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Statistical inference on restricted linear regression models
with partial distortion measurement errors

Zhenghong Wei, Yongbin Fan and Jun Zhang
Shenzhen University

Abstract. We consider statistical inference for linear regression models
when some variables are distorted with errors by some unknown functions of
commonly observable confounding variables. The proposed estimation pro-
cedure is designed to accommodate undistorted as well as distorted variables.
To test a hypothesis on the parametric components, a restricted least squares
estimator is proposed for unknown parameters under some restricted condi-
tions. Asymptotic properties for the estimators are established. A test statistic
based on the difference between the residual sums of squares under the null
and alternative hypotheses is proposed, and we also obtain the asymptotic
properties of the test statistic. A wild bootstrap procedure is proposed to cal-
culate critical values. Simulation studies are conducted to demonstrate the
performance of the proposed procedure and a real example is analysed for an
illustration.

1 Introduction

In some applications, variables may not be directly observed because of certain
contamination, such as in health science and medicine research. It is well known
that measurement errors in covariates may cause large bias, sometimes seriously, in
the estimated regression coefficient if we ignore the measurement error. As such,
measurement error models have received much attention. Some literature about
measurement error models include Kneip, Simar and Van Keilegom (2015); Li
and Xue (2008); Saleh and Shalabh (2014); Stefanski, Wu and White (2014); Xu
and Zhu (2015); Yang, Li and Peng (2014); Zhang, Li and Xue (2011) and oth-
ers. Carroll et al. (2006) systematically summarized some recent research devel-
opments of linear and non-linear models as well as in non-parametric and semi-
parametric models. Our interest is in quantifying the following linear regression
models with partial distortion measurement errors:{

Y = βτ
0X + γ τ

0Z + ε,

Ỹ = φ(U)Y, X̃ = ψ(U)X,
(1.1)

where Y is an unobservable response, X = (X1,X2, . . . ,Xp)τ is an unobserv-
able continuous predictor vector (the superscript τ denotes the transpose opera-
tor throughout this paper), Z = (Z1,Z2, . . . ,Zq)

τ is an observed predictor vector,
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β0,γ 0 are the unknown coefficient parameters for the linear regression model of Y

on X,Z. Ỹ and X̃ are the distorted and observed response and predictors, ψ(·) is a
p × p diagonal matrix diag(ψ1(·), . . . ,ψp(·)), where φ(·) and ψr(·) are unknown
continuous distorting functions. The confounding variable U ∈ R

1 is independent
of (Xτ ,Zτ , Y )τ . The diagonal form of ψ(·) indicates that the confounding variable
U distorts unobserved Xr , r = 1, . . . , p in a multiplicative fashion. The model er-
ror ε is independent of (Xτ ,Zτ ,U)τ .

This type of measurement error models is revealed by Şentürk and Nguyen
(2009), who studied the Pima Indians diabetes data. It is interest to investigate
which covariates have impact on the diabetes. To analyse this data, Şentürk and
Nguyen (2009) suggested the covariate “body mass index” (BMI) to be a potential
confounding variable. Kaysen et al. (2002) also treat BMI as the confounder on
hemodialysis patients and they further realised that the fibrinogen level and serum
transferrin level should be divided by BMI, in order to eliminate the contamination
possibly caused by BMI. From a practical point of view, since the exact relation-
ship between the confounder and primary variables is unknown, naively dividing
BMI may be incorrect and may lead to an inconsistent estimator of the param-
eter. As a remedy, Şentürk and Müller (2005, 2006) introduced a flexible mul-
tiplicative adjustment by using unknown smooth distorting functions φ(·),ψr(·).
Recently, there have been much literature on the statistical modelling of the dis-
tortion measurement errors data. Şentürk and Müller (2005, 2006) proposed para-
metric covariate-adjusted models with one-dimensional confounding variable in
the setting in which the observed Ỹ and X̃ are related through a varying coef-
ficient model (Xu and Guo, 2013; Xu and Zhu, 2013), using the binning method
(Fan and Zhang, 2000). Şentürk and Nguyen (2006) further proposed a local linear
estimator to deal with partial distortion measurement error-in-variables. Nguyen,
Şentürk and Carroll (2008) proposed an estimation procedure for linear mixed ef-
fects models with an application to longitudinal data. Cui et al. (2009) proposed
a driect-plug-in estimation procedure. Later on, this direct-plug-in method has
been developed to the case of multivariate confounders (Zhang, Zhu and Liang,
2012a, 2013a, 2014c) and some semi-parametric models, for example, partial lin-
ear models (Li, Lin and Cui, 2010), the partial linear single index models (Zhang
et al., 2013b), the dimension reduction models (Zhang, Zhu and Zhu, 2012b).
Zhang, Feng and Zhou (2014a) studied an efficient estimator for the correlation co-
efficient between two variables that are both observed with distortion measurement
errors. Li et al. (2014) employs the smoothly clipped absolute deviation penalty
(Liang and Li 2009; Fan and Li 2001, SCAD) least squares method to simultane-
ously select variables and estimate the coefficients for high-dimensional covariate
adjusted linear regression models. Recently, Zhang, Li and Feng (2015) proposed a
residuals based empirical process based test statistic to solve the problem of model
checking on parametric distortion measurement error regression model.

In this article, we investigate the estimation and statistical inference for model
(1.1). To estimate the unknown parameter β0, γ 0, we used the direct plug-in
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method proposed by Cui et al. (2009) and further investigate the asymptotic prop-
erties of the estimators. To make statistical inference of β0, γ 0, that is, testing
whether the true parameter β0, γ 0 satisfies some linear restriction conditions or
not, we further develop a restricted estimator by introducing Lagrange multipliers
under the null hypothesis. The associated asymptotic properties of the restricted
estimator are also revealed. Finally, a test statistic based on the difference between
the residual sums of squares under the null and alternative hypotheses is proposed.
The limiting distribution of the test statistic is shown to be a weighted sum of in-
dependent standard chi-squared distributions under the null hypothesis. To mimic
the null distribution of the test statistic, a wild bootstrap procedure is proposed
to define p-values. We conduct Monte Carlo simulation experiments to examine
the performance of the proposed procedures. Our simulation results show that the
proposed methods perform well both in estimation and hypothesis testing. We also
apply our estimation and testing procedure to analyze the Pima Indians diabetes
data set.

The paper is organized as follows. In Section 2, we describe the direct-plug-in
estimation procedure for parameters β0, γ 0, and present the associated asymptotic
results. In Section 3, we provide a test statistic for the testing problem and give
a restricted estimator under the null hypothesis, associated their theoretical prop-
erties. A wild bootstrap procedure is also proposed to mimic the null distribution
of the test statistic. In Section 4, we report the results of simulation studies and
present the results of our statistical analysis of a diabetes study. All the technical
proofs of the asymptotic results are given in the Appendix.

2 Estimation procedures for β0, γ 0

2.1 Covariate calibration

In this subsection, a calibration estimation procedure is proposed to estimate un-
observed Y,X. Using the observed i.i.d. samples {Ỹi , X̃i ,Ui}ni=1, we follow Cui
et al.’s (2009) estimation procedure to estimate unknown distorting functions
φ(·),ψr(·). To ensure identifiability, Şentürk and Müller (2005, 2006) assumed
that

E
[
φ(U)

] = 1, E
[
ψr(U)

] = 1, (2.1)

r = 1, . . . , p. By (1.1) and (2.1), we can have that E[Ỹ ] = E[Y ], E[X̃r ] = E[Xr ]
and

E

[
Ỹ

E[Ỹ ]
∣∣∣U]

= φ(U), E

[
X̃r

E[X̃r ]
∣∣∣U]

= ψr(U). (2.2)

Using these equations, the unobserved {Yi,Xi}ni=1 can be estimated as

Ŷi = Ỹi

φ̂(Ui)
, X̂ri = X̃ri

ψ̂r (Ui)
, (2.3)
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i = 1, . . . , n, r = 1, . . . , p. Those estimators φ̂(Ui), ψ̂r (Ui) used in (2.3) are the
Nadaraya–Watson estimators, which are defined as

φ̂(Ui) = n−1 ∑n
j=1 Kh(Uj − Ui)Ỹj

n−1 ∑n
j=1 Kh(Uj − Ui)

¯̃
Y

,

(2.4)

ψ̂r (Ui) = n−1 ∑n
j=1 Kh(Uj − Ui)X̃rj

n−1 ∑n
j=1 Kh(Uj − Ui)

¯̃
Xr

,

i = 1, . . . , n, where ¯̃
Y = 1

n

∑n
i=1 Ỹi ,

¯̃
Xr = 1

n

∑n
i=1 X̃ri . Here Kh(·) = h−1K(·/h),

K(·) denotes a kernel density function, and h is a positive-valued bandwidth.

2.2 A least squares estimator

In this subsection, we introduce the estimation procedure for the true parameter
β0,γ 0. In what follows, A⊗2 = AAτ , A�2 = AτA any matrix or vector A. The
estimators of β0 and γ 0 are obtained by a least squares estimation method:

(
β̂
γ̂

)
=

(
1

n

n∑
i=1

T̂⊗2
i

)−1(
1

n

n∑
i=1

T̂i Ŷi

)
, (2.5)

where T̂i = (X̂τ
i ,Zi)

τ , X̂i = (X̂1i , . . . , X̂pi)
τ , i = 1, . . . , n. We now present an

asymptotic expression of (β̂
τ
, γ̂ τ

)τ .

Theorem 2.1. Under conditions (A1)–(A6) given in the Appendix, we can have(
β̂
γ̂

)
−

(
β0
γ 0

)

= (
E
[
T⊗2])−1 1

n

n∑
i=1

(Ỹi − Yi)
E[TY ]
E[Y ] + (

E
[
T⊗2])−1 1

n

n∑
i=1

Tiεi (2.6)

− (
E
[
T⊗2])−1

p∑
r=1

(
1

n

n∑
i=1

E[TXr ]
E[Xr ] (X̃ri − Xri)

)
β0,r + oP

(
n−1/2).

Remark 1. In this asymptotic expression, the second term (E[T⊗2])−1 1
n

×∑n
i=1 Tiεi is the usual asymptotic expression for the least squares estimator when

data are observed without errors. The others in the (2.6) are caused by the distort-
ing functions φ(·), ψr(·)’s and the confounding variable U .

The proposed procedure involves the bandwidth, h, to be selected. It is worth-
while to point out that under-smoothing is necessary for estimating X̂i , Ŷi . This is
because, condition (A6) requires the bandwidth h to satisfy nh4 → 0. To meet con-
dition (A6), Carroll et al. (1997) suggested that the bandwidth h can be chosen as
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an order of O(n−1/5) × n−2/15 = O(n−1/3). Thus, a useful and reasonable choice
for h is the rule of thumb suggested by Silverman (1986), namely, h = σ̂Un−1/3,
where σ̂U is the sample deviation of U . See also in Zhang et al. (2014b); Zhou and
Liang (2009).

3 A Hypothesis test for β0, γ 0

In the previous section, we discuss the estimation of β0,γ 0 rather than testing.
Another interesting problem is to evaluate if certain explanatory variables in the
parametric components influence the response significantly. As in many important
statistical applications, in addition to sample information, we may have some prior
information on the regression parametric vector which can be used to improve
the parametric estimators. Specially, this study can be used to select unobserved
underlying variable X for distortion measurement errors data. We consider the
following linear hypothesis:

H0 : Aθ0 = b vs H1 : Aθ0 �= b, (3.1)

where θ0 = (βτ
0,γ τ

0)τ , A is a k × (p + q) matrix of known constants and b is a
k-vector of known constants. We shall also assume that rank(A) = k ≤ p + q .

3.1 A restricted estimator and its asymptotic normality

Under the null hypothesis H0, the restriction conditions Aθ0 = b should be used to
obtain an estimator of θ0 without losing the restriction information involved in the
null hypothesis H0. The information for regression coefficients involved in this
null hypothesis may improve the efficiency of the estimator. Following Wei and
Wang (2012), we can construct a restricted estimator by using Lagrange multiplier
technique:

S(θ ,λ) =
n∑

i=1

[
Ŷi − T̂τ

i θ
]2 + 2λτ (Aθ − b), (3.2)

where λ is a k × 1 vector of the Lagrange multipliers. Differentiating S(θ ,λ) with
respect to θ and λ, it is easily seen that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂S(θ ,λ)

∂θ
= −2

n∑
i=1

T̂i

[
Ŷi − T̂τ

i θ
] + 2Aτλ = 0,

∂S(θ ,λ)

∂λ
= 2(Aθ − b) = 0.

(3.3)

Solving (3.3) with respective to θ and λ, the restricted least squares estimator of
β0,γ 0 can be obtained as

(
β̂R

γ̂ R

)
=

(
β̂
γ̂

)
−

[
n∑

i=1

T̂⊗2
i

]−1

Aτ

{
A

[
n∑

i=1

T̂⊗2
i

]−1

Aτ

}−1 [
A

(
β̂
γ̂

)
− b

]
, (3.4)
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where the estimator β̂, γ̂ used in (3.4) is obtained from (2.5). In the following, we
present the asymptotic normality for the restricted estimator β̂R, γ̂ R .

Theorem 3.1. Under conditions (A1)–(A6) given in the Appendix, we can have
that

√
n

((
β̂R

γ̂ R

)
−

(
β0
γ 0

))
L−→ N

(
0,�A�−1�τ

Aσ 2
ε + �AQβ0

�τ
A
)
, (3.5)

where �A = Ip+q − �−1Aτ [A�−1Aτ ]−1A, Ip+q is an identity matrix of size p +
q , and

Qβ0
=

p∑
l=1

p∑
r=1

β0,lβ0,r�
−1�Xl

�τ
Xr

�−1 Cov
(
ψl(U),ψr(U)

) E[XlXr ]
E[Xl]E[Xr ]

−
p∑

l=1

β0,l�
−1[�Xl

�τ
Y + �Y �τ

Xl

]
�−1 Cov

(
ψl(U),φ(U)

) E[XlY ]
E[Xl]E[Y ]

+ �−1�⊗2
Y �−1 Var

(
φ(U)

) E[Y 2]
(E[Y ])2

and �Xr = E[TXr ],r = 1, . . . , p, �Y = E[TY ] and σ 2
ε = Var(ε).

Remark 2. The first term �A�−1�τ
Aσ 2

ε in the asymptotic variance (3.5) is the
usual asymptotic covariance matrix of the restricted least squares estimator under
the null hypothesis H0 when the data can be directly observed, that is, φ(·) ≡ 1 and
ψr(·) ≡ 1. The second term �AQβ0

�τ
A is an extra term caused by the distortion in

the covariates.

3.2 A test statistic and its asymptotic result

After obtaining the restricted least squares estimator β̂R, γ̂ R , we can define the
residual sum of squares under the null hypothesis H0:

RSS(H0) =
n∑

i=1

[
Ŷi − X̂τ

i β̂R − Zτ
i γ̂ R

]2
. (3.6)

Similarly, we can define the residual sum of squares under the alternative hypoth-
esis:

RSS(H1) =
n∑

i=1

[
Ŷi − X̂τ

i β̂ − Zτ
i γ̂

]2
. (3.7)

Our test statistic for the null hypothesis H0 is based on the difference between the
residual sums of squares under the null and alternative hypotheses:

Tn = RSS(H0) − RSS(H1). (3.8)
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Intuitively, if the null hypothesis H0 is true, the value of Tn is small. If the null
hypothesis H0 is not true, there should be significant difference between RSS(H0)

and RSS(H1), and the value of Tn is large. Large value of Tn further indicates
that the null hypothesis H0 should be rejected. The following theorem gives the
asymptotic distribution of Tn under the null hypothesis H0.

Theorem 3.2. Under conditions (A1)–(A6) given in the Appendix, we can have
that:

• Under the null hypothesis H0 : Aθ0 = b,

Tn
L−→ 	1χ

2
1,1 + 	2χ

2
2,1 + · · · + 	kχ

2
k,1,

where χ2
i,1, i = 1, . . . , k are independent standard chi-squared random variables

with one degree of freedom, and 	i’s are the eigenvalues of matrix (A[�−1σ 2
ε +

Qβ0
]Aτ )(A�−1Aτ )−1. Here, matrices � and Qβ0

are defined in Theorem 3.1.
• Under the local alternative hypothesis H1n : Aθ0 = b +n−1/2c, the test statistic

Tn follows a generalised chi-squared distribution (Sheil and O’Muircheartaigh,
1977), namely,

Tn
L−→ (

M+ �−1/2Aτ [A�−1Aτ ]−1c
)τ (

M+ �−1/2Aτ [A�−1Aτ ]−1c
)
, (3.9)

where M is a random vector follows a multivariate normal distribution N(0,D)

with

D = �−1/2Aτ (A�−1Aτ )−1A
(
�−1σ 2

ε + Qβ0

)
Aτ (A�−1Aτ )−1A�−1/2.

3.3 A wild bootstrap procedure

To apply Theorem 3.2 under the null hypothesis H0, one way is to estimate the
unknown weights 	i , 1 ≤ i ≤ k by estimating � and Qβ0

consistently, then one

can use the distribution of 	̂1χ
2
1,1 + 	̂2χ

2
2,1 + · · · + 	̂kχ

2
k,1 or Welch–Satterthwaite

approximation to define the p-values. However, as the asymptotic variances ob-
tained in Theorem 3.1 are very complex. Especially for Qβ0

, its estimator may not
be precise in finite samples. To overcome this problem, we suggest to apply a wild
bootstrap (Stute, González Manteiga and Presedo Quindimil, 1998; Escanciano,
2006; Wu, 1986) technique to mimic the distribution of the test statistic Tn under
the null hypothesis H0.

The procedure for calculating the critical values based on the bootstrap test
statistic is proposed as follows:

Step 1. Compute the test statistic Tn defined in (3.8).
Step 2. Generate N times i.i.d. variables ςib, i = 1, . . . , n, b = 1, . . . ,B with

a Bernoulli distribution which respectively take values at 1∓√
5

2 with probability
5±√

5
10 . Let ε̂i = Ŷi − X̂τ

i β̂ − Zτ
i γ̂ and ε̂

(b)
i = ε̂iςib, and further obtain

Ŷ
(b)
i = X̂τ

i β̂ + Zτ
i γ̂ + ε̂

(b)
i .
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Step 3. For each b, using bootstraps (Ŷ
(b)
i , X̂i ,Zi), we re-calculate the boot-

strap estimators β̂
(b)

, γ̂ (b) and β̂
(b)

R , γ̂
(b)
R by

(
β̂

(b)

γ̂ (b)

)
=

(
1

n

n∑
i=1

T̂⊗2
i

)−1(
1

n

n∑
i=1

T̂i Ŷ
(b)
i

)
,

(
β̂

(b)

R

γ̂
(b)
R

)
=

(
β̂

(b)

γ̂ (b)

)
−

[
n∑

i=1

T̂⊗2
i

]−1

Aτ

{
A

[
n∑

i=1

T̂⊗2
i

]−1

Aτ

}−1 [
A

(
β̂

(b)

γ̂ (b)

)
− b

]
,

and we then calculate the bootstrap test statistic

T (b)
n = RSS(b)(H0) − RSS(b)(H1),

RSS(b)(H0) =
n∑

i=1

[
Ŷ

(b)
i − X̂τ

i β̂
(b)

R − Zτ
i γ̂

(b)
R

]2
,

RSS(b)(H1) =
n∑

i=1

[
Ŷ

(b)
i − X̂τ

i β̂
(b) − Zτ

i γ̂
(b)]2

.

Step 4. We calculate the 1 − κ quantile of the bootstrap test statistics T (b)
n ,

b = 1, . . . ,N as the κ-level critical value.

4 A simulation study

In this section, we present some numerical results to evaluate the performance
of our proposed estimators. In the following, the Epanechnikov kernel K(t) =
0.75(1 − t2)+ is used. As noted in Remark 1, the rule of thumb bandwidth
h = σ̂Un−1/3 is used. In Example 1, a comparison is made between the direct-plug-
in (DPI) estimation method and the local linear approximation (LLA) method pro-
posed in Şentürk and Nguyen (2006). The simulation results is reported in Table 1.
In Example 2, a comparison is made between the usual least squares estimator
β̂, γ̂ and the restricted estimator β̂R, γ̂ R . The simulation results in reported in Ta-
ble 2. We also investigate the performance of the test statistic Tn and its bootstrap
estimators. The values of power calculations are reported in Table 3.

Example 1. We generate 500 realizations from the following model (4.1) and the
sample size is chosen as n = 500 and 1000:

Y = β0,1X1 + β0,2X2 + γ 0,1Z1 + ε, (4.1)

where (β0,1,β0,2,γ 0,1) = (1,3,−2). Those predictors are independently gen-
erated from normal distributions: X1 ∼ N(2,1.22), X2 ∼ N(2,0.52) and Z1 ∼
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Table 1 Simulation results of Example 1. “Mean” is the simulation mean; “SD” is the standard
deviation

Sample size β0,1 = 1 β0,2 = 3 γ 0,1 = −2

σ = 0.50 DPI n = 500 Mean 0.9858 2.9835 −1.9843
SD 0.0352 0.0692 0.1042

MSE 0.0014 0.0050 0.0111
n = 1000 Mean 0.9900 2.9888 −1.9815

SD 0.0248 0.0452 0.0818
MSE 0.0007 0.0022 0.0070

LLA n = 500 Mean 0.9911 2.9855 −2.0017
SD 0.0386 0.0715 0.1112

MSE 0.0016 0.0053 0.0123
n = 1000 Mean 0.9925 2.9889 −1.9964

SD 0.0259 0.0471 0.0894
MSE 0.0007 0.0023 0.0080

σ = 1.00 DPI n = 500 Mean 0.9883 2.9837 −1.9920
SD 0.0609 0.1336 0.2056

MSE 0.0038 0.0180 0.0422
n = 1000 Mean 0.9915 2.9879 −1.9939

SD 0.0410 0.0889 0.1369
MSE 0.0018 0.0080 0.0187

LLA n = 500 Mean 0.9878 2.9727 −2.0181
SD 0.0624 0.1348 0.2183

MSE 0.0040 0.0188 0.0478
n = 1000 Mean 0.9901 2.9769 −2.0093

SD 0.0455 0.0933 0.1487
MSE 0.0022 0.0092 0.0221

N(0.5,0.252), and the covariance matrix of (X1,X2,Z1) is chosen as⎛
⎝ 1 −0.5 0.25

−0.5 1 −0.5
0.25 −0.5 1

⎞
⎠ .

The model error ε is independent with (X1,X2,Z1), ε ∼ N(0, σ 2) with σ = 0.5
and 1.0. The confounding covariate U is generated from the Uniform (0,1) distri-
bution, independent with (X1,X2,Z1, ε). The distorting functions for X1 and X2
are chosen as ψ1(U) = 1 + 0.3 sin(2πU) and ψ1(U) = 1 + 3(U − 0.5)3, respec-
tively. The distorting function for Y is chosen as φ(U) = 0.5 + U .

In Table 1, we report the simulation results of the sample mean (Mean), the
sample standard deviation (SD) and the sample mean squared error (MSE). We
can see that both the DPI estimator and LLA estimator are close to the true value.
As the sample size increases or σ decreases, their means are generally closer to
the true values, the SD and MSE of both the estimators decrease, and the biases of
DPI estimator is much smaller than those of LLA estimator. In addition, by com-
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Table 2 Simulation results of Example 2. Restricted condition (I): β0,1 + β0,2 + 2γ 0,1 = 0; Re-
stricted condition (II): −β0,1 + β0,2 + γ 0,1 = 0. “Mean” is the simulation mean; “SD” is the
standard deviation

Sample size β0,1 = 1 β0,2 = 3 γ 0,1 = −2

σ = 0.50 (I) n = 500 Mean 0.9826 2.9778 −1.9802
SD 0.0388 0.0611 0.0469

MSE 0.0018 0.0042 0.0026
n = 800 Mean 0.9902 2.9841 −1.9872

SD 0.0308 0.0510 0.0384
MSE 0.0010 0.0028 0.0016

n = 1000 Mean 0.9939 2.9910 −1.9924
SD 0.0263 0.0436 0.0325

MSE 0.0007 0.0020 0.0011
(II) n = 500 Mean 0.9851 2.9760 −1.9910

SD 0.0365 0.0593 0.0352
MSE 0.0015 0.0041 0.0013

n = 800 Mean 0.9913 2.9833 −1.9920
SD 0.0292 0.0492 0.0292

MSE 0.0009 0.0027 0.0009
n = 1000 Mean 0.9947 2.9904 −1.9957

SD 0.0247 0.0422 0.0265
MSE 0.0006 0.0018 0.0007

σ = 0.75 (I) n = 500 Mean 0.9841 2.9776 −1.9809
SD 0.0497 0.0841 0.0633

MSE 0.0027 0.0076 0.0044
n = 800 Mean 0.9864 2.9818 −1.9841

SD 0.0402 0.0669 0.0497
MSE 0.0018 0.0048 0.0027

n = 1000 Mean 0.9919 2.9889 −1.9904
SD 0.0361 0.0597 0.0451

MSE 0.0013 0.0036 0.0021
(II) n = 500 Mean 0.9859 2.9764 −1.9905

SD 0.0477 0.0813 0.0476
MSE 0.0024 0.0071 0.0023

n = 800 Mean 0.9872 2.9817 −1.9945
SD 0.0385 0.0640 0.0401

MSE 0.0016 0.0044 0.0016
n = 1000 Mean 0.9926 2.9886 −1.9960

SD 0.0348 0.0573 0.0342
MSE 0.0012 0.0034 0.0012



474 Z. Wei, Y. Fan and J. Zhang

Table 2 (Continued)

Sample size β0,1 = 1 β0,2 = 3 γ 0,1 = −2

σ = 1.00 (I) n = 500 Mean 0.9846 2.9881 −1.9864
SD 0.0659 0.1108 0.0819

MSE 0.0045 0.0124 0.0069
n = 800 Mean 0.9924 2.9858 −1.9891

SD 0.0499 0.0883 0.0646
MSE 0.0025 0.0080 0.0043

n = 1000 Mean 0.9969 2.9958 −1.9964
SD 0.0468 0.0763 0.0579

MSE 0.0022 0.0058 0.0034
(II) n = 500 Mean 0.9872 2.9864 −1.9993

SD 0.0630 0.1060 0.0672
MSE 0.0041 0.0114 0.0045

n = 800 Mean 0.9931 2.9852 −1.9921
SD 0.0481 0.0847 0.0530

MSE 0.0023 0.0074 0.0029
n = 1000 Mean 0.9975 2.9953 −1.9977

SD 0.0451 0.0734 0.0438
MSE 0.0020 0.0053 0.0019

Table 3 The simulation results of the power calculations

Significant level 0.01 0.025 0.05 0.10

c = 0.000 0.0094 0.0243 0.0517 0.0975

c = −0.100 0.0488 0.1057 0.1220 0.1951
c = −0.200 0.1789 0.2114 0.2846 0.3902
c = −0.300 0.2927 0.4228 0.5203 0.6504
c = −0.400 0.6260 0.7236 0.7805 0.8374
c = −0.500 0.8537 0.8943 0.9187 0.9512
c = −0.600 0.9837 0.9919 1.0000 1.0000

c = 0.100 0.0732 0.1138 0.1789 0.2602
c = 0.200 0.1870 0.2602 0.3496 0.4959
c = 0.300 0.4472 0.5691 0.6423 0.7236
c = 0.400 0.7236 0.8049 0.8780 0.9268
c = 0.500 0.9268 0.9674 0.9919 1.0000
c = 0.600 1.0000 1.0000 1.0000 1.0000

paring the MSE, we can see that our DPI estimator is slightly more efficient than
LAP estimator, which suggests that DPI estimation procedure is indeed worthy of
recommendation.
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Example 2. We first consider the restricted estimator under two restricted condi-
tions A[1] = (1,1,2)τ (i.e., β0,1 + β0,2 + 2γ 0,1 = 0) and A[2] = (−1,1,1)τ (i.e.,
−β0,1 + β0,2 + γ 0,1 = 0). The covariates X1,X2,Z1, ε,U and the choices of dis-
torting functions are the same as Example 1. We generate 500 realizations from
the following model (4.1) and the sample size is chosen as n = 500, 800 and 1000,
and the σ for the error term ε is chosen as σ = 0.25,0.5 and 1.0 in this example.

In Table 2, we can see that the values of MSE for the restricted estimator of β0,1
is slightly larger than those obtained in Table 1. However, the restricted estimator
of β0,2 is generally smaller than those in Table 1, the restricted estimator γ̂ R are
much smaller than those in Table 1, which indicates both A[1] and A[2] can improve
the estimation efficiency for β0,2,γ 0,1 without losing much estimation efficiency
for β0,1.

Next, we consider a hypothesis test problem by considering

H0 : γ 0,1 = 0 vs H1 : γ 0,1 = c, (4.2)

where c = 0,±0.1,±0.2,±0.3,±0.4,±0.5,±0.6. The parameter (β0,1,β0,2) is
set to be (1,3). In this test problem (4.2), it is noted that the alternative hypothesis
H1 becomes the null hypothesis H0 when c = 0. 1000 bootstrap samples are gen-
erated in each simulation to calculate its powers. In Table 3, all empirical levels
obtained by the bootstrap test statistics are close to the four nominal levels when
c = 0, which indicates that the bootstrap statistic T (b)

n gives proper Type I errors.
As the absolute value of c increases, the powers increases rapidly and increases to
one.

5 A real data analysis

We apply our method to analyse the Pima Indian diabetes data for an illustration.
The dataset is available on the web site http://www.ics.uci.edu/~mlearn/databases/.
This data has been analysed by Şentürk and Nguyen (2009). They suggested the
body mass index (BMI) as the potential confounding variable and further investi-
gated a linear regression model between the unobserved covariate “plasma glucose
concentration” (Y ), the covariate “diastolic blood pressure” (X), the observed co-
variate “triceps skin fold thickness” (Z1) and the observed covariate “age” (Z2):

Y = β0,0 + β0,1X + γ 0,1Z1 + γ 0,2Z2 + ε. (5.1)

We first present the patterns of φ̂(u) and ψ̂(u) in Figure 1 by using the local lin-
ear smoothing procedure (Fan and Gijbels, 1996). Those two plots indicate that
φ(u) and ψ(u) are not constants (i.e., φ(u) �≡ 1, ψ(u) �≡ 1), which suggests that
the variable “BMI” is the potential confounder for the response Y and covariate
X. Next, we use our proposed direct-plug-in estimation procedure and obtain that
(β̂0,0, β̂0,1, γ̂ 0,1, γ̂ 0,2) = (84.0284,0.2118,0.0642,0.6375). 1000 bootstrap sam-
ples are conducted for the testing problem, the results are presented in Table 4.

http://www.ics.uci.edu/~mlearn/databases/
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Figure 1 Plots for distorting functions.

Table 4 The results of the hypothesis testing for the Pima Indian dia-
betes data

Null hypothesis Alternative hypothesis p-values

H[1]
0 : β0,1 = 0.2 H[1]

1 ,β0,1 �= 0.2 0.922

H[2]
0 : γ 0,2 = 0.6 H[2]

1 ,γ 0,2 �= 0.6 0.790

H[3]
0 : γ 0,2 − 3β0,1 = 0.0 H[3]

1 ,γ 0,2 − 3β1 �= 0.0 0.994

H[4]
0 : γ 0,1 = 0.0 H[4]

1 ,γ 0,1 �= 0.0 0.636

Based on the estimate (β̂0,0, β̂0,1, γ̂ 0,1, γ̂ 0,2), we are interested in the null hypoth-

esis H[s]
0 , s = 1,2,3,4 in Table 4. From this table, we cannot reject the hypothesis

H[1]
0 : β0,1 = 0.2 as the associated p-value is 0.922, if we use the significant level

α = 0.05. Similarly, we cannot reject the hypothesis H[3]
0 : γ 0,2 = 0.6 either. We

consider the hypothesis H[4]
0 : γ 0,2 − 3β0,1 = 0.0, the associated p-value is 0.994,

which indicate that the relationship in the null hypothesis H[4]
0 can be true. For the

null hypothesis H[4]
0 , we cannot reject the null hypothesis H[4]

0 , as its p-value is
0.636, much larger than critical value 0.05. This implies that the variable “Triceps
skin fold thickness” may be excluded from model (5.1).
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Appendix

In this appendix, we present the conditions, prepare several preliminary lemmas,
and give the proofs of the main results.

A.1 Conditions

(A1) The matrix � defined in Theorem 3.1 is positive-definite, 0 < E[ε2] = σ 2
ε <

+∞.
(A2) The density function fU(u) of the confounding variable U is bounded away

from 0 and satisfies the Lipschitz condition of order 1 on U, where U stands
for a compact support set of U . Moreover, infu∈U fU(u) ≥ c0, 0 < c0 < +∞.

(A3) φ(·), ψr(·) have three bounded and continuous derivatives. Moreover, φ(u)

and ψr(u) are non-zero on U.

(A4) E[Y ] and E[Xs] are bounded away from 0; moreover, E[|Y |3] < ∞,
E[|Xs |3] < ∞, s = 1, . . . , p.

(A5) The kernel function K(·) is a density function with a compact support,
symmetric about zero, satisfying a Lipschitz condition and having bounded
derivatives. Furthermore,

∫ ∞
−∞ u2K(u)du �= 0,

∫ ∞
−∞ |u|jK(u)du < ∞, for

j = 1,2,3.

(A6) As n → ∞, the bandwidth h satisfies: log2 n

nh2 → 0, nh2 → ∞, and nh4 → 0.

A.2 Technical lemmas

Lemma A.1. Suppose E(W |U = u) = mW(u) and its derivatives up to second
order are bounded for all u ∈ U, where U is defined in condition (A1), and that
E|W |3 exists, and supu∈U

∫ |w|s0f (u,w)dw < ∞, where f (u,w) is the joint den-
sity of (U,W)τ . Let (Ui,Wi)


, i = 1,2, . . . , n be independent and identically dis-
tributed (i.i.d.) samples from (U,W)τ . If (A1)–(A3) hold, and n2δ−1h → ∞ for
δ < 1 − s−1

0 , then

sup
u∈U

∣∣∣∣∣1

n

n∑
i=1

Kh(Ui − u)Wi − fU(u)mW(u) − h2

2

[
fU(u)mW(u)

]′′ ∫
K(u)u2 du

∣∣∣∣∣
= O(τn,h), a.s.,

where let τn,h = h3 +
√

logn
nh

.

Proof. Lemma A.1 can be immediately proved from the result obtained by Mack
and Silverman (1982). �
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Lemma A.2. Suppose that conditions (A1)–(A6) hold. Let S(x) be a continuous
function satisfying ES2(X) < ∞. Then, for l = 1, . . . , p,

n−1
n∑

i=1

(Ŷi − Yi)S(Xi) = n−1
n∑

i=1

(Ỹi − Yi)
E[YS(X)]

EY
+ oP

(
n−1/2), (A.2)

n−1
n∑

i=1

(X̂li − Xli)S(Xi) = n−1
n∑

i=1

(X̃li − Xli)
E[XlS(X)]

EXl

+ oP

(
n−1/2). (A.3)

Proof. Lemma A.2 is the direct result of Lemma B.2 in Zhang, Zhu and Liang
(2012a). �

A.3 Proofs of Theorems 2.1, 3.1 and 3.2

Proof of Theorem 2.1. Step 1. Denote κn = h2 +
√

logn
nh

.
Using Lemma A.1, it is easily seen that

sup
u∈U

∣∣∣∣∣1

n

n∑
i=1

Kh(Ui − u) − fU(u)

∣∣∣∣∣ = OP (κn), a.s., (A.4)

sup
u∈U

∣∣∣∣∣1

n

n∑
i=1

Kh(Ui − u)Ỹi − φ(u)fU(u)E[Y ]
∣∣∣∣∣ = OP (κn), a.s. (A.5)

Together with (A.4) and condition (A2), we can have that

inf
u∈U

∣∣∣∣∣1

n

n∑
i=1

Kh(Ui − u)

∣∣∣∣∣ ≥ inf
u∈UfU(u) − sup

u∈U

∣∣∣∣∣1

n

n∑
i=1

Kh(Ui − u) − fU(u)

∣∣∣∣∣
(A.6)

≥ c0 + OP (κn).

Then, using (A.4), (A.6), ¯̃
Y − E[Y ] = OP (n−1/2), we can have that

sup
u∈U

∣∣φ̂(u) − φ(u)
∣∣

≤ supu∈U |1/n
∑n

i=1 Kh(Ui − u)Ỹi − 1/n
∑n

i=1 Kh(Ui − u)φ(u)
¯̃
Y |

infu∈U |1/n
∑n

i=1 Kh(Ui − u)
¯̃
Y |

≤ supu∈U |1/n
∑n

i=1 Kh(Ui − u)Ỹi − φ(u)fU(u)E[Y ]|
c0 + OP (κn)

(A.7)

+ supu∈U |φ(u)fU(u)||E[Y ] − ¯̃
Y |

c0 + OP (κn)

+ supu∈U |φ(u)| supu∈U |1/n
∑n

i=1 Kh(Ui − u) − fU(u)|
c0 + OP (κn)

| ¯̃Y |

= OP

(
κn + n−1/2).
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Similar to (A.7), we can show that

sup
u∈U

∣∣ψ̂r (u) − ψr(u)
∣∣ = OP

(
κn + n−1/2), (A.8)

r = 1, . . . , p.
Step 2. Note that(

β̂
γ̂

)
−

(
β0
γ 0

)

=
(

1

n

n∑
i=1

T̂⊗2
i

)−1(
1

n

n∑
i=1

T̂i

[
Ŷi − X̂τ

i β0 − Zτ
i γ 0

])

=
(

1

n

n∑
i=1

T̂⊗2
i

)−1
1

n

n∑
i=1

T̂i (Ŷi − Yi) (A.9)

+
(

1

n

n∑
i=1

T̂⊗2
i

)−1
1

n

n∑
i=1

T̂iεi

+
(

1

n

n∑
i=1

T̂⊗2
i

)−1
1

n

n∑
i=1

T̂i (Xi − X̂i )
τβ0.

Using (A.7)–(A.8) and Lemma A.1, we have

1

n

n∑
i=1

X̂ri(Ŷi − Yi)

= 1

n

n∑
i=1

Xri(Ŷi − Yi)

(A.10)

+ 1

n

n∑
i=1

XriYi

(ψ̂r (Ui) − ψr(Ui))(φ̂(Ui) − φ(Ui))

φ(Ui)ψr(Ui)

= 1

n

n∑
i=1

(Ỹi − Yi)
E[XrY ]
E[Y ] + oP

(
n−1/2) + OP

(
κ2
n + n−1).

As nh8 → 0, log2 n

nh2 → 0, it yields that κ2
n = o(n−1/2). Using this fact, similar to

(A.10), we can have that

1

n

n∑
i=1

T̂i (Ŷi − Yi) = 1

n

n∑
i=1

Ti (Ŷi − Yi) + 1

n

n∑
i=1

(
X̂i − Xi

0

)
(Ŷi − Yi)

= 1

n

n∑
i=1

(Ỹi − Yi)
E[TY ]
E[Y ] + oP

(
n−1/2),
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where E[TY ] = (E[X1Y ], . . . ,E[XpY ],E[Z1Y ], . . . ,E[ZqY ])τ , and

1

n

n∑
i=1

T̂i (X̂i − Xi )
τβ0 =

p∑
r=1

(
1

n

n∑
i=1

E[TXr ]
E[Xr ] (X̃ri − Xri)

)
β0,r + oP

(
n−1/2).

By using E[εT] = 0, we can have that 1
n

∑n
i=1(T̂i − Ti )εi = oP (n−1/2). More-

over, similar to (A.10), it is easily seen that 1
n

∑n
i=1 T̂⊗2

i = 1
n

∑n
i=1 T⊗2

i + oP (1) =
E[T⊗2] + oP (1). As a result, (A.9) can be represented as(

β̂
γ̂

)
−

(
β0
γ 0

)

= (
E
[
T⊗2])−1 1

n

n∑
i=1

(Ỹi − Yi)
E[TY ]
E[Y ] + (

E
[
T⊗2])−1 1

n

n∑
i=1

Tiεi

(A.11)

− (
E
[
T⊗2])−1

p∑
r=1

(
1

n

n∑
i=1

E[TXr ]
E[Xr ] (X̃ri − Xri)

)
β0,r

+ oP

(
n−1/2).

We complete the proof of Theorem 2.1. �

Proof of Theorem 3.1. Using (3.5) and the null hypothesis H0 : Aθ0 = b, we can
have that (

β̂R

γ̂ R

)
−

(
β0
γ 0

)

=
{

Ip+q −
[

n∑
i=1

T̂⊗2
i

]−1

Aτ

{
A

[
n∑

i=1

T̂⊗2
i

]−1

Aτ

}−1

A

}

×
{(

β̂
γ̂

)
−

(
β0
γ 0

)}
(A.12)

= {
Ip+q − �−1Aτ {A�−1Aτ }−1A

}{( β̂
γ̂

)
−

(
β0
γ 0

)}

+ oP

(
n−1/2).

Together with the asymptotic expression (A.11), we complete the proof of Theo-
rem 3.1. �

Proof of Theorem 3.2. Step 3.1. Under the null hypothesis H0 : Aθ0 = b, and

Using the fact that
∑n

i=1[Ŷi − X̂τ
i β̂ − Zτ

i γ̂ ](X̂i

Zi

) = 0, we can have that

Tn =
(

β̂R − β̂
γ̂ R − γ̂

)τ n∑
i=1

T̂⊗2
i

(
β̂R − β̂
γ̂ R − γ̂

)
. (A.13)
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Using (A.12), recalling the definition of �A used in Theorem 3.1, we know that(
β̂R − β̂
γ̂ R − γ̂

)
= −{

�−1Aτ {A�−1Aτ }−1A
}{( β̂

γ̂

)
−

(
β0
γ 0

)}
+ oP

(
n−1/2). (A.14)

Together with (A.11) and that of 1
n

∑n
i=1 T̂⊗2

i = � + oP (1), we have

Tn =
{√

n
[
�−1σ 2

ε + Qβ0

]−1/2
[(

β̂
γ̂

)
−

(
β0
γ 0

)]}τ

× [
�−1σ 2

ε + Qβ0

]1/2[Ip+q − �A]τ�[Ip+q − �A][�−1σ 2
ε + Qβ0

]1/2

×
{√

n
[
�−1σ 2

ε + Qβ0

]−1/2
[(

β̂
γ̂

)
−

(
β0
γ 0

)]}

L−→
k∑

i=1

	iχ
2
i,1,

where χ2
i,1, i = 1, . . . , k are independent standard chi-squared random variables

with one degree of freedom, and 	i ’s are the eigenvalues of matrix [�−1σ 2
ε +

Qβ0
][Ip+q − �A]τ�[Ip+q − �A]. Using the fact that [Ip+q − �A]τ�[Ip+q −

�A] = Aτ (A�−1Aτ )−1A, we complete the proof of Theorem 3.2. �

Step 3.2. Under the local hypothesis H1n : Aθ0 = b + n−1/2c, similar to (A.14),
using (3.5), we have that

√
n�1/2

(
β̂R − β̂
γ̂ R − γ̂

)

= −�1/2(Ip+q − �A)
√

n

{(
β̂
γ̂

)
−

(
β0
γ 0

)}

− �−1/2Aτ {A�−1Aτ }−1c + oP (1) (A.15)

L−→ N
(−�−1/2Aτ {A�−1Aτ }−1c,

�1/2(Ip+q − �A)
[
�−1σ 2

ε + Qβ0

]
(Ip+q − �A)τ�1/2).

Using (A.16) and that of 1
n

∑n
i=1 T̂⊗2

i = � + oP (1), we can have that

Tn =
[√

n�1/2
(

β̂R − β̂
γ̂ R − γ̂

)]τ [√
n�1/2

(
β̂R − β̂
γ̂ R − γ̂

)]
+ oP (1)

(A.16)
L−→ (

M+ �−1/2Aτ {A�−1Aτ }−1c
)τ (

M+ �−1/2Aτ {A�−1Aτ }−1c
)
,

where M follows multivariate normal distribution N(0,D) with

D = �−1/2Aτ (A�−1Aτ )−1A
(
�−1σ 2

ε + Qβ0

)
Aτ (A�−1Aτ )−1A�−1/2.
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