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SEMIPARAMETRIC EFFICIENT ESTIMATION FOR
SHARED-FRAILTY MODELS WITH DOUBLY-CENSORED

CLUSTERED DATA

BY YU-RU SU1 AND JANE-LING WANG2

Fred Hutchinson Cancer Research Center and University of California, Davis

In this paper, we investigate frailty models for clustered survival data that
are subject to both left- and right-censoring, termed “doubly-censored data”.
This model extends current survival literature by broadening the application
of frailty models from right-censoring to a more complicated situation with
additional left-censoring.

Our approach is motivated by a recent Hepatitis B study where the sample
consists of families. We adopt a likelihood approach that aims at the non-
parametric maximum likelihood estimators (NPMLE). A new algorithm is
proposed, which not only works well for clustered data but also improve over
existing algorithm for independent and doubly-censored data, a special case
when the frailty variable is a constant equal to one. This special case is well
known to be a computational challenge due to the left-censoring feature of
the data. The new algorithm not only resolves this challenge but also accom-
modates the additional frailty variable effectively.

Asymptotic properties of the NPMLE are established along with semi-
parametric efficiency of the NPMLE for the finite-dimensional parame-
ters. The consistency of Bootstrap estimators for the standard errors of the
NPMLE is also discussed. We conducted some simulations to illustrate the
numerical performance and robustness of the proposed algorithm, which is
also applied to the Hepatitis B data.

1. Introduction. In the past decades, Cox’s proportional hazards model [Cox
(1972)], along with its generalizations, have been widely explored and the cor-
responding asymptotic theories have been well established for independently
sampled subjects. When subjects are correlated, for example, under a clustered
sampling plan in familial-type studies, the approaches for independent samples
are no longer suitable. A common approach to accommodate familial or, more
generally, clustered data is the shared-frailty model, which assumes independence
for subjects from different clusters but a shared-frailty variable for subjects in the
same cluster. Such a frailty model is generally useful to explain the dependency
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of subjects within the same cluster due to shared genes and environmental back-
ground.

For the Cox proportional hazards model with a shared frailty, this leads to a
proportional hazards model with a multiplicative frailty term w, which is random
and unobservable for subjects within the same cluster, and which explains the de-
pendency among subjects. This class of models was first introduced and termed
“frailty” by Vaupel, Manton and Stallard (1979), and subsequently studied for right
censored data by Nielsen et al. (1992), Murphy (1994, 1995), and Parner (1998)
among others. Due to the latent term in the model, the elegant partial likelihood
approach [Cox (1972, 1975)] is no longer applicable. Two alternative approaches
have been adopted in the literature, one reverts to the full likelihood approach and
the other treats the frailty variables as parameters in the estimation process but
imposes a penalty in the partial likelihood to regularize the high dimensional pa-
rameters induced by frailties [Therneau, Grambsch and Pankratz (2003)].

The full likelihood approach leads to nonparametric maximum likelihood es-
timators (NPMLE) when the baseline hazard function is modeled nonparamet-
rically and an expectation-maximization (EM) algorithm is proposed in Nielsen
et al. (1992) when the frailty distribution follows a Gamma distribution. The cor-
responding asymptotic theories, including consistency and asymptotic normality
of the NPMLE, were well studied by Murphy (1994, 1995) and Parner (1998) for
the cases without and with covariates, respectively. All these approaches adopt
the Gamma frailty assumption, mainly due to its computational advantages, as the
posterior distribution involved in the E-step of the EM algorithm is also a Gamma
distribution. Other frailty distributions, such as log-normal or Weibull distribution,
could be employed at additional computational cost, since numerical integration
methods, such as Monte Carlo (MC) integration, will be needed to estimate the
posterior distributions at each step of the EM-algorithm. Besides using a full like-
lihood approach, Ripatti and Palmgren (2000) investigated the penalized partial
likelihood estimator with a log-normal frailty distribution and Therneau, Gramb-
sch and Pankratz (2003) showed that, with a gamma frailty distribution and a spe-
cial type of penalty, this leads to the same estimates for the regression parameters
as those obtained from an EM algorithm.

All the aforementioned approaches are for right-censored data. Our focus in
this paper is to study the estimating procedure and accompanying theory for the
shared-frailty model when data are subject to both right- and left-censoring, that
is, double-censoring. An example is a familial-type study for Hepatitis B patients,
whose age at e-antigen seroconversion is the primary focus of the study. However,
due to delayed entry into the study, subjects who have e-seroconverted prior to
entry into the study were left-censored (only their age at entry is available), while
all other subjects are subject to the usual right censorship that is common in lon-
gitudinal follow-up studies. This leads to the double-censorship considered in this
paper. We make a note here that the terminology “double-censoring” is confusing
by itself, as there are two different definitions in the literature. The first definition
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is that the survival time of interest can only be observed within a certain window
determined by the left- and right-censoring times. Outside this window, the sur-
vival time is only known to be either less than the left-censoring time or greater
than the right-censoring time. This is the situation considered in this paper, and
it has also been considered by Turnbull (1974), Chang and Yang (1987), Chang
(1990), Mykland and Ren (1996), Cai and Cheng (2004), Zhang and Jamshidian
(2004) and Kim, Kim and Jang (2010). Another definition of double-censoring,
as adopted in De Gruttola and Lagakos (1989), Kim, De Gruttola and Lagakos
(1993) and Kim (2006), refers to a time period where both endpoints of the time
period are subject to either left-, right- or interval-censoring. This second type of
double censorship is not considered here as our data conforms to the first type of
double-censorship.

Estimating the survival function when there is no covariate has been well inves-
tigated in the literature. For instance, Chang and Yang (1987) and Chang (1990)
address the consistency and asymptotic normality of the self-consistent estimators
of the survival function, while Mykland and Ren (1996) and Zhang and Jamshid-
ian (2004) discuss algorithmic issues for self-consistent estimators and maximum
likelihood estimators. The NPMLE under the Cox model had not been explored
until Kim, Kim and Jang (2010) established its consistency and asymptotic nor-
mality. However, the numerical computation of NPMLE remains a challenge and,
to the best of our knowledge, the shared-frailty model for the first type of double
censoring has eluded the attention of researchers.

We investigate in this paper the nonparametric maximum likelihood approach
and study the asymptotic theory for the NPMLEs. Additionally, a workable numer-
ical algorithm to locate the NPMLEs is proposed along with sufficient conditions
to ensure convergence of the algorithm. Our approach works with or without a
frailty term and resolves the computational difficulties for doubly-censored data
without a frailty term. We would like to make a note here that the proposed nu-
merical method without frailty terms is an independent work of that shown in Kim,
Kim and Jang (2013) though the idea of treating the left-censorship as missing data
in the EM algorithm is similar to their work. This idea was firstly demonstrated in
Su (2011), and further studied in this paper. The model is introduced in Section 2
followed by a computational algorithm presented in Section 3. The left censorship
present in the data poses computational challenges in contrast to the right- censor-
ing situation due to the lack of a closed-form solution for the score equation during
the M-step of the EM-algorithm. We resolve this difficulty by introducing in Sec-
tion 3 a modified MCEM algorithm which can be seen as a weighted version of a
regular MCEM algorithm. Asymptotic properties and estimations of the standard
errors of the proposed NPMLEs are discussed in Section 4. Simulation studies are
presented in Section 5 to provide numerical support for the new algorithm and an
analysis of the motivating example is provided in Section 6.
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2. Model and the NPMLE. Consider a cluster sampling plan for, for exam-
ple, familial data, when n independent families are sampled and data are collected
for each of the ni subjects in the ith cluster. The goal is to study the association
between the response variable, the survival time T of a subject, and its vector
covariates Z. Because the survival times of subjects from the same family may
be correlated due to shared gene or environmental background, we assume that a
shared-frailty variable W , which could be a vector, explains the dependency of all
subjects from the same family/cluster. More specifically, let Tij denote the survival
time of the j th subject from the ith cluster with frailty variable Wi and zij be the
observed value of its covariates.

The shared-frailty model assumes that, given the value wi of the frailty variable
and the covariate value zij , the hazard function for this subject takes the form:

λ(t |wi, zij ) = wiλ0(t) exp
(
βT zij

)
,(1)

where λ0 is the baseline hazard rate and β stands for the regression parameter.
Besides the violation of the independence assumption, we face another complica-
tion for the motivating Hepatitis B data in that the survival time T of a subject is
subject to either left- or right-censoring by L and R, respectively. In the following,
we denote T̃ = max(L,min(T ,R)), the observed event-time, and δ = I (T ≤ R)

and η = I (T ≥ L), the right- and left-censored indicators, respectively. By the fact
that each subject is only subject to one type of censoring, δ + η = 1 or 2 always
holds. One thing worth pointing out is that the left-censoring time (e.g., the time at
recruitment in the Hepatitis B study) is always observed. This is different from the
cases subject to right-censoring only. Consequently, the observed data for a subject
is either (T̃ , δ, η,Z,L) for uncensored or right-censored individual, or (T̃ , δ, η,Z)

for left-censored one where T̃ is exactly equal to L. The following conditions are
for the identifiability of this model and the construction of the likelihood function.

C1. The left- and right-censoring times for the j th subject of the ith cluster,
denoted respectively as Lij and Rij , are continuously distributed on [0,∞) with
density functions fL and fR , respectively; where Lij is the age at the entry of the
study, and the right-censoring time Rij is written as Lij + Yij with Yij ≥ 0, since
right-censoring can only occur after a subject enters the study.

C2. Let Zi be the ni × q covariate matrix for the ith cluster, where the j th
row, denoted by Zij , is the covariate vector of the j th subject in the ith cluster.
The probability that ZT

i Zi is full rank is positive. Moreover, if cT Zij = 0 with
positive probability, it implies c = 0. These conditions mean that the covariates
are independent within and between subjects.

C3. Conditional on Wi and Zij , (Lij , Yij ) are independent of Tij and their joint
distribution does not involve β or the frailty distribution. This implies that both the
left- and right-censoring schemes are noninformative.

C4. The frailty variables, W1, . . . ,Wn, are i.i.d. from a density fW(·|γ ) with
mean 1 and variance γ . The Laplace transform of fW , denoted by Mγ (t) =
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Eγ [exp(−Wt)], for any 0 < t < ∞, satisfies the following conditions: Mγ (0+) =
1, Mγ (t) > 0, 0 < − ∂

∂t
Mγ (t) < ∞, and 0 ≤ ∂2

∂t2 Mγ (t) < ∞ for all γ in a compact
set in R. Moreover, the frailty W and the covariate Z are independent.

Conditions C1 and C3 are standard assumptions for survival data in the presence
of left- or right-censoring to facilitate the expression of the likelihood function.
Conditions C2 and C4 are needed for the identifiability of the frailty model and
integrability of those integrals that involve the frailty distribution.

Let f , S, and F stand for the density, survival, and cumulative density func-
tions respectively of the random variable in the subscript, and �0 is the baseline
cumulative hazard function of survival time, that is, �0(t) = ∫ t

0 λ0(s) ds. The like-
lihood contributed by a left-censored subject, given the frailty w and covariates z,
is FT (t̃ |w,z). The likelihood contributed by an uncensored or right-censored sub-
ject, given the frailty w and covariates z, is [fT (t̃ |w,z)]δη[ST (t̃ |w,z)](1−δ)η (see
Appendix for the detail). Therefore, the likelihood contributed by the observation
Oi from the ith cluster can be expressed as

Li(β,�0, γ |Oi) =
∫ ∞

0

ni∏
j=1

[
fT (t̃ij |w,zij )

]δij ηij
[
ST (t̃ij |w,zij )

](1−δij )ηij

(2)
× [

FT (t̃ij |w,zij )
](1−ηij )

fW (w|γ )dw.

In (2), we consider �0 instead of λ0 as the parameter, because �0 can be esti-
mated at the same parametric rate as β and γ . As is common for models with a
nonparametric parameter, the maximum likelihood estimator does not exist due to
the infinite-dimensional parameter associated with �0. Therefore, we turn to the
nonparametric maximum likelihood approach, which leads to a discrete probability
measure with positive point mass assigned to all uncensored observations and an
additional set of left-censored observations. This is similar to the left-censored case
described in Mykland and Ren (1996), which is for a single population without
covariates and the frailty term. The following lemma extends their result (Corol-
lary 5) and provides a description of the NPMLE of �0 under double censoring.
The proof is similar to theirs and thus omitted.

LEMMA 2.1. Denote the ranked observation time points in ascending order
by t̃(l), l = 1, . . . ,

∑n
i=1 ni . The NPMLE of the cumulative baseline hazard function,

�0(·), is a non-decreasing step function with jumps at all uncensored observations
and an additional set of observations from left-censored subjects. The left-censored
observations that receive positive mass consist of: the smallest observation at time
t̃(1), if it is left-censored, and for l ≥ 2 all the left-censored observation at time t̃(l)
such that the observation immediately preceding it at time t̃(l−1) is right-censored.
We denote those time points with positive mass in ascending order by t1, . . . , tK

with corresponding jump sizes λ1, . . . , λK .
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Direct maximization of the NPMLE poses computational challenges due to the
latent frailty term and the contribution to the likelihood by left-censored data. The
latter, which involves the cumulative distribution function FT in (2), is a more
serious problem, as even when the frailty variable is known to be 1, that is, no
clustering effect and all survival data are independent, the profile likelihood has
no explicit form. Kim, Kim and Jang (2010) proposed to adopt a Gauss–Seidel
algorithm to solve the high-dimensional equations, which works well for small
sample sizes but often fails to converge when the sample size grows to several
hundreds, which is common for a medical or epidemiological study.

For computational stability and because none of the previous approaches ac-
commodate a frailty variable, we took a different and more appealing approach in
this paper to treat the left-censored survival times, along with the frailty variable,
as missing variables so that a different and more effective EM algorithm can be
employed to overcome the aforementioned computational challenges. Following
this idea and conditioning first on the frailty variable and then left-censored data,
the likelihood (2) from the ith cluster can be written as

Li(β,�0, γ |Oi) =
∫ {

ni∏
j=1

[
fT (t̃ij |w,zij )

]δij ηij
[
ST (t̃ij |w,zij )

](1−δij )ηij

(3)

×
[∫

fT (uij |w,zij )I (uij ≤ t̃ij ) duij

](1−ηij )
}
fW(w|γ )dw,

since FT (t̃ij |w,zij ) = ∫ t̃ij
0 fT (u|w,zij ) du = ∫

fT (u|w,zij )I (u ≤ t̃ij ) du.
At first glance, the likelihood in (3) involves many integrations because all left-

censored survival times are treated as missing data. However, as shown in Propo-
sitions 3.1 later, the actual E-step only involves one-dimensional integration over
the frailty distribution due to the appealing structure of the proportional hazards
model. This leads to a stable EM-algorithm with only one-dimensional Monte
Carlo integration in the E-steps and a low dimensional nonlinear maximization
in the M-steps.

3. EM-algorithm. For ease of presentation, we illustrate the EM-algorithm
with gamma frailty but other frailty distributions could be employed with addi-
tional computational cost in the E-step. The computational advantage of gamma
frailty is that the posterior distribution required in the EM algorithm remains a
gamma distribution. This feature allows directly sampling from a known gamma
distribution and enhances the computational efficiency of Monte Carlo integra-
tion. This will be further illustrated in this section. Treating the frailty term and
left-censored times as missing data, the integrand of (3) provides the complete
likelihood. Let Uij = Tij I (Tij ≤ T̃ij ) denote the unobserved left-censored time,
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and is zero otherwise. The resulted complete log-likelihood for the ith cluster is

lCi (β,�0, γ ) =
ni∑

j=1

[
δij ηij

(
logw + logλ0(t̃ij ) + βzij

) − ηijw�0(t̃ij ) exp(βzij )

+ (1 − ηij )
(
logw + logλ0(uij ) + βzij

)
(4)

− (1 − ηij )w�0(uij ) exp(βzij )
]

+ logfW(w).

The complete log-likelihood, denoted as lC , from all clusters is then the sum
of (4) over i = 1, . . . , n. For simplicity, we will denote the parameters of inter-
est, (β,�0, γ ), or equivalently (β,λ1, . . . , λK, γ ), by θ , and the corresponding
parameter space as 
EM = 
β × 
(λ1,...,λK) × 
γ , in the following illustration.

3.1. E-step. The expected complete log-likelihood contributed by the ith clus-
ter with the posterior parameter value θ ′ is

Eθ ′
[
lCi (θ)|Oi

] =
ni∑

j=1

[
δij ηij

(
Eθ ′(logWi |Oi) + logλ0(t̃ij ) + βzij

)

− ηijEθ ′(Wi |Oi)�0(t̃ij ) exp(βzij )

+ (1 − ηij )
(
Eθ ′(logWi |Oi) + Eθ ′

(
logλ0(Uij )|Oi

) + βzij

)
(5)

− (1 − ηij )Eθ ′
(
Wi�0(Uij )|Oi

)
exp(βzij )

]
+ Eθ ′

(
logfW(Wi)|Oi

)
,

which involves imputation of functions of Wi , Uij , or both of them given the ob-
served data. Fortunately, the imputation of functions of Wi , such as Wi , log(Wi),
and logfW(Wi) in (5), have simple forms, if one employs the Bayes rule effec-
tively as described below. For illustration purposes, we consider the imputation of
a general function h(Wi).

Consider the three sets of variables, O1
i , O2

i and O3
i , where

O1
i = {

(t̃ij , δij ), for non-left-censored subjects
}
,

O2
i = {t̃ij , Tij < t̃ij , for left-censored subjects},

and

O3
i = {zij , j = 1, . . . , ni}.

By Bayes’ rule, the imputation of h(Wi) can be expressed as

Eθ ′
(
h(Wi)|Oi

) =
∫

h(w)fW |O(w|Oi)dw

(6)

=
∫

h(w)f (O2
i |w,O3

i )f (w|O1
i ,O3

i ) dw∫
f (O2

i |w,O3
i )f (w|O1

i ,O3
i ) dw

,
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where f (O2
i |w,O3

i ) = ∏ni

j=1[1 − exp{−w�0(t̃ij ) exp(βzij )}](1−ηij ). Under the
gamma-frailty model, the posterior distribution of Wi conditioning on the non-
left-censored part is a gamma distribution with parameters

1/γ +
ni∑

j=1

δij ηij

and

γ
/[

1 + γ

ni∑
j=1

ηij�0(t̃ij ) exp(βzij )

]
.

The imputation of functions involving Uij , say logλ0(Uij ) and Wi�0(Uij )

in (5), is more complicated because of the semiparametric setting on T . For a
generic function of Uij , say h(Uij ), the imputation given the observed data Oi is
of the form

Eθ ′
(
h(Uij )|Oi

) =
∫ ∫

h(u)fU |(W,O)(u|w,Oij ) dufW |O(w|Oi)dw,(7)

where Oij is the observed data from the j th subject within the ith cluster, and
fW |O(w|Oi) is defined in (6). Since the cumulative hazard function is a non-
decreasing step function with positive jumps at t1 < · · · < tK , the ordered observed
time points mentioned in Lemma 2.1, and corresponding jump sizes λ1, . . . , λK ,
the conditional density fU |(W,O)(u|w,Oij ) in (7) is

λkw exp(βzij ) exp{−w
∑k

k′=1 λk′
exp(βzij )}

1 − exp{−w
∑

k′:t̃ij∈Rk′ λk′ exp(βzij )} ,

when u = tk , for any tk ≤ t̃ij , and 0 otherwise. Because of this explicit form for
fU |(W,O)(u|w,Oij ), no Monte Carlo integration is needed to evaluate the inner
integral in (7), so only one-dimensional Monte Carlo integration is needed for (7)
and we arrive at the following proposition.

PROPOSITION 3.1. The imputations of the two functions involving Uij in the
imputed complete log-likelihood can be expressed as follows:

1. Eθ ′ [logλ0(Uij )|Oi] = ∑
k:tk≤t̃ij

logλkak,ij (θ
′),

2. Eθ ′ [W�0(Uij )|Oi] = ∑
k:tk≤t̃ij

λkck,ij (θ
′),

where

ak,ij

(
θ ′) =

∫
fU |(W,O)

(
tk|w,Oij , θ

′)fW |O
(
w|Oi, θ

′)dw,

and

ck,ij

(
θ ′) =

tk
′≤t̃ij∑

k′:k′≥k

bk′,ij
(
θ ′),
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with

bk′,ij
(
θ ′) =

∫
fU |(W,O)

(
tk

′ |w,Oij , θ
′)wfW |O

(
w|Oi, θ

′)dw.

Note that this proposition implies that only one-dimensional Monte Carlo inte-
grations are involved in the calculation of ak,ij (θ

′) and ck,ij (θ
′). Let M(l+1) denote

the number of Monte Carlo seeds generated in the (l +1)th iteration and θ(l) be the
value of θ obtained in the previous iteration. The detailed imputation procedure in
the E-step is provided below.

Step 1. Generate wi1, . . . ,wiM(l+1)
from a gamma distribution with parameters

1/γ(l) + ∑ni

j=1 δij ηij and γ(l)/[1 + γ(l)

∑ni

j=1 ηij�(l)(t̃ij ) exp(β(l)zij )].
Step 2. Evaluate the following terms at wim, for m = 1, . . . ,M(l+1), and plug-in

the current value, θ(l), for θ :

(a) f (O2
i |wim,O3

i ),
(b) h(wim)f (O2

i |wim,O3
i ),

(c) fU |(W,O)(t
k|wim,Oij )f (O2

i |wim,O3
i ), for tk ≤ t̃ij ,

(d) fU |(W,O)(t
k|wim,Oij )wimf (O2

i |wim,O3
i ), for tk ≤ t̃ij .

Step 3. Take sample means on the four sets of M(l+1) values in (a) to (d) in
step 2 and replace the integrals to be evaluated by the sample means in corre-
sponding forms.

The imputed complete log-likelihood can thus be rewritten as

Eθ ′
[
lC(θ)|O]
=

n∑
i=1

Eθ ′
[
lCi (θ)|Oi

]

= ∑
i

{∑
j

δij ηijEθ ′(logWi |Oi) + ∑
j

δij ηij log�{t̃ij }

+ β
∑
j

δij ηij zij − Eθ ′(Wi |Oi)
∑
j

ηij

∑
k:tk≤t̃ij

λk exp(βzij )

+ ∑
j

(1 − ηij )Eθ ′(logWi |Oi) + ∑
j

(1 − ηij )
∑

k:tk≤t̃ij

logλkak,ij

(
θ ′)

+ β
∑
j

(1 − ηij )zij − ∑
j

(1 − ηij )
∑

k:tk≤t̃ij

λkck,ij

(
θ ′) exp(βzij )

+ Eθ ′
(
logfW(Wi)|Oi

)}
,

where �{·} represents the jump size of a step function � at the specified time point
inside the bracket.
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3.2. M-step. In the M-step, the NPMLE of β ,γ and (λ1, . . . , λK) are located
by taking derivatives on (5) and solving a system of equations. The MLE of λk is
the solution to the following equation:

λ̂k = δkηk + ∑
i

∑
j (1 − ηij )ak,ij (θ

′)I (t̃ij ∈ Rk)∑
i

∑
j [ηijEθ ′(W |Oi) + (1 − ηij )ck,ij (θ ′)] exp(βzij )I (t̃ij ∈ Rk)

,(8)

where δk and ηk both correspond to the observed time point tk , and Rk stands for
the corresponding risk set defined as {k′ : tk′ ≥ tk}. On the other hand, there is no
explicit form for the NPMLE of β and v, so a one-step Newton–Raphson method
is used to update the estimates in each iteration. The updating formula for β is

βnew = βold − Sβ(βold)/S
′
β(βold),

where Sβ , the score function of β , takes the following form:∑
i

∑
j

[
1 − ηij (1 − δij )

]
zij

− ∑
k

{[
δkηk + ∑

i

∑
j

(1 − ηij )ak,ij

(
θ ′)I (

t̃ij ∈ Rk)](9)

×
∑

i

∑
j [ηijEθ ′(W |Oi) + (1 − ηij )ck,ij (θ

′)]zij exp(βzij )I (t̃ij ∈ Rk)∑
i

∑
j [ηijEθ ′(W |Oi) + (1 − ηij )ck,ij (θ ′)] exp(βzij )I (t̃ij ∈ Rk)

}
.

One interesting finding from (8) and (9) is that the structure of the resulting forms
in the proposed EM algorithm is very similar to those subject to right-censoring.
The difference is that, for doubly-censored data every left-censored observation
contributes part of its probability mass to each jump points preceding it during
each iteration of the EM-algorithm. This redistribution to the left algorithm is sim-
ilar to the self-consistency property for right-censored data, which redistributes
the weight of each right-censored observation to all observations after it. It also
reflects the fact that for a left-censored subject, the unobserved event of interest
has happened sometime in the past. However, there is a major difference in that
some left-censored data also carries positive masses.

Under the assumption of a gamma frailty, the Newton–Raphson algorithm for
the parameter γ is based on the following updating rule:

γnew = γold − Sγ (γold)/S
′
γ (γold),

with Sγ , the score function of γ , defined as

n�′(1/γ )

�(1/γ )
+ n logγ − n − ∑

i

Eθ ′(logW |Oi) + ∑
i

Eθ ′(W |Oi).



1308 Y.-R. SU AND J.-L. WANG

3.3. Convergence of the algorithm. Since Monte Carlo errors are induced in
the E-step of the MCEM algorithm, the convergence of the proposed algorithm
to the true NPMLE is no longer guaranteed. To address this issue, we increase
the Monte Carlo sample size M(l+1) with each iteration to enhance the conver-
gence of our algorithm and refer to Chan and Ledolter (1995), Booth and Hobert
(1999), Fort and Moulines (2003) and Caffo, Jank and Jones (2005) for the dis-
cussions there on how this overcomes the convergence issue. Although the frailty
model is formulated under a semi-parametric setting, the problem of locating the
NPMLE given an observed sample via the MCEM algorithm is no different from
the parametric setting since the jump points t1, . . . , tK of the NPMLE of �0 are
fixed across iterations. This feature allows us to investigate the convergence issue
similar to those in existing parametric literature as long as the stationary points of
the observed log likelihood (points where the derivative of the observed log like-
lihood is zero) are all isolated points and there is no left-censoring involved. See
Fort and Moulines (2003) for more details. However, the situation is much more
complicated in the presence of left-censoring, because the Monte Carlo approxi-
mation in the proposed algorithm is nonstandard. In standard MCEM algorithms
the sample mean of the Monte Carlo samples were used but in the our set up a
weighted average [as an empirical counterpart to (6)] is employed in step 2 of the
EM algorithm to approximate the needed integrals in the likelihood. A new conver-
gence theory is thus needed and we establish this in the proposition below, which
provides some sufficient conditions for the convergence of the proposed algorithm
in the presence of left-censoring. The proof of Proposition 3.2 is relegated to the
supplemental material [Su and Wang (2015)]. In the following context, we denote
L(θ |O) and l(θ |O) as the observed likelihood and log-likelihood respectively with
the cumulative baseline hazard function � replaced by a non-decreasing step func-
tion. The notation L = {θ : dl(θ |O

dθ
) = 0} stands for the set of stationary points of

l(θ |O).

PROPOSITION 3.2. Under the following conditions (a)–(e), the sequence
{l(θ(l)|O)} of the observed log-likelihood evaluated at {θ(l), l = 1,2, . . .} converges
with probability 1 to l(θ∗|O), where θ∗ is a local maximizer of l(·), and {θ(l)} con-
verges to θ∗.

(a) fW(w|γ ) is continuous w.r.t. to w. Moreover, Eθ ′(Wi |Oi), Eθ ′(logW |O),
ak,ij (θ

′), and ck,ij (θ
′) are all continuous w.r.t. θ ′.

(b) {θ ∈ 
EM : L(θ) ≥ c} is compact for any given constant c and the stationary
points of l(θ |O) are all isolated points in L.

(c) The initial value θ(0) falls in a compact neighborhood C∗ of θ∗, and θ∗ is
the only point in {θ ∈ L : l(θ |O) = l(θ∗|O)}.

(d) For any compact subset C ⊆ 
EM,

sup
θ∈C

sup
t

sup
Oij

Varθ
(
h(k)(W, t,Oij )f

(
O2

i |W,O3
i

)|O1
i ,O3

i

)
< ∞, k = 1,2,3,4,
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where h(1)(W, t,Oij ) = log(W), h(2)(W, t,Oij ) = W , h(3)(W, t,

Oij )fU |=(W,O)(t |W,Oij ), and h(4)(W, t,Oij ) = fU |(W,O)(t |W,Oij )W .
(e) The Monte Carlo sample size {M(l)} satisfies

∑∞
l=1 M−1

(l) < ∞, and grows
fast enough such that l(θ(l)|O) ≥ l(θ∗|O) − M infinitely often, for some constant
M > 0, and {l(θ(l)|O)} ≤ l(θ∗|O) with probability 1.

Conditions (a)–(c) are also required for standard parametric MCEM [Fort and
Moulines (2003)], where condition (a) ensures the continuity of Eθ ′ [lC(θ |O)], the
expected complete log-likelihood w.r.t. θ ′, and condition (c) requires a good initial
value which is close to the local maximizer. A sufficient condition for condition
(b) is the continuity of the (K + 3)th derivative of l(θ |O), where K varies with
the sample size in the semi-parametric setting in contrast to parametric settings
where K is fixed. This is the major price for the convergence of the proposed EM
algorithm under a semi-parametric model. Condition (d) controls the error induced
by the Monte Carlo approximation, and condition (e) specifies the required size of
the Monte Carlo samples.

The convergence of {l(θ(l)|O)} suggests a stopping rule based on the difference
of the observed likelihood. The algorithm stops when the difference between the
observed likelihood at two consecutive iterations is smaller than a pre-specified
tolerance of error.

COROLLARY 3.1. Under the conditions (a)–(e) in Proposition 3.2 and given
a good set of initial values in a neighbor of the NPMLE, the estimators from the
proposed MCEM converges a.s. to the NPMLE.

4. Main theorems. We first list the technical assumptions for the theoretical
results of the NPMLE. Hereafter, τ denotes the endpoint time of the study.

A1. The baseline hazard rate function λ0(t) is bounded and positive in [0, τ ].
Moreover, the cumulative hazard function is bounded at τ , that is, �0(τ ) < ∞. Let
Di be the number of right-censored subjects at time τ in the ith cluster. E(Di) > 0.

A2. The expected number of subjects in a family, E(ni), is bounded above.
Also ni is non-informative to the parameters of interest.

A3. 
β × 
γ , the parameter space of (β, γ ) is compact, and the true value
(β0, γ0) falls in the interior of the parameter space.

A4. The covariate Z is bounded, that is, there exists MZ > 0, such that
|Z| ≤ MZ . Moreover, Eθ [W ∑ni

j=1 exp(βZj )I (Tj ≥ τ)] exists and is bounded
away from 0 over the parameter space.

A5. Eθ0[W exp(β0Z)I (T ≥ t)] exists and is bounded away from 0 for all t ∈
[0, τ ]. Moreover, Eθ0[W�0(T̃ )Z2 exp(β0Z)] exists and is greater than 0.

A6. The distribution fW(·|γ ) is continuous with respect to γ and has a con-
tinuous second derivative with respect to γ . Furthermore, the Fisher information
matrix from fW is of positive definite.
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The assumption that �0(τ ) < ∞ and E(Di) > 0 in A1 are satisfied for a follow
up study that needs to end early before all subjects have failed. This is common in
medical studies. Assumption A2 is typically satisfied in familial type studies. A3
is a common assumption on the true values of the parameter. Assumptions A4–A5
are technical assumptions for the boundedness of �̂n(τ ), the invertibility and the
boundedness of the Fisher information operator for the proof of the consistency
and asymptotic normality of the proposed estimators. The differentiability of the
frailty distribution with respect to γ and the invertibility of its Fisher information
are stated in A6.

4.1. Asymptotic properties of the NPMLE.

THEOREM 4.1 (Consistency). Under assumptions C1–C4 and A1–A5, the
NPMLE θ̂ = (β̂, �̂, γ̂ ) converges strongly to θ0 = (β0,�0, γ0) under the Eu-
clidean norm | · | for vector parameters and the supreme norm ‖ · ‖ for functions
on [0, τ ] respectively.

THEOREM 4.2 (Asymptotic normality and efficiency). Under assumptions
C1–C4 and A1–A6, which imply the consistency (for functions on [0, τ ]) in Theo-
rem 4.1, the process (

√
n(β̂ − β),

√
n(�̂ − �0),

√
n(γ̂ − γ0)) converges in distri-

bution to a normal element G in l∞(Hp), where Hp is a collection of directions as
defined at the beginning of Section A.2, with mean 0 and a covariance structure

cov
(
G(h),G

(
h∗)) = h∗

1σ
−1
θ0,1

(h) +
∫ τ

0
h∗

2(u)σ−1
θ0,2

(h)(u) d�0(u) + h∗
3σ

−1
θ0,3

(h),

∀h,h∗ ∈ Hp , where σθ0,k, k = 1,2,3, are the information operators derived in
Appendix. Moreover, β̂ and γ̂ are efficient estimators for β0 and γ0, respectively,
in the semi-parametric sense.

We provide the detailed proofs for the two theorems in the Appendix. Basically,
the proofs are based on demonstrating the Glivenko–Cantelli property on the terms
involved in the NPMLE, and the Donsker property on the score functions.

4.2. Estimating the standard error of β̂ . As pointed out in the literature under
a semiparametric setting with latent variables, estimation of the standard error of
the estimates for finite dimensional parameters involves the inversion of a high-
dimensional matrix, where each entity further involves integrals. This often poses
computational challenges and is also the case with our setting, where the inverse
of the information operator has no explicit form. Thus, even under the right cen-
sorship, the straightforward method of utilizing asymptotic variance-covariance
matrix, as proposed by Murphy (1995) and Parner (1998), is not applicable to
estimate the standard errors. There are two alternative methods in the literature
to estimate standard errors under a semiparametric setting: the profile likelihood
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approach [Murphy, Rossini and van der Vaart (1997)] and the bootstrap method
[Tseng, Hsieh and Wang (2005)]. The first approach has also been successfully
implemented by Zeng and Cai (2005) in joint modeling right-censored survival
data and its longitudinal covariates. Therefore, we explored both approaches in or-
der to compare them. It turns out that the profile likelihood approach in Murphy,
Rossini and van der Vaart (1997) and Zeng and Cai (2005) does not work well in
our setting, but we are able to modify it and the modified version works well in the
simulation study reported in Section 5.

A profile log-likelihood is defined as

pln(β) = maxγ,�0 l(β,�0, γ ).

The curvature of pln around β̂ provides an estimate for the negative value of the
information matrix. However, a direct derivation of the second derivative of pln is
not feasible since there is no closed form for pln due to the integration involved
in the likelihood function. Murphy, Rossini and van der Vaart (1997) proposed a
second difference method to numerically approximate the information. The second
difference method is a numerical approach to approximate the second derivative
of a target function pln at a point of interest β̂ . We start with the first difference:
the basic principle is that if we are interested in estimating the first derivative of
pln at β̂ , we can use the first difference, 1

2h
[pln(β̂ + h) − pln(β̂ − h)] for a small

h to approximate pl′n(β̂). By applying this idea twice the second time on the first
differences pl′n(β̂ −h) and pl′n(β̂ +h), the second difference as defined in Murphy,
Rossini and van der Vaart (1997) gives a numerical second differentiation of the
target function. However, in the presence of double censoring, their method often
results in negative estimates. We were thus motivated to look for an alternative
approach to estimate the second derivative of pln around β̂ .

The key idea of our approach is, instead of the simple difference method which
are very case sensitive, we fit a quadratic curves on pln around β̂ and then take
the estimated leading second-order term to estimate the second derivative of pln.
To implement this method, we evaluate pln on d equal-distant points β1, . . . , βd

within a window (β̂ − hn, β̂ + hn), with the half-width hn taken to be of the or-
der O(n−1/2). Although there is no closed form for pln, the evaluation can be
done by the EM algorithm. A point regarding the calculation of the profile likeli-
hood in our algorithm needs to be addressed as following. Although left-censored
data are treated as missing data in the estimation of NPMLE, we use the original
form of the likelihood (3) to calculate the profile log-likelihood after obtaining
the maximizer �(β) and γ (β) corresponding to each fixed β . Specifically, we fit a
quadratic model a0 +a1β +a2β

2 on the pairs (β1,pln(β1)), . . . , (βd,pln(βd)), the
stand error of β̂ is estimated by −â−1

2 . This method only involves fitting a linear
regression model with two predictors, so a moderate number of points β1, . . . , βd ,
say 20, is enough for the implementation.

Although the proposed method needs more computational effort than the
method in Murphy, Rossini and van der Vaart (1997), for which pln is evaluated
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at only 3 points, it provides a more stable and accurate estimate for the standard
errors. Based on our experience, the performance of both profile likelihood meth-
ods depends on the half-width of the window, hn, and the method by Murphy,
Rossini and van der Vaart (1997) is much more sensitive to the choice of hn. If
the window is too narrow, the profile likelihood approach may yield a negative
estimate of the standard error due to the highly oscillatory behavior of the profile
log-likelihood around β̂ . A wider window may overcome this issue of negative
estimate but at a cost of higher biases. For the procedure advocated in Murphy,
Rossini and van der Vaart (1997), the bias is always downward and quite serious.
Moreover, negative estimates for the standard errors occur much more frequently
than our approach based on quadratic approximations. We compare these two pro-
file methods through a simulation study in Section 5, and the simple profile method
fails to produce meaningful results.

On the other hand, the bootstrap method has been widely used to estimate
the standard error of estimates under many semiparametric models when a sim-
ple closed form of the standard error is not available. It provides a numerically
valid estimation for the standard error of the estimates by resampling from the ob-
served sample when the number of resampling is fairly large. However, a theoreti-
cal justification of the bootstrap method under semiparametric models has not been
brought up until Cheng and Huang (2010) and Cheng (2015), which demonstrate
the distribution consistency and moment consistency, respectively. Those works
provide general theories for us to investigate the consistency of the nonparamet-
ric bootstrap standard error under the frailty model subject to double censoring as
stated in the following theorem. The proof involves verifying the conditions listed
in Theorem 1 in Cheng (2015) and is presented in the Appendix. Below we denote
σ̂ ∗

β̂
as the bootstrap sample standard error and σ

β̂
as the standard error of β̂ .

THEOREM 4.3 (Consistency of the bootstrap standard error). Under the as-
sumptions A1–A6, the nonparametric bootstrap standard error σ̂ ∗

β̂
converges in

probability to σ
β̂

, as n → ∞.

5. Simulation.

5.1. Evaluate the proposed EM algorithm. To study the numerical perfor-
mance of the proposed EM algorithm, four simulation settings were conducted,
each based on 100 Monte Carlo samples. For each setting, we consider a binary
covariate with equal probability to take the value 0 or 1, and the number of sub-
jects within each family is chosen randomly from {2,3,4} with equal probabilities,
which reflects the structure of the familial data in Section 6, where 49 families par-
ticipated in the study. The survival times are generated from a Cox model with
β = 1, λ0 is the hazard function from an exponential distribution with mean 1, and
the frailty term is generated from a gamma distribution with mean and variance
both equal to 1.
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TABLE 1
Simulation results from the proposed EM algorithm. Results on two different simulation settings

with two sample sizes, 50 and 100, under each setting. The true baseline hazard is a constant
function. The notation σ̂·,MC stands for estimated standard deviation from 100 Mont Carlo samples.

MSE stands for the mean square error of the estimates

Cases n β0 β̂ σ̂β,MC MSE(β̂) γ0 γ̂ σ̂γ,MC MSE(γ̂ )

8% left-censored 50 1 1.0072 0.2173 0.0473 1 0.9532 0.3026 0.0938
100 1 1.0070 0.1549 0.0240 1 0.9535 0.2293 0.0547

22% left-censored 50 1 1.0200 0.2274 0.0521 1 0.9364 0.3069 0.0982
100 1 1.0138 0.1559 0.0245 1 0.9580 0.2209 0.0506

The four simulation settings correspond to two cluster sizes, 50 and 100, and the
following two types of left censorship: (1) Left-censoring time is generated from
an exponential distribution with mean 0.05, and (2) left-censoring time is from
an exponential distribution with mean 0.2. In each of the four settings, the right-
censoring time is the sum of the left-censoring time and an independent random
variable from exponential distribution with mean 8 (cf. Condition C1). For type
(1) left censorship above, this resulted in an average of 8% left-censored data and
an additional 17% right-censored data, leading to a total of 25% censoring. This
reflects a light left-censored case in contrast to the scenario in type (2), where on
average 22% of the data are left-censored with an additional 16% right-censored.

The results of the NPMLE for the finite dimensional parameters are listed in
Table 1. For the case n = 50, the bias for β under light left-censoring is 0.0072
with a standard error of 0.2173. The variance of the gamma-frailty term can be
estimated with a bias of 0.0468 and a standard error of 0.3026. Overall, β can be
estimated with more precision than γ . Both the biases (and standard errors) for
β and γ decreases, to 0.0070 (0.1549) and 0.0465 (0.2293), respectively, as the
number of clusters increases to n = 100. As expected, the performance of both
estimates for β and γ generally deteriorates under the heavier left-censoring sce-
nario (2), but the differences are not large. Considering that a total of 38% of the
data are missing under scenario (2), the numerical performance of the procedure
seems satisfactory. In addition to the accuracy and precision of the estimator, the
proposed EM algorithm also performs well in the aspect of numerical stability. It
possesses high convergence rate under all scenarios. In the simulation, we allow
the maximum iteration as 100 along with a tolerance of relative error of 0.001.
The convergence rates with 50 clusters are 100% and 99% under 8% and 22%
of left-censoring, respectively. When the number of clusters increases to 100, the
convergence rates achieve 100% under both 8% and 22% of left-censoring.

For estimating the stand error of the estimates, we started by comparing three
approaches: the bootstrap method, the profile likelihood method by Murphy,
Rossini and van der Vaart (1997) and our version of the profile likelihood method
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TABLE 2
Simulation results on estimating the standard error of β̂ . The subscript “BT” stands for estimated

standard error based on 50 bootstrap resamples, and the subscript “PL” stands for estimated
standard error based on profile likelihood approach with a width of 7/

√
n

Cases n σ̂β,MC σ̂β,BT σ̂β,PL,7 σ̂γ,MC σ̂γ,BT σ̂γ,PL,7

8% left-censored 50 0.2173 0.25442 0.2409 0.3026 0.3019 0.2913
100 0.1549 0.1703 0.1525 0.2293 0.2053 0.2451

22% left-censored 50 0.2274 0.2561 0.2010 0.3069 0.2871 0.3042
100 0.1559 0.1769 0.1622 0.2209 0.2087 0.2239

as discussed in Section 4.2. The bootstrap method is similar to the one described
in Tseng, Hsieh and Wang (2005). Both versions of the profile likelihood method
involve the choice of a window width h, as demonstrated in Section 4.2. Based
on our experience in simulations, the performance of the estimated standard errors
depends on the choice of the window width and the approach by Murphy, Rossini
and van der Vaart (1997) more sensitive to the window width than ours. If the win-
dow width is too small, the profile likelihood method may result in unreasonable
values of standard error, while a larger width leads to biases. We tried different
widths, h = k/

√
n, with k = 1,3,5,7,9 for both profile likelihood approaches but

the approach of Murphy, Rossini and van der Vaart (1997) still resulted in many
negative estimates up to h = 7/

√
n. Our profile approach resulted in a few negative

estimates for small h but none for h = 7/
√

n and h = 9/
√

n. Naturally, h = 7/
√

n

performed better than h = 9/
√

n. Because of these reasons, we report in Table 2
only our results for h = 7/

√
n together with the results by the bootstrap method.

Both approaches are comparable and produce results close to the Monte Carlo
standard deviation, σ̂β,MC. Since it is difficult to know in reality how to choose the
window width, a bootstrap method may be the preferred choice if computational
time is not a concern. Otherwise, we recommend our profile likelihood method
with a small width h that leads to a positive estimate.

5.2. Ascent property of the proposed EM algorithm. One issue commonly en-
countered in Monte Carlo EM algorithms is the convergence to the true maximizer
of the (marginal) likelihood function. As discussed in the literature, maximizing
the approximated likelihood by Monte Carlo integration will not locate the MLE
exactly due to the presence of Monte Carlo errors. An efficacious EM algorithm
should sustain the so-called ascent property which describes the increasing pat-
tern of the targeted marginal likelihood along iterations. Herein, a simulation is
conducted to verify the ascent property of the proposed EM algorithm. In order to
obtain an analytical form of the marginal likelihood in each iteration, we consider
a simple scenario with 100 clusters of size 2. The survival times are generated by a
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FIG. 1. Plots of marginal log-likelihood evaluated at the NPMLE calculated in each iteration step
based on 12 datasets with 100 clusters of size 2.

gamma frailty model with β = 1, λ0 as the hazard function of an exponential dis-
tribution with mean 1, and γ = 1. The left-censored rate is about 8% and there is at
most 1 left-censored subject within each cluster. The marginal likelihood function
is evaluated at the estimated values obtained by maximizing the surrogate likeli-
hood in each iteration. Figure 1 shows the patterns of the marginal log-likelihood
along with iteration steps obtained from 12 randomly selected sets of simulations.
As observed in the plots, the marginal log-likelihood increase drastically in the first
few iterations and continues to climb up till the algorithm converges. The ascent
property of the proposed EM algorithm is clearly demonstrated by the trends in
the plots.

5.3. Misspecification on the frailty distribution. To study the effect of mis-
specifying the frailty distribution, we conducted some simulations with misspec-
ified frailty distributions. The frailty term is generated from (1) a log-normal
distribution with the mean and the standard deviation after logarithm transforma-
tion as −0.5 and 1, respectively, and (2) a mixture of two gamma distributions,
Gamma(2,0.1) and Gamma(18,0.1), with equal weights. The two scenarios on
frailty distributions represent a unimodal non-gamma distribution with mean 1 and
variance about 1.72 and a bimodal distribution with mean 1 and variance about
0.74. We explore the two types of misspecified frailty distributions with the num-
bers of clusters as 50 and 100, and the settings on other factors similar to the first
two simulations in Section 5.1. The left-censoring rate is about 8% with an addi-
tional 17% of right censorship in average. Under both scenarios, a gamma frailty
model is fitted via the proposed method for estimating the parameters.

The results of the NPMLE obtained from a misspecified model are shown in
Table 3. The performance of the estimated regression coefficient β̂ is comparable
to the results under the correct model in Table 1. The biases are slightly greater
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TABLE 3
Simulation results with misspecification on the frailty distribution. Results on two scenarios on

frailty distributions with 2 sample sizes, 50 and 100, under each setting. The true baseline hazard is
a constant function. The notation σ̂·,MC stands for estimated standard deviation from 100 Monte

Carlo samples. MSE stands for the mean square error of the estimates

True frailty distribution n β0 β̂ σ̂β,MC MSE(β̂) γ0 γ̂ σ̂γ,MC MSE(γ̂ )

Log-normal 50 1 0.9723 0.2371 0.0570 1.72 0.6835 0.2375 0.1566
100 1 0.9807 0.1697 0.0292 1.72 0.6551 0.1442 0.1398

Mixture of Gammas 50 1 0.9672 0.2460 0.0616 0.74 1.0997 0.3057 0.2228
100 1 0.9846 0.1593 0.0256 0.74 1.1940 0.2091 0.2498

than that under a correct model, yet still within 4% (0.0277 and 0.0328 based on
50 clusters for unimodal and bimodal models, resp.). Increasing the number of
clusters to 100 reduces the bias to less than 2% (0.0193 and 0.0154 for unimodal
and bimodal, resp.) and gains efficiency as well. However, the variance component
of the frailty cannot be accurately recovered under model misspecification. As
demonstrated in Table 3, there can be a non-negligible bias on estimating γ . The
relative biases are about 60% and 50% of the true parameter γ0 for unimodal and
bimodal cases, respectively. This is expected under model misspecification as the
targets have changed. To summarize, given that the survival regression coefficients
are usually the primary interest of a study, the proposed NPMLE is fairly robust
against departure of the frailty distribution. In particular, the survival regression
coefficient can be estimated with high accuracy and precision even when the frailty
component is incorrectly modeled.

6. Numerical example. Our motivating example is a Hepatitis B study for
children with chronic Hepatitis B virus (HBV) infection. Hepatitis B is an infec-
tious liver disease causes by HBV. About a quarter of the world populations have
been infected. Patients with chronic HBV may infect others over a long period of
time and are more likely to develop liver cirrhosis and cancer. It is thus important
to control and monitor this disease. HBeAg (Hepatitis B e antigen) is a marker of
a patient’s degree of infectiousness with positive result indicates the person has
high levels of virus and greater infectiousness. E-seroconversion occurs when an
infected individual’s immune system produces the corresponding antibodies to the
e antigen. This is an important therapeutic end point and the primary interest of
this study.

Our goal is to understand the seroconversion process of e antigen and its as-
sociation to two risk factors, one is ALT (Alanine Aminotransferase) measured
at the baseline clinical visit and the other is the HBV (Hepatitis B virus) status
(yes = 1, and no = 0) of the child’s mother. ALT (alanine aminotransferase) is
the liver enzyme marker that is followed most closely in those chronically infected
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with Hepatitis B. An elevated level of ALT indicates the damage on liver cells. Due
to the extremely large values of ALT level, a logarithm transformation is often ap-
plied and the covariate we used in the analysis is the logarithm of the baseline ALT
levels.

The study includes 107 HBeAg positive children from 49 families recruited
between 1974 and 1992 and followed up until 2008. Since subjects entered the
study at different ages and some of them had completed e-seroconversion before
the first clinical visit, the survival time of those patients are thus left- censored. For
those who have not developed e-seroconversion at the time of entry into the study,
they are subject to the usual right censorship. Thus, this data set is subject to the
double censorship considered in this paper. The left-censoring rate is about 2.8%
and the right-censoring rate is about 19.4%. Detailed description of the data can be
found in Wu et al. (2006), which included a subset of the sample and focused on a
different problem. Although the left-censoring rate is low in this data, ignoring the
left-censored subjects may result in a bias sample as left-truncated data. To avoid
the issue of bias samples, we retain those subjects in the dataset.

Due to the familial structure, a frailty model is employed to accommodate the
dependence among subjects from the same family. We consider a shared-frailty
model with these two covariates and apply the proposed approach in Sections 2
and 3 to obtain statistical inferences. The results are provided in Table 4. The
mother’s HBV status, is insignificant but negatively associated with the incidence
rate of HB e antigen seroconversion. In the final model, the regression coefficient
of logarithm of baseline ALT level is 0.6091 with a p-value 0.0030 indicating
a positive and significant effect on the incidence rate of e-seroconversion, which
may seem surprising at first but is consistent with clinical observation that patients
with higher level of ALT when entering the study tend to have a higher incidence
rate to e-seroconvert. This could explained as higher ALT levels are more likely to
trigger the development of antibodies to HBV e antigen. The estimated variance
of the frailty term is 1.4065 with an estimated standard error of 0.6865. That is,
children from the same family tend to have correlated seroconversion time. The
estimated cumulative baseline hazard function is shown in Figure 2 along with a
95% pointwise confidence band obtained from bootstrap.

TABLE 4
The fitted results on HB study under full and reduced models

Model Parameters Estimates Esti. SD p-value

Full Mom HBV carrier −0.0311 0.4348 0.9430
Baseline ALT 0.6191 0.2101 0.0032

v 0.5303 0.2370 –

Reduced Baseline ALT 0.6091 0.2053 0.0030
v 0.4723 0.2350 –
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FIG. 2. The solid line stands for the estimated cumulative baseline hazard function obtained from
the proposed method. A pointwise 95% confidence band from bootstrap is presented by the dash
lines.

We close this section with a remark on the usage of the baseline ALT. Due to
the sampling plan, the ALT measurements taken from the left-censored subjects
at their first clinical visits are post-seroconversion; hence, it can be an issue that
the significant results are likely contributed by a reverse causation. The validity of
using the baseline ALT obtained from the left-censored subjects can be justified
by the following two reasons: (1) the left censoring proportion is very low (only 3
out of 107 subjects) for this data, so unlikely to induce a serious bias, and (2) ALT
levels tend to stabilize to a normal level after seroconversion, so the ALT level
at entry of the study for a left-censored data is likely to be lower than the ALT
levels prior to seroconversion. The implication is that the actual p-value should
be smaller than the ones reported in Table 4 leading to an even more significant
finding. Thus, the significance finding observed in this paper is not a result of the
reverse causation. To provide further assurance, a separate analysis is conducted on
the same data but omitting the three left-censored subjects. This resulted in a left-
truncation (left-censored data are truncated) and right-censoring (LTRC) scenario.
The new algorithm we developed for LTRC clustered survival data resulted in
an estimate of 0.7238 (S.E. = 0.2570) for the regression coefficient of ALT (p-
value = 0.0049). Thus, the new analysis underscores the significant association
between the baseline ALT level and seroconversion time.

7. Conclusions. In this paper, we propose a likelihood approach to estimate
the unknown components in a shared-frailty model for clustered survival data that
are subject to double-censoring. We show that the nonparametric maximum like-
lihood method leads to

√
n-consistent and semiparametrically efficient estimator

for all finite-dimensional parameter and
√

n-consistent for the cumulative baseline
hazard function.

Two estimates for the standard deviation of the NPMLE for finite-dimensional
parameters are investigated, one based on the bootstrap method and the other based
on a new quadratic approximation for the profile likelihood. Both approaches are
supported by numerical evidence and lead to reliable and stable estimates. They
complement each other in that the bootstrap method is conceptually simpler but
computationally costly. The quadratic approximation method is computationally
efficient and a remedy for the simple profile likelihood approach proposed in



SHARED-FRAILTY MODELS WITH DOUBLY-CENSORED CLUSTERED DATA 1319

Murphy, Rossini and van der Vaart (1997), which often leads to negative estimates
of the standard errors when data are doubly censored.

In addition to theoretical contributions, a new and effective algorithm is pro-
posed to estimate the nonparametric maximum likelihood estimates through a
modified EM algorithm by treating the unobserved frailty terms and all left-
censored survival times as missing data. The distinctive features of the proposed
algorithm are: (i) it provides a computationally simple and stable algorithm that
involves only one-dimensional Monte Carlo integrations, with respect to the la-
tent frailty, in the E-step of the EM-algorithm, (ii) it involves simple and tractable
maximization in the M-step of the EM-algorithm and (iii) for a special and simpler
case where the frailty variable is constant, it involves no Monte Carlo integration
and overcomes the computational instability of an existing method [Kim, Kim and
Jang (2010)] that tackles the full nonparametric likelihood by the Gauss–Seidel
method, which involves solving high-dimensional equation systems. Thus, we not
only provide a viable solution to a new problem but also resolve a lingering com-
putational issue for independent left- or doubly-censored data.

APPENDIX

A.1. Construction of the likelihood contributed by uncensored and right-
censored subjects. We focus on uncensored subjects. An analogous argument
can be extended to right-censored subjects. For an uncensored subject, the ob-
served data are (T̃ = t̃ , δ = 1, η = 1,Z = z,L = l), where t̃ > l. Under the as-
sumption of independence between W and Z, the conditional density fobs of the
observed data given W = w is

fobs(t̃ ,1,1, z, l|w) = f
(T̃ ,δ,η,L)

(t̃ ,1,1, l|z,w)fZ(z)
(10)

= f(T ,δ,L)(t̃ ,1, l|z,w)fZ(z).

The last equation holds since whenever t̃ > l it implies that η = 1. By substituting
δ = 1 with R ≥ T ,

f(T ,δ,L)(t̃ ,1, l|z,w)fZ(z) = P(T = t̃ , L = l,R ≥ T |z,w)fZ(z)
(11)

= P(T = t̃ , L = l,L + Y ≥ t̃ |z,w)fZ(z).

By the conditional independence in C3 between T and (L,Y ) given (Z,W) the
right-hand side of (11) becomes

fT (t̃ |z,w)P (L = l,L + Y ≥ t̃ |z,w)fZ(z).(12)

The noninformative assumption on L and Y in C3 implies that the second term
above does not involve any parameter of interest, hence the observed left-censoring
time does not contribute information to the likelihood.
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A.2. Proof of Theorem 4.1.

OUTLINE OF THE PROOF. We shall use a subscript n, the number of fam-
ilies, for the NPMLE since the asymptotic properties are constructed according
to n. We would like to point out here that the NPMLE exists with probability
1 under our setting. This can be verified by an apagogic argument analogous to
pages 2140–2141 in Zeng and Cai (2005). Consistency of the NPMLE can be
demonstrated by first showing that �̂n(τ ) is bounded almost surely as n → ∞.
This implies that �̂n can be regarded as a bounded measure. Then by Helly’s
selection theorem and the compactness of the parameter space 
β × 
γ , ev-
ery subsequence of θ̂n = (�̂n, βn, γn) has a subsequence {q(n)} of {n} such that
θ̂q(n) = (βq(n),�q(n), γq(n)) converges to a certain inner point θ∗ = (β∗,�∗, γ ∗),
where �∗ is continuous as shown in Zeng and Cai (2005), and �̂q(n) con-
verges uniformly to it in the whole parameter space. The proof will be com-
pleted if we can show that θ∗ = θ0. However, we do not know what θ∗ is,
since there is no close form solution for θ̂n. Therefore, we rely on an interme-
diate function �̄n(·), which converges to �0 uniformly on [0, τ ]. The claim that
θ∗ = θ0 can next be established similar to the arguments in the literature [Dupuy,
Grama and Mesbah (2006), Murphy (1994)]. Below, we provide details of the
proof.

To prove the boundedness of �̂n(τ ), we take derivatives on the observed log
likelihood function with respect to all λk’s, and it can be shown that

�̂n(τ )

=
K∑

k=1

[δkηk + ∑n
i=1

∑ni

j=1(1 − ηij )ak,ij (θ̂ )I (t̃ij ∈ Rk)]I (t̃k ≤ τ)∑n
i=1

∑ni

j=1[ηijEθ ′(W |Oi) + (1 − ηij )ck,ij (θ̂ )] exp(β̂zij )I (t̃ij ≥ t̃ k)

≤
K∑

k=1

[δkηk + ∑n
i=1

∑ni

j=1(1 − ηij )ak,ij (θ̂ )I (t̃ij ∈ Rk)]I (t̃k ≤ τ)∑n
i=1

∑ni

j=1 ηijEθ ′(W |Oi) exp(β̂zij )I (t̃ij ≥ t̃ k)
(13)

≤
K∑

k=1

[δkηk + ∑n
i=1

∑ni

j=1(1 − ηij )ak,ij (θ̂ )I (t̃ij ∈ Rk)]I (t̃k ≤ τ)∑n
i=1

∑ni

j=1 ηijEθ ′(W |Oi) exp(β̂zij )I (t̃ij ≥ τ)

=
K∑

k=1

δkηkI
(
t̃ k ≤ τ

) +
K∑

k=1

n∑
i=1

ni∑
j=1

(1 − ηij )ak,ij (θ̂ )I
(
t̃ ≥ t̃ k

)
I
(
t̃ k ≤ τ

)

/ n∑
i=1

ni∑
j=1

ηijEθ ′(W |Oi) exp(β̂zij )I (t̃ij ≥ τ).

The second term in the numerator of (13) is bounded above by
∑n

i=1
∑ni

j=1(1 −
ηij ), since the sum of ak,ij (θ̂ ) over all k such that t̃ k ≤ t̃ij is bounded above by 1.
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Then

�̂n(τ ) ≤
∑n

i=1
∑ni

j=1 δij ηij I (t̃ij ≤ τ) + ∑n
i=1

∑ni

j=1(1 − ηij )∑n
i=1

∑ni

j=1 ηijEθ ′(W |Oi) exp(β̂zij )I (t̃ij ≥ τ)
(14)

≤ 1/n
∑n

i=1 2ni

1/n
∑n

i=1
∑ni

j=1 ηijEθ ′(W |Oi) exp(β̂zij )I (t̃ij ≥ τ)
.

The upper bound in (14) converge a.s. to a finite number as n tends to infinite
by the Law of Large Numbers and assumptions A1, A2 and A4. This implies the
boundedness of �̂n(τ ). Consequently, the NPMLE �̂n is a finite measure on [0, τ ].
According to Helly’s selection lemma, every subsequence of �̂n has a further sub-
sequence �̂q(n) such that ‖�̂q(n) −�∗‖ converges to 0 with probability 1 on [0, τ ].

Before defining an intermediate term used in this proof, we rewrite �̂n as

�̂n

(
t∗

) = 1

n

n∑
r=1

nr∑
s=1

δrsηrsI (t̃rs ≤ t∗) + nPn[Q1(t,O, θ̂)]|t=t̃rs
I (t̃rs ≤ t∗)

Pn[Q2(t,O, θ̂)]|t=t̃rs

,

where

Q1(t,Oi, θ) =
ni∑

j=1

(1 − ηij )at,ij (θ)I (t̃ij ≥ t),

Q2(t,Oi, θ) =
ni∑

j=1

[
ηijEθ (W |Oi) + (1 − ηij )ct,ij (θ)

]
exp(βzij )I (t̃ij ≥ t),

and

Pn

[
f (O)

] = 1

n

n∑
i=1

f (Oi)

stands for the empirical process. Then the intermediate term �̄ is defined as

�̄n

(
t∗

) = 1

n

n∑
r=1

nr∑
s=1

δrsηrsI (t̃rs ≤ t∗) + nPn[Q1(t,O, θ0)]|t=t̃rs
I (t̃rs ≤ t∗)

Pn[Q2(t,O, θ0)]|t=t̃rs

= 1

n

n∑
r=1

nr∑
s=1

δrsηrsI (t̃rs ≤ t∗)
Pn[Q2(t,O, θ0)]|t=t̃rs

+ 1

n

n∑
r=1

nr∑
s=1

nPn[Q1(t,O, θ0)]|t=t̃rs
I (t̃rs ≤ t∗)

Pn[Q2(t,O, θ0)]|t=t̃rs

.

Since the class {Q2(·,O, θ0) on [0, τ ]} can be shown to be Glivenko–Cantelli
by establishing the uniform boundedness and bounded variation of Q2, assump-
tion A5 then implies the convergence of the first term to Eθ0[

∑ni

j=1 δij ηij ×
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I (Tij≤t∗)
P [Q2(t,O,θ0)]|t=T

] as n goes to infinite. Likewise, the pointwise convergence of

the second term to Eθ0[
∑ni

j=1(1 − ηij )E
T
θ0

( I (T ≤t∗)
P [Q2(t,O,θ0)]|t=T

|T ≤ Tij )], for each t∗
in [0, τ ] can be established. It is easy to see that sum of the above two limits is
�0(t). Glivenko–Cantelli lemma and the continuity of �0 imply that ‖�̄n − �0‖
converges to 0 with probability 1. By the definition of �̂n(t

∗) and �̄n(t
∗), we have

that �̂n(t
∗) is absolutely continuous with respect to �̄n(t

∗), and

�̂n

(
t∗

) =
∫ t∗

0

Pn{Q3(v,O, θ0)}
Pn{Q3(v,O, θ̂)} d�̄n(v),

where Q3(v,O, θ) = ∑nr

s=1
δrsηrsI (v≤T )+nPn[Q1(v,O,θ)]I (v≤T )

Pn[Q2(v,O,θ)] . By applying the
Glivenko–Cantelli property along with the dominance convergence theorem the
convergence of θ̂q(n) to θ∗ implies that

�∗(
t∗

) =
∫ t∗

0

Eθ0{Q3(v,O, θ0)}
Eθ∗{Q3(v,O, θ∗)} d�0(v).

Then the absolute continuity of �∗ with respect to �0 holds. Moreover, d�̂n(t)

d�̄n(t)

converges uniformly to d�∗(t)
d�0(t)

.
Now we consider the following difference in log-likelihood:

1

n
ln(θ̂n) − 1

n
ln(β0, �̄n, γ0) ≥ 0.

The left-hand side converges a.s. to Eθ0[l(θ∗) − l(θ0)] by Lebesgue’s theorem.
Since the limit is the Kullback–Leibler divergence which is non-positive, the only
possibility is that the limit is exactly zero. By the identifiability under conditions
C1 to C4, we conclude that θ∗ = θ0. The proof is now complete. �

A.3. Proof of Theorem 4.2.

PROOF OF ASYMPTOTIC NORMALITY. The proof will follow the framework
of Theorem 3.3.1 in van der Vaart and Wellner (1996) and involves several key
steps.

Let Hp = {h = (h1, h2, h3) : |h1| + ‖h2‖v + |h3| ≤ p}, where h1 and h3 ∈ R
1,

h2 is a function of bounded variation on [0, τ ], and ‖h2‖v denotes the sum of the
absolute value of h2 at 0 and the total variation of h2 on [0, τ ]. Here, we consider
θ = (β,�,γ ) as a functional on Hp defined as

θ(h) = (β,�,γ )(h1, h2, h3) = h1β +
∫ τ

0
h2(u) d�(u) + h3γ.

Hence, the parameter space 
 is a subspace of l∞(Hp). To verify the Fréchet
differentiability of the score function, for a fixed h = (h1, h2, h3) ∈ Hp , we shall
consider an one-dimensional submodel θt = (β + th1,�t(h2), γ + th3), where t ∈
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R
1 and �t(h2)(·) = ∫ ·

0[1 + th2(u)]d�(u). Here, for sufficiently small |t |, �t(h2)

satisfies the requirements of a cumulative hazard function since h2 is a function of
bounded variation on [0, τ ].

Let θ̃ denote a certain value of θ , the score function for t at θ along the direction
h is

Sθ̃ (θ)(h) = h1Sθ̃,1(θ) + Sθ̃,2(θ)(h2) + h3Sθ̃,3(θ),(15)

where

Sθ̃,1(θ) = Eθ0

{
n∗∑

j=1

δjηj zj − ηjzj exp(βzj )�(T̃j )Eθ̃ (W |O)

+ (1 − ηj )zj − (1 − ηj )zj exp(βzj )Eθ̃

(
W�(Uj)|O)}

,

Sθ̃,2(θ)(h2) = Eθ0

{
n∗∑

j=1

δjηjh2(T̃j ) + (1 − ηj )Eθ̃

(
h2(Uj )|O)

− ηj exp(βzj )Eθ̃ (W |O)

∫ T̃j

0
h2(u) d�(u)

− (1 − ηj ) exp(βzj )Eθ̃

(
W

∫ Uj

0
h2(u) d�(u)

∣∣∣O)}
,

and

Sθ̃,3(θ) = Eθ0

{
Eθ̃

[
∂fW(W |V )/∂t

fW (W |V )

∣∣∣O]}
.

The corresponding Fréchet derivative of the score at the true value θ0 can be shown
to be


θSθ0(θ0)(h) = −βσθ0,1(h) −
∫ τ

0
σθ0,2(h)(u) d�(u) − γ σθ0,3(h),(16)

where

σθ0,1(h) = Eθ0

{
n∗∑

j=1

[
h1

(
ηjW�0(T̃j ) + (1 − ηj )W�0(Uj )

)
z2
j exp(β0zj )

+
(
ηjW

∫ T̃j

0
h2(u) d�0(u)

+ (1 − ηj )W

∫ Uj

0
h2(u) d�0(u)

)
zj exp(β0zj )

]}
,
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σθ0,2(h)(u) = Eθ0

{
n∗∑

j=1

[
h1

(
ηjWI (u ≤ T̃j ) + (1 − ηj )WI (u ≤ Uj)

)
zj exp(β0zj )

+ Wh2(u)
(
ηj I (u ≤ X̃j ) + (1 − ηj )I (u ≤ Uj)

)
exp(β0zj )

]}
,

and

σθ0,3(h) = Eθ0

{
h3

∂2

∂t2 logfW(W |γ0 + tγ )

∣∣∣∣
t=0

}
.

We shall term σθ0 = (σθ0,1, σθ0,2, σθ0,3) the Fisher information operator. Since the
Fréchet derivative 
θSθ0(θ0) is a linear form of σ , it suffices to show the contin-
uous invertibility of σ by proving: (i) its one-to-one property, and (ii) it can be
expressed as a sum of a continuously invertible operator and a compact operator.
The one-to-one property (i) can be illustrated by apagogical argument which is a
consequence of the identifiability of the model.

To demonstrate (ii), we consider the following decomposition of the Fisher in-
formation operator:

σθ0(h) = σθ0,L(h) + σθ0,C(h),

where

σθ0,L(h) =
(
h1Eθ0

{
n∗∑

j=1

[(
ηjW�0(T̃j ) + (1 − ηj )W�0(Uj )

)
z2
j exp(β0zj )

]}
,

h2(u)Eθ0

{
n∗∑

j=1

[
W

(
ηj I (u ≤ X̃j ) + (1 − ηj )I (u ≤ Uj)

)
exp(β0zj )

]}
,

h3Eθ0

{
∂2

∂t2 logfW(W |γ0 + tγ )

∣∣∣∣
t=0

})

and

σθ0,C(h) =
(
Eθ0

{
n∗∑

j=1

[(
ηjW

∫ T̃j

0
h2(u) d�0(u)

+ (1 − ηj )W

∫ Uj

0
h2(u) d�0(u)

)
zj exp(β0zj )

]}
,

h1Eθ0

{
n∗∑

j=1

[(
ηjWI (u ≤ T̃j )

+ (1 − ηj )WI (u ≤ Uj)
)
zj exp(β0zj )

]}
,0

)
.
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The continuous invertibility of σθ0,L is straightforward under assumptions A1
to A6. To show the compactness of σθ0,C , we consider a sequence hn =
(h1,n, h2,n, h3,n) ∈ Hp , and prove the existence of a convergent subsequence
of σθ0,C(hn). By applying Helly’s selection theorem along with the Bolzanno–
Weierstrass theorem, we obtain a subsequence hq(n) of hn which converges to a
limit h∗ = (h∗

1, h
∗
2, h

∗
3). Since the norm of the distance between σθ0,C(hq(n)) and

σθ0,C(h∗) can be expressed as∣∣∣∣∣Eθ0

{
n∗∑

j=1

[(
ηjW

∫ T̃j

0

(
h2,q(n) − h∗

2
)
(u) d�0(u)

+ (1 − ηj )W

∫ Uj

0

(
h2,q(n) − h∗

2
)
(u) d�0(u)

)
zj exp(β0zj )

]}∣∣∣∣∣
(17)

+
∥∥∥∥∥(

h1,q(n) − h∗
1
)
Eθ0

{
n∗∑

j=1

[(
ηjWI (u ≤ T̃j )

+ (1 − ηj )WI (u ≤ Uj)
)
zj exp(β0zj )

]}∥∥∥∥∥
v

,

assumption A1 to A6 imply that (17) is bounded above by

c

[∫ τ

0

∣∣(h2,q(n) − h∗
2
)
(u)

∣∣d�0(u) + ∣∣h1,q(n) − h∗
1
∣∣],

for some constant c. The dominated convergence theorem gives the convergence
of the upper bound to zero, and then implies the convergence of σθ0,C(hq(n)) to
σθ0,C(h∗). The operator σθ0,C has been shown to be compact and then the contin-
uous invertibility of σθ0 holds.

In the following step, we demonstrate the convergence of the difference be-
tween the empirical score process S

n,θ̂n
and the mean score process Sθ0 evaluated

at the true θ0. The definition of S
n,θ̂n

(θ) and Sθ0(θ) are defined as follows. For the
empirical score process, we define

S
n,θ̂n

(θ)(h) = h1Sn,θ̂n,1(θ) + S
n,θ̂n,2(θ)(h2) + h3Sn,θ̂n,3(θ),

where

S
n,θ̂n,1(θ) = 1

n

n∑
i=1

{
n∗∑

j=1

δjηj zj − ηjzj exp(βzj )�(T̃j )Eθ̂n
(W |O)

+ δj (1 − ηj )zj − δj (1 − ηj )zj exp(βzj )Eθ̂n

(
W�(Uj )|O)}

,

S
n,θ̂n,2(θ)(h2) = 1

n

n∑
i=1

{
n∗∑

j=1

δjηjh2(T̃j ) + δj (1 − ηj )Eθ̂n

(
h2(Uj )|O)
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− ηj exp(βzj )Eθ̂n
(W |O)

∫ T̃j

0
h2(u) d�(u)

− δj (1 − ηj ) exp(βzj )Eθ̂n

(
W

∫ Uj

0
h2(u) d�(u)

∣∣∣O)}
,

S
n,θ̂n,3(θ) = 1

n

n∑
i=1

{
E

θ̂n

[
∂fW(W |γ )/∂t

fW (W |γ )

∣∣∣O]}
.

For the mean score process, we define

Sθ0(θ)(h) = h1Sθ0,1(θ) + Sθ0,2(θ)(h2) + h3Sθ0,3(θ),

where

Sθ0,1(θ) = Eθ0

{
n∗∑

j=1

δjηj zj − ηjzj exp(βzj )�(T̃j )W

+ δj (1 − ηj )zj − δj (1 − ηj )zj exp(βzj )W�(Uj )

}
,

Sθ0,2(θ)(h2) = Eθ0

{
n∗∑

j=1

δjηjh2(T̃j ) + δj (1 − ηj )h2(Uj )

− ηj exp(βzj )W

∫ T̃j

0
h2(u) d�(u)

− δj (1 − ηj ) exp(βzj )W

∫ Uj

0
h2(u) d�(u)

}
,

Sθ0,3(θ) = Eθ0

{
∂fW(W |γ )/∂t

fW (W |γ )

}
.

To illustrate the convergence of the process
√

n(S
n,θ̂n

(θ0) − Sθ0(θ0))(h), the
main point is to demonstrate the Donsker property of the classes of func-
tions shown in S

n,θ̂n
(θ0). The Donsker property on the class {h1Sn,θ̂n,1(θ0) +

h3Sn,θ̂n,3(θ0) : |h1|, |h3| ≤ p} holds due to the boundedness assumption in A4 and
A5, and the fact that it is a parametric class, parameterized by h on a bounded
subset, of measurable score function. This is illustrated by van der Vaart [Ex-
ample 19.7 in van der Vaart (1998)]. Moreover, according to the fact that a
class of functions that are both uniformly bounded on [0, τ ] and of bounded
variation is Donsker, the Donsker property holds for the class {S

n,θ̂n,2(θ0)(h2) :
h2 ∈ BVp}, where BVp is the space of functions of bounded variation whose
total variations are smaller than p on [0, τ ]. This leads to the convergence of√

n(S
n,θ̂n

(θ0) − Sθ0(θ0))(h) to a tight element on l∞(Hp).
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Next, we verify condition (a) in Theorem 3.3.1 in van der Vaart and Wellner
(1996). From now on, we denote the score functions based on one cluster by
sθ̃,O(θ)(h) = h1sθ̃,O,1(θ) + sθ̃,O,2(θ)(h2) + h3sθ̃,O,3(θ), where

sθ̃,O,1(θ) =
n∗∑

j=1

δjηj zj − ηjzj exp(βzj )�(T̃j )Eθ̃ (W |O)

+ δj (1 − ηj )zj − δj (1 − ηj )zj exp(βzj )Eθ̃

(
W�(Uj )|O)

,

sθ̃,O,2(θ)(h2) =
n∗∑

j=1

δjηjh2(T̃j ) + δj (1 − ηj )Eθ̃

(
h2(Uj )|O)

− ηj exp(βzj )Eθ̃ (W |O)

∫ T̃j

0
h2(u) d�(u)

− δj (1 − ηj ) exp(βzj )Eθ̃

(
W

∫ Uj

0
h2(u) d�(u)

∣∣∣O)
,

sθ̃,O,3(θ) = Eθ̃

[
∂fW(W |γ )/∂t

fW (W |γ )

∣∣∣O]
.

According to Lemma 3.3.5 in van der Vaart and Wellner (1996), it suffices to
show the following two steps: (i) the class of random functions {sθ,O(θ)(h) −
sθ0,O(θ0)(h)} : ‖θ − θ0‖ < δ,h ∈ H }, for certain δ > 0, is Donsker, and (ii)
suph∈H Eθ0{sθ,O(θ)(h) − sθ0,O(θ0)(h)}2 → 0 as θ → θ0. The Donsker property
for the class in (i) can be verified in a similar way as shown previously for condi-
tion (b) by looking at sθ,O,k(θ) − sθ0,O,k(θ0), k = 1,2,3. The second step follows
from the dominated convergence theorem. Therefore, condition (a) holds.

We have now verified conditions (a), (b) and (c) in Theorem 3.3.1 in van der
Vaart and Wellner (1996). Along with the consistency of θ̂n shown in Theorem 4.1,
the weak convergence of

√
n(θ̂n − θ0) is concluded. �

PROOF OF SEMIPARAMETRIC EFFICIENCY. The Fréchet differentiability and
the

√
n-consistency of θ̂ shown previously imply√

n 

θ̂n−θ0

Sθ0(θ0)(h) = √
n
(
Sn,θ0(θ0)(h) − Sθ0(θ0)(h)

) + op(1),(18)

where op(1) is a random term converges in probability to zero element in l∞(Hp).
Since the continuous invertibility of the Fisher information operator σ has been
verified, its inverse operator, denoted as σ−1, exists and for each given h we have
h̃ = (h̃1, h̃2, h̃3) = σ−1(h). By replacing h by h̃ on the right-hand-side of (18) and
according to (16), we obtain the following equation:√

n
[
Sn,θ0(θ0)(h̃) − Sθ0(θ0)(h̃)

] + op(1)

= √
n 


θ̂n−θ0
Sθ0(θ0)(h̃) = √

n 

θ̂n−θ0

Sθ0(θ0)
(
σ−1(h)

)
(19)

= √
n

[
−(β̂n − β0)h1 −

∫ τ

0
h2(u) d(�̂n − �0)(u) − (γ̂n − γ0)h3

]
.
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Hence,
√

n(θ̂n − θ0) converges weakly to a tight Gaussian element in l∞(Hp). By
taking h2 = 0 in (19), we observe that the influence function for (β̂nh1, γ̂nh3) is a
linear span of the score functions. By applying Proposition 3.3.1 in van der Vaart
and Wellner (1996), the semiparametric efficiency of (β̂, γ̂ ) is concluded. �

A.4. Proof of Theorem 4.3. We complete the proof of the consistency of
the bootstrap standard error by verifying the three conditions M1–M3 listed in
Theorem 1 in Cheng (2015). In the following, we denote the log-likelihood
contributed by a cluster by l(θ). Condition M1, which states the quadratic be-
havior of the log-likelihood, can be illustrated by considering the second-order
Taylor expansion on the expected log-likelihood Eθ0 l(θ). By the identifiability
of the model, θ0 maximizes Eθ0 l(θ); hence the expected difference between l(θ)

and l(θ0) can be expressed by a linear form of the information operator de-
fined in (16), with θ replaced by θ − θ0, plus the remainder term. By assump-
tions A1–A6, Eθ0[l(θ) − l(θ0)] is bounded above by a certain constant times
|β − β0|2 + |γ − γ0|2 + ‖� − �0‖2∞. Thus, condition M1 holds for the current
model. Condition M3 in Theorem 1 in Cheng (2015) requires the

√
n-consistency

of the NPMLE �̂ and the bootstrap NPMLE �̂∗. The
√

n-consistency of �̂ is il-
lustrated in Theorem 4.1. Analogously, the

√
n-consistency of �̂∗ can be verified

since the log-likelihood from a nonparametric bootstrap sample can be expressed
as

∑n
i=1 Mnili(θ), where Mni is the frequency of the ith cluster being resampled,

and (Mn1, . . . ,Mnn) ∼ Multinomial(n, (n−1, . . . , n−1)).
Condition M2 in Theorem 1 in Cheng (2015) describes the moment condition of

the empirical process over a class of functions defined as Nδ = {l(θ) − l(θ0) : θ ∈

, |β − β0| ≤ δ, |γ − γ0| ≤ δ,‖� − �0‖∞ ≤ δ} for some δ > 0. Here, we intro-
duce some notation for later use. Let Nδ be the envelop function of the class Nδ .
Define empirical processes Gnf = √

n(Pn − P)f and G
∗
nf = √

n(P∗
n − Pn)f ,

where Pf = ∫
f dP , Pnf = 1

n

∑n
i=1 f (Xi), and P

∗
nf = 1

n

∑n
i=1 f (X∗

i ). The nota-
tion with an ∗ denote the corresponding terms based on bootstrap samples. More-
over, we define ‖Gn‖Nδ = supf ∈Nδ

|Gnf | and ‖G∗
n‖Nδ = supf ∈Nδ

|G∗
nf |, and use

the notation “a(b) � b” to mean that a(b) is smaller than b, for all b, up to an
universal constant.

Since the function l(θ) − l(θ0), for fixed θ0, is globally Lipschitz continuous
with the Lipschitz coefficient function as a finite constant function under the as-
sumption A1–A6, we have the Lp′-norm of the envelop function

‖Nδ‖Lp′ (P ) � δ.(20)

It also implies that

‖Nδ‖Lp′ (P ) < ∞.(21)

By the compactness of the finite-dimensional parameter space 
β × 
γ and the
fact that the class of bounded monotone functions is VC-hull class, the class Nδ
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has finite uniform entropy integral. This fact along with (20) imply

(
Eθ0‖G‖p′

Nδ

)1/p′
� δ.(22)

Moreover, under nonparametric sampling scheme, (21) and (22) lead to the fol-
lowing inequality according to Appendix A.5 in Cheng (2015):

(
Eθ0

∥∥G∗∥∥p′
Nδ

)1/p′
� δ.(23)

The two inequalities in (22) and (23) complete the verification of condition M2,
and hence the theorem.
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric efficient estimation for shared-frailty
models with doubly-censored clustered data” (DOI: 10.1214/15-
AOS1406SUPP; .pdf). Owing to the space constraints, we present the proof of
Proposition 3.2 in the supplemental material [Su and Wang (2015)].
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