

)
. (9.16)

Optimization on q′ We only need to consider Aj since Bj corresponds to
q′ = q. For Aj , optimizing on q′ means optimizing on ℓ′ in the sup of (9.15).
We know from Lemma 10.3 that, for each ℓ, α(qℓ, qℓ′ , qℓ) is non-decreasing and
β′(qℓ, qℓ′ , qℓ) is non-increasing as ℓ′ increases, hence the supℓ,ℓ′ is achieved when
ℓ′ = ℓ+ 1 and thus α(qℓ, qℓ′ , qℓ) < 1/2 implies

Aj =




sup
ℓ∈Jd

n
−1/2+δ(qℓ+1−qℓ)
j γ

β′(qℓ,qℓ+1,qℓ)
j if Jd 6= ∅,

0 otherwise,
(9.17)

where Jd is defined in (4.8). When Jd = ∅, the sup in (9.13) is taken over the
empty set. We use the convention sup∅(. . . ) = 0.

Optimization on q We deal separately with the cases

(a) d ≤ 1/4.
(b) d > 1/4.
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The case (a) is the simplest since in (9.15), Bj does not appear. Recall also that
we have I0 6= ∅ in this case since we assumed A2 6= ∅. The optimization on q here
amounts to optimize Aj on ℓ in (9.17) in the case Jd 6= ∅. Observe that when
d ≤ 1/4, δ(r) = 0 for all r ≥ 2, see (2.6). Thus the condition δ(qℓ+1− qℓ) > 0 on
ℓ ∈ Jd is equivalent to qℓ+1 = qℓ + 1, in which case δ(qℓ+1 − qℓ) = δ(1) = d > 0
and Jd = I0. Hence,

Aj = sup
ℓ∈I0

n
−1/2+d
j γ

β′(qℓ,qℓ+1,qℓ)
j = sup

ℓ∈I0

n
−1/2+d
j γ

2δ+(qℓ)+d−1/2
j ,

where we used that β′(qℓ, qℓ+1, qℓ) = max(2δ+(qℓ)+d−1/2,−1/2) = 2δ+(qℓ)+
d − 1/2, see (8.13). This sup is achieved for the smallest ℓ since δ+ is non-
increasing. Recall that the smallest ℓ in I0 is denoted by ℓ0 in (4.3), thus,

Aj = n
−1/2+d
j γ

2δ+(qℓ0 )+d−1/2

j .

Now, we note that in case (a) with q0 = 1, νc in Definition 4.1 takes value

νc =
d+ 1/2− 2δ+(qℓ0)

d
.

Hence Condition (3.6) implies

n
1/2
j γ−2d

j Aj = nd
jγ

2δ+(qℓ0)−d−1/2

j = o(1).

With (9.15), we obtain (9.12) and case (a) is complete.
We now turn to the case (b), that is, we assume now that d > 1/4 and

show that (9.12) holds under Condition (3.6). Optimizing Bj on q amounts to
optimizing the sup in (9.14) on ℓ ∈ L with ℓ ≥ 1. Note that β′(qℓ, qℓ, qℓ − 1) =
max(2δ+(qℓ − 1)+ 2d− 1,−1/2) = 2δ+(qℓ − 1)+ 2d− 1 which is non-increasing
as ℓ increases. Hence the sup in (9.14) is achieved for ℓ = 1 and thus

Bj = γ
2δ+(q1−1)+2d−1
j . (9.18)

Note that in this case νc in Definition 4.1 takes value

νc =





1−2δ+(q1−1)
2d−1/2 if Jd = ∅,

min

(
1−2δ+(q1−1)

2d−1/2 ,min
r∈R

(
2d+ 1/2− 2δ+(qℓr )− δ(r + 1)

δ(r + 1)

))
if Jd 6= ∅.

(9.19)
In both cases, we have νc ≤ (1−2δ+(q1−1))/(2d−1/2), and thus Condition (3.6)
implies, as j → ∞,

γ−2d
j n

−1/2+2d
j Bj = n

−1/2+2d
j γ

2δ+(q1−1)−1
j = o(1).

If Jd = ∅ so that Aj = 0 in (9.17), we thus obtain with (9.16) that (3.6)
implies (9.12). Similarly, if Jd 6= ∅, which we now assume, it only remains to
prove that (3.6) implies

lim
j→∞

n
1/2
j γ−2d

j Aj = 0. (9.20)
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Using (9.17) and that β′(qℓ, qℓ+1, qℓ) = max(2δ+(qℓ) + 1/2 + δ(qℓ+1 − qℓ) −
1, 1/2) = 2δ+(qℓ) + δ(qℓ+1 − qℓ)− 1/2, we have

Aj = sup
ℓ∈Jd

n
−1/2+δ(qℓ+1−qℓ)
j γ

2δ+(qℓ)+δ(qℓ+1−qℓ)−1/2
j . (9.21)

Optimizing on q here means optimizing this sup on ℓ ∈ Jd. To do so, we partition
Jd as in (4.9) and, by the definition of Ir in (4.4), we have, for all ℓ ∈ Ir,

n
−1/2+δ(qℓ+1−qℓ)
j γ

2δ+(qℓ)+δ(qℓ+1−qℓ)−1/2
j = n

−1/2+δ(r+1)
j γ

2δ+(qℓ)+δ(r+1)−1/2
j .

Since δ is non-increasing, we get with Definition (4.5) that, for all r ∈ R,

sup
ℓ∈Ir

n
−1/2+δ(qℓ+1−qℓ)
j γ

2δ+(qℓ)+δ(qℓ+1−qℓ)−1/2
j = n

−1/2+δ(r+1)
j γ

2δ+(qℓr )+δ(r+1)−1/2
j .

Hence, by (9.21) and (4.9), we get that

n
1/2
j γ−2d

j Aj = max
r∈R

n
δ(r+1)
j γ

2δ+(qℓr )+δ(r+1)−1/2−2d
j .

Now, since we are in the case Jd 6= ∅, νc in (9.19) satisfies νc ≤ (2d + 1/2 −
2δ+(qℓr ) − δ(r + 1))/(δ(r + 1)) for all r ∈ R and recalling that R is a finite
set (see (4.7)), we see that (3.6) implies (9.20). The proof of the case q0 = 1 is
concluded.

9.4.2. Proof of Theorem 8.2 in the case q0 ≥ 2

In this case, we need to show that (3.6) implies (9.9).
Recall that in Assumptions A include Condition (2.10) and thus q0 ≥ 2

implies d > 1/4. Hence we have 1 − 2d < 1/2 and since moreover for all q′ ≥
q ≥ q0 and 0 ≤ p ≤ q, we have β(q, p) + β(q′, p) ≤ 2δ+(q0) = 2δ(q0), we obtain
that

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈A0

n
−1/2
j γ

β(q,p)+β(q′,p)
j = 0.

This correspond to the second term between brackets in (9.9) and we thus only
need to prove that (3.6) implies

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈A0

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = 0. (9.22)

Let us partition A0 into A0 = ∪5
i=1Ai, where

A1 = {(q, q′, p) ∈ A0, q = q′ = q0},
A2 = {(q, q, p) ∈ A0, q = q′ > q0},
A3 = {(q, q′, p) ∈ A0, q

′ ≥ q + 2},
A4 = {(q, q′, p) ∈ A0, q

′ = q + 1, p ≤ q − 1},
A5 = {(q, q′, p) ∈ A0, q = p, q′ = q + 1}.

We shall prove that for i = 1, 2, 3, 4,

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈Ai

n
−α(q,q′,p)
j γ

β(q,p)+β(q′,p)
j = 0, (9.23)
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and that, when I0 defined as in (4.2) is not empty, (3.6) implies

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

ℓ∈I0

n
−α(qℓ,qℓ+1,qℓ)
j γ

β′(qℓ,qℓ+1,qℓ)
j = 0. (9.24)

Since β′(q, q′, p) ≤ β(q, p)+β(q′, p) and A5 = {(qℓ, qℓ+1, qℓ) : ℓ ∈ I0}, we indeed
have that (9.23) and (9.24) imply (9.22) and the proof will be concluded.

The limit (9.23) can be deduced for i = 1, . . . , 4 from Lemma 8.3 of [10].
More precisely this lemma implies the following facts (recall that d > 1/4).

1. For all p = 0, . . . , q0 − 2, we have α(q0, q0, p) > 1 − 2d and 2β(q0, p) ≤
2δ(q0), which implies (9.23) for i = 1 since (q0, q0, q0− 1) is excluded from
A0.

2. For all q ≥ q0 + 1 and p = 0, . . . , q − 1, we have α(q, q, p) ≥ 1 − 2d and
2β(q, p) ≤ 2δ+(q0 + 1) < 2δ(q0), which implies (9.23) for i = 2.

3. For q ≥ q0, q
′ ≥ q + 2 and p = 0, . . . , q, we have α(q, q′, p) ≥ 1 − 2d and

β(q, p) + β(q′, p) ≤ δ+(q0) + δ+(q0 + 2) < 2δ(q0), which implies (9.23) for
i = 3.

4. For q ≥ q0 and p = 0, . . . , q − 1, we have α(q, q + 1, p) ≥ min(3/2(1 −
2d), 1/2) > 1− 2d and β(q, p) + β(q + 1, p) ≤ δ+(q0 + 1) + δ(q0) < 2δ(q0),
which implies (9.23) for i = 4.

Hence we obtain that (9.23) is valid for i = 1, . . . , 4. If I0 is empty, the proof
is concluded. We now assume that I0 is not empty, so that ℓ0 is finite, and it
only remains to show that Condition (3.6) implies (9.24). Observe that, for any
q ≥ q0, we have α(q, q + 1, q) = 1/2− d and β′(q, q+ 1, q) = 2δ+(q) + d− 1/2 is
non–increasing as q increases. Hence over ℓ ∈ I0, α(qℓ, qℓ+1, qℓ) is constant and
β′(qℓ, qℓ + 1, qℓ) is maximal at ℓ = ℓ0, where it takes value 2δ+(qℓ0) + d − 1/2.
We conclude that

n1−2d
j γ

−2δ(q0)
j sup

ℓ∈I0

n
−α(qℓ,qℓ+1,qℓ)
j γ

β′(qℓ,qℓ+1,qℓ)
j = n

1/2−d
j γ

d−1/2−2(δ(q0)−δ+(qℓ0 ))

j .

Note that in this case νc in Definition 4.1 takes value

νc = 1 +
4(δ(q0)− δ+(qℓ0))

1− 2d
.

Thus Condition (3.6) implies (9.24) and the proof is finished.

9.5. Proof of Theorem 6.2

The fact that the test δs is consistent follows directly from the consistency
statement in Theorem 6.1 and the fact that (uN ) is diverging.

To show that the test δs has asymptotic confidence level α, it suffices to show
that when d0 = d∗0 (null hypothesis), we have

uN(d̂0 − d0)
(L)→ U. (9.25)
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We first observe that under the conditions on j = (jN ) of the theorem, the

convergence (6.10) involving d̃0 holds, see [11].
The computations of Section 5 in [11] allows us to specify (6.9) as

d̂0 − d0 = L(2−2d0jSnj ,j) + oP
(
2−2d0jSnj ,j

)
+O(2−ζj),

where L is the linear form

L(z1, . . . , zp) =

p∑

i=1

wi2
−2d0izi,

where the weights (wi) have been defined in Section 6.1. The same linearization

holds for d̃0 − d0 with Snj ,j replaced by S
(q0,q0,q0−1)
nj ,j

, so by subtracting, we get

d̂0 − d0 = d̃0 − d0 + 2−2d0j
[
OP

(∣∣∣Snj ,j − S
(q0,q0,q0−1)
nj ,j

∣∣∣
)
+ oP

(∣∣∣S(q0,q0,q0−1)
nj ,j

∣∣∣
)]

+O(2−ζj). (9.26)

Using (6.13), which corresponds to (3.6) under H0, we can apply Theorem 8.2
so that

Snj ,j − S
(q0,q0,q0−1)
nj ,j

= oP

(∥∥∥S(q0,q0,q0−1)
nj ,j

∥∥∥
2

)
.

With (9.26), we get

d̂0 − d0 = d̃0 − d0 + oP

(
2−2d0j

∥∥∥S(q0,q0,q0−1)
nj ,j

∥∥∥
2

)
+O(2−ζj).

Since uN(d̃0 − d0) converges in distribution, it remains to check that

uN‖S(q0,q0,q0−1)
nj ,j

‖2 = O(1) and uN2−ζj = o(1). By the definition of uN in (6.10)

and since γj = 2j, d0 = K + δ(q0) and δ(1) = d, the asymptotic equiva-
lences (8.21) and (8.22) in Proposition 8.4 can be written as

‖S(q0,q0,q0−1)
nj,j

‖2 ∼ C u−1
N 22d0j .

The bound un‖S(q0,q0,q0−1)
nj,j

‖2 = O(1) follows under H0. Finally the bound

uN2−ζj = o(1) follows from the bias negligibility condition (6.14). Hence we
get (9.25), which concludes the proof.

10. Technical lemmas

The next lemma give an explicit expression of the spectral density of Hq(X) for
q < 1/(1 − 2d) and is a refined version of Lemma 4.1 in [9]. It is used in the
proof of Theorem 2.1.

Lemma 10.1. Let q be a positive integer greater than 2. The spectral density
of {Hq(Xℓ)}ℓ∈Z is

fHq
:= q!(f ⋆ · · · ⋆ f), (10.1)
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where f denotes the spectral density of X = {Xℓ}ℓ∈Z. Moreover if in addition
q < 1/(1− 2d) the function f∗

Hq
in

fHq
(λ) = |1− e−iλ|−2δ(q)f∗

Hq
(λ). (10.2)

is bounded on λ ∈ (−π, π) and for any ζ ∈ (0, 2δ(q)) such that ζ ≤ β, where β
has been defined in (1.2), one has

|f∗
Hq

(λ) − f∗
Hq

(0)| ≤ L|λ|ζ , (10.3)

for some L > 0.

Proof. The explicit expression (10.1) of fHq
has already been given in Lemma 4.1

in [9]. Moreover in the same lemma, we also already showed that f∗
Hq

defined

by (10.2) is a bounded function. We then only need to prove that (10.3) holds
for some L > 0. We prove the result by induction on q.

Assume first that q = 2. By assumption on f∗ and definition of β, we know
that for some C > 0 and any ζ ≤ β

|f∗(λ)− f∗(0)| ≤ C|λ|ζ . (10.4)

Since fH2
= 2f ∗ f , we then apply the second part of Lemma 8.2 of [9], with

β1 = β2 = 2d, g∗1 = g∗2 = f∗ (using the notations of that lemma). We see
that Condition (66) of Lemma 8.2 of [9] is satisfied provided that ζ ≤ β and
ζ < β1 + β2 − 1 = 2d + 2d − 1 = 2δ(2) (which are necessary conditions of the
lemma). Hence for some L > 0, one has

|f∗
H2

(λ) − f∗
H2

(0)| ≤ L|λ|ζ .

If we now assume that q > 2, we can also apply the second part of Lemma 8.2
of [9], with β1 = 2δ(q− 1), β2 = 2d, g∗1 = f∗

Hq−1
and g∗2 = f∗ which allows us to

proceed by induction.

Lemmas 10.2 to 10.4 are used in the proof of Theorem 8.2.

Lemma 10.2. Let δ+ be the exponent defined in (2.6). One has

sup
{
δ+(q) + δ+(q′) : 1 ≤ q ≤ q′, (q, q′) 6= (1, 1)

}
< 2d. (10.5)

Proof. For any (q, q′) in the considered set, one has q ≥ 1 and q′ ≥ 2. Since δ+
is non-increasing, we get δ+(q)+ δ+(q′) ≤ δ+(1)+ δ+(2) = d+(2d−1/2)+ < 2d
since d < 1/2. Lemma 10.2 follows.

Lemma 10.3. Let α(q, q′, p) and β′(q, q′, p) be the exponents defined in (8.11)
and (8.13) respectively, for 0 ≤ p ≤ q ≤ q′. Then the following facts hold:

(i) α(q, q′, p) is non-decreasing as q or q′ increases and is non-increasing as
p increases.

(ii) β′(q, q′, p) is non-increasing as q or q′ increases.
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(iii) On the set {(q, q′, p) : 0 ≤ p ≤ q ≤ q′, α(q, q′, p) < 1/2}, β′(q, q′, p) is
non-decreasing as p increases.

Proof. The facts (i) and (ii) directly follow by observing that δ+ is a non-
increasing function. Now suppose that α(q, q′, p) < 1/2. It follows that p 6= 0
and δ+(q−p) > 0 and δ+(q

′−p) > 0 since otherwise δ+(q−p)+δ+(q′−p) ≤ 1/2
which implies α(q, q′, p) = 1/2 in the case p 6= 0. Now, when δ+(q − p) > 0 and
δ+(q

′ − p) > 0, we have in the definition of β′ that

β′(q, q′, p) =

{
max(δ(q − p) + δ(q′ − p)− 1,−1/2) if δ+(p) = 0

max(δ(q) + δ(q′),−1/2) if δ+(p) > 0.

The second line comes from the fact that 2δ(p) + δ(q − p) + δ(q′ − p) − 1 =
δ(q) + δ(q′). Now it is clear that β′(q, q′, p) is non-decreasing as p increases.

Lemma 10.4. Let α(q, q′, p) be the exponent defined in (8.11) for 0 ≤ p ≤
q ≤ q′. Then we have α(q, q′, p) ∈ (0, 1/2] and the three following assertions
hold:

(i) For any q ≥ 1, α(q, q + 1, q) = 1/2− d < 1/2.
(ii) If d ≤ 1/4, then for all 1 ≤ q ≤ q′ and 0 ≤ p ≤ min(q, q′ − 1) such that

q′ 6= q + 1, we have α(q, q′, p) = 1/2.
(iii) If d > 1/4, then for all q ≥ 2, α(q, q, q − 1) = 1− 2d < 1/2.

Proof. Assertion (i) follows by applying (8.11), since δ+(0) = 1/2 and δ+(1) = d.
Suppose that d ≤ 1/4. If p = 0, α(q, q′, p) = 1/2 for any q, q′ by (8.11). Let

now p ≥ 1. Let (q, q′) be such that 1 ≤ q ≤ q′, 0 ≤ p ≤ min(q, q′ − 1) and
q′ 6= q+1. Then either q = q′ ≥ p+1 (first case) or q′ ≥ q+2 and q ≥ p (second
case). Then by Lemma 10.3(i), we have in the first case

α(q, q, p) ≥ α(p+ 1, p+ 1, p) = min(1− 2d, 1/2) = 1/2,

since d ≤ 1/4. In the second case, Lemma 10.3 (i) implies

α(q, q′, p) ≥ α(p, p+ 2, p) = min(1/2− δ+(2), 1/2) = 1/2,

since d ≤ 1/4 implies δ+(2) = 0. This proves Assertion (ii).
To obtain Assertion (iii), we remark that

α(q, q, q − 1) = min(1 − 2d, 1/2) = 1− 2d < 1/2,

since d > 1/4.

Lemma 10.5. Consider a sequence {qℓ, ℓ ∈ L} with L a set of consecutive
integers starting at 0. Let νc(d) be as in Definition 4.1 for all d ∈ (1/2(1 −
1/q0), 1/2), so that (2.10) holds. Then the following assertions hold:

(i) If q0 = 1, νc(d) is non-increasing as d increases.
(ii) If q0 ≥ 2, νc(d) is non-decreasing as d increases.
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Proof. We first consider the case q0 ≥ 2. In this case, either I0 = ∅ and νc(d) =
∞, or I0 6= ∅ and νc is a continuous function taking values

νc(d) =




1 +

4(δ(q0)−δ(qℓ0 ))

1−2d = 1 + 2(qℓ0 − q0) if δ(qℓ0) > 0,

1 + 4δ(q0)
1−2d = 1− 2q0 + 2/(1− 2d) otherwise.

Hence we obtain (ii).
We now consider the case q0 = 1. In this case, with the convention a/0 = ∞

for a > 0 the following formula can be applied in all cases:

νc(d) = min

(
1− 2δ+(q1 − 1)

δ+(2)
,
2d+ 1/2− 2δ+(qℓr )− δ(r + 1)

δ(r + 1)
: r ∈ R

)

This comes from the fact that if d ≤ 1/4, we have δ+(2) = 0 and R ⊂ {0} with
equality if and only if I0 6= ∅. Let us denote

R̃ = {1 + qℓ+1 − qℓ : ℓ ∈ L} ,

so that R = R̃ ∩ {r : δ(r + 1) > 0}. Since 2d + 1/2 − 2δ+(qℓr ) − δ(r + 1) =
2(d− δ+(qℓr))+ (1/2− δ(r+1)) > 0 we get using the same convention as above
that

νc(d) = min

(
1− 2δ+(q1 − 1)

δ+(2)
,
2d+ 1/2− 2δ+(qℓr )− δ(r + 1)

δ+(r + 1)
: r ∈ R̃

)
,

where now the set R̃ does not depend on d. To prove (i), we thus only need to
show the following two assertions (setting q = q1 − 1 and then p = r + 1 and
q = qℓr).

(a) For any given positive integer q, (1− 2δ+(q))/δ+(2) is non-increasing as d
increases,

(b) For any given positive integers p and q, µ(d) := (2d + 1/2 − 2δ+(q) −
δ(p))/δ+(p) is non-increasing as d increases.

Assertion (a) follows from the fact that δ(q) is increasing with d for any given
q ≥ 1. Finally, we need to prove Assertion (b). Take some integers p, q ≥ 1 and
denote µ(d) as in (b). If δ+(p) = 0, which is equivalent to d ≤ 1/2(1 − 1/p),
µ(d) = ∞. Now µ(d) is continuous over d > 1/2(1− 1/p) and takes value

µ(d) = min

(
1/2 + 2d

dp+ (p− 1)/2
,
1/2 + (q − 1)(1− 2d)

dp+ (p− 1)/2

)
.

Since the two arguments in the min are decreasing functions of d over d >
1/2(1−1/p), we conclude that (b) holds. The proof of the lemma is achieved.

Appendix A: Integral representations

It is convenient to use an integral representation in the spectral domain to rep-
resent the random processes (see for example [19, 21]). The stationary Gaussian
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process {Xk, k ∈ Z} with spectral density (1.3) can be written as

Xℓ =

∫ π

−π

eiλℓf1/2(λ)dŴ (λ) =

∫ π

−π

eiλℓf∗1/2(λ)

|1− e−iλ|d dŴ (λ), ℓ ∈ N. (A.1)

This is a special case of

Î(g) =

∫

R

g(x)dŴ (x), (A.2)

where Ŵ (·) is a complex–valued Gaussian random measure satisfying, for any

Borel sets A and B in R, E(Ŵ (A)) = 0, E(Ŵ (A)Ŵ (B)) = |A ∩B| and

Ŵ (A) = Ŵ (−A).

The integral (A.2) is defined for any function g ∈ L2(R) and one has the isometry

E(|Î(g)|2) =
∫

R

|g(x)|2dx.

The integral Î(g), moreover, is real–valued if

g(x) = g(−x).

We shall also consider multiple Itô–Wiener integrals

Îq(g) =

∫ ′′

Rq

g(λ1, . . . , λq)dŴ (λ1) · · · dŴ (λq)

where the double prime indicates that one does not integrate on hyperdiagonals
λi = ±λj , i 6= j. The integrals Îq(g) are handy because we will be able to expand
our non–linear functions G(Xk) introduced in Section 1 in multiple integrals of
this type.

These multiples integrals are defined for g ∈ L2(Rq,C), the space of complex
valued functions defined on Rq satisfying

g(−x1, . . . ,−xq) = g(x1, . . . , xq) for (x1, . . . , xq) ∈ R
q, (A.3)

‖g‖2L2 :=

∫

Rq

|g(x1, . . . , xq)|2 dx1 · · · dxq <∞. (A.4)

Hermite polynomials are related to multiple integrals as follows: if X =∫
R
g(x)dŴ (x) with E(X2) =

∫
R
|g(x)|2dx = 1 and g(x) = g(−x) so that X

has unit variance and is real–valued, then

Hq(X) = Îq(g
⊗q) =

∫ ′′

Rq

g(x1) · · · g(xq)dŴ (x1) · · · dŴ (xq). (A.5)
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Appendix B: The wavelet filters

The sequence {Yt}t∈Z can be formally expressed as

Yt = ∆−KG(Xt), t ∈ Z.

The study of the asymptotic behavior of the scalogram of {Yt}t∈Z at differ-
ent scales involve multidimensional wavelets coefficients of {G(Xt)}t∈Z and of
{Yt}t∈Z. To obtain them, one applies a multidimensional linear filter hj(τ), τ ∈
Z = (hj,ℓ(τ)), at each scale index j ≥ 0. We shall characterize below the multi-
dimensional filters hj(τ) by their discrete Fourier transform:

ĥj(λ) =
∑

τ∈Z

hj(τ)e
−iλτ , λ ∈ [−π, π], hj(τ) =

1

2π

∫ π

−π

ĥj(λ)e
iλτdλ, τ ∈ Z.

(B.1)
The resulting wavelet coefficients Wj,k, where j is the scale index and k the
location are defined as

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KG(Xt), j ≥ 0, k ∈ Z, (B.2)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale
index j, for example γj = 2j . We do not assume that the wavelet coefficients
are orthogonal nor that they are generated by a multiresolution analysis. Our
assumption on the filters hj = (hj,ℓ) are as follows:

(W-1) Finite support: For each ℓ and j, {hj,ℓ(τ)}τ∈Z has finite support. Further
there exists some A > 0 such that for any j and any ℓ one has

supp(hj,ℓ) ⊂ γj [−A,A]. (B.3)

(W-2) Uniform smoothness: There exists M ≥ K, α > 1 and C > 0 such that
for all j ≥ 0 and λ ∈ [−π, π],

|ĥj(λ)| ≤
Cγ

1/2
j |γjλ|M

(1 + γj |λ|)α+M
. (B.4)

By 2π-periodicity of ĥj this inequality can be extended to λ ∈ R as

|ĥj(λ)| ≤ C
γ
1/2
j |γj{λ}|M

(1 + γj |{λ}|)α+M
. (B.5)

where {λ} denotes the element of (−π, π] such that λ− {λ} ∈ 2πZ.
(W-3) Asymptotic behavior: There exists a sequence of phase functions Φj :

R → (−π, π] and some non identically zero function ĥ∞ such that

lim
j→+∞

(γ
−1/2
j ĥj(γ

−1
j λ)) = ĥ∞(λ), (B.6)

locally uniformly on λ ∈ R.
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In (W-3) locally uniformly means that for all compact K ⊂ R,

sup
λ∈K

∣∣∣γ−1/2
j ĥj(γ

−1
j λ)eiΦj(λ) − ĥ∞(λ)

∣∣∣→ 0.

It implies in particular that ĥ∞ is continuous over R.
A more convenient way to express the wavelet coefficients Wj,k than in (B.2)

is to incorporate the linear filter ∆−K into the filter hj and denote the resulting

filter h
(K)
j . Then

Wj,k =
∑

t∈Z

h
(K)
j (γjk − t)G(Xt), (B.7)

where
ĥ
(K)
j (λ) = (1− e−iλ)−K ĥj(λ) (B.8)

is the discrete Fourier transform of h
(K)
j , see [10] for more details.

Appendix C: The multiscale wavelet inference setting

We state here two theorems that are used in Section 6 to derive statistical prop-
erties of the estimator of the memory parameter d0. This parameter is obtained
from univariate multiscale wavelet filters gj. Since, Theorem 3.2 applies to mul-
tivariate filters hj which define the multivariate scalogram Sn,j, we explain in
this appendix the connection between these two perspectives.

We first give some details about the definition of the estimator of the mem-
ory parameter. We use dyadic scales here, as in the standard wavelet analysis
described in [20], where the univariate wavelet coefficients are defined as

Wj,k =
∑

t∈Z

gj(2
jk − t)Yt, (C.1)

which corresponds to (2.14) with γj = 2j and with (gj) denoting a sequence of
filters that satisfies (W-1)–(W-3) with m = 1. In the case of a multiresolution
analysis, gj can be deduced from the associated mirror filters.

The number nj of wavelet coefficients available at scale j, is related both to
the number N of observations Y1, . . . , YN of the time series Y and to the length
T of the support of the wavelet ψ. More precisely, one has

nj = [2−j(N − T + 1)− T + 1] = 2−jN + 0(1), (C.2)

where [x] denotes the integer part of x for any real x. Details about the above
facts can be found in [20, 24].

The univariate scalogram is an empirical measure of the distribution of “en-
ergy of the signal” along scales, based on the N observations Y1, . . . , YN . It is
defined as

σ̂2
j =

1

nj

nj−1∑

k=0

W 2
j,k, j ≥ 0, (C.3)
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and is identical to Snj ,j defined in (2.15). The wavelet spectrum is defined as

σ2
j = E[σ̂2

j ] = E[W 2
j,k] for all k, (C.4)

where the last equality holds for M ≥ K since in this case {Wj,k, k ∈ Z} is
weakly stationary.

To define our wavelet estimator of the memory parameter d0, we are given
some positive weights w0, . . . , wp such that

p∑

i=0

wi = 0 and

p∑

i=0

iwi =
1

2 log(2)
.

We then set

d̂0 =

p∑

i=0

wi log(σ̂j+i). (C.5)

To derive statistical properties of this estimator, we apply Theorem 3.2 using
a sequence of multivariate filters (hj)j≥0 related to the family of univariate
filters gj in a way indicated below.

We first give an example and consider the case p = 1. To investigate the
asymptotic properties of d̂0, we then have to study the joint behavior of Wj−u,k

for u = 0, 1. Recall that j − 1 is a finer scale than j. Following the frame-
work of [24], we consider the multivariate coefficients Wj,k = (Wj,k, Wj−1,2k,
Wj−1,2k+1), since, in addition to the wavelet coefficients Wj,k at scale j, there
are twice as many wavelet coefficients at scale j − 1, the additional coeffi-
cients beingWj−1,2k, Wj−1,2k+1. These coefficients can be viewed in this case as
the output of a three-dimensional filter hj defined as hj(τ) = (gj(τ), gj−1(τ),
gj−1(τ + 2j−1)). These three entries correspond to (u, v) below equal to (0, 0),
(1, 0) and (1, 1), respectively, in the general case below.

In the general case, each hj is defined as follows. For all, j ≥ 0, u ∈ {0, . . . , j}
and v ∈ {0, . . . , 2u − 1}, let ℓ = 2u + v and define a filter hℓ,j by

hℓ,j(t) = gj−u(t+ 2j−uv), t ∈ Z. (C.6)

Applying this definition and (C.1) with γj = 2j, we get

Wj−u,2uk+v =
∑

t∈Z

hℓ,j(2
jk − t)Yt.

These coefficients are stored in a vector Wj,k = [Wℓ,j,k]ℓ, say of length m =
2p − 1,

Wℓ,j,k =Wj−u,2uk+v, ℓ = 2u + v = 1, 2, . . . ,m, (C.7)

which corresponds to the multivariate wavelet coefficient (2.17) with hj(t) hav-
ing components hℓ,j(t), ℓ = 1, 2, . . . ,m defined by (C.6). This way of proceeding
allows us to express the vector [σ̂2

j−u−σ2
j−u]u=0,...,p−1 as a linear function of the

vector Snj ,j defined by (2.16), up to a negligible term. We can then deduce, as
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in Section 6, the asymptotic behavior of d̂0 of the multivariate scalogram Snj ,j

using (C.5).
We now indicate the asymptotic behavior of the univariate multiscale scalo-

gram in the case G = Hq0 since it will be needed in Section 6. We state the
results separately for q0 = 1 and for q0 ≥ 2.

We first consider the case q0 = 1:

Theorem C.1. Suppose G = Hq0 with q0 = 1 and that Assumptions A(i), (ii)
in Section 2 hold. Set γj = 2j and let {(gj)j≥0, g∞} be a sequence of univariate
filters satisfying (W-1)–(W-3) with m = 1 and M ≥ d+K. Then, as j → ∞,

σ2
j ∼ f∗(0)L1(ĝ∞) 22j(d+K), (C.8)

where L1 has been defined in (3.4). Let now j = j(N) be an increasing sequence
such that j → ∞ and N2−j → ∞. Define nj, σ̂

2
j and σ2

j as in (C.2), (C.3)
and (C.4), respectively. Then, as N → ∞,

{
n
1/2
j

(
σ̂2
j−u

σ2
j−u

− 1

)}

u≥0

fidi−→
{
Q(d)

u

}
u≥0

, (C.9)

where Q(d) denotes a centered Gaussian process with covariance function

Cov(Q(d)
u , Q

(d)
u′ ) =

4π 22(d+K)|u′−u|−max(u,u′)

L1(ĝ∞)2

∫ π

−π

|D∞,u−u′(λ)|2dλ, (C.10)

with for all m ∈ Z and λ ∈ (−π, π),

D∞,m(λ) =
∑

ℓ∈Z

|λ+ 2πℓ|−2(d+K)em(λ+ 2πℓ)ĝ∞(λ+ 2πℓ)ĝ∞(2−m(λ+ 2πℓ)),

and
em(ξ) = 2−m/2[e−i2−mvξ, v = 0, . . . , 2m − 1]T .

Proof. We first observe that the proof of formula (4.5) in Theorem 4.1 of [11]
remains valid in the case q0 = 1. This yields (C.8).

We now prove the convergence (C.9). To do so we adapt the corresponding
proof of Theorem 4.1 of [11] done for q0 ≥ 2. From [11] (see equality (9.5)), we
have

σ̂2
j−u − σ2

j−u =
nj

nj−u

2u−1∑

v=0

Snj ,j(2
u + v) +OP (σ

2
j−u/nj−u), u = 0, . . . , p− 1,

where we denoted the entries of the multivariate scalogram Snj ,j in (2.16) as

[Snj ,j(ℓ)]ℓ=1,...,m. In addition, we also proved in Section 9 of [11] that the multi-
variate filters hj(t) involved in the definition of the multivariate wavelet coeffi-
cients, defined by (C.6), satisfy the assumptions of Theorem 3.2 of [11]. We can
then apply Theorem 3.2(a) of [11] which provides the asymptotic behavior of
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the multivariate scalogram Snj ,j. Using the equality (9.6) of [11] relating ĥℓ,∞
and ĝ∞ as,

ĥℓ,∞(λ) = 2−u/2ĝ∞(2−uλ)ei2
−uvλ,

we then deduce that as j → ∞,
{
n
1/2
j 2−2(j−u)(d+K)Snj ,j(2

u + v)
}
u,v

(L)−→ N (0, Γ̃),

where (we denote λp = λ+ 2pπ),

Γ̃(u,v),(u′,v′) = 22(u+u′)(d+K)Γ2u+v,2u′+v

= 4π(f∗(0))2 22(u+u′)(d+K− 1
2
)

×
∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

|λp|−2(K+d)ĝ∞(2−uλp)ĝ∞(2−u′

λp)e
i(2−uv−2−u′

v′)λp

∣∣∣∣∣∣

2

dλ,

and (u, v) (resp (u′, v′)) take values u = 0, . . . , p− 1 (resp u′ = 0, . . . , p− 1) and
v = 0, . . . , 2u − 1 (resp v′ = 0, . . . , 2u

′ − 1). We showed in [11], Relation (9.4),
that as j → ∞, nj/nj−u ∼ 2−u. Using also (C.8), which implies that σ2

j−u ∼
f∗(0)L1(ĝ∞) 22(j−u)(d+K) as j → ∞, and following the proof of Theorem 4.1
of [11], we get

{
n
1/2
j

1

σ2
j−u

nj

nj−u

2u−1∑

v=0

Snj ,j(2
u + v)

}

u

(L)−→ N (0,Γ),

with

Γu,u′ =
2−u−u′

(f∗(0))2L1(ĝ∞)2

2u−1∑

v=0

2u
′

−1∑

v′=0

Γ̃(u,v),(u′,v′) (C.11)

=
22(u+u′)(d+K− 1

2
)

(f∗(0))2L1(ĝ∞)2

2u−1∑

v=0

2u
′

−1∑

v′=0

Γ2u+v,2u′+v

=
4π22(u+u′)(d+K−1)

L1(ĝ∞)2

×
∫ π

−π

2u−1∑

v=0

2u
′

−1∑

v′=0

∣∣∣∣∣∣
∑

p∈Z

ĝ∞(2−uλp)ĝ∞(2−u′λp)e
i(2−uv−2−u′

v′)λp

|λp|2(K+d)

∣∣∣∣∣∣

2

dλ,

(C.12)

and where u, u′ = 0, . . . , p− 1. Thereafter, we follow the same lines that in the
proof of [24, Theorem 2]. Assume for example that u′ ≥ u. We have to estimate

2u−1∑

v=0

2u
′

−1∑

v′=0

∣∣∣∣∣∣
∑

p∈Z

|λp|−2(K+d)ĝ∞(2−uλp)ĝ∞(2−u′λp)e
i(2−uv−2−u′

v′)λp

∣∣∣∣∣∣

2

,
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which reads
∑2u

′

−1
v′=0 Gu,u′,v′(λ) with

Gu,u′,v′(λ) =
2u−1∑

v=0

∣∣∣∣∣∣
∑

p∈Z

ei(2
−uv−2−u′

v′)λpgu,u′(2−uλp)

∣∣∣∣∣∣

2

where gu,u′(ξ) = |2uξ|−2(K+d)ĝ∞(ξ)ĝ∞(2u−u′ξ). We now observe that Gu,u′,v′

is a 2π-periodic function and write p = 2uq + r with r ∈ {0, . . . , 2u − 1}. Hence
(λp = λr + 2uq × 2π and e2iπv, if v is integer),

Gu,u′,v′(λ) =
2u−1∑

v=0

∣∣∣∣∣∣

2u−1∑

r=0

ei(2
−uv−2−u′

v′)λr

∑

q∈Z

e−i2u−u′

v′2πqgu,u′(2−uλr + 2πq)

∣∣∣∣∣∣

2

=

2u−1∑

v=0

∣∣∣∣∣
2u−1∑

r=0

ei2
−uvλrhu,u′,v′(2−uλr)

∣∣∣∣∣

2

,

with
hu,u′,v′(ξ) =

∑

q∈Z

e−i2u−u′

v′(2πq+ξ)gu,u′(ξ + 2πq).

Hence

Gu,u′,v′(λ) =

2u−1∑

v=0

2u−1∑

r=0

2u−1∑

r′=0

ei2
−uv2π(r−r′)hu,u′,v′(2−uλr)hu,u′,v′(2−uλr′).

Observe that if r 6= r′

2u−1∑

v=0

ei2
−uv2π(r−r′) = 0,

whereas in the case r = r′ this sum equals 2u. Hence

Gu,u′,v′(λ) = 2u
2u−1∑

r=0

|hu,u′,v′(2−uλr)|2.

As in the proof of [24, Theorem 2], we apply Lemma 1 of [25] with g = |hu,u′,v′ |2,
γ = 2u and get

∫ π

−π

Gu,u′,v′(λ)dλ = 2u
∫ π

−π

(
2u−1∑

r=0

|hu,u′,v′(2−uλr)|2
)
dλ

= 22u
∫ π

−π

|hu,u′,v′(λ)|2dλ.

We then deduce that

2u
′

−1∑

v′=0

∫ π

−π

Gu,u′,v′(λ)dλ = 22u
∫ π

−π




2u
′

−1∑

v′=0

|hu,u′,v′(λ)|2

dλ.
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Using (C.11), the definition of Gu,u′,v′ and the last display, we deduce that

Γu,u′ =
4π22(u+u′)(d+K−1)

L1(ĝ∞)2


22u

∫ π

−π

2u
′

−1∑

v′=0

|hu,u′,v′(λ)|2



=
4π22(u+u′)(d+K−1)

L1(ĝ∞)2
× 22u2−4u(d+K)

×
2u

′

−1∑

v′=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq |−2(d+K)e−i2u−u′

v′λq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ

=
4π22(u

′−u)(d+K)−2u′

L1(ĝ∞)2

×
2u

′

−1∑

v′=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq |−2(d+K)e−i2u−u′

v′λq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ.

For v′ ∈ {0, . . . , 2u′ − 1}, we write v′ = v + k2u
′−u with v ∈ {0, . . . , 2u′−u − 1}

and k ∈ {0, . . . , 2u − 1} and transform the sum in v′ into a sum over v and k.
We obtain

Γu,u′ =
4π22(u

′−u)(d+K)−2u′

L1(ĝ∞)2

2u
′
−u−1∑

v=0

2u−1∑

k=0

∫ π

−π

∣∣∣∣∣
∑

q∈Z

|λq|−2(d+K)

× e−i2u−u′

(v+k2u
′
−u)λq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣

2

dλ.

Since e−i2u−u′

v′λq = e−i2u−u′

vλqe−ikλ and
∑2u−1

k=0 |e−ikλ|2 = 2u, one has

Γu,u′ =
4π22(u

′−u)(d+K)−u′

2u−u′

L1(ĝ∞)2

×
2u

′
−u−1∑

v=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq|−2(d+K)e−i2u−u′

vλq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ.

Define now for any m ∈ Z, the vector

em(ξ) = 2−m/2[ei2
−mvξ, v = 0, . . . , 2m − 1]T .

We then recover (C.10) which concludes the proof.

The case q0 ≥ 2 has been considered in [11, Theorem 4.1]. We recall it here.

Theorem C.2. Suppose G = Hq0 , q0 ≥ 2 and that Assumptions A(i), (ii) hold
with q0 ≥ 2. Set γj = 2j and let {(gj)j≥0, g∞} be a sequence of univariate filters
satisfying (W-1)–(W-3) with m = 1 and M ≥ δ(q0) +K. Then, as j → ∞,

σ2
j ∼ q0! (f

∗(0))q0 Lq0(ĝ∞) 22j(δ(q0)+K), (C.13)
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where Lp has been defined in (3.4) for any p ≥ 1. Let now j = j(N) be an
increasing sequence such that j → ∞ and N2−j → ∞. Define nj, σ̂

2
j and σ2

j as
in (C.2), (C.3) and (C.4), respectively. Then, as N → ∞,

{
n1−2d
j

(
σ̂2
j−u

σ2
j−u

− 1

)}

u≥0

fidi−→
{
2(2d−1)u Lq0−1(ĝ∞)

q0!Lq0(ĝ∞)
Zd(1)

}

u≥0

. (C.14)
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