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1. Introduction
1.1. Overview

In this paper we consider the problem of estimating a (possibly random) drift
(ut)tefo,r] in continuous-time statistical models of the type

Xt :Ut+Zt, te [O,T], (11)

where (X¢)se[o,77 is the observation process, and (Z)seqo,r] is a noise having
the form of a process living in a fixed Wiener chaos of a Brownian motion. Our
results allow in particular to deal in detail with the following cases:

(i) (Zt)tefo,r] is a chaotic Brownian martingale,
(ii) (Z¢)tefo,] is a Rosenblatt process (living in the second Wiener chaos).

Our main finding (see Theorem 4.1) is that, under fairly general circumstances,
it is possible to find an estimator of the drift, whose risk is smaller than the one
of the standard estimator X;.

Our results generalize the recent findings by Privault and Réveillac [20] which
only dealt with the case of a Gaussian noise. As such, our work can be regarded
as an infinite-dimensional extension of the seminal works by Stein [23], [24] and
James-Stein [12], that first described analogous phenomena in a finite dimen-
sional setting.
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1.2. History and motivation

In his famous paper [23], Stein has shown that for a normally distributed d-
dimensional random vector X with unknown mean g and covariance matrix I,
the standard (unbiased) estimator X for the mean p is inadmissible with respect
to the quadratic loss function if and only if d > 3. This means that there exists
an estimator ¢ for the mean, verifying:

E[l¢ - ulP] <E[IX - ul?], neR,

with a strict inequality for at least one p if and only if d > 3. In this case one
says that & dominates X. For d = 1 and d = 2, the standard unbiased estimator
X is admissible, see [23]. We recall that an estimator d; is said to dominate an
estimator 6, if for every pu € R? we have E [[[6; — p|?] < E[[62 — pJ?], and one
has a strict inequality for at least one u. In other words, there are estimators
that dominate the standard estimator X for the mean if and only if d > 3.
More precisely, Stein has shown that for d > 3, for sufficiently large a > 0 and
sufficiently small b > 0, the estimator

&X)—<1 __ﬂ__)x-nx _ X (1.2)

Cat[X]? Ca+]x|?

is possibly biased, but has smaller risk than the standard estimator, that is:
E[1X —ul?| = a>E[16(X) - ] (1.3)

In 1962, James and Stein [12] have proved that estimators of the form

b bX
<5(X)=(1—W>X=X—W (1.4)

dominate X for every 0 < b < 2(d — 2), where d > 3 is again the dimension of
the random vector X. In 1981, Stein published an important article (see [24]):
he was able to give a much easier proof of the earlier result using the technique
of integration by parts. He created a link to superharmonic functions and was
able to give a criterion for an estimator to have smaller risk than the standard
estimator.

In parallel with these developments, which concern normally distributed ran-
dom variables, research has concentrated mostly on two aspects:

(i) considering spherically symmetric distributions more general than the
Gaussian distribution,

(ii) finding more general estimators that dominate the standard unbiased esti-
mator (in the normal case and in the more general symmetric distributed
case).

An overview of the theory can be found in [3], [4] and [5]. We give only a
few examples of these extensions. For instance, Brandwein has proved (see [2])
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that for the quadratic loss function and a spherically symmetric distributed
d-dimensional random vector X such that E[||X|?] < co and E[|X]|72] < oo,

5(X) = (1— #)X

dominates X if d > 4 and 0 < a < [2(d — 2)/d]/E[|X|~2]. Brandwein and
Strawderman have generalized the Stein-type estimator in 1991 by considering
again the quadratic loss and more general estimators of the form

0a(X) = X + ag(X),

see [4]. They show that J,(X) has smaller risk than X if d > 4, 0 < a <
1/ (dE[|X]~?]) and if some conditions on g hold (see [4] for these conditions).
It is worth noticing that superharmonic functions and the divergence theorem
play a crucial role. We notice that the divergence theorem is closely connected
to integration by parts. The technique of integration by parts was also used by
Shinozaki [22] to prove the existence of estimators that dominate the standard
estimator for the location parameters. Moreover the existence of estimators that
dominate the standard estimator for the location parameters of Z is proved if
E[Z;] = E[Z}] = 0, E[Z?] = 1 and E[Z}] = k and Z; are independent and
identically distributed.

Apart from these results that concern all classical probability theory, inte-
gration by parts has found applications in a paper by Evans and Stark (see
[10]). In connection with stochastic processes, Girsanov’s theorem is used to
prove the following general result concerning the existence of an estimator of
the form given in Eq. (1.2) satisfying the relation (1.3): if X = Z + 0 is a d-
dimensional random vector with d > 3, and if Z is not almost surely 0, E[Z] = 0,
E[||Z|?] < o and

E[|Z + 01> < [0, §eR,

then 6(X) = (1—a/(1+||X|?)) X dominates X for every sufficiently small
a > 0. The techniques used in this last paper are non standard and are very
different from those used in previous works.

In recent years, research has turned to stochastic processes. Stein’s approach
has shown to be effective in this field as well. Privault and Réveillac have con-
sidered the problem of estimating the drift of a Gaussian process. We sketch
below the main aspects of the setting considered by the authors (for details, see
[20]). For T' > 0, the authors consider a real-valued Gaussian process (X¢)¢e[o, 17
with covariance function

’Y(&t) = E[XSXt]a st € [OaT]

on a probability space (2, F,P), where F is the o-algebra generated by X. The
process (X¢)se[o,] is represented as an isonormal Gaussian process on the real
separable Hilbert space H generated by the functions y; : s +— min{s,¢} for
s,t € [0,T], with the scalar product -, )y and the norm | - |z defined by

<Xt7Xs>H = ’}/(87?5)
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Then
X(xt) =X, tel0,T]

and {X (h) : h € H} is a family of centered Gaussian random variables satisfying
E[X (W)X (9)] = (h gy, hoge H.
The authors consider a one-dimensional Gaussian process (X¢)e[o,7] With
dX; = wdt + dX}

where (ut)seo,] is an adapted process of the form

t
ut:J dgds, te[0,T] with i e L2 (Q x [0,T], F® B|[0,T]),
0

and (X}")ieqo,r] is a centered Gaussian process under a probability P, which
is the translation of P on € by u. Malliavin calculus and the integration by
parts formula (see formula (3.2)) are used to construct an estimator with lower
risk than the standard estimator X for the drift. The key to this approach
is an infinite-dimensional version of Stein’s lemma. Their estimator §(X) for
a deterministic drift is biased and anticipating, but has smaller risk than the
standard estimator X; for the drift:

E{18(X) = ul2 o100 | <E [IX = w32 o100 |- (1.5)
For the ease of notation, we use the shortform Ar := A|[0,T]. The estimator
0(X) is given by
[T X ]
IMLaX | 20,77, 77)
hy (t)X(hl) + ...+ hd(t)X(hd)
[h1(t)X (h1) + ...+ hd(t)X(hd)||2L2([07T]7)\T)

§(X) =X, — (d—2)

X~ (d-2)

i

where II; denotes the orthogonal projection on the space generated by X (hy), ...,
X (hg), and the functions iLl are defined through h; and the covariance struc-
ture of the underlying Gaussian process (see [20] for details). This estimator
has the same form than the James-Stein estimator in Eq. (1.4). In fact, letting
X = (X1,...,X,) ", the classical James-Stein estimator in Eq. (1.4) writes as:

e1 X1+ ... +eqXy
||€1X1 +...+ edXng’

X-b 0<b<2(d—2),

where e; denotes the i-th vector of the canonical basis of R%. Privault and
Réveillac prove also an interesting Cramer-Rao type bound that allows one to
compare any unbiased and adapted drift estimator £ with the standard drift
estimator X in their setting:

EIX —ulaqozyam | <E[1€ = ulfaqorpam |- (1.6)



Drift estimation using Malliavin Calculus 2981

Inequality (1.6) shows for the Gaussian process (X¢)seqo,r] that X = us + X}* is
the best unbiased estimator for the drift u; and realizes the minimal risk among
all adapted drift estimators. On the other hand inequality (1.5) shows that there
are biased and anticipating estimators that improve upon this estimator. The
fact that the estimators verifying inequality (1.5) are biased has its analogue in
the classical situation considered by Stein. The methods used in the setting for
Gaussian processes have been applied to Poisson processes and to the Fractional
Brownian motion as well (see [21] and [9]).

1.3. Main results and plan

In the framework of the continuous-time model (see Eq. (1.1)), our main findings
will be the following:

(1) a Cramer-Rao type bound under the assumption that (Z;);e[o,77 is a Brow-
nian martingale, a situation in which X} is the best unbiased adapted drift
estimator, see Theorem 2.1 and Theorem 2.2;

(2) the existence of biased estimators with smaller risk than the one of the
standard estimator in the case of a process living in the second Wiener
chaos and under fairly general circumstances, see Theorem 4.1;

(3) applications and examples that illustrate the previous result, see Section 6.

The paper is organized as follows:

- In Section 2, we introduce the necessary notations. In this section we consider
processes of the form

t t
X; = f s ds +J b dW?, tel[0,T].
0 0

The noise (Zt)se[o,7] is @ martingale with respect to the filtration generated
by the Brownian motion (W}*)te[o,77- For the case of a deterministic drift
(ut)tefo,r) with @ € L2([0,T], Ar), we show that the risk of an unbiased
adapted drift estimator (&;)se[o,7) cannot be lower than the risk of the stan-
dard estimator:

T

T
J Eu [(X: — )] dt <f E. [(& — ue)?] dt.

0 0

- In Section 3, we give a brief introduction to Malliavin calculus. We need the
basic elements of this theory for the forthcoming proofs.
- In Section 4, we consider (for a deterministic drift) processes of the form

t T T
Xi=w + Z; = J ugds + f J floy, zos t)dW dW te[0,T].
0 o Jo

The noise (Z)se[o,] is not necessarily a martingale. We define an estimator
whose risk is smaller than the risk of the standard estimator. Combining this
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result with the Cramer-Rao type bound of Section 2, we conclude that in the
martingale case our estimator is superefficient and that the standard estimator
is inadmissible.
- In Section 6, we apply our main result to the case where the noise (Z;)e[0,1]
is a Gaussian process, a Rosenblatt process or a chaotic Brownian martingale.
- In Section 7, we estimate a constant a that is needed to define our James-Stein
estimator

g9(t)"BX (h)
a+ X(h)TBX(h)’

Xe—& =X, — (1.7)
for the case of a Rosenblatt process and for the case of a chaotic Brownian mar-
tingale. In Eq. (1.7), a is a positive constant, g(t) is a vector (g;(t),...,ga(t))"
and every g; : [0,T] — R is a continuous function, B is a positive definite ma-
trix and X (h) is a vector of d observations.

- In Section 8, we give without proof a discrete version of the main theorem for
the case of a particular non Gaussian noise.

2. Cramer-Rao type bound under martingale assumptions
2.1. Notations

In this section we study Cramer-Rao bounds for the model in Eq. (1.1), in the
case where (Z)ie0,r] is a square-integrable Brownian martingale. This result
covers, in particular, the case of chaotic martingales — these are special cases of
the noise processes studied in Section 6.1. More specifically, we consider 7" > 0,
a measurable space (2, F) and a measurable mapping

w: (Qx [0,T], F® B|[0,T]) — (R, B|[0,T]).

The stochastic process (u¢)¢e[o, 77 is called the drift. We suppose that we have a
representation of the form

t
ut:J asds, te0,T). (2.1)
0

Suppose that there is a probability measure P, on (2, F), a filtration (F3).e[0,7
and stochastic processes (bt )se[0,77, (Wi*)te[o,r] and (X¢)sefo, 77 such that:

- (9, F,P,) is a complete probability space,

- uy is Fi-adapted,

-b: (Qx[0,T],F®BI|[0,T]) — (R,B|[0,T]) is measurable and b; is Fs-
adapted,

- (W{")te[o,r7 is a standard Brownian motion with respect to P, and (F¢)eqo, 77

- Xy = u + §bsdW and ( § bydW2)
respect to P,,.

1e[0.7] is a (Ft)teo,r)-martingale with
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We suppose moreover that:

T T
E, U bgds] <w; E, U uﬁdsl <ow; E,[b2]#0, VYse(0,T].
0

0

From now on, we suppose that the process (u¢)i[o,r7 has a representation
as in Eq. (2.1) and is square-integrable with respect to P, ®\p. The process

(So bsdW ) 1e[0.7] is a (7)o, 7 martingale with respect to P,,. Conversely ev-
ery (Fi)epo,rp-martingale (My),c(o 1) (With respect to IP,) has such a represen-
tation if E,[My] = 0.

A process (&) eqo,7 18 called unbiased drift estimator if

E, [&] = Eufut], te]0,T]

for all square-integrable adapted processes (Ut)te[o,T] as defined above. It is
called adapted if the process (&t)seqo,r] is Ft-adapted (see [20]).

2.2. Cramer-Rao type bound

We are now going to state the two main findings of the present section, namely:

(i) Theorem 2.1, containing a Cramer-Rao bound for possibly random drifts,
under some restrictive assumptions on (by)¢e[o,77;

(ii) Theorem 2.2, dealing with Cramer-Rao bounds for deterministic drifts,
but with no technical assumptions on (bt)te[O,T]-

Theorem 2.1. Consider a drift (u;),c[o ) with u € L3(Q x [0,T],P, @\r) and
the situation of Section 2.1 with

t
X, = u, +f bydW®, tel0,T)
0

If the following conditions hold:

I i 2
(1) Ey [exp <% SOT (%ebz) ds)] < o for every e € U, where U is an arbitrary
sma:ll neighbourhood of 0, (Nowikov condition)

(2) E, |exp (’gOT by dW )4] < o0,

(3) E, _(gg b2ds>4] <,
4) | b2ds € L2( x [0,T], Py ®Ar),

we have for every square-integrable, unbiased adapted drift estimator (’ft)te[o T

E, [(gt — ut)z] >E, Uot bgds] —E, [(Xt _ ut)2] .

In particular, X realizes the minimal risk for this class of estimators.



2984 C. Krein

Proof. See Appendix 9.1. The proof is based on the proof given in [20]. The con-
ditions are used to verify the conditions of Girsanov’s theorem and Lebesgue’s
dominated convergence theorem (to interchange derivatives and integrals). O

Theorem 2.2. Consider the situation of Section 2.1 with

t
Xt:Ut+f bSdWSH7 te[O7T:|,
0

and a square-integrable, unbiased adapted drift-estimator (&)iefo,], i-€- & is
Fi-adapted and:
Eu[ft] = Eu[ut]v te [O,T],

for all square-integrable Fi-adapted processes (ut)iero,r)- If (u¢)iefo,r) s deter-

(T
manistic with So W2dt < oo, we have:

LT E, [(gt - ut)Z] dt > LT E, [(Xt - ut)Z] dt.

Proof. See Appendix 9.2. The proof is based on an approximation argument
and elementary adapted processes. O

Remark 2.3. The techniques used in the proofs of Theorems 2.1 and 2.2 make use
of the martingale property of the noise ( Sé bSdWS“) te[0.T]" For the general case, it
is unknown to the author whether a Cramer-Rao type7b0und continues to hold if
the martingale assumption is dropped. However, there are special cases outside
the martingale setting for which a bound of this type holds. In [9], the authors
prove the existence of a Cramer-Rao type bound if the noise (X; — ut)seqo,7] is
a Fractional Brownian motion with Hurst parameter 0 < H < 1/2. The proof is
based on a version of Girsanov’s Theorem for the Fractional Brownian motion
(see [18] or [6]). Under the martingale assumptions, the theorems above stress
the optimality of the standard estimator in the class of all unbiased adapted
drift estimators. We will now provide some comparisons (essentially concerning
the techniques in the proof) with other related bounds in the literature.

(a) In the framework of stochastic calculus and stochastic processes, Girsanov’s
theorem is used to prove a Cramer-Rao type inequality (see [20], [21] and
[9]). The underlying idea is to use Girsanov’s theorem to interchange ex-
pectation and differentiation. An inequality is found that allows the direct
comparison of adapted and unbiased drift estimators with the standard es-
timator.

(b) Evans and Stark also use Girsanov’s theorem but make no statement about
the optimality of their estimator. They only affirm that for the considered
class of processes, their estimator dominates the standard estimator (see
[10]).

(¢) James and Stein considered the special case of a random variable X that is
normally distributed. For this particular case, it is known that the standard
estimator is the best unbiased estimator for the expectation of X.
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(d) In the framework of classical statistics, Brandwein, Strawderman and Shi-
nozaki do not affirm that their estimators are uniformly minimum-variance
unbiased estimator. Instead they consider the class of invariant estimators.
An overview of the theory of (location) invariant estimators can be found
n [13]. The authors suppose that the random variable X has a density of
the form f(z — u) for =, u € R, The location parameter p is the mean of
X. Then for every a € R?, with 2’ = x + a and y' = p + a, we have:

fl@" =) = flx—p).

The squared loss function shares this invariance property and the problem
of estimating p is thus called location invariant. Estimators ¢ that verify

d(X+a)=0X)+a

are called location invariant estimators. In [3], [2] and [22], Brandwein,
Strawderman and Shinozaki affirm that the standard estimator X is the
best invariant estimator for the location parameter without affirming that
these estimators are uniformly minimum-variance unbiased estimators. The
main reason for the consideration of location invariant estimators seems to
be the fact that it is easier to make statements about their existence.

Both approaches have disadvantages for our (continuous) setting: a version of
Girsanov’s theorem is not always available (for instance in the case of the Rosen-
blatt process) and it is not clear how the (finite dimensional) discrete concept
of (location) invariant estimators can be adapted to the (infinite dimensional)
continuous-time setting that we consider.

3. Malliavin Calculus

Consider the Cameron-Martin space, that is the real separable Hilbert space
t
H= {v [0, T] > R:o(t) = f 0(s)ds ; v e Lz([O,T]J\T)},
0

endowed with the scalar product

T
Chygm = J h(t)g(t)dt = <h, §)r2(0,17.00)
0
for all h, g € H. The Hilbert space H is generated by the functions
Xt:s+—min{s,t} =snat, s,tel0,T].

Consider a standard Wiener process (Wy*).e[0,77 (see Section 2) and a random
variable F' = f,, (W%(hy),...,W¥(h,)) where n > 1 and:

- fn is an infinitely differentiable rapidly decreasing function on R™ for n > 1,
- hh...,hnGH,
- W) = §y

T h(t)dw.



2986 C. Krein

Then F' is called a smooth random wvariable. Some authors, including Privault
and Réveillac (see [20, Definition 3.4]), call

ST i(1) 84 Fa (W (). .. W ()

i=1

n T T
=N hi(t) 0 f ha(8)dWE, ... | hn(s)dW®
33hto) U (s) [R2C )

0 0

the Malliavin derivative of F, whereas other authors such as Nualart and
(Oksendal (see for instance [17] or [7]) call

hz(t) aifn(Wu(h1)7 s Wu(hn))

NgE

1

Z hi(t) & fn (J hi(s)dWS“,...,f hn(s)dWS“) (3.1)

S
I

0 0

the Malliavin derivative of F'. Both definitions are equivalent. We use the defini-
tion given in Eq. (3.1) and write D, F' for the Malliavin derivative of F. We have
that D, is closable from L?(Q,P,) to L%(Q x [0,T],P, ®\r), that is (see [7] or
[17, Proposition 1.2.1)): If a sequence (H,,), oy < L? (2, P,) converges to 0, that
s Ey [H?l] — 0 if n — o, and DyH,, converges in L*(2 x [0,T],P, ®\r) as
n — o, then lim,,_,, D;H,, = 0. We write Dom D for the closed domain of D.

Moreover the Malliavin derivative has a closable adjoint § (under P,). The
operator ¢§ is called the divergence operator or, in the white noise case, the
Skorohod integral. The domain of § is denoted by Dom 4, it is the set of square-
integrable random variables v € L?(Q x [0, 7], P, ®\r) with:

E, [<.DF‘7 U>L2([0,T],)\T)] <c EU[FQ]

for a constant ¢ depending on v and all F' € D'? where D!2 is the closure of
the class of smooth random variables with respect of the norm

1/2
1l = (B [F2] + B [IDF e gomyam]) -
With the scalar product
(F;GH12 = By [FG] + Eyu[{DF, DG) 210,177,001,

D2 is a Hilbert space. If v € Dom &, then §(v) is the element of L?(,P,)
characterized by

E[F3(0)] = Eu[(o, DF) 1201100 (3.2)

This relation is often called the integration by parts formula. We have the more
general rule (see [17, Proposition 1.3.3]) for F € D2 v € Dom § such that Fv €
Dom §:

6(Fv) = Fo(v) = (DF,v)r2([0,1), A1) (3.3)
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For multiple Wiener integrals, we have for symmetric and square-integrable
functions f,, (see for instance [17, p.35]):

T T
Dgglz)m...[)mkj0 fo Falyr oo yn)dWE AW (3.4)

n!

T T
= m L fo oY, s Yn—ks @1y T ) AWy AW

Formula (3.2) can be generalized by considering the multiple divergence (see
[16, p.33]): If v € Dom 6™ and F € D™?2:

E. [F5"(0)] = Eu[(D"F,0) 2 0.1 1)) (35)

see [16] or [17] for details. For the ease of notations, we have used the shortform
A= A7[0, T]™.

4. Second chaos noise
4.1. Preliminary remarks

In this section we consider primarily noises (Z;)c[o,r] that live in the second
Wiener-Ito6 chaos and processes (X¢)se[o,7] with Xo = 0 and

T T
Xe=w+Zy =u + J f f(wy, 2o t)dW dWL, te (0,T]. (4.1)
o Jo

We consider stochastic integrals that do not necessarily define martingales. The
kernels of the stochastic integrals depend on the time parameter ¢ € [0,T"]. This
setting includes the well-known Rosenblatt process as well as a class of Brownian
martingales living in the second Wiener-It6 chaos. As we already stressed in
Remark 2.3, Theorem 2.1 and Theorem 2.2 cannot be applied in this section
where we are outside the martingale setting. Therefore we shall compare our
estimators only to the standard estimator X. We construct a stochastic integral
with respect to our noise. Since our construction aims to be generally applicable,
we consider a special class of observations. This restrictions can be relaxed when
considering particular cases of our setting (see Section 6).

In Paragraph 4.1.1, we recall the basic facts of the construction of the
Lebesgue-Stieltjes integral. In Paragraph 4.1.2, we construct a stochastic in-
tegral with respect to the noise (Z;)ic[o,r) following the ideas of Tudor (see
[26]). In Paragraph 4.1.3, we calculate the first two Malliavin derivatives for ob-
servations X (h) and we define functions g which play a crucial role in the proof
of the main result. In Paragraph 4.1.4, we give a brief overview of our setting
and definitions.
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4.1.1. Lebesgue-Stieltjes integration

Consider a function f : [0,7] — R that is right-continuous and of bounded
variation. We define the Lebesgue-Stieltjes integral with respect to f and give
a brief summary of the well known construction of this integral. Since f is
of bounded variation and right-continuous, we can find right-continuous non
decreasing functions f; and fo with f = f; — fo. For every f; there is a unique
measure p; on the Borel sets on [0, T] defined by:

pi(e, B]) = fi(B) = fila), forevery 0<a<p<T,
and p; () = 0. We consider the signed measure p := pug — po. For a measurable

function g : [0,7] — R, the Lebesgue-Stieltjes integral of g with respect to fis
defined as the Lebesgue integral of g with respect to u:

T T
J gdf =J gdp.
0 0

The Lebesgue-Stieltjes integral above exists if we have:

g€ Ll([O,T],,u) = Ll([OvT]aﬂl) N Ll([O,T],,uQ).

4.1.2. Stochastic integrals with respect to (Zt)sefo,1

We consider a process of the form

T2

T T
Xe=up + 2y = up + J f [z, 2o t)dW dW L, te (0,T]
o Jo

and X = 0. We make the following assumptions about the drift and the kernel
of the stochastic integral:

(i) the drift (u¢)tefo,r] is supposed to be deterministic and in the Cameron-
Martin space

H= {v [0, T] > R:o(t) = Lt 0(s)ds ; v € LQ([U,T],AT)},

(ii) the kernel f(-,-;t) is supposed to be symmetric in the first two variables
for every t € (0,T7:

f(z1,w9;t) = f(x2,21;5t) for almost every (z1,x3) € [0,T]?,

(iii) the kernel f(-,-;t) is supposed to be square-integrable for every ¢ € [0, T]:

T
J f(l’l,IQ;t)le’ldI’Q < o0,
0
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(iv) for almost every (x1,z2) € [0,T]?, the function t — f(z1,22;t) is right-
continuous and of bounded variation,
(v) the total variation Vil (f(z1,x2;)) is square-integrable:

T T
J J Vil (f (1, zo; ) 2daydagy < o0,
o Jo

(vi) for s,t € [0 T] with |t — s| — 0, we have E,[(Z; — Z;)?] — 0,
(vii) we have So W[Z2]dt < 0.

We construct a stochastic integral with respect to (Z;)seqo,r] by following the
ideas of Tudor (see [26]). We first define the stochastic integral with respect to

the noise (Z;);e[0,1) for step functions. We define Sg Lo(8)dZs = Zs—Zo = Zy,
and more generally for 0 < a < g < T

T T T
J 1(a,5](8)dZS = f 1(0”3] (S)dZS — f 1(0,a](8)d25 = Zg — Za.
0 0 0

We have on the other hand:

T
Zs— 7. = f f (1,225 8) = f(wr, w25 0)) AW, AW,

f f (f La,p)(8)df (21, 2; )) AW AW,
thus:
T T T [ T
Jo Yo ()24 :L L (Jo 1(a,ﬁ](8)df(z1,x2;5)> AW, dWy,. (4.2)

By linearity, we can extend Eq. (4.2) to step functions ¢ : t = >}, vil(a, g,](t):

j 3z, = H (j S (@, 7 >)dwgldm (43)

We extend Eq. (4.3) to a larger class of functions. In our general setting, we
limit ourselves to regulated function ¢ : [0,77] — R. This means that the left
and right limits p(x—) and p(xz+), as well as p(0+) and ¢(T'—), exist for every

€ (0,T). Dieudonné [8] proved that ¢ is a regulated function if and only if ¢
is the limit in L*([0, T, dAr) of a series of step functions (¢, )nen. We use the
following inequality (see [1, p.177]):

LT gdf

where f is a function of bounded variation and g is a regulated function.

< gl Vi (), (4.4)
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We notice that the measurability of f(-,-;¢) implies the measurability of

So on(t)df (x1,x2;t). Moreover, Lebesgue’s theorem of dominated convergence
proves that for almost every (z1, z2):

T

T
lim on(8)df (x1,22;8) = L p(s)df (1, x2;8). (4.5)

n—o0 0

We prove now that convergence in Eq. (4.5) holds in L?([0,T]?, A\2.):

[ ( [ entoaren, o) - LTgo(s>df<ac1,x2;s>>2dx1dx2
= JOT LT (LT(%(S) —p(s))df (z1, z2; s)) 2 dr1dzs

T T
<JO JO (lon(s) = @(8)| o VT (f (a1, 22;)) dary sy
_ s) — 52 T TVT(f(fE x'))Qd:L‘d;z:
~leal®) = [ | O o) dordos

— 0, forn— .

We have used inequality (4.4) and assumption (v) above. We conclude that

Sg ©(8)df (x1,x2; 8) is square-integrable and the convergence in Eq. (4.5) holds
in L%([0,T]?, A\%). The stochastic integral

f f f $)f (o1, 2 ) AW AW,

is thus well defined and by the It6 isometry we have:

| ([ [ [ ([ soartaese ) avzams)|-o.

We can thus define for any regulated function ¢:

T
J w(s)dZs = lingO gon 8)dZs = J J <f s)df (x1, 225 8 )) dW dW ;.
0 n=®Jo

As a direct consequence we find that SOT ©on(s)tsds + So ©n(8)dZs converges in
L?(Q,P,) against Sép o(s)usds + So ©(s)dZs. We define thus:

L " u(s)iads + j ' san<s>dzs> .

T T
f o(s)dXs ;= lim on(8)dXs = lim <

0 n—0o0 0 n—o0
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4.1.8. Malliavin derivatives

We consider an absolutely continuous function h with:
t .
hi(t) = f hi(s)ds, te[0,T],
0

such that i can be chosen as a regulated function. We define u(h) := SOT h(s)isds
and Z(h) := Sép Sg (Sg h(s)df (z1, zo; s)) dWE dW} and similarly for the obser-
vation X (h):

X(h) = L hi(s)dX, = u(h) + Z(h)

= LT hi(s)isds + LT JOT (JOT hi(s)df (x4, x2; s)> WS AW .

The first two Malliavin derivatives of X (h) exist and we have:
T T [T
D., J h(s)dX, = 2 J J h(s)df (210 8) | WS, (4.6)
0 o \Jo

T T
Da.Ds, L h(s)dXs — 2 (L h(s)df(ml,x2;5)> . (@.7)

We define a function g by

T T
g(t) := Covy (X (h), Xy) = Jo .[0 f(z1,22;t) Dy, Dyy X (h)day ds.

We drop the dependence on h which is clear in the context. The second equality
above is a consequence of Eq. (4.7) and the It isometry. We prove that g
is continuous on (0,7, left-continuous in 7" and right-continuous in 0 using
assumption (vi). We have for s,t € [0,T] with |t — s| — 0:

l9(t) = 9(s)* = BulZ(h) (Zt = Zo))* < EulZ(h)?] Bu[(Z: — Z)*] — 0.

4.1.4. Setting and notations

We summarize the setting and introduce some notations. We consider a stochas-
tic process (X¢)sefo,r] With Xo := 0 and for ¢ € (0, T]:

T T
Xt =Ut+Zt =ut+J J f(Il,IQ,t)dW;leW;’z
0 Jo

We suppose moreover that:
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(i) the drift (wut)seo,r] is supposed be deterministic and in the Cameron-
Martin space

o= {v [0, T] - R (t) = Ei;(s)ds e LQ([O,T],)\T)} ,

(ii) the kernel f(-,-;t) is supposed to be symmetric in the first two variables
for every t € [0,T1:

f(z1,w0;t) = f(xa,21;t) for almost every (z1,x3) € [0,T]?,
(iii) the kernel f(-,-;t) is supposed to be square-integrable for every t € (0,T:
T
J f(z1, 20;t)2dr1dry < 0,
0
(iv) for almost every (z1,z2) € [0,7]?, the function t — f(x1,z2;t) is right-

continuous and of bounded variation,
(v) the total variation Vi (f(z1,22;-)) is square-integrable:

T T
f J VOT(f(xla-r% '))2daﬁ1d$2 < 00,
0 0

(vi) for s,t e [0,T] with |t — s| — 0, we have E,[(Z; — Z4)?] — 0,
(vii) we have §; E,[Z2]dt < o0.

We consider absolutely continuous functions h; for i = 1,...,d and d > 3 with:
t .
alt) = | hu(sds, e (0.7,
such that every h; is a regulated function. We define for i = 1,...,d:

T .
X (h) = u(hs) + Z(hi) L ho(s)itads

+ L ' L ' ( L ' izi<s>df<x1,xz;s>> AWy, AW,

We define for every i = 1,...,d continuous functions g; with
T T

gi(8) = Cova (X (hi), X1) =J f F@1,2938) Do, Dy, X (hi)dardas, ¢ e [0,T].
0 Jo

We finally introduce some vector notations:
g(t) == (g1 (t), -, 9a(®) ",

w(h) = (u(hy),...,u(ha))",  u(hi) ;:j Ushi(s)ds,
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X(h) = (X(h1),...,X(ha))", Eu[X(h:)*] #0,
Dy, X (h) = (Dg, X (h1),..., Dy, X(ha)) ",
Dy, Dy, X (h) := (Dy, Dy, X (h1), ..., Dy, Dy, X (hg)) " .

We suppose that the matrix

T T
f g(t)g(t)"dt = (J gi(x)gj(fﬂ)dl‘>
0 0

is invertible (see Remark 4.3). Since this matrix is clearly symmetric and positive
semi-definite, it is positive definite. We write B for its inverse, B is symmetric
and positive definite as the inverse of a symmetric and positive definite matrix.
We define for a > 0:

ij=1,...,d

9(t)"BX (h)
= T|.
S = T xmexmy LT
In Theorem 4.1, we consider an estimator of the form
e v __9)"BX(h)
Xt gtht a+X(h)TBX(h)7 te[()?T])

where a is a positive constant. Since a > 0 and X (h)"BX(h) = 0, we have
0<1/(a+ X(h)"TBX(h)) <1/aand 0 <E, [1/(a + X(h)"BX(h))] < 1/a.

4.2. Construction of an estimator for a second chaos noise

We formulate now the main result of this section.

Theorem 4.1. For the model discussed above with a deterministic drift and
d = 3, we consider the following drift estimator:

g(t) " BX (h)
Xy —& =X —
t— &t L HgTBX(h)H%Q([QT],)\T)
g(t)" BX (h)
=X, — te0,T]. 4.8
Tarxmyexmy 0T (4.8
The drift estimator Xy — & has smaller risk than the standard estimator X;:
T T
J Eu [(Xe — & —w)?]dt < f E, [(X: —w)?] dt (4.9)
0 0

for every value of a that is greater than a positive constant A.

Remark 4.2. (1) In Theorem 4.1, it is essential to find positive constants a such
that inequality (4.9) holds. The proof of Theorem 4.1 shows that every a
that is greater than some positive constant A, depending on f, hy,..., hg
and T, satisfies inequality (4.9). The problem of finding A is non trivial and
is discussed in Section 7 for two special cases.
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(2) Another essential assumption in Theorem 4.1 is that the number of obser-
vations X (h;) used to construct the estimator is at least 3, that is d > 3.
In the context of stochastic processes and drift estimation, this assumption
can also be found in [20] and in [9]. In the context of classical statistics
and for d-dimensional spherical symmetric distributions with a Lebesgue
density, the assumption d > 3 is also very common, see for instance [24],
[10] or [22]. For some results, it is even necessary that the dimension satis-
fies the condition d > 4, see for instance [4]. It is worth noticing that the
usual condition d > 3 may not be needed for some discrete settings. In [21],
the authors estimate the intensities of a Poisson process and the estimators
constructed dominate the standard estimator for every dimension d > 1.

Proof of Theorem 4.1. We notice that & is square-integrable with respect to

P, ®\7. We show below that Sg E,[&]dt < E, [(a+ X(h)TBX(h))7!] < .
We have:

fT Eu [(X: —w)?] dt — JT Eo [(Xe — & — ue)?] dt
0 0
T

=2 fT By [(X; — ug) &] dt — J E, [&] dt.

0 0

Before we prove the theorem, we transform both terms in this expression. The
proof is complete if we find that the expression above is positive for some a >
A > 0. We use that B is symmetric and have:

T
9T BX (W) 20,100 = j (o(t)T BX(h))* dt
= JT X(R)TBTg(t) g(t)" BX (h)dt
0

T
= XU)TBT | gtg®)TdBX (0

0
=X(h)"B" B! BX(h)
= X(h)"BX(h) (B = B since B is symmetric).

We have for the second term:

leEu [ﬁf]dtszEul (9()"BX (h)) ]dt

0 0 (a+ X(h)TBX(h))*
g X(h)TBX(h)
S " (@ + X(WTBX ()|

We transform the first term using Malliavin calculus. We use in particular inte-
gration by parts, see Eq. (3.5). Notice also that, for deterministic functions, the
iterated divergence operator 62 coincides with the double Wiener-Ito integral,
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hence 62(f = So So (z1,29;t)dWE AW} . Thus, with the classical Fubini
theorem:

T

JTEH[(Xt—ut)gt]dt—f E, f f fl@r, wo; ) AW AW &1

0 0

T

T
:f Eu J f fxl,l‘g, )leDgwftd.%'ldl‘g} dt

J J J fxlal.Za [Dlezzgt]dl'ldedt

_2J J f f.’I}]_,.fL'Q, [Dlez2§t]d.T1d£L‘2dt

This result can also be found using the Wiener-It6 chaos decomposition of ; and
the fact that X; — u; lives in the second Wiener-It6 chaos. We notice that B is
defined to be symmetric positive semi-definite. Since B is moreover supposed to
be invertible, we have that B is symmetric positive definite. Thus B has a matrix
square root C' that is again symmetric positive definite and B = C? = CTC. We
use X (h) = u(h) + Z(h) and the following inequalities with ¢ > 0 and k € (0, 1)
(see Theorem 9.1 for the proofs):

a+u(h)" Bu(h) Z(h)TBZ(h) -
o+ X(W)TBX(h) = (1 * a ) ’

a+u(h) Bu(h) _ 1  Z(h)"BZ(h)
a+X(Mh)TBX(h) k2 (k—1)2%

-
and for Q = m respectively Q = 1%2 + Z((f:()lifz(h):

f f f "B [1f (21, 22: )] [Cg(#)] [CDay X ()] |C Dy X (h)] Q) dtrdad < o,
0J0JO

where | - || is the standard euclidean norm. For the first and second Malliavin
derivative of & := [g(t) " BX (h)]/[a + X (h)" BX (h)], we obtain by the means
of the chain rule:

g(t)"BD,, X (h) L [9(t)TBX (h)] [X(h)TBD,, X (h)]

Dol = X T BX () (a+ X(R)TBX(h))? ’
_ g(t)"BD,, D,,X(h)
Dz, Dy = a+ X(h)TBX(h)
o [9()"BDe X (W] [X(h)T BDy, X ()]

(a+ X(h)TBX(h))?
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, [¢(t)T BD,, X(h)] [X(h)T BD,, X (h)]
(a + X(h)TBX(h))*
, [9(t)T BX (h)] [Ds, X (k)T BD,, X (h)]
(a + X(h)TBX(h))*
, [¢9(t)T BX (h)] [X (k)T BD,, Dy, X (h)]
(a + X(h)TBX(h))’
[9(t) T BX ()] [X(h)T BD,, X (h)] [X(h)T BD,, X ()]
(a+ X (h)TBX(h)) '

+38

We estimate S(:)F E, [f?] dt and the six terms of

QJ u [(Xi —ug)ée] dt = 4J J J f(x1,25t) By [ Doy Dy &) drdadt.
0
(i) The sum of entries of A* A~! equals d for any invertible symmetric matrix

A € R¥? and the Hadamard product # of matrices (see Theorem 9.2).
Thus:

T T
| st Bateyie = 38 [ ttray (0t - 38y (87 = (410

and for a > 0:

4 JT fT r F(xr, 20:) By [g(tff;%l%}fg)] day dzodt

— 2J J f flzy, a0t [g(t)TBDlesz(h)] dxydzadt

+ X (h)TBX (h)
:2J gtTBf J f(z1,22;t) Dy, Dy, X (h)day daodt
0

x E

u [a + X(h)lTBX(h)]
) QLTg<t)TBg(t)dt E, [a+X(h)1TBX(h)]

" [a+x<h2>iBX<h>]

The first equality follows from the symmetry in x1, x2, the second equality
follows since X (h;) is a random variable in the second Wiener-Ité chaos
and has therefore a deterministic second Malliavin derivative. The third
equality follows from the definition of

gi:t— flx1,20;t)Dyy Dy X (hi)dxidzs.
o Jo

The last equality follows with Eq. (4.10).



Drift estimation using Malliavin Calculus 2997

(ii) For the ease of notation, we write |v;| for the standard euclidean norm
of a vector v € R%. We have B = C? = O C and the Cauchy-Schwarz
inequality yields for arbitrary vectors v, v, € R%:

|vl Buy| = |(Cvy) (C’vg)’ < | Cvy| |Cus.

Thus for a > 0:

T T 1)
8 J J flxy, ma;t)
o Jo Jo

g | 9O BDe, X ()] [X (7)T BD,, X ()]
“ (a + X (h)TBX(h))?

[ [ s

] dxldJZth

5 lncm LICD., X (W] [ICX(R)] QCDMX<h>|]] v
(a + X(h)TBX(h))
f f [, [(CoOUICDX ) 0D X001
Va

ICX(h)|? |f (21, w25 1)]
8 \/a T X()TBX () a+ X(h)TBX(h)] dedrdt

_8J Jf [Cg IIICsz)i/(a)ICDmX(h)I

y \/ (NTBX(h) _|f(zr,w2:0)
a+ X (h)TBX(h) a+ X (h)TBX(h)

f j [ [ICQ CDMXja )| [CD., X ()]

] dxldxgdt

dl‘ldl‘gdt

8|f(1‘1,172, )|
a+ X(h)TBX(h)

(i) The next two terms can be estimated similarly. We find for a > 0:

T T 1)
J f(JTl,Z‘Q;t)
0 JO

g | [9O) BDy X(W)][X (h)T BD,, X ()]
“ (a + X(h)TBX(h))?

r 8| f(x1,x2;t)]
L f J [GJFX (h)TBX(h)
L GO C D, X (M| [CX (R)[|C Dz, X ()]

Vaya+|CX(h)[?

1 dxldxgdt

] dxldxgdt
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JJJ” [|CQ |CD12)f/(a)|”CDw1X(h)|

:| dllildxgdt,

« 8| f(wy, z25t)]
a+ X(h)TBX(h)

and:

T T T2
f f(xlva;t)
0 JO

< E [9(t)" BX (h)][Da, X (h) " BD,, X (h)]
(a + X(h)TBX(h))*

J J Jzz [ 8| f (w1, 2;1)]
a+ X(h)TBX(h)
o NCIOICX )] |C D, X (1) |C Dz, X (h)]

VaJa+ [CX(h)?

jjj“ [|CQ ICsz)i/(E)IIICDmX(h)I

:| da?ldl‘gdt.

] dxld.’ligdt

1 dl‘ldxgdt

% 8|f T1,X2; t>|
a+ X(h)TBX(h)

(iv) We have for a > 0:

8 JOT JOT J:Q f(x1,w251)

< E [9(t) " BX (h)][X (h)" BDy, Dy, X (h)]
“ (a+ X(h)TBX(h))?

1 d:l?ldfl,‘gdt

—4 j E. [[9(t) BX(h)]
0

X

[X(R)TBS, §o f(@1,225) Dy, Dy X (h)dey das] u
(a+ X(h)TBX(h))?

JTE l[g(t)TBX(h)] [X(h)TBg(t)]] i
u 2
0 (a + X (h)TBX(h))

=4

We transform this last expression using the definition of B:
ﬁ:u l[g(t)TBX( JI[X ()T By(t >]1 dt‘
0 (a+ X(h)TBX(h))’
. [X )TBS, g(t)g(t)TdtBX (h) ‘
(a+ X(h)T BX(h))

4

—4
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5, [( X(h)TBX(h) ]

a+ X(h)TBX(h))
X(h)TBX(h) !
=4 E, [a T X(h)TBX(h) a+ X(h)TBX(h)”

S4B [a n X(h)lTBX(h)] '

(v) Analogue estimations to the ones above show for a > 0:

f f | " e Eu [[o()T BX(0)]

. [X(0)BD,, X ()] [X (1) BD., X(1)]

(a+ X(h)TBX(h))*
JJJ 32| f (w1, 22; 1) [Cg()|| |C Dy, X (h)| |C Dy, X ()|
ICXR)[[CX(R)[ICX (R

vala+ X (h)TBX(h)]
a+[CX(h)]?)**

ij(“’ [”CQ ICDzl)f/(a)IIICszX(h)

] dl‘ldl‘gdt.

32

dl’ldl'gdt

dzdxadt

32|f(1’1, T2, t)|
a+ X(h)TBX(h)

(vi) We have for a > 0:

T B X(h)TBX(h) 1
JO E, [¢]dt = E, [a +X(WTBX(h) a+ X(h)TBX(h)]

gEu

[a + X(h)lTBX(h)] '

We combine now the estimations found above for a > 0, d > 3 and k € (0, 1):

T T
2

= [ ¥ X(fSC‘IFBmh)]

i | (21, 22;1)]
8+8+8+32J f J [a+X TBX(h)

o 1C9O[[C Dz, X(h)| |CDa, X (R )]
Ja

e [a T X(h?TBX(h)] e [a + X(h)TBX(h)]

dzxidxadt
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_ 2d—5 | f (21, 22;1)]
E“[HX(h)TBX ] 56J J f [a+X h)TBX (h)
o €I C Dz, X(h)|[ [CDa, X (B

Va

_;{Qd_B)Eu[a—i—uhTBu(h ]
)

:| dll?lditgdt

a + u(h)T Bu(h) a+ X(h)TBX(h)

(h)
(h)
ol [ [ i3

« 10001 1D XN IOD, X1 dmldmdt}.

)T Bu(h
X(h)TBX(h)

Ja

Together with the inequalities of Theorem 9.1, we find:
T

> [ ma - w e [ B

0 0

1 Z0)TBZY )

j J j (1,22 8)| Buy [[Cg(#)] |C D X (B)] |C Dy X (B)]
Z(h)TBZ(h)
X <k2 + W)] d{Eld{Eth}
X (h)TBX (h) ) 2]

1
_m{(Qd—5)Eol<l+ a

j j j (w1, 22 8)] Eo [[Cg(t)]| [C D, X ()] | CDay X ()]

x <k2 + %)] dmldxgdt}

In the last step we have used that X; = u; + Z; and thus X; = Z; if u = 0. The
expression in brackets is positive if a is chosen large enough, more precisely for
a > A > 0 (see Section 7). The expectations in the last inequality above can be
calculated without knowing the drift u. We notice that:

-2
o [(” W) ] -

The results of Theorem 9.1 imply that:

j J f (1,22 ) | Bo [|Cg(t)]| |C Dy X (h) | |C Do, X ()]



Drift estimation using Malliavin Calculus 3001

< 1 X(h)TBX(h)

ﬁ a(l — ]{3)2 )] d$1d$2dt

is (for a fixed k € (0, 1)) finite and bounded as a function of a > € > 0 (for any
€ > 0). This completes the proof. O

Remark 4.3. The problem of finding an optimal set of functions g; that define

an invertible matrix
T
( | o <t>gj<t>dt>
0

is non trivial. From a practical point of view, g; is best accessible if h; = Lot
for 0 < t; <ty < ... <tq <T. If Covy(Zy,,Zs)i; is an invertible matrix,
then the g; are continuous, linearly independent functions. The Gram-Schmidt
algorithm with the standard scalar product on L?([0,7]? M%) can be used to
find an invertible lower triangular matrix L such that (Lg)1,..., (Lg)q are or-
thonormalized. We have:

ij=1,..d

T

I= f (Lg(t))(Lg(t)) Tdt = L j o(t)g(t)TdtL.

This shows that SOT g(t)g(t)Tdt is invertible and equal to L~!L~T = (LTL)_l.

We conclude that Sg g(t)g(t)Tdt and the inverse B are symmetric positive defi-
nite.

5. Extensions

In this section, we point out extensions of the previous results. Since the methods
of Section 4 are useful in more general settings but the calculations are lengthy,
we do not provide complete proofs for the results of this section.

5.1. A more general setting for the noise

An analogue version of Theorem 4.1 holds for a process (X¢)seo,7] With Xo = 0
and for t € (0,T7]:

Xt:Ut+Zt

T T
=ut+J J floy, .z )dW . AW (5.1)
0 0

if the analogue, n-dimensional version of conditions (i)-(vii) hold. Moreover a
version of Theorem 4.1 holds if (X¢)seqo,7] is a process with Xo = 0 and

Xt = U + Zt
T T pT
= f f1 (1‘1; t)dW;Ll + J f fg(l‘hl‘g; t)dW;leW;Z, te (0, T], (52)
0 0 0

if conditions (i)-(vii) hold for f; and fs. We have thus:
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Proposition 5.1. For the settings of Eq. (5.1) respectively Eq. (5.2) and a
deterministic drift, we consider the following drift estimator:

9(t) " BX (h)
a+ |gTBX(h)
__9t)"BX(h)
" a4+ X(h)TBX(h)’

Xe =& =X — 3
122 (10.71.A0)

te (0,71,

where g(t) == (g1(t),...,9a4(t))" with g; : t — Cov,(Xy, X (h;)) and d = 3. The
drift estimator Xy — & has smaller risk than the standard estimator X;:

T

T
f E, [(Xt =& — ut)2] dt < f E, [(Xt _ ut)z] dt

0 0
for every value of a greater than a positive constant A.
Remark 5.2. (1) For the setting of Eq. (5.1) and a noise living in the Wiener-It6
chaos of order n, the Malliavin derivative Dy, ... Dy, & for
9(t)"BX (h)
a+ X(h)TBX(h)

&=

is needed. Calculating these derivatives becomes increasingly complicated as

n grows. We show below that only two of the terms appearing in Dy, ... D, &
are relevant for the proof and that all the terms can be estimated as in the

proof of Theorem 4.1. We follow an idea that goes back to Meyer [15].

The Malliavin derivative satisfies the product rule, thus for smooth random

variables F' and G and n := {1,...,n}:

Dy, ... Dy (FG) = Y (DyF) (Do G).

Scn

We use the notation D, F = D, ... D, F for any subset S = {1,...,{} of
n. Thus:
Dy, ... Dy, (9(t) 'BX(h)) = Dy, ... Dy, [& (a + X (h) " BX(h))],

g(t)"BDy, ... Dy, X(h) = Y. (Das&t) (Dag(a+ X (h) BX (1))
S&n

+(Dy, ... D, &) (a+ X (h)"BX(h)).

We have thus:

D, ... Dy &
_ 9g(0)"BD,,...D, X(h) D, (a+ X(h)TBX(h))

~ a4+ X(M)TBX(h) S%ﬂ (Dastt) — 7 X (R)TBX (h)

_ 9()TBD,, ... Dy, X (h) 53)

a+ X(h)BX(h)
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_, Lo BX(®W)] [X(n)BD;, ... Dy, X (1)]

[a+ X(h)TBX (h)]? (54)
_ Yy [9(t)"BX ()] [Dyr X(h)"BD,, X (h)]
siTen [a + X (h)TBX (h)]?

D, (a+ X(h)"BX(h))

It can be seen by induction over n that

2,

[9(t)" BX (h)] [Dar X(h)"BDy, o X (h)]

GaTen [a + X(h)TBX (h)]?
v (a+ X(R)TBX(h))
* @;;:;_n Dest) — Xy Bx )
R(l‘l,. . .,l‘n)

T la+ X(h)TBX (W)
where R is square-integrable with respect to P, @A} and does not de-
pend on a or w. If we choose again g;(t) := Cov, (X, X(h;)) and B =
1
(So Tdt) , we can proceed with the terms in lines (5.3) and (5.4)
as in Theorem 4.1 and prove:

T T

2 [ B0 - w) e [ B[]0,

0 0

for a > 0 large enough and d > 3. We conclude that the estimator given by
g9(t) ' BX (h)

a+ X(h)TBX(h)’

—& =Xy — te[0,T]
has smaller risk than X; if a is large enough, d > 3 and X; = u; + Z; and
(Zt)tero,r) has the form given by Eq. (4.1) but lives in a Wiener chaos of
higher order.

(2) For the setting of Eq. (5.2), the method used in Theorem 4.1 is applicable
as well. Notice however that in this situation extra terms appear that can
be estimated applying once again the integration by parts formula.

5.2. Absolutely continuous kernels

We consider a stochastic process (X¢)seo,7) With Xo := 0 and:

e(0,7T],  (5.5)

xT2?

Xt:ut—i—Zt:ut—i-f f f(whl'g, )ququ
0 Jo
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where ¢t — f(x1,x9;t) is absolutely continuous with:

t

flz1,za;t) = J k(z1,x9; a)da.

0

We can replace the assumptions of Section 4 by the following assumptions that
are more appropriate for the case of absolutely continuous kernels. Notice that
assumptions (iv)-(vii) are used to define stochastic integrals, guarantee the ex-
istence of expectations and show the continuity of the functions g;. These prop-
erties can be proved more efficiently with conditions (i)-(iii) and the following
conditions (iv’) and (v):

(iv’) the function f is absolutely continuous with respect to t:
t
flay, @ t) = J k(xz1,xzo;v)dv, te€[0,T],
0

(v’) the function

T T
v: (a,b) — 2J f k(x1,x9;a)k(xy, 29;b)drdxq
o Jo

is in L?([0,7]%,A2%) for a ¢1 > 1 (then (a,b) — E,[Z,Z] has mixed
second-order derivatives a.e. and they are equal to 7y a.e.), we write g2 to
indicate the real such that 1/q; + 1/g2 = 1.

Theorem 4.1 holds and proves the existence of estimators with smaller risk than
the standard estimator.

Proposition 5.3. For the settings of Eq. (5.5) and a deterministic drift, we
consider the following drift estimator:

9(t)"BX (h)
a + HgTBX(h)Hiz([

9(t)"BX (h)
" a+X(h)TBX(h)

Xt - gt = Xt -
0,T],Ar)

te 0,17,

where g(t) := (g1(t),...,9a(t))T with g; : t — Cov,(Xs, X (h;)) and d = 3. The
drift estimator X; — & has smaller risk than the standard estimator X;:

T T
JIm[@;-@—uﬁﬂﬁ<J‘EuK&—u0ﬂﬁ
0 0

for every value of a than a positive constant A.

In the following paragraphs, we review the construction of Section 4 and
adapt it to the setting of absolutely continuous kernels.
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5.2.1. The covariance function

We calculate E, [Z,Z;] for a,be [0,T]:
]E ZZb lj J facl,a?g, ququJ. J fxl,l'g, dW;ﬁdWqu]

= 2L J(; f(131,172§a)f(x1,x2;b)dmlsz

T T a b
= QL L (L k(mhxz;a)da) (L k(xl,xzaﬁ)dﬁ> dzdxs

b ra T T
= ZL L <f0 JO k(xla-f%Oé)k’(l'l,l‘g;ﬁ)dl‘ldl‘g) dadf. (56)

This is the two-dimensional version of an absolutely continuous function. Since

T T
(a, ) — 2J f k(z1, w2; a)k(z1, w2; B)dw1dws
o Jo
is in L1([0, 7%, A2.), the covariance function
(a,b) — Ey[Z.Zp)

has mixed second-order derivatives almost everywhere (see [27, Theorem 3.1,
Remark 3.3]) and we have for almost every («, f3):

T T
fy(a,ﬂ):2j L k(z1, x5 a)k(z1, 225 f)daidas

02 02

6a&ﬂ Eu[ZoZs] = 363 Eu[ZoZ35]. (5.7)

We have moreover since v € L!([0, 7%, \%):

T T T T
J E < f J J [v(a,b)| dadbdt < 0.
0 o Jo Jo

5.2.2. Hdélder continuity

¢
~(a,b) dadbdt

We notice that (Z;)¢e[o, 7] has a version that is k-Holder continuous for every k €
(0,1/g2). This result is proved in Theorem 9.3 using that y € L9 ([0, T2, \%).

5.2.3. Stochastic integrals with respect to (Zt)se[0,1)

We follow a similar approach to the one of Section 4.1 and extend the definition
of So v(s)dZs from regulated functions to “sufficiently integrable functions” .
For real numbers q1 > 1 and ¢2 > 0 with 1/q; + 1/g2 = 1, we suppose that:
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(a) the functions ¢ that are in L% ([0,T], Ar),
(b) the function v is in L9 ([0, T]%, A\2.) (then the mixed second order derivatives
of (a,b) — E,[Z.,Zp] exist and are equal to v almost everywhere).

It is known that the set of step functions is dense in L?%2([0,T], Ar) (see for
instance [25, Theorem 3.4 and Theorem 4.3]). For ¢ € L%([0,T], A1), we choose
a sequence ,, of step functions such that:

lo = enlreqoragy — 0,  forn — oo

We prove below, as n — oo:

T T T [ T
J ondZ, — f f J o(8)k(x1, z0; 8)ds | AW, AW,
0 o Jo \Jo

Then S(:)F Sér (Sg o(8)k(xy, xo; s)ds)Qdmldmg < o0 and the double Wiener integral
S(:)F Sér (Sg @(8)k(z1, z2; 8)ds)dWE AW exists and is square-integrable. Thus we
can extend the definition of SOT ©(8)dZs to functions ¢ € L=([0,T], Ar):

— 0.
L2(Q,P,)

T T
J o(y)dZ, := lim on(y)dZ,

n—o0

0 ‘ 0
T T [ T
=J J- J- ©(8)k(w1,20;5)ds | AW dW . (5.8)
o Jo \Jo
We have:
T T T [ T 2
J @ndZy—J J f o(8)k(x1, 03 8)ds | AW AW,
0 o Jo \Jo L2(0P)

[ ( [ ontar- W))km,w)dafdm

-2 ' | T ( | ]Twn(a) - w(a))k(ﬂ«“uwz;a)da>

T
« <f (on(b) — ap(b))k(xl,m;b)db> daydzs.

0

Thus:

2

T T T [ (T
J ondZy — J J (J o(s)k(x1, z2; s)ds) aw g dw,!
0 o Jo \Jo

[ ] nl@) = ela)eav) - o8
0 0

L2([0,T], A7)
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T (T
X <J J- 2k($1,x2;a)k;(x1,x2;b)dmlda:2> dadb

0o Jo

1/Q2

lj J lon(a (@)|*]¢n(b) — (b)‘hdadb}

T T /a1
X <J f W(a,b)qldadb>

0o Jo

T ~T 1/q1
= H‘Pn - @HZLQQ([QT]))\T) (L L |’y(a7 b)|qldadb> — 0, for n — oo.

<o

The calculations above show that:

‘[ J (J- k(z1, 2255 )d3>2dx1dx2

J J (a,b)dadb < . (5.9)

5.2.4. Observations and functions g;.

We define:
. {f [0.7] > R : /(1) ff ;fem[o,T],AT)}.

As above, we consider a deterministic drift u € Hy. We define X (h). We have
E,[Z(h)?] < o for h € H,, as exposed in the previous section. We have u(h) :=

SOT tsh(s)ds < oo if h € Hy. This shows the necessity to choose h € Hy, N Hy =
Hiax{2,q0}- For h € Hypax2,40}, We use the following notations in agreement with
(5.8):

X(h) = u(h) + Z(h)

T T T [ T
= f ush(s)ds + J J (J h(s)k(x1, x2; s)ds) dW, dW ..
0 o Jo \Jo

We notice that the right side of the last equation can be approximated in
L*(Q,P,) by X(hy,) where h, € Hyax(o 4,3 such that h,, can be chosen as a

sequence of step functions that converge to h in L™*{2:22}([0, T, Ar). For the
functions g; we have:

9i(t) = Bu[Z: Z(hi)] = Covu(Xy, X (hi))

[ ([ s )(f“hz xhw)dv)dm@.
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We have for 0 < s <t < T, ve L1([0,T]?, %), h € Hp, g1 > 1 and

/g1 + 1/g2 = 1:

ax{2,q2}>

1gi(t) — gi(s)]* = Covy (X (h:), X — X;)?

_4U j (Lle m@;a)da)
[T P
< [T ([ senmton ona) o
ST hi<a>k<x1,x2;a>da)zdm

t t
<f f (21, 22)|dadas Eu[Z(h:)2].

We have used Eq. (5.9) and find:

1/2

19:(1) — 0n( (f Ltlv(xhxz)ldxldxz) B [Z(h)2]

- 1/2
(J L |1(s,t](xl)l(s,t](xz)v(fch$2)|d$1d$2> Eu[Z(hi)?]

T 1/(2(]1)
(J J |’Y($17$2)|q1d$1d$2>
0

T ~T 1/(2q2)
X <J;) L 1(S7t]($1)1(37t]($2)d$1d$2> EU[Z(hZ)Q]

T T 1/(2‘11)
=(j J thgnmdmx?) 1t — o]\ /B [Z ()],
0 0

The functions g; are thus bounded on [0, 7], continuous on (0,T), right-conti-
nuous in 0 and left-continuous in 7.

5.2.5. Conclusion

Proposition 5.3 holds under the assumptions (i), (ii), (iii), (iv’), (v’) and Eq. (4.8)
gives an estimator that dominates the standard estimator if d > 3.
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6. Applications

In this section we apply the results of Section 4 and Section 5 to concrete
situations. We suppose that conditions (i)-(vii) hold, unless other conditions are
specified.

In Paragraph 6.1 we consider a noise that has a finite Wiener-Itd chaos de-
composition and that defines a martingale. In Paragraph 6.2 we consider the
Gaussian case and show moreover that for this particular situation, we can
choose a = 0 in Eq. (4.8). In Paragraph 5.2 we consider the case of an absolutely
continuous kernel and adapt the construction of Section 4 to this situation. In
Paragraph 6.3 we consider in particular the case of the Rosenblatt process. In
all these cases, Eq. (4.8) gives an estimator whose risk is smaller risk than the
risk of the standard drift estimator.

6.1. The martingale case

In the martingale case, the Cramer-Rao bounds of Section 2 hold and our esti-
mator is superefficient.

(1) Theorem 4.1 and Proposition 5.1 can be used to handle the case where the
noise (Zt)se[o,r] defines a martingale with respect to the filtration of the
Brownian motion with Zy = 0 and

t t rx2
Zy =Xy —up = J fl(.’lﬁl)dW;‘l + f J f2($17.’L‘2)dW£1dW;2, te (O,T],
0 0 JO

for square-integrable function functions f; and fs. The function fs is sym-
metric. We define:

fi(z1;t) := fi(21) 1[0<w1<t]7
1
fa(x1, @23 t) := §f2($1,$2) Lo <t] Ljo<aa<t]

_ f2 (x17 xZ) 1
= T [0<min{z1,z2}<max{zq,z2}<t]*

The functions ¢ — fi(z1;t) and t — fao(x1,x2;t) are monotone and right-
continuous. Furthermore f5(x1,x2;t) is symmetric in the first two variables.
Consider h : t — Sé hl(s)ds for a regulated function h;. With a result from
[11], we have:

T
J;J hi(t)dfl(acl;t) = hi(l'l)fl(xl)a
fa(z1,22)

T . .
f hi(8)dfs (w1, 223 t) = hi(max{xl,xQ})fQ( 5
0
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Since h; is bounded as a regulated function, the Lebesgue-Stieltjes integrals

above are square-integrable. We have:
T .
J hi (t)dfl (xl; t)) dW;l

X(hi) = JTusm >d8+_[0T < 0
J J (J (t)dfa (1, x2; )) AW AW

:J h ds+f h (z1) f1(z1)dW,
J J A(max {21, z2)) (xl’xQ)dW&dWﬁg
:J‘ dS"’J h xl fl(xl)dW;1
+2_f J (02) a1, w2) AW AW
:L U T dS+J hi(a1) fi(a)dWE
N L hi(2) L Falay, w2)dWE AW |
and in particular for h; : s — min {s,¢;}, hi = Lo,
Xy, =J usds+f fi(z)dwy, J J fal@, 22)dWs, AW

The analogue of assumption (v) holds, since:

T T
J V()T(f1($1;'))2d561 =L fi(z1)?dzy < o0,

0

T pT 1 T T
J J Vol (fo(1, 22; ) dor das 1 j f fo(w1, 22)*dz1drs < 0.
o Jo o Jo

It is easy to check that E,[(Z; — Zs)?] — 0 for |t — s| — 0. We have for
s <t
E [(Zt J f1 Il dJCl + 2J J f2 Il,lig) dxld:cz
— 0, for |t —s| — 0,
since fi and fy are square-integrable. We find similarly that SOT E.[Z:]%dt <

. We conclude that Theorem 4.1 can be used in this situation to find
estimators with smaller risk than the standard drift estimator X;.
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We notice that (Z;)e[o,r] has a version that is 1ocally k-Holder continuous
for every k € (0,1/(2¢z2)) if the function z; — fi(z1)? + 2S fo(z1, 22)%dxs
is in L% ([0, T, dAr) for positive reels g1, s with 1/¢; + 1/go = 1.

(2) As a direct consequence, we can choose fo = 0 and recover the case of
Gaussian processes of the form

XO —0 Xt—ut—t—f fl qu tE(O,TL

for a square-integrable function f;.

6.2. The Gaussian case

Choosing fo = 0 in Proposition 5.1, we have

T
Xo:=0; X; =uy +J fl(xl;t)dW;L
0

1?

e (0, 7. (6.1)

We prove for this class of Gaussian processes that we can choose a = 0. As
in Eq. (4.8), we define & := (g(t)"BX(h))/(a + X(h)TBX(h)) and g;(t) =
Covy (X (h;), Xt). We have for the model given in Eq. (6.1) and d > 3:

QL W[(Xe — ue)& dt—QJ J [fl xy;t S_t);al))fgiz)}dmdt
4 j f E

9(t)"BX (h) X(h)"BDy, X (h)
(a+ X(h)TBX(h))?

§, 9(t) Bg(t)dt T 9@ BX(h) X (h )TBg()

[ +X(h)TBX(h) 4f0 S (a+ X(h)TBX(h))* ”

d:l?l dt

) . ) [ X(h TBSO (t)g(t)TdtBX (h)
= 2B Xy Bx Ry | | (a+X(W)TBX ()
i i ) 1 [ X(h)TBX(h)
— B X mTBX® ] T s x T BX () ]
) ) 7 [ 1
> 2dE, o+ X(h)TBX(h) —4E, a+X(h)TBX(h)]

=E. [a + XQ(Cilz)T;ELBX(h)] ’

thus

. T ) 2d — 5
2 f E.[(X0 — w)é)dt — f Eu[edt > E. [ T X(h)TBX<h>] ‘
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The right-hand expectation is positive for every d > 3 and a > 0. We can choose
a = 0 for this special case if d = 3 and Cov, (X (h)) is invertible. This follows
from the well known fact that

1 1 ni+...+n
-2 )dny...d
JRd n2+ ... +n3 (2m)d2 eXp( 2 e did

is finite if and only if d > 3.

6.3. The Rosenblatt process

An important process (Z;)se[o,r] verifying the conditions of Section 4 respec-
tively of Section 5.2 is the Rosenblatt process on a compact interval [0, T].

(1) Tudor [26] gives the following representation for the Rosenblatt process on
[0, T]:

T T t H H’
oK oK W W
Zt:d(H)f f Jl[v>yl\/y2] (U’y1> (v,yg)dv d ;le ;2’
o Jo 0 v v

1
H(2H — 1 R ¢ s g1
K (t,s):= ( ) sz H (U—S)H_%UH_ﬁdv for t > s,
3)
2
1

B(2—2H,H —

S

1 H+ 1 H 12
S <H<1, H = d(H) = .
g = =4 A H+1(2(2H—1)>

The covariance function is given by

1
(t,s) — Covy(Z, Zs) = 3 (t2H + 8 — |t — 52|
and we have almost everywhere the mixed second order derivative:
(s,t) — H(2H —1)|t — s[*# 72,

This function is in L% ([0,7]%,A%) for every 1 < q; < 1/(2 — 2H). The
function t — E,[Z?] = t*# is an integrable function over [0,T]. The con-
ditions of Section 5.2 are easy to check (see also [26]). It is thus possible
to apply Theorem 4.1 to construct an estimator with smaller risk than the
standard estimator in the case of a Rosenblatt process with Hurst parameter
1/2< H < 1.

(2) If (Z¢)te[o,17 is @ Rosenblatt process with 1/2 < H < 1, the conditions about
~ can be specified. For this particular process, we have with Eq. (5.7) that
v(s,t) = H(2H — 1)|t — 5?1 =2 for almost every (s,t). It is easy to see that
v € LY([0,T]?, M%) and this is enough for the results above to hold in the case
of the Rosenblatt process. Consider ¢ € L*([0,T], A\r) = LY ([0,T], Ar).
We have with formula (5.9) and [19, p.19, (4.8)]:

LT JOT (LT o(s)k(x1, T2; S)ds> 2 dridry = % LT LT p(a)p(b)y(a, b)dadb
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J J lo(a ~(a, b)|dadb

< H<P||L1/H([0,T],/\T) c(H).

The constant ¢(H) depends only on H. This relation is sufficient to prove
for instance that g; are continuous if h; € L?([0,T], Ar). Consider 0 < s <
t<T:

19:(t) = gi(s)| = | EulZ(hi)(Z: — Z)]
J f f hi(s)k(xy, 2 s)da> (J L(s,(a)k(21, z2; a)da) dxidzy
o Jo \Jo 0

2
T
f hi(a)k(zy, xo; a)da) dxidxs

0
T T [ T 2 V2
XJ J J Lis,(a)k(xy, z2;8)da | dridzs
o Jo \Jo
1/2

2
T
f hi(a)k:(xl,:cg;a)da> dx1dxs

X Hl(s,t] HLl/H([O,T],)\T) \e(H)
1/2

—9 LTLT (LThi(a)k(a:l,xg;a)da>2dx1dx2 |t — s|" \/c(H).

We can also make a more specific statement about Hoélder continuity. We
can adapt the proof of Theorem 9.3 for 0 < s <t < T:

Eu[|Z: — Z4|*"] < 7(n) Uf Ltv(a, b)dadb]n

l% (@)L (b)Y (a,b)dadb}
0

n n
7(n)e(H)" (Hl(s t]”Ll/H ([0,T7, AT))
<2"7(n)e(H)"|s —

We find as in Theorem 9.3, that the Rosenblatt process has a k-Holder
continuous version for every k € (0, H). This result is also stated in [14].
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7. Estimation of the constant A

In this section we discuss the problem of finding an optimal value for the constant
A used to define the estimator defined in Eq. (4.8):

9(t) " BX (h)
a+ X(h)TBX(h)’
For the case d > 3, Theorem 4.1 states that the risk of X; — & is smaller
than the risk of the standard estimator for every a that is large enough, more
precisely a > A > 0, where A is a constant depending on hy,...,hg, f and T
In this section we discuss the problem of estimating A. In Proposition 7.3 and
Proposition 7.4, we give estimates for two special settings, one being related to
the Rosenblatt process, the other related to the martingale case.

thgt:th

te[0,T].

7.1. Estimating A in the Rosenblatt case

We estimate A in the case of a Rosenblatt process (Z¢)se[o,17-

Remark 7.1. For the proof of the main result, it is essential that d > 3 and

-2 T T ras
(2d — 5)Eq <1+ w> —%L LL | f(z1, 225 )|

x Eo [[Cg(®)[ |C Dz, X ()| [C D, X (h)]

1 X(hWTBX(h)
<ﬁ+ a1 —F)?

We have already proved that this inequality holds whenever a is large enough,
more precisely a > A > 0. Finding the smallest possible value of A is a non
trivial problem. We show how a value for A can be found using numerical
calculations. Notice that this approach does mot provide the smallest possible
value for A.

We consider T > 0, d = 3 and k € (0,1). We use the notations of Theorem 4.1,
for instance h(t) = (hi(t),...,hq(t))T. We notice that X; = u; + Z;, thus
(Xt)efo,11 = (Zt)tejo,) if u = 0. We estimate the terms of inequality (7.1).

)] dxydxadt > 0. (7.1)

(a) We give a lower bound for
- _
8, (1 20 BZ(h))
a

We notice that Z(h)"BZ(h) > 0 and that ¢ : [0,+00) — (0,1], z —
(1 +2)~2 is a convex function. Jensen’s inequality yields for every a > 0:

Z(h)TBZ(h)> B

a

(2d —5) Eq (1 +
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_(Qd_mO[@( M)]

2(2d—5)<p<IEO MD
—2

Ja

In the last step we have used that Eo[r/Z(h)TBZ(h)] < A/Eo [Z(h)TBZ(h)].
(b) We now estimate:

(Qd_5< | VEIZ TBZ(h)])‘Q

f f f 11, 22:)| Eo [|Cg(t)] |C Dy X ()] [C Dy X ()] dary iy,

We have with CTC = C? = B and So (t)TBg(t)dt = d (see proof of
Theorem 4.1):

T:E2 2

f(@r,z2; )] Bo [|Cg(8)| |CDey Z(h)|| |CDa, Z(h)|]] day dodt

0 Jo Jo

1 T T T T

: J f J f(gcl,:cg;t)deldxgdtf |Cq(t)]2dt
0 0 0 0

T prT
x f f Eo [|C Do, Z(0)| |C D2y Z(W)|J? daydcs
0 0

<1 | 3mlzAe | a0 Baa (J EO[HCDMZ(h)P]dm)

T T 2
= gL Eo[Z7]dt <L Eo [(Da, Z(h))T B(Dy, Z(h))] dx1> .

We calculate S(? Eo [(Dy,Z(h))"B(Dy, Z(h))] dz1 with the integration by
parts formula:

T
JO Eq [(Day Z(h)T B(Ds, Z(h))] diy
d

3 B || Bala, 200D, 20)

7,]1

Z B; jEo [(DZ(hi), DZ(h;))r2(0,1)00) )

ij=1
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d
= > Bi;Bo[Z(hi)6DZ(hy)]
i,5=1

= i B; jEo[Z(h;)2Z(hj)] = 2B [Z(h) " BZ(h)].

ij=1

We get:

T rT prx2
Jo L L \f(z1,22:)| Eo [|Cg(#)] |[CDa, X (R)|| |C Dy, X ()] dzyddt

1/2

< (é [ Eaizziara, [Z(WBZW)
8 Jo

J (T 1/2
< (- f Eu[Zf]dt> Eo [Z(h)"BZ(h)].
2 Jo

(c) We estimate now:

T prT pxo
L f If )] B lICo(0)] [CD., X (1)
x |CD,, X (h)| X (k)" BX (h)] da1dxodt.
We have:
T ,rT pxo
( f f (@1, 22:1)] Eo [|Cg(t)] |CDa, Z(h)|
0 0 0
x |CD,, Z(h)| Z(h)T BZ(h)] da:dasdt)”

1 T 1,2, 2 T 2 Triax
<3| || e B (20T B20)?) dridasae

T pT T
x f f j |Ca(t)]2 o [|C Dy Z(1)|[2|CDay Z(h)|?] dery iyt
0 0 0
T

<3| 3Eolzil e [(Z)TBZ0)R) | ) Byt

y fT J B [(Da, Z(0) T BDa, Z(R)) (Do Z(1)T BDay Z(h))] dir s
0 JO

d (7122 TBZ(h)?
<3 f Eo[Z2]dt Eo [(Z(h)T BZ(h))?]
0

XJTJTEO [((Ds,Z(h))"BD,,Z(h)) (D2, Z(h)) " BDy, Z(h))] dz1das.
0Jo

We define h(t) := Ch(t), then CZ(h) = Z(h). To simplify notations we

write Z(h;) = I2(¢;). We have:

Eo [(2(h)TBZ(1))*] = Eo [|CZ(0)|*] = Eo [1Z(R)]*]
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= Eo [(Z(iLl)z to Z(Bd)2)2]
— K, [(12(q1)2 T Ig(dd)Q)g] .
We prove:
Eo | (2(0)"BZ(h)*] < 15Es [2(0) BZ(W)]".

We write ®. for the symmetrization of the contraction of two functions and
find:

hh]

() ewt000) (£ () e 000

4
‘2( ) IEO I4 2r (QZ®Tq2) I4 2r (q;@ﬂb)]

2y
5 () (1 o )

We use the inequality
”qi@rqiHi2([O’T]4727")\§__2T) < Hqi@rqiHi2([O’T]4—2T’)\§__2T) < ”(jiHiQ([O,T]z,/\%)7

and find:

N
g
3
[\

5
Il
o

Il
D]
=
™
A/—S/—\
N~ N~
['>N
—
Ny
)
=
=
|
=
=)
—
G
—
2
N
il
=
=)
—
G
—
s
N—
[l

) .

= 3 (2) (201 Eol 2GR B 2(Ry))
r=0

= 15Eo[Z(hi)2] Eo[Z(h;)?]

We conclude:

E, [(Z(h)TBZ(h))Z] = Zd] Eo [Z(ﬁi)2Z(7w)Q]
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= 15 (Eo[Z(n)) + ..+ EO[Z(ﬁj)2])2
=15 (& [|2()P])” = 1580 [2(0) T BZ(W)]
We can prove similarly:
T T
0 <L fo Eo [((Dsy Z(h)) " BD,, Z(h)) ((Dyy Z(h)) T BD,, Z(h))] daydas
< 12E, [Z(h)TBZ(h)]?,
using the inequality

Eo[I1(11)? I1(12)%] < 3Eo[11(1)?] Eo[11(I2)?],

for any square-integrable functions 1, Iy and random variables I1(l1), I1(I3)
in the first Wiener-1t6 chaos. This inequality yields:

E, [Dflz(ﬁi)ZDmZ(i}j)?] < 3E, [Dle(ﬁiF] E, [DIQZ(Ej)ﬂ. (7.2)
We have:
f JT Eo [((Ds, Z(h))"BDy, Z(h)) (D, Z(h))" BDy,Z(h))] da1daxs
‘ TO T
[ ] BollC@a 2P IC(D 20| v
0 0
T (T R R
- j | Bo[1Des 2y P1D.. 20 ) o

J J Eo[ D, Z(h (DwQZ(Bj))Z]dxldxz.

With inequality (7.2), we find:

3,j=1

fT JT Eo [((Ds, Z(h))"BD,, Z(h)) ((DeyZ(h))" BDyy Z(h))] dz1das

: J J EO[D%Z ] [(%Z(%))jdmd@

f |\lez dxlfo Eo [|\Dw2Z( )| ]dmz

2
= ( ‘CDJHZ ]dI1>

< Eo [(Dq, Z(h TB(DIIZ(h)]dm)
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= 3(2Ey [Z(h)TBZ(W)])” = 12K, [2(h) " BZ(W)]”.

Hence:

f J f (21, 22;1)| Eo [[Cg(£) | |C Dz, Z(R)]|

x |CD.,Z(h)| Z(h)" BZ(h)] dzydxdt|

. 1/2
< (gf Eo[Z7]dt 15Eo[Z(h) " BZ(W)]* 12Eo[Z(h) " BZ (W)
0

. 1/2
_ (% f Eo[Z2]dt Eo[Z<h)TBZ(h)]4>

T 1/2
_ (%ij EO[ZE]dt> Eo[Z(h)" BZ(h)]*.

(d) We find for the left-hand side of inequality (7.1), a > 0 and k € (0, 1):

(2d — 5) Eo <1+ M) JJJ (x1, 225t

]
<Ba 1001002, 2001 10D, 2] 5+ M)] oyt

a(l —k)?
- (205 <1 oy Eo[zw)TBZ(h)])Z

a

 56v/d
k2+/2a

Y 45d
a(l —k)%2v/2a

[ =z o207 200
0

JT Eo[Z2]dt Eo[Z(h)T BZ(h)]%. (7.3)

For concrete situations, this last expression can be useful to find possible
values for a. It is however obvious that the calculations above do not provide
the optimal value for a.

Ezample 7.2. (a) In practice it may be useful to consider a noise that has a
constant variance. We consider thus the model given by the equation

Xo=0; Xy=us+et %7, te(0,T], (7.4)

where € > 0 and (Zi)e[o,1r] is a standard Rosenblatt process with Hurst
parameter H € (1/2,1). We have then E,[(X; — u;)?] = 2t 2H2H = ¢2
for every t € (0,T]. To simplify notations and to avoid confusion with the
initial model, we write:

X(t,e,T) =uy + et ™87, =, + Z(t,e,T), te(0,T], (7.5)
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and we define X (0, ¢, T') = 0. We use only simple random variables X (¢;, €, T)
to construct an estimator of the form
g(ta €, T)TB(Ev T)X(tla €, T)z
a+ X(ti, €, T);FB(E, T)X(t“ €, T)z ’
(7.6)

X(t7€7T) - ga(t7€aT) = X(t7€aT) -

where t; = iT/d for i = 1,...,d and d > 3. Clearly ¢; depends on T and we
do not insist on this obvious dependence in the calculations below. We have
used the following notations:

X(t;,e,T); = (X'(tl,eT) X(T,e,T))T,

-1
(I (t,e,T)§ te,T)Tdt> ,

Gt e, T) = (G1(t,e,T),...,Galt,e,T))"
Gilt.e,T) = E, [Z(t, e, T)Z(t:, e,T)] .

and for ¢ € (0,T7:

We define §;(0,¢,T) = 0. The functions g;(-,¢,T) are right-continuous in
t = 0. We have seen in Theorem 4.1 that the estimator defined in Eq. (7.6)
has smaller risk than the standard estimator if a > A(e,T") where A(e, T)
does not depend on the drift and is supposed to be chosen as the infimum
of all possible (positive) values. We prove the relation

Ae,T) €T = A(1,1) (7.7)

in Section 9.5. We have obviously:
- A(e,T) decreases if € > 0 is fixed and T increases,
- A(e,T) decreases if € > 0 increases and T is fixed.

This observation reflects our intuition: if € > 0 is small, X (t,e,T) ~ uy.
Since it is not possible to improve upon the “estimator” (u¢)se[o,77, the term
£a(t,e,T) in our estimator should be small. This is realized in particular if
A(e,T) — oo for € | 0. On the other hand, a large value for ¢ reflects an
important noise. The standard estimator for the drift is thus not very good
and the term &, (¢, e, T) in X (t, €, T)—£q4(t, €, T) should allow an improvement
upon X(t,e,T). This is realized in particular if A(e,T) | 0 for e — oo. If
A(e,T) or A(1,1) cannot be chosen as the infimum of all possible values,
Eq. (7.7) becomes an inequality. For instance, if A(1,1) is estimated by
A’(1,1) and is not optimal, we do not have an optimal value for A(e,T')
either, but we can state:
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For d = 3 and H = 0.55, numerical calculations and the estimations of
Remark 7.1 give for instance A’(1,1) ~ 4.727 x 107, with 7" = 1000 and
€ =100, we find A(e, T) < 4.727. We notice that €27 is the variance of the
noise integrated over the interval [0, 7. We have Sép Eu[Z(t, e, T)?]dt = €T.

(b) It should be noticed that similar calculations can be made for the process
given by

Xt =us +€Zy, tel0,T], (7.8)
where (Z)seq0,] is a standard Rosenblatt process as above. We find then:
A(e, T) 2T+ = A(1,1).

We have for the process defined by Eq. (7.8):
2 T2H+1

T T
Eu X, — 2 — 2 42H _ .
L [(X: — u)?]dt L e tMdt = —

The factor 2T72H+1 is again a multiple of the variance of the process inte-
grated over [0,T].
We conclude:

Proposition 7.3. Consider a Rosenblatt process (Zi)e[o,r] with Hurst param-
eter 1/2 < H < 1 and the situation defined in Eq. (7.4) respectively in Eq. (7.5)

by:
Xo=0; Xy=u+et "7, te(0,7T],
X(0,6,T)=0; X(t,e,T)=wy +et 27z, =u, + Z(t,e,T), te(0,T],
with € = 100 and T = 1000. Consider the functions
Gi(e,T) it — Ey[Z(t,e,T)Z(t;,e,T)]
and d = 3. The estimator defined in Eq. (7.6) by

g(ta €, T)TB(67 T)X(tlv €, T)z
a+ X(tza €, T);FB(Ea T)X(tla €, T)’L ’

X(t7 €, T) - ga(t7 €, T) = X(t7 €, T) -
has smaller risk than the standard estimator for a > 4.727.

7.2. Estimating A in the martingale case

As we did in Section 7.1, we can estimate the constant A in the martingale case.
We notice that inequality (7.3) holds generally for a noise living in the second
chaos and is not specific for the case of the Rosenblatt process.

We choose in Eq. (41) f($1, x2; t) = 1[0<min{zl,xz}émax{zl,mg}gt]/z This
leads to the process (X¢)seqo,r) defined by:

T rT
1
Xt = U + J J 5 1[OSIIliIl{I17I2}<1’nax{fl}'1732}St]delde2 (79)
0 0
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= Ut + J f 1[0<$1$$2<t qu dW;‘é,
Xp= g+ - [(Wt )2 ] te[0,T].

The noise Z; = 1/2 [(Wt“)2 — t] is a self-similar process. This follows from the
self-similarity of the Brownian motion. We prove the equivalence of all finite
dimensional distributions. Consider s > 0 and t1,...,t, € R, then:

Py (Zss, < ar,..., Zst, < an) =Py (WE)? <2a;+t;s, i=1,...,n)
<

=P, (sW*)?<2a;+t;s,i=1,...,n)
=P, (172 —t] <a, i=1,....n)
= ]P)u (SZt < ay, aSZtn < an)

Thus (Z.) @ (¢ Z;) where D means equivalence of all finite dimensional distri-
butions.
We consider the analogue of Eq. (7.4) in the present context:
- - W)s —t
X(0,6,T):=0; X(t,e,T) = t+ﬁ( ; , te(0,T]. (7.10)
The estimation of the constant A for the model Eq. (7.10) is analogue to the
estimation in Section 7.1. We consider again a drift estimator of the form

G(t,e, T)TB(e, T) X (t;,€,T);

Xt,e,T —&, t,e, T =Xt,e,T - = = =
( ) g( ) ( ) a+X(ti767T);rB(€’T)X(tia€7T)i

(7.11)

and t; = iT'/d for d > 3. Using the relation

E, [(W2? —a) (W)? —b)] = 2min{a,b}?,

we find that:

~ B 2
Covo(X(t,e,T), X (t;,€,T)) = :—tmin {t,t:}?

%

With the self-similarity of the noise (Z;)e[o,r] We can prove an analogue of
Eq. (7.7) and find numerically as in Section 7.1 for d = 3, T' = 1000 and € = 100
that A(e,T') < 1.057. We conclude:

Proposition 7.4. Consider the situation defined in Eq. (7.10) by:

X(0,6,T):=0; X(t,e T)_ut+ﬁ%

with € = 100 and T = 1000. Consider the functions

—U/t+Z(t,€,T), te(ovTL

Gi(e,T) it — Ey[Z(t,e,T)Z(t;,e,T)]
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and d = 3. The estimator defined in Eq. (7.11) by

Gt e, T)TB(e, T)X (t;,¢,T);
a+ X(ti, €, T);'—B(e, T)X (ti, e, T);

X(t,QT) - ga(t767T) = X(t,QT) -
has smaller risk than the standard estimator for a > 1.057.

8. Discrete-time results

In this section, we give, without proof, a discrete version of the continuous-time
models considered so far.

8.1. Discrete-time version of the estimator

Consider the martingale case of Section 6.1. In Proposition 5.1, we have noticed
that the results of Theorem 4.1 hold in a Wiener-1t6 chaos of higher order. We
consider a stochastic process (X¢)eo,r) with:

)x/in, te 0,7, (8.1)

where H, is the Hermite polynomial of order n. Using the properties of the Her-
mite polynomials and the classical version of the integration by parts formula,
we can show the following discrete version of Theorem 4.1:

Theorem 8.1. Consider the d-dimensional random wvector

XT=(.,X;...)= (%H (\/J—>F +uz,...>,

o110 O1d
Y~N@O0,%), S=|- - ],
0d1 ' 0dd

where

and the matrixz ¥ is positive definite and symmetric. We write A*™ for the
Hadamard product of n matrices A. The estimator

n! (¥t X Cov,(X)™1X
0(X)=X— =X - £ 8.2
=X ey xp X ar e w8

has smaller risk than X as an estimator for p with respect to the quadratic loss
function, provided that a is large enough and d = 3.
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8.2. Approximation of the discrete-time estimator

Counsider the discrete situation with Y ~ A(0, %) and

Xi=%Hn (%) Vo, i=1,...d. (8.3)
Suppose that ¥ = (min {t;,#;}), ;,_, ,for 0 <ty <2 <...<tq <T. This
corresponds to Y; = W, for a standard Brownian motion. Eq. (8.3) can be
regarded as the discrete version of Eq. (8.1). The estimator given in Eq. (8.2) is
connected to the estimator for the continuous-time model. We can recover the
estimator for the discrete-time model by considering the continuous-time version
and choosing h; : t — min {¢;,t} and approximating the integrals Sg gi(s)g;(s)ds
appearing in B by Riemann sums. We find that the estimator for the continuous
version becomes for ¢t = ¢;:
dm! (Z*™) "L X(h)

j-th row

5/(X) X th — 1 .
a+ d|m! (Z*™)"" X (h)|?

This corresponds to the j-th component of the estimator for the discrete version
up to a factor d (which can be eliminated by replacing a by ad in the estimator
for the continuous version).

9. Appendix

9.1. Proof of Theorem 2.1

Let (§¢)ie[o,7) be an unbiased adapted drift estimator:
E, [&] = Eufut], te]0,T7,

where u; = Sé usds. Consider v; := S(t) b2ds. Condition 4 implies that u + ev €

L2(Q %[0, T],Pysco @A7) and ug + vy = Sé (its + ebg) ds. We can suppose with-
out loss of generality that U < (—1,1). We have for the unbiased adapted drift
estimator for every |¢| <1 and t € [0,T]:

Equev [gt] = Eu+ev [ut + E’Ut]

and

1
Eu-&-eu [ft — Ut] = 6E1L+Eq) [Ut] = 6Eu+ev |:J bids] < 0. (91)
0

(a) We have:

dX; = tudt + byd W}, (9.2)
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where (Wy*)c(o 7] is a standard Wiener process with respect to P,,. Since
condition 1 holds, we can use Girsanov’s theorem and define @ by:

d@ dP,
P, = M7 and 0 =

L 1t (0>
My = exp —f —SdWS“——f (—S> ds], tel0,T].
! < o bs 2 Jo \ bs [0,7]

We then have with Eq. (9.2):

dP, T 4 1 (T /a2
= SAWE 4 = =) 4a
aQ eXp(L g <b> )

Mt

for

(b) We have:

L]
de

d T g + €b? 1 (T (i, +eb?\?
:@EQ l({tut)exp (J;) bz ng*i\L < bs > dS B

=Eq [(gt - ut)% (Alu+ ev))eo]

Eu+ev [gt - ut]e:O

~ B (6 — u) g (o Au-+ e0))_y AGw)
~ B (6~ ) Qo+ ). .

We have then for %Eu+ev [&: — ut]e=o:

d
& Eu-&-ev [gt - ut]e:O

d [ (T i+ eb? 1 (T (is + eb?)?
—E, l(gt—ut)E U - dXs—§J ds
0 0 s =0

S
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T 20,
b2

S

)

ol

We give a justification for the interchange of differentiation and integration

in (d) below. We condition on F; and use the fact that (Sé bde:>

a (Ft)iefo,r)-martingale to get:

J _
d_ Eu+ev [ft - ut]ezO = Eu
€
= Eu
= Eu

7(& *Ut)fo

is
te[0,T7]

T
E. l(ft — Uy) L bdeﬂftH

T
(& —u) Ey lL bde;‘U:tH

t

bde:] . (9.3)

(c) We apply the same procedure to calculate %e Eytev[vt]e=0. We give a jus-

tification for the existence of % Eytev[Vt]e=o in (d).

d

d€€Eu+6v[Ut]e=O =1 ]Equev[vt]

E,

Comparing Eq. (9.1), Eq. (9.

t
E, [ J bids
0

t
J b2ds
0

3) and Eq. (9.4), we get:

-

d
e=0 T 0— Equev

-

[Ut]6=0 =E, [Ut]

(9.4)

[

bdeS“] .

We apply the Cauchy-Schwarz inequality and the It isometry to get:

2

¢
E, [J bids]
0

E, [(gt — ) Lt bsdwg]

2

<E, [(¢& — u)?] Eu [(Lt bde§L>21

< Varu (gt)

t
E, U bgds] .
4(_/

<0
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Thus:
t
E, [ J bgds] < Vara(&). 9.5)
0

We calculate Var, (X;) = E, [(X; — u;)?] by applying the It6 isometry:

Var, (X;) = E, [(X; —w)?] = E, l(ﬂ bSdWS“>2] =E, Uot bﬁds] . (9.6)

Comparing inequality (9.5) and Eq. (9.6), we get:
Var, (X;) < Var,(&).

(d) Justification for the interchange of the expectation and the differentiation.

(i) We calculate A(u + ev) and SEA(u + ev).

ot eb? 1 (T [, +eb?\?
A(u + ev) = exp [L u Z;SdX QL (%) ds
T . T T /0N 2
Ug 1 Ug
- Ys ix, dx,— = | (%) g
ool [ sl ax 3 [ () o
1. (7 ab? 1, (T
~ 29 D5 s — ~e2 | =
QEL s 26L s

T
= A(u) exp(eXr — eur) exp <—%62f bgds>
0

T
= A(u) exp [e(X1 — ur)] exp (;ezfo bids) .

The derivative 2 A(u + ev) equals then:

T
A(uw) l(XT —ur)exp [e(XT — ur)] exp ( %GQJ b2ds>

+ exp [e(XT — ur)] (——26 JOT b2ds> exp ( b?ds)]

= A(u) exp [e (X1 — ur)] exp (—%EQJ;) bids)

T
X l(XT —ur) — EJ bgds]
0
T T
= A(u + ev) (J bedW¥ —ef bids) .
0 0
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(ii) We have to show:
d 1
‘(ft—ut)EA(u—Q—ev) <MelL (Q)

Then it is possible to interchange the expectation and the derivative.
We have exp(Jex|) < exp(|z]) for every e with |¢] < 1 and thus:

‘(gt —ut)%A(u—kev)’

1. (T
< |& — u|A(u) exp [e (X — ur)] exp (—562 J b?ds)
0
T T
x U bydW — ef bgds‘
0 0

T
< & — ue|A(u) exp [|e (X7 — ur) [] (’ L b dW

T
+|6|‘J b?ds‘)
0

T
+” bgdsD
0
T T
J bydW +U bgdsD
0

T
< € — ug)Aw) exp (| X — ur|) (‘ f bydW
0

)

)
> + UO bids’]

We have with conditions 2 and 3:

T
< [& — weA(u) exp (U bedW
0 0

T
< [& — weA(u) exp (U bsdW ¥
0

T
X lexp (‘J bsdW !
0

=: M.

Eo[M] =Eu{|§t—ut| [exp (UTbsdwgﬂ }
- 0

eL2(Q,P,)

€L2(Q,P.)

T T
: Eu{ [~ exp (U bsdW! ) U bids]}
eL2(Q,P,) AU
eL4(Q,P,) eL4(Q,P,,)

(ili) A similar argument proves the existence of - Eq ¢y [v¢]e—o. O
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9.2. Proof of Theorem 2.2

(1) We know that (see [17, p.15-16]) the class of elementary adapted pro-
cesses is dense in the space of adapted and square-integrable (with respect
to P, ®\r) processes L2(Q2 x [0,T]). Every elementary adapted process
(Vt)te[o,r] can be written as

Z Fil(ti,ti+1](t)7 te [O,T]’
=1

where 0 < ¢ < ... < tp41 < T are elements of [0,7] and every F; is
Fi,-measurable and square-integrable (with respect to P,). We can find a
sequence of elementary adapted processes (b(s,n))seo,r] With

n—+ao0 0

lim E, UT (bs — b(s,n))Qd,s} = 0. (9.7)

We define for 1 >e¢ >0, M >ecand ne N:

t
Xt,e,M,n = Ut + J b(san)é\/ldwga te [OaT]
0

where b(-,n)M is the truncated version of the process b(-,n). We define:

b(s,n) ife<|b(s,n)|<M

€ it0<b(s,n) <e
b(s,n)M = { —¢ if 0> b(s,n) = —e
M if b(s,n) > M
-M if b(s,n) < —M
and
b(s,n) if |b(s,n)|< M
b(s,m) = M if b(s,n) > M
-M if b(s,n) < —M.
(a) We show:

T
lim lim lim E, lj (bs — b(s,n)y)stl = 0.
n—00 M—o0 e—0+ 0
We calculate

lim E, UT (bs — b(s,n)M)? ds] .

e—0t 0

We have for every 1 > € > 0 and every fixed ne N, M > e

(bs — b(s,m)™)* < 26% + 2 (b(s, n)M)? < 202 + 2|b(s,n)|* + 2.
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Since E,, [SOT b2ds| < oo and (b(s,n))se[o,7) is an elementary adapted
process, we can apply Lebesgue’s theorem and we get:

lim E, UT (bs — b(&n)éw)zds] —E, [

e—0t 0
g, l

We notice that lim._,g+ b(s,n)M = b(s,n)™ holds almost surely. Indeed:

- If b(s,n)M(w) # 0, we have b(s,n)M(w) = b(s,n)™(w) for all suffi-
ciently small € > 0.

- If b(s,n)M (w) = 0, we have b(s,n)(w) = 0, b(s,n)M (w) = € and thus:

€

JT lim (by — b(s,n)é”)zds}

g €—0*

JT (bs — b(s7n)M)2 ds] .

0

Jim b(s,n)." (w) = lim € =0.

(b) Now we calculate:

lim lim E,
M—0 e—0+

T
f (bs — b(s, n)éw)2 ds

0

We have for every M > 1 and every fixed n € N:
(be — b(s,n)™)? < 262 + 2 (b(s,m)™)* < 262 + 2|b(s, n) 2.

Since E, [Sg b2ds] < o0 and (b(s,n))sejo,r] is an elementary adatped
process, we can apply Lebesgue’s theorem and we get together with
(a):
T 2
g, [} bt
M—w0 0

= lim E, lJT (bs — b(s,n)M)2 ds]

T
o [ (b b))’ ds]

(c) We finally calculate

n—00 M—0 e—0+

T
lim lim lim E, U (bs—b(s,n)é\d)st}.
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We have together with (a) and (b) and Eq. (9.7):

n—0 M—w e—0+ 0

T
lim lim lim E, U (bsb(s,n)i”)ZdS]

n—o0 0

= lim E, UT (bs — b(s,n))> ds] = 0.

(2) We have for every ¢ € [0,T]:

lim lim lim E, [((Xt7€,M,n C ) — (X — ut))Q]

n—00 M—00 e—0+

t
= lim lim lim E, [J (bs —b(s7n)£4)2d8]

n—0 M—w e—0+ 0

n—0 M—w e—0+ 0

T
< lim lim lim E, lf (bs —b(s,n)éVI)Q ds] = 0.

Thus for every ¢ € [0,T]:

lim lim lim E, [(Xt@M,n - ut)Q] —E, [(Xt - ut)Q] . (9.8)

n—0 M—w0 e—0+

(3) We check the conditions of Theorem 2.1 for the process b(-,n). We suppose
that (u¢)ieqo,r) is Fi-adapted and P, (S;)T w2dt < C’) = 1 for some positive
constant C'. We suppose that the elementary adapted process b(-,n) can be

written as:
myp—1

b(S,n) = Z Fj]‘(tj,tj+1](s)'
j=1

where without loss of generality ¢t = 0 and ¢,,,, =T

(a) With P, (SOT u}dt < C) =1and z € U, where U < (—1,1) is a neigh-
bourhood of 0, we obtain:

T - M2\ 2
1 s+ 2 (b(s,n):
E, | exp J _<u Z((S n) )> ds

0 2 b(s,n)M

1 (T r 2 (T 2
<E, |exp| = J e 202ds + 2 J Usds + — J (b(s,n)M)" ds
2 Jo ) 0 2 Jo

1 (* T 12 22
e Jo 0

< 00.

The first inequality follows with the definition of b(s,n)}, the second
inequality follows with the Cauchy-Schwarz inequality and since x —
exp(z) is an increasing function.
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(b) We have:
T m
| smtawz| =[S (we, - w)
i=1
M u u
< DI i, -
<M
<MW - W
i=1
T 4 m
Eu | exp (| f b(s,m)Maw | ) | < Bulexp(aM Y | Wi, = Wit )]
0 i=1

E, [exp (4M |Z;|)] < 0.

.

@
Il
_

We have used that the standard Wiener process has independent incre-
ments and considered Z; ~ N (0,¢;,1 — t;) with respect to P,,.

(c) We have:

4
E, (f (b(s,n)yfds) < (MT)" < 0.

0

(d) Finally:

T t ) 9 T )
J F (f (b(s, m):") dS) dt <J M*t?dt = gM4T3 < .
0

0 0

(4) We suppose that (u)iepo,r] is Fi-adapted and PP, (SOT u2ds < C’) = 1 for
a positive constant C. We apply the results of Theorem 2.1 and get for
every unbiased adapted drift estimator & ¢ asn in the situation X; ¢ prpn =

Uy + Sé b(s,n)Mdw:
Eu|(€enrn — )| > B[ (Xcon —w)’| e[0T (9.9)

(5) We suppose as above that (ut)seo,7] is F¢-adapted and P, (Sép uds < C) =
1 for a positive constant C'. We now consider an unbiased adapted drift
estimator (&;);e[0,7 for the situation

t
Xt:ut—l—J bSdW:, tE[O,T]
0

We also consider the “truncated model” defined above:

t
Xt,e,M,n = Ut + f b(Svn)?{dWsuv te [OvT]
0
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From (4) above, for a deterministic drift (u;)seo,77 Which satisfies the con-
ditions of Section 2.1, we have in particular that inequality (9.9) holds.

(a) We define &; ¢ pmr.n = Ey [€] Xt,e,m,n]- The estimator &; ¢ as,, is a function
of Xy e, mn only, & ¢ m,n is an unbiased adapted drift estimator for the
“truncated model”:

]Eu[gt,e,M,n] = Eu [Eu [gt‘Xt,e,M,n]] = Eu [ff] = Eu [Uf] = Ut, te [07 T]

(b) Since the conditional variance is a.s. non-negative we have for every
€ [0,T]:

0 < Vary [&|X 1. mn] = Bu [€1X 0 0] = Bu [€0 X1 e arn]?
Thus for every t € [0,T]:

Eu [671Xtenin] = Eu [€] Xt mn]®-

This is also immediate with Jensen’s inequality.

(¢) We get for every t € [0,T]:

Eu [&1Xt,emn] = Eq [€ & Xt e ]’
= E, [Ey [5t|XteMn]] Eu[E gt'XteMn]2]
Ey [¢7] 2 Bu [&carn)
[gt] u; =By [&crin] — ui-

For a deterministic drift (u)iepo, 7], we deduce that:

EU[(gt - ut)2] = EU[(gt,E,M,n - ut)2]>

and with inequality (9.9), we find for every ¢ € [0,T]:

Eu (6 = u)*] > Bu [(cnrn —10)*] 2 Eu [ (Xucatn — u0)’
=B, [(6 —w)’] 2 Bu |(Keeptn —w)?]. (9.10)

(d) Inequality (9.10) holds for every e, M,n and taking into account
Eq. (9.8), we finally find:

E, [(ft - Ut)2] = E, [(Xt - Ut)Q] :

This completes the proof. O
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9.3. Inequalities and a property of the Hadamard product

We prove the inequalities used to demonstrate the main result and that the
sum of elements of the Hadamard product M % M~! equals the dimension of
the matrix.

Theorem 9.1. We have for a > 0, k€ (0,1) and X(h) = u(h) + Z(h):

a + u() Bu(h) Z(nyBZ()
ot X(h)TBX(h) = (1 * a > :

a + u(h) " Bu(h) 1 Z(h)"BZ(h)

ar X(W)TBX(h) S (k=12a
a;u% for Q = [a+ X (h)TBX(h)]~! respectively Q = k=2 +[Z(h) T BZ(h)]/[a(1 -
k)?2]:

jo f j B [1 (21, 22:)] |Cg(6)] [CDay X ()] [CD, X ()| Q) iy dirsdt < o0

Proof. (a) In the inequalities below, all numerators and denominators are pos-
itive:
a +u(h) " Bu(h) a + u(h) " Bu(h)
a+ X(h)TBX(h) Ta+ u(h)TBu(h) + 2u(h)TBZ(h) + Z(h)TBZ(h)
a + u(h)" Bu(h)
a+u(h)T Bu(h) +2[Cu(h)[ |CZ(h)| + |CZ(R)|?
1

[Cu(m)| [czl __ | _lezm)|?
Vat|Cu(h)|2 y/a+|Cu(h)|z ~ atICulh)[?

1
>
1+ 2 [CZ00, [CZME

\%

1+2

1

5
(1 . Z(h)TaBZ(h) )

(b) We show that X (h)"BX (h) < k*>u(h)" Bu(h) implies

.
u(h) " Bu(h) < 2(211)_73152(}1)
for k € (0,1). We have:

X(h)"BX(h) < K*u(h) " Bu(h)

= (CX(h))(CX(h)) < K*(Cu(h))T (C(u(h))
= [CX (R[> < K[ Cu(h)|?
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= [CX ()| < k|Cu(h)]
= [Cu(h)| = |CZ(R)| < |C(u(h) + Z(h))| < k[Cu(h)]
= —[CZ(h)| < (k= 1)[Cu(h)].
We have used that B = C? = C'T C. We can now easily prove the desired
inequality:
X(h)"BX(h) < k*u(h)" Bu(h) = |CZ(h)| = (1 - k)| Cu(h)]
= [CZR)|* = (1 = k)| Cu(h)]?
Z(h)TBZ(h)
é —_—

TEAE > u(h) " Bu(h).

We have for X (h)"BX (h) < k*u(h)" Bu(h):

a+u(h)"Bu(h) a u(h) T Bu(h)
c+ X(WTBX(h)  at X()TBX() a+ X(h)TBX()
<1+ 7“(]1)?“(]1) <1+ 7Z§T)ji§ih>

We have for X (h)"BX (h) > k*u(h)" Bu(h):

a +u(h) " Bu(h) a + u(h) " Bu(h) 1

at X(W)TBX(h) ~ a+t ku(h)TBulh) ~ &

We combine both inequalities using that k € (0, 1) and get:

a+u(h) Bu(h) _ 1 Z(h) BZ(h)

a+ X(h)TBX(h) ~ k2 (k—1)2a

We use below that B = C? = CTC and that there is a positive constant k’
with:
|Ca| < K|z, =eR™

Choose for instance k' as the largest eigenvalue of C. We use also that for
any matrix M € R?*? there is a positive constant ks such that:

|Mg(t)| < kar, te[0,T1].

This holds since every g; is bounded as a continuous function on [0,7]. We
have for @ > 0 and k € (0, 1):

T T prao
(f f f Eu [IC9(8)] |CDay X ()] [CDay X (1)

|f(z1, 223 ) ’
a+t X(h)TBX(h)] dzldm?dt)




3036 C. Krein

- (j jj (1. 22:1)| [ Ca(t)]

a + u(h)T Bu(h) ’
E, [||C’DI2X(h) [1CD., X ()] - X<h)TBX(h)] dxldxgdt>

< TBU (f jj (21, 2251)| | ()]

T 2
E, [HCDMX(h) liepaxal (5 + 20250 | dxldxzdt) .

With the Cauchy-Schwarz inequality, the inequalities [Cyg(t)| < k¢ and
[Cx| < E'|x|| for positive real numbers ko and k', we prove that the

expression in parenthesis is finite. We notice that for © = 0, we have
X(h) =u(h) + Z(h) = Z(h), thus:

(J JJ (z1, 22 0)[ |Cg(t)]

T 2
E. [ICDMX(MII |CD. X (1) ( %)] dxldxzdt>

< fTJTJ'“EU [f((El,LL'Q;t)Q ICg(t)|? (k2 + %) ]dmldxgdt

f f f W [IC D2, X ()2 [C D, X (1)) dardasdt

kck’4f J J f(x1, z9;t)%dz dzodt B, [< Zi’leBkZ)(zh)> ]
f f f o [| D2y X (W) | Dy, X ()]

=k k"‘f J J Flar, wo; t)2day dwsdt ]EO[

]

2
XJ JJ Eo [|Day X ()|? | Dy X (R)|?] dz1daadt < .

(i) |

For the last inequality, we need that So [Z2]dt < oo (this was one of the
assumptions) and

J f f IEO (Dy, X (hy))? (szx(hj))Q] dzydzodt < o0
for every i,7 = 1,...,d. We can prove this last inequality with:

Bo | (11(q) i(1))?] < 3Bo [11()*] Bo [Li(1)?].
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We have:
T pT rT
J J J Eo (D2, X (1)) (D2 X (h))* | dvrdazat
0 Jo Jo
T oT pT
sj J J 8o [(Da, X (1)) | Bo | (D, X (1y))?] dadaadt
0o Jo JO
T T T
zsf J Eo [(Da, X ()] dzlf Eo [(D2, X (h)) | devzat
0 Jo 0
T
= 3J 2Eo[Z(hi)*]2Eo[Z(h;)?]dt < o0.
0

This completes the proof. O

Theorem 9.2. Consider an arbitrary invertible symmetric matriz M e R3*?
with inverse M—'. We write * for the Hadamard product of two matrices. We
prove that the sum of all elements of M + M~ is always d:

Proof. We use the notation M = MT = (u1,...,ug) and M~ = (v1,...,vq)

where ULy e veyUdyVly- - - Vd are d-dimensional vectors. Since
M M~' = I, we have u] v; = &; ;. Since M is symmetric, M1 is symmet-
. T
ric as well and we have M~ = (M~') = (v1,...,v4). We have then:
d

D Mg (M7, =ulo 4. Hufug=1+...+1=d

i,j=1
This concludes the proof. O

9.4. Holder continuity
We prove that the processes considered in Section 5.2 have Holder continuous
paths.

Theorem 9.3. The process Z defined in Section 5.2 has a version with k-Holder
continuous paths for every k € (0,1/qz).

Proof. The proof is divided in two steps:

(a) We consider a symmetric function f € L?*([0,T]?,A\%) and prove for every
n=1:

E. | (l2(H)™] < 7(0) B | ((£)°] (9.11)

where 7(n) is a constant that is independent of f.
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(b) We use this result to prove that (Z;)e[o,r] has a version with k-Hélder
continuous paths for every k € (0,1/q2).
We now prove these statements.

(a) We use the well known multiplication formula for multiple Wiener integrals:

2 2

L(f)?= ), ! <r21> Lior, (f&, f) = ), aa(r1)aop, (f&r, f).

r1=0 r1=0

We write f®,, f for the symmetrization of the contraction f®,, f and

s(r1) i= 1! (7?1)2

Using the multiplication formula once again, we find for Io(f)3:

2 2A(4—2r1)

2
2 Z r1lrs! (i) (é) (4 ;3”) 16—2(r1+r2)((f®r1f)®r2f)

r1=0 ro=0

2 2A(4-2r1)

= Z Z CY?)("qh T2)16—2(r1+r2)((f®r1 f)®rzf)

r1=0 ro=0

We have used the notation

as(ri, re) = r1lre! 2)* (2 (4-2n
s(ri,r2) = malral Y . .

Using the multiplication formula n — 1 times, we find similarly for Io(f)™:

2 2A(4-2r1) 2A(2(n—1)=2(r1+...4+7rn—2))
2, Z 2 an(ri; s mnea)
r1=0 ro=0 Tn—1=0

X 12n72(r1+...+7“n71)((f®7"1 f)®'f2 - )
= Z an(Th~'~7rnfl)IQn—Q(rl-ﬁ-...-f-rn,l)((f®7“1f)®7“2 )

(r1,e;rn—1)T€A,

For the ease of notation we write A, for the set of " := (r1,...,r,_1)" €
N7~ verifying:

n—2
0<T1<2,0<T2<2/\(4—27‘1),...,0<7‘n_1<2/\<2(n—1)—22’ri>.

We have with (z1 + ...+ @p)? < m(af+ ... +22):

E. [ (B()")]
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< Ay Z an(rys .- arn—l)Z E, [I2n72(?”1+...+rn71)((f®7“1 f)®7"2 .. )2]

rTeA,

= |A,]| Z (1, 1)? 20 =20 + o+ )]

rTeA,

X [(F&n )&r, - I,

2([0,T]2"~ 2(ri4.Hrp_1) )\277 2(ryt. ot 1))

n
< Ay Z an(r, ..., Tno1)? <2n -2 Z 7"2'>! (”f||2L2([o,T]2,,\2T)>
i=1

rTeA,
For symmetric functions f and g with
feL*([0, 7%, \) 5 ge L2([0,T]™, \5?)
and r < min {kq, k2}, we have used the following inequality:
101 gy s 8520y < I gy i 1912 2yt

With constants By, := 3, . yrea, @n(ri,. .. no1)?[2n—2(r1 + ... +
rn—1)]! and 7(n) := 27" |A,| B, we get:

n E, [L(FH)2])"
Eu (B ] < 14al Ba (I aqorpeagy) = 14al Ba <—[ = ]>

=7(n) (E. [L2(/)*])"

We use Kolmogorov’s continuity theorem to prove that (Z;);e[o,7) has a ver-
sion that is locally k-Holder continuous for every k € (0,1/q2). We consider
n € Nxo. We have for every 0 < s <t < T with inequality (9.11):

B, [1Z— Z,P"]

2n
(J J (z1, 25t f(xl,xg;s))dW;leW;‘J
T T 2
(JO L (f(xlax%t)_f(xl,JUQ;S))dW;‘ldW;‘?)

< f f (1, x95t f(xh:rg;s))delde)n
n) (2 LT LT <Lt k(x1, zo; a)da> 2 dasld@) '

This yields for E, [ |Z; — Z,[*"]:

n

B, |17 - Z,”"]
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< 7(n) (2 JOT JOT (Lt k(xy1,zo; a)da) (Lt k(xy,zo; b)db) dmld:@)n
— r(n) Ut f (2 JOT LT k(z1, 22; a)k(x1, T2; b)dxld:c2> dadb] n
=7(n) [Lt Lt ~(a, b)dadb]n .

We find with the Cauchy-Schwarz inequality:

B (120 2] < (o) l(f f 1dadb> 1/q2(£ f |’Y(a,b)|q1dadb> 1/q1r

T T 0
< 7(n) (t—s)2/q2 (L L 7(a7b)‘“dadb>

T ~T ”/Q1
— +(n a. D)9 da _ @/
( ><f f (@, )| d db) (t—s)

Kolmogorov’s continuity theorem implies that (Z;)c[o, 7] has a version that
is locally k-Holder continuous for every k € (0, (2n/q2 — 1)/2n). This holds
for every n > g2/2 and thus (Z;)ejo, ] has a version that is locally k-Holder
continuous for every k € (0,1/g2). Since [0,7] is compact, it follows that
(Z¢)te[0,1) has a version that is k-Holder continuous for every k € (0,1/gz).

O

9.5. Proof of Eq. (7.7)

A(e,T) T = A(1,1).

(a) We prove that g;(-,€,T") is right-continuous in ¢ = 0. We use the series
expansion of |t — ;| in a neighbourhood of t = 0. We have for ¢t > 0
sufficiently small:

€2

gi(ta€7T) = ot tH (tQH +t12H — |t7t2|2H)
K2
2
= s (P T =27 4 2H T 4 O() > 0for ¢ 0.
%

Hence §(-,¢,T) is right-continuous in ¢ = 0.
(b) We transform the condition

T

QLT E, [(X(t, e, T) — up) &alt, e,T)] dt — L Eo[€,(t, ¢, T)?]dt > 0
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using the properties of the Rosenblatt process. The Rosenblatt process
(Zt)tero,r) with Hurst parameter H is a self-similar process and for every
¢ > 0, we have

(Zt) @ (M 24),

where & means equivalence of all finite dimensional distributions (see [26]).

We consider s = ¢/T and we have as a direct consequence that: (Z(t, e, T)) @

(eZ(s,1,1)):

Zt,e,T) L (et 72) L (et 7 Zp) D (et T 2,) D (e 577 2,)

D (e Z(s,1,1)).

We define @ : [0, 1] — R by @i, = ¢ ! uyr. For s = /T, we have the relations:

Gi(t,e,T) = €2G;(s,1,1), B(e,T) = FB(L 1). (9.12)
€

We have with s = t/T and s; = t;/T = i/d:

= 62 E, [Z (3i7 1a 1) Z(S, 1) 1] = €2§i(85 1, 1)7

0

T -1
B(e,T) = (f §(t,e,T>§<t,e,T>Tdt>
1 -1
= (et g(s g(s T s = T 148 .
—( Lg(,1,1>g(,171> Td) T B(1, 1)

(¢) We know that, for a > A(e, T'):

T T
2[ Eu | (X(te,T) ~u)&ult, e, T)| dt—f E,[&(t e, T)?]dt > 0.
0 0
On the other hand we use Eq. (9.12) and transform the left-hand side of
the inequality above. We have:

0

- JTJEu Z(t,€,T)

2JT E.[(X(te.T) —u) &l )] de
R
§(t, e, T)TB(e, T) (uti n Z(tl-,e,T))i .,
a+ (ut + 2t e, T)): Ble,T) (ur, + Z(ts, e, T))

?

1
- 2Tf E, [Z(ST,QT)
0
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62 g(S, 13 I)TB(G, T) (uti + Z(tla €, T))

i ds
- T - -
a+ (uti v 2(t, e,T)) B(e,T) (uti v 2t e, T)) ,

1 1

1
- QTJ E, [eZ(s, 1,1)

€25(s,1,1) 7T —4B(1 1)e (u_ +Z(§',1,1)),

Tt B(1,1)e (ug +Z(5,1, 1))Z_

3(s,1,1)TB(1,1) (u +Z(3,10).

\_/

X

~ . T
aTe® + (u_ +Z(4,1, 1)) B(1,1) (u_ + Z(%a 1, 1)).

1
_ zTeQJ E; [(X(s,m) —u) faT62(s,1,1)] ds,
0
and similarly:

T ~
JO E, [ga(t,e,T)2] dt

(e, + Z(tise, T)): B(e,T) (ur, + Z(ti,eT)).

2

T 2
(a + (uti + 2(t, e,T))Z_ B(e,T) (uti + 2(t, e,T))i>

T - o
2 (u + 25,1, 1))_ T-1e4B(1,1) (ug + 2031, 1))4

2

(a+62 (u +Z(271,1))1 T-1e-1B(1, 1)( +Z(§,1,1)>i>2

E

— e f E; [an (11, 1)2] dt.

0
Combining these results, we find:

T

2f E, [(X(t e, T) — ug) Ealt T)] dt—J Eo[Ea(t, e, T)?]dt

0

_Te { f X(611) — ) Expee (1,1, 1) | e
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1

- [ Balérate 1020} (0,13

0

(d) We use Eq. (9.13) to prove Eq. (7.7) The expression on the left-hand side
of Eq. (9.13) is positive for a > A(e,T) whereas the expression on the
right-hand side of the equation is positive if aT'e€? > A(1,1). Assuming that
A(1,1) and A(e,T) are both chosen as the infimum of all possible values,

we have:
A(1,1)
Ale,T) = ’
(e, 7) Te?
This completes the proof. O
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