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UNIFORM CHANGE POINT TESTS IN HIGH DIMENSION

BY MORITZ JIRAK1

Humboldt Universität zu Berlin

Consider d dependent change point tests, each based on a CUSUM-
statistic. We provide an asymptotic theory that allows us to deal with the max-
imum over all test statistics as both the sample size n and d tend to infinity.
We achieve this either by a consistent bootstrap or an appropriate limit dis-
tribution. This allows for the construction of simultaneous confidence bands
for dependent change point tests, and explicitly allows us to determine the
location of the change both in time and coordinates in high-dimensional time
series. If the underlying data has sample size greater or equal n for each test,
our conditions explicitly allow for the large d small n situation, that is, where
n/d → 0. The setup for the high-dimensional time series is based on a gen-
eral weak dependence concept. The conditions are very flexible and include
many popular multivariate linear and nonlinear models from the literature,
such as ARMA, GARCH and related models. The construction of the tests
is completely nonparametric, difficulties associated with parametric model
selection, model fitting and parameter estimation are avoided. Among other
things, the limit distribution for max1≤h≤d sup0≤t≤1 |Wt,h − tW1,h| is es-
tablished, where {Wt,h}1≤h≤d denotes a sequence of dependent Brownian
motions. As an application, we analyze all S&P 500 companies over a period
of one year.

1. Introduction. Modeling high-dimensional time series is a necessity in
many different fields, ranging from meteorological and agricultural problems to
biology, genetics, financial engineering and risk management. Particularly within
the financial regulation framework, banks and insurance undertakings are required
to assess and incorporate hundreds of different factors and risks. Regarding finan-
cial time series, it is well known that large panels of asset returns routinely display
break points and other nonstationarities (cf. [24]). In this context, structural sta-
bility is a very important issue, since even changes in few parameters can lead
to misspecified risk measures and wrong conclusions (cf. [48, 53]). The issue of
structural stability also arises in many other fields, such as climatology, genetics
and medicine. Hence, given a d-dimensional time series Xk = (Xk,1, . . . ,Xk,d)

�,
there is a high interest in procedures that consistently partition the coordinates of
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{Xk}k∈Z into the two sets

Sd = {
1 ≤ h ≤ d : {Xk,h}k∈Z is stable

}
,

(1.1)
Sc

d = {
1 ≤ h ≤ d : {Xk,h}k∈Z is unstable

}
,

such that we have the relation

{1, . . . , d} = Sd � Sc
d .

The sample included in Sd may then be used for further inference, while the part
contained in Sc

d requires subsequent treatment. Often, one is additionally interested
in the actual time of change in each coordinate, and tests based on cumulative
sums are efficient in this context. Let us denote such tests with Bσ̂

n,h, 1 ≤ h ≤ d for
further reference; see (1.2) below for a precise definition.

In the univariate case, tests for structural stability in time series are widely avail-
able (cf. [4, 5, 7, 19, 20, 43] and the many references there), the multivariate
setup, and especially the high-dimensional case are less often considered. Apart
from functional data approaches (cf. [6, 26, 30]), the literature in the latter case
is rather sparse compared to the univariate theory. Let us briefly mention some
recent contributions in this area. In [31], the stability of panel data is considered.
Using a threshold-aggregation approach, [15] study the detection of global changes
(see also [27, 41]), whereas in [34], the topic of possible gain or loss in power in
higher dimension is discussed. Changes in the covariance structure in a multivari-
ate setup are addressed in [3], and an interesting connection between Dos-attacks
and change point detection is explored in [40] (see also [49, 52] and therein for
changes in multi-channel systems). However, to the best of my knowledge, a (thor-
ough) treatment regarding the consistent estimation of Sc

d , particularly in a time
series framework, is lacking in the literature so far. Compared to the univariate
case, handling the multivariate situation is much more complicated since breaks
may or may not be present at different times in different coordinates h. Since it
is usually unknown which coordinates h have anomalies and which ones have
not, determining Sc

d (resp., Sd ) is particularly hard if the dimension d is large.
The vast majority of high-dimensional change point procedures use aggregation
or PCA based techniques, and are therefore inappropriate for determining Sc

d . In
this context, a natural way to measure possible deviations is to employ the statistic
T σ̂

d = max1≤h≤d Bσ̂
n,h, with coordinate-wise CUSUM-statistics

Bσ̂
n,h = (

σ̂ 2
hn

)−1/2 max
1≤k≤n

∣∣∣∣∣
k∑

j=1

Xj,h − k

n

n∑
j=1

Xj,h

∣∣∣∣∣, h = 1, . . . , d.(1.2)

Here, σ̂ 2
h is an appropriate estimator for the long-run variance, which will be more

fully explained below. Control of T σ̂
d readily allows us to make inference for every

single coordinate h. In this paper, we provide theoretic tools that allows one to
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handle T σ̂
d . If the random variables Xk1,h1 and Xk2,h2 become less dependent if

either quantity |k1 − k2| or |h1 − h2| becomes large, we will show that

max
1≤h≤d

ed

(
Bσ̂

n,h − fd

) w→ V as both n,d → ∞,(1.3)

for appropriate normalizing sequences ed, fd , where V is an extreme value dis-
tribution of Gumbel type. A general explicit connection between n and d = dn is
given such that (1.3) is valid for n,d → ∞, allowing for n/d → 0, but also for
the converse where d/n → C ≥ 0. On the other hand, we show that the time se-
ries {Xk,h}k∈Z may have properties such that a pivotal limit theorem like in (1.3)
cannot exist. For this case, we provide bootstrap approximations, which of course
work in both cases.

Studying the joint limit as d,n → ∞ is a much more realistic setup than con-
sidering its sequential analogue (i.e., limd→∞ limn→∞ ·, cf. Remark 2.1 in [3]
or [27]), but is also considerably harder from a mathematical point of view. In
order to allow for a high flexibility in (1.3), we use a generalization of known
weak dependence concepts from the univariate (multivariate) case to the high-
dimensional setup, which allows for dependencies in time and space. This leads
to fairly general, yet easily verifiable conditions that are valid for a large num-
ber of popular time series from the literature, including multivariate ARMA and
GARCH models. Even though we only consider breaks in the mean vector, it is
clear that our results are also applicable for assessing the stability of the variance
or second-order structure (possibly cross-wise) up to a certain extent.

An outline of the paper can be given as follows. In Section 2, we introduce and
discuss our assumptions and the main results. The aspect of concise estimation of
Sc

d and the actual time of change within Sc
d is discussed in Section 3. Bootstrap

procedures and their consistency are explored in Section 4. Section 5 contains
a number of popular time series examples that are included in our framework.
Section 6 deals with practical aspects and investigates the finite sample behavior.
As a real data application, we simultaneously analyze all S&P 500 companies
over the time horizon of one year. Detailed proofs are given in the supplementary
material [33].

2. Methodology and main results. Throughout this paper, we use �, �, (∼)
to denote (two-sided) inequalities involving a multiplicative constant. C denotes
an arbitrary, absolute constant that may vary from line to line. Let ‖ · ‖p denote
the L

p-norm E[| · |p]1/p for p ≥ 1, and given a set S , we write |S| to symbolize

its cardinality. We write d= for equality in distribution. In the sequel, we often deal
with arrays (ch)1≤h≤d , where d → ∞ and ch may depend on d . We then use the
abbreviations

∗
inf
h

ch = lim inf
d→∞ min

1≤h≤d
ch,

∗
sup
h

ch = lim sup
d→∞

max
1≤h≤d

ch.(2.1)
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Let {Xk}k∈Z with Xk = (Xk,1, . . . ,Xk,d)
� be a sequence of d-dimensional ran-

dom vectors where E[Xk] = μk = (μk,1, . . . ,μk,d)
�. The aim of this paper is to

provide a simultaneous test for structural stability in μk , based on the observations
X1, . . . ,Xn. To do so, we consider the coordinate-wise null-hypothesis

H0,h : μ1,h = · · · = μn,h, h = 1, . . . , d,(2.2)

which indicates structural stability in the mean over time. Under this notion of
stability, we get that Sd = {1 ≤ h ≤ d : H0,h is true}, that is, Sd denotes the set
of all coordinates where H0,h holds. We say that H0 is true, if Sd = {1, . . . , d}.
As alternative hypothesis, we specify the scenario which allows for at most one
change in each coordinate of μk . More precisely, we assume that there exists a
(usually unknown) time lag k∗

h, such that

HA,h : μ1,h = · · · = μk∗
h,h �= μk∗

h+1,h = · · · = μn,h
(2.3)

for some h = 1, . . . , d.

We say that the alternative HA holds, if at least one HA,h is true, and the null hy-
pothesis H0,h hold in all the remaining unaffected coordinates. This means there
is at least one break in one coordinate h. Generalizations to multiple change point
detection are possible, but will not be addressed here. We make the following con-
vention. The Type I error refers to a “false alarm,” that is, a break detection where
there is none, and the Type II error is attributed to an unreported break. In this
spirit, we then obtain Sc

d = {1 ≤ h ≤ d : HA,h is true}, that is, the set which con-
sists of all coordinates where a change has occurred. In order to identify Sc

d , we
propose to use the coordinate-wise CUSUM statistic Bσ̂

n,h defined in (1.2). We

denote the whole vector of such statistics with Bσ̂
n,d = (Bσ̂

n,1, . . . ,B
σ̂
n,d)�. Let

Bh = sup
0≤t≤1

|Wt,h − tW1,h|, h = 1, . . . , d,(2.4)

where W t,d = (Wt,1, . . . ,Wt,d)
� is a d-dimensional Brownian motion, with cor-

relations ρi,j = E[Wt,iWt,j ]. If the dimension d is fixed and n → ∞, it is known
that under quite general conditions we have weak convergence, that is,

Bσ̂
n,d

w→Bd,

where Bd = (B1, . . . ,Bd)�, with associated correlation matrix �d = (ρi,j )1≤i,j≤d .
Given some mild regularity conditions for �d , we will show in Theorem A.2
in [33] that

max
1≤h≤d

ed(Bh − fd)
w→ V, as d → ∞,(2.5)

for appropriate sequences ed, fd , where V is an extreme value distribution of Gum-
bel type. Result (2.5) is one of the key ingredients in our proof for (1.3), and may
be of independent interest. Limit theorems involving the maximum of partial sums
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have played a fundamental role in statistic and probability theory for a long time
(cf. [47]). Particularly the seminal contribution in [23] has stimulated much re-
search in this area; see, for instance, [19, 20] for an account on further develop-
ments and applications, and [21] for some sharp results and a brief historic review.
Related research can also be found in [38], see also the references therein.

Based on an asymptotic result like (2.5), simultaneous confidence regions
can readily be constructed, we refer to (2.12) for more details. However, non-
Gaussianity is often the rule rather than the exception. It is therefore of con-
siderable interest to formulate our results in a more general manner. In the uni-
variate case, a highly accepted model in the literature is to assume the structure
Xk = g(εk, εk−1, . . .) for a process {Xk}k∈Z, where {εk}k∈Z is a sequence of i.i.d.
random variables in some space S of possible infinite dimension. Let {ε′

k}k∈Z be an
independent copy of {εk}k∈Z. Then many well-known weak-dependence measures
and concepts are based on quantifying the difference (for p ≥ 1)

ak(p) = ∥∥g(εk, εk−1, . . . , ε0, ε−1, . . .) − g
(
εk, εk−1, . . . , ε

′
0, ε−1, . . .

)∥∥
p.(2.6)

For example, the dependence concept in [50] is based on ak(p). In related cases,
the whole past is replaced with copies; see [8, 44] and [3] for a multivariate ver-
sion. We will see in Section 5 that many well-known univariate and multivariate
time series such as ARMA and GARCH-models are within this framework. As is
outlined, for example, in [3], such conditions have several advantages over certain
mixing competitors. For instance, mixing conditions are sometimes hard to verify
and may require additional smoothness assumptions (cf. [1]). A more profound
discussion is given in [50]. Another advantage is that these dependence measures
have a natural spatial extension which includes the univariate (multivariate) case
as a special example; see, for instance, [14, 42]. More precisely, for {Xk}k∈Z with
Xk = {Xk,h}h∈N we have the structure condition

Xk,h = gh(εk, εk−1, . . .), k ∈ Z, h ∈ N,(2.7)

where gh are measurable functions. The coordinate processes Xk,h can be viewed
as projections from S to R. In analogy to (2.6), for p ≥ 1 we put [recall sup∗

h

in (2.1)]

ak(p) = ∗
sup
h

∥∥gh(εk, εk−1, . . . , ε0, ε−1, . . .)

(2.8)
− gh

(
εk, εk−1, . . . , ε

′
0, ε−1, . . .

)∥∥
p.

Note that ak(p) is a temporal dependence measure, that is, it only measures de-
pendence in time, and essentially does not impose any spatial dependence restric-
tions. As extreme possibly examples just consider the cases where Xk,h = Xk,h+1
are identical or where {Xk,h}1≤h≤d is an independent sequence for each k ∈ Z. In
fact, this setup is very general and contains a huge variety of popular linear and
nonlinear time series models, see Section 5 for more details.
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Allowing for weak dependence in (multivariate) time series inevitably results in
dealing with the long run covariances γi,j , which we formally introduce as

γi,j = lim
n→∞n−1

E

[
n∑

k=1

n∑
l=1

(Xk,i − μk,i)(Xl,j − μl,j )

]
.(2.9)

We shall see (cf. [33]) that Assumption 2.1 below implies that the above limit exists

and γi,j are thus well defined. Moreover, in case of σ 2
h

def= γh,h we have the usual
representation σ 2

h = ∑
k∈Z φk,h, where φk,h = Cov[X0,h,Xk,h]. If σi, σj > 0, we

also have ρi,j = γi,j /(σiσj ). Our main temporal assumption is now as follows.

ASSUMPTION 2.1 (Temporal assumptions). Given representation (2.7) for
{Xk}k∈Z, assume that for p > 4 and absolute constant σ− > 0:

(T1) ak(p) � k−a, with a> 5/2,
(T2) inf∗h σh ≥ σ− > 0.

Let us briefly discuss these assumptions. (T1) is a global, polynomial decay
assumption on the temporal dependence. In the univariate case, a > 1 is possible
and essentially optimal. Here, we require the slightly stronger condition a > 5/2,
which enables us to operate in a high-dimensional context. Assumption (T2) is a
nondegeneracy assumption that we require since we often normalize with σh in the
sequel; see, however, Remark 2.6. Note that we require Assumption 2.1 throughout
the remainder of this paper.

Since σ 2
h is usually unknown, we need to estimate it. The literature (cf. [11])

provides many potential candidates to estimate σ 2
h . A popular estimator is

Bartlett’s estimator, or more general, estimators of the form

σ̂ 2
h = ∑

|k|≤bn

ω(k/bn)φ̂k,h, bn → ∞,(2.10)

with weight function ω(x), where

φ̂h,j = (n − j)−1
n∑

k=j+1

(Xk,h − Xh)(Xk−j,h − Xh),

and Xh = n−1 ∑n
k=1 Xk,h. Setting ω(x) = 1, we obtain the plain estimate

(cf. [45]). For the sake of simplicity, we just consider the plain estimate for our
theoretical analysis, but the results remain equally valid for other weight functions.
Conditions on the possible size of the bandwidth bn ∼ nb, 0 < b < 1 in terms of b
are given below in Assumption 2.2.

In order to establish a limit theory, we also require some spatial dependence
conditions. A very general way that leads to easily verifiable conditions is in terms
of decay assumptions for the underlying covariance structure. This is a common
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approach in the literature; see, for instance, [12, 39, 51]. In our context, it is thus
natural to impose conditions on the correlations ρi,j . As stated in the Introduc-
tion, we consider the situation where we allow that both n and d jointly tend to
infinity. For a more formal description, we model the dimension d as d ∼ nd,
d > 0 throughout the remainder of this paper. The necessary connection between
b,d and the underlying moments p is now additionally collected in our spatial
assumptions.

ASSUMPTION 2.2 (Spatial assumptions). Assume that d,b, (ρi,j )1≤i,j≤d ,
p > 4 satisfy the conditions below, uniformly in d for absolute constants
ρ+,Cρ, δ > 0:

(S1) 0 < d < min{p/2 − 2, (1 − b)p/2 − 1},
(S2) supi,j :|i−j |≥1 ρi,j ≤ ρ+ < 1,
(S3) |ρi,j | ≤ Cρ log(|i − j | + 2)−2−δ .

REMARK 2.3. Assumptions (S2), (S3) are only needed for establishing the
asymptotic distribution in Theorem 2.5 below. Also note that the polynomial
growth rate of the dimension d = dn and the polynomial decay rate of ak(p)

are intimately connected. In this spirit, one may show that analogue results as
presented below are valid for an exponentially growing dimension d , by impos-
ing exponential decay rates on ak(p). Such results would require in addition that
sup∗

hE[es0Xk,h] < ∞ for some s0 > 0.

REMARK 2.4. For ease of exposition, we distinctly asked for d > 0 in (S1)
to ensure that d → ∞ as n → ∞, which results in a minimal polynomial growth
rate. However, we point out that we actually only require that d � nd and d → ∞
as n → ∞, which is slightly more general.

Assumption 2.2 only imposes mild conditions, essentially allowing for any
polynomial growth rate of the dimension d ∼ nd given sufficiently many moments.
Note that high moment assumptions are common in such a context, we refer to [12,
32, 35, 51], where sometimes up to 30 moments and more are required. Also note
that we only need a logarithmic decay for the correlations ρi,j that is close to the
best-known results in the literature in a different context (cf. [38]). We are now
ready to state our first main result, which establishes the asymptotic limit distribu-
tion.

THEOREM 2.5. Assume that H0 and Assumptions 2.1 and 2.2 hold. Then

lim
n→∞P

(
max

1≤h≤d
Bσ̂

n,h ≤ ud

(
e−x)) = exp

(−e−x)
,

where ud(e−x) = x/ed + fd , with ed = √
2 log(2d), fd = ed/2 − log(3 log(2d))/

ed .
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REMARK 2.6. Conditions (S2), (S3) are needed to exclude any pathologies.
However, as is known in the literature (cf. [21, 22]), condition σh > 0 can be re-
moved to some extent by more detailed arguments due to the self-normalization
in Bσ̂

n,h. Moreover, let Id ⊂ {1, . . . , d} be any sequence of subsets with cardinality
|Id |/d → 0. It is then shown in [33] that it actually suffices to have (S2), (S3) only
for i, j ∈ {1, . . . , d} \ Id .

In Section 6, we give a brief account on the implications and relevance of the
necessary assumptions for real data sets. A problem that can appear in practical
applications is the rate of convergence to extreme value distributions, see Section 6
for details. One way out are bootstrap methods. We first present a (comparatively)
fast and easy to implement method for a parametric bootstrap. To this end, let
{Zk,h}k∈Z,h∈N be a standard Gaussian IID sequence. Denote with

BZ
n,h = 1√

n
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

Zj,h − k

n

n∑
j=1

Zj,h

∣∣∣∣∣ and

(2.11)
T Z

d = max
1≤h≤d

BZ
n,h and recall T σ̂

d = max
1≤h≤d

Bσ̂
n,h.

Next, we introduce the exact quantile uZ
d (z), defined as

P
(
BZ

n,h ≤ uZ
d (z)

) = 1 − z

d
.

It then comes as no surprise that we have the following result.

PROPOSITION 2.7. Grant the assumptions of Theorem 2.5. Then

sup
x∈R

∣∣P (
T Z

d ≤ uZ
d

(
e−x)) − P

(
T σ̂

d ≤ uZ
d

(
e−x))∣∣ = O(1) as n → ∞.

We thus obtain a very simple bootstrap method, which just requires the gener-
ation of i.i.d. Gaussian random variables. Note that unlike to ud(z), the quantiles
uZ

d (z) are highly nonlinear, which seems to make them less attractive. In practice
though, it turns out that uZ

d (z) often yields much better results than ud(z), also for
dependent time series. For more details and empirical results, see Section 6. Based
on Theorem 2.5 and Proposition 2.7, we can construct asymptotic honest 1 − α

confidence regions Ŝd(α) and ŜZ
d (α) via

Ŝd(α) = {
1 ≤ h ≤ d : Bσ̂

n,h ≤ xα/ed + fd

}
, xα = − log

(− log(1 − α)
)
,

(2.12)
ŜZ

d (α) = {
1 ≤ h ≤ d : Bσ̂

n,h ≤ uZ
d (zα)

}
, zα = d

(
1 − (1 − α)1/d)

.

Let us now turn to the important question when we have less spatial structure.
As is demonstrated in Example 5.6, a pivotal limit result like in Theorem 2.5 can-
not exist if we drop condition (S3). Fortunately, things do not go totally wrong. Our
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next result essentially implies that the “rate” (resp., normalization) ud(·) in The-
orem 2.5 acts as an upper bound, even under considerably less assumptions. This
is important for statistical applications, since we remain in control of the Type I
error.

THEOREM 2.8. Assume that H0, Assumption 2.1 and (S1) hold. Then

lim
n→∞P

(
max

1≤h≤d
Bσ̂

n,h ≤ ud

(
e−x)) ≥ 1 − e−x,

where ud(·) is as in Theorem 2.5.

A useful implication of Theorem 2.8 is that under less assumptions, Ŝd(α) and
ŜZ

d (α) can be modified to also supply (asymptotic) honest confidence sets. Indeed,
using the power series of log(1 − α), we obtain that

1 − α ≥ 1 − exp(−zα) = 1 − α − α2

2
+O

(
α3)

.

In particular, if we select a = 1 − exp(−α), then we can construct the confidence
sets Ŝd(a), ŜZ

d (a), which according to Theorem 2.8 at least have nominal level α,
since we have [with xa = − log(− log(1 − a))]

1 − exp(−xa) = 1 + log(1 − a) = 1 − α.

Hence, the resulting confidence regions might be too large, but never too small,
which implies that the Type I error of the null-hypothesis H0 remains controlled.
Note, however, that such a modification is more conservative, and thus results in
a loss in power. Some further properties of Ŝd(α), ŜZ

d (α) and their behavior un-
der the alternative hypothesis HA are the topic of Section 3. Another option to
construct confidence regions if Theorem 2.5 fails to hold is bootstrapping. In the
context of dependent data, blockwise bootstrap procedures are a possible way out.
This topic is more fully explored in Section 4.

3. Estimating the location of change and general consistency of long run
variance estimation. We first make the following convention. We say that an
estimator S̃d is consistent, if

lim
n

P
(|S̃d � Sd | = 0

) = 1,

where S̃d �Sd stands for the symmetric difference of the sets S̃d and Sd . Note that
trivially any consistent estimator S̃d gives a consistent estimator S̃c

d for the com-
plement set. For further analysis, we assume that under HA the times of change
depend on n. This is a common assumption in the literature, and one way to guar-
antee this is by demanding that k∗

h = �τhn� for τh ∈ (0,1). If there is no change in
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coordinate h, we set τh = 1. Another important quantity is the actual minimal size
of the change, which we denote with

�μ = min
h∈Sc

d

�μh where �μh = |μk∗
h,h − μk∗

h+1,h|.(3.1)

We assume throughout that �μ is a monotone decreasing sequence, and express
the direct connection to HA through the notation H(�μ)

A . This means that under

H(�μ)
A , the minimal size of change is �μ. Suppose now that h ∈ Sc

d . Then ele-
mentary calculations show that

Bσ̂
n,h ≥ σ̂−1

h

√
n�μhτh(1 − τh)

(
1 − O(1)

) − B
σ̂

n,h,(3.2)

where

B
σ̂

n,h = 1

σ̂h

√
n

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

Uj,h − k

n

n∑
j=1

Uj,h

∣∣∣∣∣,
(3.3)

Uj,h = Xj,h −E[Xj,h].
Due to Theorem 2.5, we can control max1≤h≤d B

σ̂

n,h as long as σ̂h behaves “rea-

sonably” under H(�μ)
A . If this is indeed the case, then we can expect from (3.2)

that Bσ̂
n,h becomes large, and thus detect a change in coordinate h using the con-

fidence sets Ŝd(α) or ŜZ
d (α) in (2.12). Unfortunately though, σ̂h may not at all

behave reasonably and can cause the problem of “none monotone power” (i.e., the
power can decrease when the alternative gets farther away from the null); see, for
instance, [18]. One way to overcome this problem is to use self-normalization, as
proposed in [46]. Here, we propose a different method that will lead to no loss in
power. To this end, we first discuss the estimation of the possible time of change
τh for each affected coordinate. For this, we propose the following estimates. Pick
any fixed 0 < t ≤ 1/2, preferably small, and consider

τ̂h(t) = argmax
t∈(t,1−t)

(
n−1/2

∣∣∣∣∣
�nt�∑
j=1

Xj,h − �nt�
n

n∑
j=1

Xj,h

∣∣∣∣∣
)
, h = 1, . . . , d.(3.4)

Note that σ̂h is not included in the above definition. Of course, one would like to
select t such that

t < inf
h∈Sc

d

τh ≤ sup
h∈Sc

d

τh < 1 − t.(3.5)

In the sequel, we put τ̂h = τ̂h(t) to lighten the notation if the dependence on t is of
no relevance. Bounds for uniform deviation probabilities for τ̂h(t) follow from the
next result.
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THEOREM 3.1. Assume that H(�μ)

A is valid and Assumption 2.1 holds. If we
have in addition (3.5) for some 0 < t≤ 1/2, then

P
(

max
h∈Sc

d

∣∣τ̂h(t) − τh

∣∣ ≥ x
)

�
∣∣Sc

d

∣∣(xn logn)−p/2+2,

where we require that x ≥ Ca
logn

(�μ)2n
, Ca > 0 sufficiently large.

REMARK 3.2. The above constant Ca depends on t and the sequence
(aj (p))j∈N, and thus also implicitly on the long run variances (σh)1≤h≤d . As-
sumption t > 0 and (T1) ensure that Ca < ∞, uniformly in d .

Since |Sc
d | ≤ d , we get the following uniform consistency result.

COROLLARY 3.3. Grant the assumptions of Theorem 3.1. If in addition

lim sup
n→∞

logn

(�μ)2n
= 0 and d< p/2 − 2,

then

max
h∈Sc

d

∣∣τ̂h(t) − τh

∣∣ = OP (1).

Armed with Corollary 3.3, we construct the following simple estimators σ̂ ∗
h

for σh:

• Choose a constant 0 < Bτ < 1, and use the estimator τ̂h(t) in every coordinate
to split the sample into T −

h = {k ≤ Bτ τ̂h(t)n} and T +
h = {n − Bτ (1 − τ̂h(t))n <

k ≤ n}.
• Use the usual estimator σ̂h to construct the estimators σ̂−

h and σ̂+
h based on the

samples T −
h and T +

h . The final estimator σ̂ ∗
h is then obtained by the convex

combination(
σ̂ ∗

h

)2 = τ̂h(t)
(
σ̂−

h

)2 + (
1 − τ̂h(t)

)(
σ̂+

h

)2
, 1 ≤ h ≤ d.

REMARK 3.4. As was pointed out by a reviewer, possible alternatives are

σ̂min
h = min

{
σ̂−

h , σ̂+
h

}
, σ̂max

h = max
{
σ̂−

h , σ̂+
h

}
and(

σ̂mean
h

)2 = ((
σ̂−

h

)2 + (
σ̂+

h

)2)
/2.

Another alternative is σ̂ �
h = σ̂−

h if |T −| ≥ |T +| and σ̂ �
h = σ̂+

h otherwise. Note that
we have the relation

σ̂min
h ≤ σ̂ ∗

h , σ̂ �
h , σ̂mean

h , σ̂−
h , σ̂+

h ≤ σ̂max
h .

As follows from the result below, all estimators are consistent, both under H0 and
H(�μ)

A , and thus yield the correct limit distribution. From a practical perspective
though, σ̂min

h leads to a more liberal test with more power, whereas σ̂max
h leads to

a more conservative test.
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The following result establishes the desired properties of the above variance
estimators.

PROPOSITION 3.5. Theorems 2.5 and 2.8 remain valid if we replace σ̂h with
either σ̂min

h , σ̂ ∗
h , σ̂ �

h , σ̂mean
h , σ̂−

h , σ̂+
h or σ̂max

h . Moreover, if Corollary 3.3 holds,

these estimates are consistent under H(�μ)

A .

Now that we have settled the problem of the long run variance estimation, we
may return to our original problem of determining Sd , which is now an easy task.
In fact, combining Proposition 3.5 with the lower bound in (3.2) and Corollary 3.3,
we immediately get the following result.

PROPOSITION 3.6. Let α = αn → 0 such that αn � n−1. Assume in addition
that (3.5) holds for some 0 < t0 ≤ 1/2, and that

(�μ)2 ≥ Cσ 2+ logd

nt20(1 − t0)2
, C > 1 and d < p/2 − 2,(3.6)

where σ 2+ = sup∗
h σ 2

h . Then Ŝd(αn), and hence also Ŝc
d(αn) are consistent if we

either use σ̂min
h , σ̂ ∗

h , σ̂ �
h , σ̂mean

h , σ̂−
h , σ̂+

h or σ̂max
h .

Note that Proposition 3.6 is only valid if we use estimators τ̂h(t) with t < t0.
Combining Corollary 3.3 with Proposition 3.6 we obtain the following corollary,
which marks the final result of this section.

COROLLARY 3.7. Grant the conditions of Proposition 3.6. Then

max
h∈Ŝc

d (αn)

∣∣τ̂h(t) − τh

∣∣ = OP (1).

4. Bootstrap under HA. As was mentioned before, another option to con-
struct confidence regions if Theorem 2.5 fails to hold is bootstrapping. In the con-
text of dependent data, blockwise bootstrap procedures are proposed in the liter-
ature. One of the main problems we face here in this context is the possibility of
change points, and thus a “naive” block bootstrap can go severely wrong. In the
univariate or multivariate case, possible way outs can be found in [2] and [36].
Here, we employ a different approach that uses the same idea as in Section 3,
which resulted in consistent long run variance estimators under both H0 and HA.
This is outlined in detail in the next section below. In Section 4.2, we show how this
approach can be modified and simplified. In particular, as a somewhat surprising
result, we end up having a simple “naive” block bootstrap that is consistent.

4.1. Bootstrap I. Introduce the following notation. For a probability measure
P and a σ -algebra G, we denote with P|G the conditional probability with respect
to G. Moreover, we denote with X = σ(X1, . . . ,Xn) the σ -algebra generated by
the underlying sample. Pick 0 < t ≤ 1/2, recall that Uj,h = Xj,h −E[Xj,h] and in
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analogy to B
σ̂

n,h denote with

B
σ̂ ∗
n,h(t) = 1

σ̂ ∗
h

√
n

sup
t≤t≤1−t

∣∣∣∣Sn,h(t) − �nt�
n

Sn,h(1)

∣∣∣∣, 1 ≤ h ≤ d,

Sn,h(t) =
�nt�∑
j=1

Uj,h, T
σ̂ ∗
d (t) = max

1≤h≤d
B

σ̂ ∗
n,h(t).

The objective of this section is to obtain an approximation in the sense of

sup
x∈R

∣∣P|X
(
T̂ ŝ

d,L(t) ≤ x
) − P

(
T

σ̂ ∗
d (t) ≤ x

)∣∣ = OP

(
n−C)

, C > 0,

where T̂ ŝ
d,L(t) is an appropriately bootstrapped version. To this end, let K,L such

that n = KL. In the sequel, K will denote the size of the blocks, and correspond-
ingly L the number of blocks. For simplicity, we always assume that K,L ∈ N,
which has no impact on the results. Consider the following block bounds:

L̂−
h = sup

{
l ∈ N : lK + K/2 ≤ τ̂h(t)n

}
,

(4.1)
L̂+

h = inf
{
l ∈ N : lK − K/2 ≥ τ̂h(t)n

}
,

where τ̂h(t) is as in (3.4). These estimated limits will allow us to “filter” the con-
taminated blocks, and thus allow for a consistent bootstrap procedure. For the ac-
tual construction, consider the mean estimates

X
−
h = 1

KL̂−
h

KL̂−
h∑

j=1

Xj,h, X
+
h = 1

K(L − L̂+
h )

KL∑
j=KL̂+

h +1

Xj,h,

and introduce the random variables

X̂j,h =

⎧⎪⎪⎨⎪⎪⎩
Xj,h − X

−
h , if j ≤ KL̂−

h ,

0, if KL̂−
h < j ≤ KL̂+

h ,

Xj,h − X
+
h , if j > KL̂+

h ,

(4.2)

and the block variables

V̂l,h(k) =
lK∑

j=(l−1)K+1

X̂j,h1(j ≤ k), 1 ≤ l ≤ L,1 ≤ h ≤ d.(4.3)

Note the presence of the indicator function 1(j ≤ k) in V̂l,h(k), which will allow
us to take the maximum within the individual blocks; see below.

Based on V̂l,h(·), we now have several options for the construction of a boot-
strap, which are among others:

(i) Multiplier bootstrap.
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(ii) Sampling with replacement.
(iii) Sampling with no replacement.
(iv) Mixed versions: (i) + (ii) or (i) + (iii).

In the sequel, we establish results for (i) and (iv), see also [33] for extensions. For
1 ≤ l ≤ L, consider the random variables π(l) which take values in the set L =
{1, . . . ,L}, and denote with π = σ(π(1), . . . , π(L)) the corresponding σ -algebra.
The random variables π(l) select the blocks V̂l,h(·). Depending on the desired
choice of bootstrap, we have that:

(M) π(l) = l for l ∈L (deterministic, multiplier bootstrap),
(SR) π(l) are IID and uniformly distributed over L (sampling with replace-

ment),
(SNR) π(1), . . . , π(L) results from a permutation of L (sampling with no re-

placement).

Let ξ1, . . . , ξL be a sequence of IID standard Gaussian random variables. We then
consider the overall statistic T̂ ŝ

d,L(t), defined as

T̂ ŝ
d,L(t) = max

1≤h≤d

max�nt�≤k≤n−�nt�
ŝhX ,π

√
n

∣∣∣∣∣
L∑

l=1

ξlV̂π(l),h(k) − k

n

L∑
l=1

ξlV̂π(l),h(n)

∣∣∣∣∣,(4.4)

where

ŝ2
h|X ,π = 1

KL

L∑
l=1

ξ2
l V̂ 2

π(l)(n), 1 ≤ h ≤ d,(4.5)

denotes the conditional long run variance estimator, which acts as a replacement
for (σ̂ ∗

h )2. Note that one may also set ξ2
l = 1 in the definition of ŝ2

h|X ,π . Also note in

particular that the maximum (in time) is taken over �nt� ≤ k ≤ n−�nt� in T̂ ŝ
d,L(t).

Subject to a specific sample, our bootstrap procedure is now the following.

ALGORITHM 4.1 (Bootstrap algorithm I).

Step 1. Pick 0 < t ≤ 1/2, preferably small, compute τ̂h(t) for 1 ≤ h ≤ d and
select either (M), (SR) or (SNR). Set m = 1.

Step 2. Generate {π(l)}1≤l≤L according to step 1.
Step 3. Generate IID ξ1, . . . , ξL with standard Gaussian distribution.
Step 4. Calculate the value of T̂ ŝ

d,L(t) and set Tm = T̂ ŝ
d,L(t).

Step 5. Go to step 2 and set m = m + 1.

REMARK 4.2. As was noted by a reviewer, the definition of T̂ ŝ
d,L(t) in (4.4)

implies that both (M) and (SNR) give an identical procedure.
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Stopping Algorithm 4.1 at m = M , we have obtained a Monte Carlo vector
TM = (T1, . . . , TM)�. For stating consistency results of quantile estimates based
on TM , it is convenient to parameterize the number of blocks L as L = Ln ∼ nl,
where 0 < l < 1. Note that this implies K ∼ n1−l. The required connection be-
tween a,d, l and p is stated in our main assumption below, which can be consid-
ered as mirror conditions for the spatial Assumptions 2.2.

ASSUMPTION 4.3 (Bootstrap assumptions). Assume that a,d, l and p > 8 sat-
isfy:

(B1) d< min{p(1 − l)(2a− 1)(a− 1)/a− 8l,2l(p − 4)}/8,
(B2) for some absolute constant C > 0∣∣Sc

d

∣∣(K logn)−p/2+2 � n−C and lim sup
n→∞

logn

K(�μ)2 = 0.

We are now ready to state the main result of this section, which enables us to
establish consistency of the above bootstrap procedure.

THEOREM 4.4. Grant Assumptions 2.1, 4.3 and one of (M), (SR) or (SNR).
Assume in addition that (3.5) holds for some 0 < t0 ≤ 1/2, and that (S1) is valid.
Then for any 0 < t < t0

sup
x∈R

∣∣P|X
(
T̂ ŝ

d,L(t) ≤ x
) − P

(
T

σ̂ ∗
d (t) ≤ x

)∣∣ = OP

(
n−C)

, C > 0.

Let us briefly elaborate on the underlying conditions. Assumption 2.1 is our
usual temporal and nondegeneracy condition. (B1) and (S1) provide the necessary
relation between a,b,d, l and the moments p. Finally, (B2) and (3.5) are neces-
sary to control possible change points. Overall, these are rather mild assumptions.
A special point is condition t> 0. It is a purely technical condition that is required
for the proof. One may argue heuristically that in fact one can also set t= 0 in The-
orem 4.4, a rigorous argument appears to be rather technical and lengthy though,
and was therefore not pursued. In the simulations in Section 6.3.1, we set t = 0,
and this does not seem to cause any trouble.

Denote with ẑα,L(t) the (conditional) 1 − α-quantile of T̂ ŝ
d,L(t), that is,

ẑα,L(t) = inf
{
x :P|X

(
T̂ ŝ

d,L(t) ≤ x
) ≥ 1 − α

}
, α ∈ (0,1).(4.6)

It then follows from Theorem 4.4 that∣∣P|X
(
T

�,σ̂ ∗
d (t) ≤ ẑα,L(t)

) − (
1 − α

)∣∣ = Op

(
n−C), C > 0,

where T
�,σ̂ ∗
d (t) is a copy of T

σ̂ ∗
d (t), independent of X . Standard empirical pro-

cess theory (cf. [47]) now implies that we are able to consistently estimate ẑα,L(t)
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based on TM for large enough M = Mn. In particular, in analogy to ŜZ
d (α), the

bootstrapped confidence set Ŝd(α,L, t,M) can be constructed via

Ŝd(α,L, t,M) = {
1 ≤ h ≤ d :Bσ̂ ∗

n,h(t) ≤ ẑα,L(t,M)
}
,(4.7)

where ẑα,L(t,M) is a consistent estimate of ẑα,L(t) based on TM . Corresponding
empirical examples are given in Section 6.3.2.

4.2. Bootstrap II. Let us step back for a moment to reconsider our original
testing, respectively, estimation problem, that is, construct an estimator for the sta-
ble set Sd . We now make the following observation. Recall that from the discussion
in Section 3 we can expect that with high probability

min
h∈Sc

d

Bσ̂ ∗
n,h > C

√
logd as n → ∞,

for C > 0 large enough, if the change in mean is sufficiently strong. Hence, in
order to control the error of estimation for Ŝd(α) or Ŝd(α,L, t), we only need to
control maxh∈Sd

Bσ̂ ∗
n,h. This has interesting consequences for a bootstrap method,

as we will now explain. Recall from Section 3 that we needed to modify σ̂h to σ̂ ∗
h

to avoid the problem of inconsistent variance estimation. Here, we will actually
exploit this problem to our advantage. More precisely, we construct (conditional)
variance estimators s̃h|X that explode for h ∈ Sc

d sufficiently fast, that is, we have
with high probability

s̃|X �
√

K�μhτh(1 − τh) as n → ∞,(4.8)

where �μh is given in (3.1). Consequently, we can expect that

T̂ s̃
d,L(t) = max

h∈Sd

max�nt�≤k≤n−�nt�
s̃h|X

√
n

∣∣∣∣∣
L∑

l=1

ξlV̂l,h(k) − k

n

L∑
l=1

ξlV̂l,h(n)

∣∣∣∣∣ + OP (1)

[see (4.13) below for T̂ s̃
d,L(t)]. From Theorem 4.4, we then essentially get that

T̂ s̃
d,L(t)

d= max
h∈Sd

Bσ̂ ∗
n,h + OP (1).(4.9)

In other words, T̂ s̃
d,L(t) automatically adapts to the number of unaffected coordi-

nates and, therefore, allows for a better control of the Type I and II errors. Note,
however, that this will only have a significant impact if

|Sd |/∣∣Sc
d

∣∣ → 0 as d → ∞.(4.10)

Implementation of this idea will lead to the bootstrap procedure Algorithm 4.5.
However, even more is possible. Exploiting the explosions another time, we will
see that one may entirely skip estimation of τ̂h(t), by using a “naive” bootstrap
method. This will lead to Algorithm 4.7.
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To simplify the following exposition, we only concentrate on multiplier boot-
strap procedures in the remainder of this section. Consider the overall mean esti-
mator Xh and the “centered” random variables X̃j,k

Xh = 1

n

n∑
j=1

Xj,h, X̃j,h = Xj,h − Xh,(4.11)

and the block variables

Ṽl,h(k) =
lK∑

j=(l−1)K+1

X̃j,h1(j ≤ k), 1 ≤ l ≤ L,1 ≤ h ≤ d.

We then construct the (conditional) long run variance estimator s̃2
h|X as

s̃2
h|X = 1

KL

L∑
l=1

ξ2
l Ṽ 2

l,h(n),(4.12)

where ξ1, . . . , ξL is a sequence of IID standard Gaussian random variables. Next,
pick any 0 < t ≤ 1/2. In analogy to T̂ ŝ

d,L(t), we then consider the overall statistic
T̂ s̃

d,L(t), defined as

T̂ s̃
d,L(t) = max

1≤h≤d

max�nt�≤k≤n−�nt�
s̃h|X

√
n

∣∣∣∣∣
L∑

l=1

ξlV̂l,h(k) − k

n

L∑
l=1

ξlV̂l,h(n)

∣∣∣∣∣.(4.13)

Note that in comparison to T̂ ŝ
d,L(t), we have replaced ŝh|X ,π with s̃h|X . Subject to

a specific sample, our bootstrap procedure is now the following.

ALGORITHM 4.5 (Bootstrap algorithm II).

Step 1. Pick 0 < t ≤ 1/2, preferably small, compute τ̂h(t) for 1 ≤ h ≤ d and
s̃h|X . Set m = 1.

Step 2. Generate IID ξ1, . . . , ξL with standard Gaussian distribution.
Step 3. Calculate the value of T̂ s̃

d,L(t) and set Tm = T̂ s̃
d,L(t).

Step 4. Go to step 2 and set m = m + 1.

By the discussion after Theorem 4.4, the following result allows us to establish
the consistency of the bootstrap procedure in Algorithm 4.5.

THEOREM 4.6. Grant Assumptions 2.1, 4.3. Assume that (3.5) holds for some
0 < t0 ≤ 1/2, and that (S1) is valid. Then for any 0 < t < t0

sup
x∈R

∣∣∣P|X
(
T̂ s̃

d,L(t) ≤ x
) − P

(
max
h∈Sd

Bσ̂ ∗
n,h(t) ≤ x

)∣∣∣ = OP (1).
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As a next step, we now show how one can entirely remove the estimation of
τ̂h(t). The central idea is that one can show

max
h∈Sc

d

1

s̃h|X
√

n
max�nt�≤k≤n−�nt�

∣∣∣∣∣
L∑

l=1

ξlṼl,h(k) − k

n

L∑
l=1

ξlṼl,h(n)

∣∣∣∣∣ =OP (1).

Thus, roughly speaking, the “explosions” in both s̃h|X and ξlṼl,h(·) cancel. Hence,
we automatically obtain the desired relation

T̃ s̃
d,L(t) = max

h∈Sd

1

s̃h|X
√

n
max�nt�≤k≤n−�nt�

∣∣∣∣∣
L∑

l=1

ξlṼl,h(k) − k

n

L∑
l=1

ξlṼl,h(n)

∣∣∣∣∣ +OP (1)

d= max
h∈Sd

Bσ̂ ∗
n,h +OP (1),

where

T̃ s̃
d,L(t) = max

1≤h≤d

1

s̃h|X
√

n
max�nt�≤k≤n−�nt�

∣∣∣∣∣
L∑

l=1

ξlṼl,h(k) − k

n

L∑
l=1

ξlṼl,h(n)

∣∣∣∣∣.
Note that, in comparison to T̂ s̃

d,L(t), we have replaced V̂l,h(·) with Ṽl,h(·). Subject
to a specific sample, our bootstrap procedure is now the following.

ALGORITHM 4.7 (Bootstrap algorithm III).

Step 1. Pick 0 < t≤ 1/2, preferably small, compute s̃h|X and set m = 1.
Step 2. Generate IID ξ1, . . . , ξL with standard Gaussian distribution.
Step 3. Calculate the value of T̃ s̃

d,L(t) and set Tm = T̃ s̃
d,L(t).

Step 4. Go to step 2 and set m = m + 1.

As before in Theorems 4.4 and 4.6, the following result allows us to conclude
consistency of the above bootstrap procedure.

THEOREM 4.8. Grant Assumptions 2.1, 4.3. Assume that (3.5) holds for some
0 < t0 ≤ 1/2, and that (S1) is valid. If in addition we have with

lim inf
d→∞ P

(
max
h∈Sd

Bσ
n,h(t0) ≥ xd

)
= 1(4.14)

for some monotone increasing sequence xd → ∞, then for any 0 < t < t0

sup
x∈R

∣∣∣P|X
(
T̃ s̃

d,L(t) ≤ x
) − P

(
max
h∈Sd

Bσ̂ ∗
n,h(t) ≤ x

)∣∣∣ = OP (1).

REMARK 4.9. Assumption (4.14) is a mild nondegeneracy condition, and is
only violated in the extreme case where limd→∞ maxh∈Sd

Bσ
n,h(t0) = OP (1).
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4.3. Discussion of bootstrap procedures. In the previous sections, we have
seen that all three bootstrap Algorithms 4.1, 4.5 and 4.7 are consistent alternatives
to Theorem 2.5 and Proposition 2.7. In particular, they do not require any assump-
tions on the spatial dependence structure. On the other hand, there are also some
deficits that we will briefly outline.

Computational cost: Particularly if d gets larger, the computational costs and
time become a relevant issue.

Homogeneity: All bootstrap procedures require global blocks in order to reflect
the underlying dependence structure. This in turn requires a certain homogene-
ity of temporal dependence of the data.

Sensitivity: As simulations reveal, the number and thus size of the blocks may
have a huge impact, and in some cases the results appear to be rather sensitive
in this respect, and there is also an interplay with the required homogeneity,
mentioned above. This problem of blocklength selection is already well known
in the literature in the univariate or multivariate case; see, for instance, [37].
A simple problematic example is given in Section 6.3.2, Table 8.

Large d small n: If d is rather large compared to n, one should take L as large as
possible to avoid or at least weaken some of the above problems. In particular,
one should keep in mind that one multiplies and thus “models” the time series
with only L i.i.d. Gaussian random variables. However, a large L results in a
small K , and thus a possible failure in capturing the temporal dependence via
the blocks.

From these considerations, a bootstrap procedure is only recommended if the
dimension d is not too large compared to the sample size n (d ≤ n appears to
still yield good results), and if the vast majority of the data can be expected to
be homogenous (a few outliers do not hurt). Otherwise, the parametric bootstrap
depicted in Proposition 2.7 is recommended.

5. Examples. In this section, we discuss some prominent and leading exam-
ples from the literature that fit into our framework. To keep the exposition at a
reasonable length, our main focus lies on ARMA(p,q) and GARCH(p,q) mod-
els, but our setup also contains many more nonlinear time series, as will be briefly
discussed. We mainly focus on examples that fulfill Assumptions 2.1 and 2.2. Of
course, this implies that these are also valid examples for the bootstrap procedures.
An important example are factor models in Example 5.6, which highlight the use-
fulness of bootstrap procedures.

In the setting of Theorem 2.5, the spatial decay condition (S3) plays a key role.
The (multivariate) time series literature contains a huge variety of process that
meet (T1). Especially for nonlinear time series such as GARCH-models, iterated
random functions and the like, we refer to [25, 29, 44] and the many references
there. We thus concentrate on giving examples for {Xk}k∈Z, where (S3) holds.
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More precisely, we give examples for two parameter processes {Xk,h}k,h∈Z where
the key conditions (T1) and (S3) are valid.

We recall the following convention. Throughout this section, 0 < C < ∞ de-
notes an arbitrary, absolute constant that may vary from line to line.

EXAMPLE 5.1 (Linear processes). A common way to model multivariate lin-
ear models with finite dimension d is by

Xk =
∞∑
l=0

RlZk−l ,(5.1)

where {Ri}i∈N is a sequence of d × d matrices, and {Zk}k∈Z is a sequence of d-
dimensional vectors, usually i.i.d. However, describing (weak) spatial dependence
in this model when d is large is not at all straightforward, even if one assumes
a simple spatial structure for Zk , for example, a linear process. In addition, using
high-dimensional matrices for modelling purposes is only advisable if the matrices
are sparse. The problem of transferring multivariate linear models, in particular the
autoregressive multivariate setup to a high-dimensional setting is currently a very
active field of research, particularly in connection with panel data or factor models.
For example, in [16], various sparsity constraints are discussed to introduce the
IVAR (infinite-dimensional vector-autoregression). Other approaches are offered
in [13, 15]. Here, we will first follow the approach taken in the latter, before coming
back to (5.1). Let {εk,h}k,h∈Z be a sequence such that εk = {εk,h}h∈Z is i.i.d. for
k ∈ Z. We then introduce the high-dimensional MA(∞, ε) process as

Xk,h =
∞∑
i=0

αi,hεk−i,h for k,h ∈ Z and αi,h ∈ R.

Naturally, we require some conditions on the numbers αi,h to guarantee its exis-
tence. We do this in one sweep, by stating conditions such that Assumptions (T1)
and (S3) are valid in addition.

PROPOSITION 5.2. Suppose that |γ ε
i,j | = |E[εk,iεk,j ]| ≤ C log(|i − j |)−2−δ

for |i − j | ≥ 2 and δ > 0. If (T2) holds and also

∗
sup
h

|αi,h| � i−u with u > 5/2,

then {Xk,h}k,h∈Z meets Assumptions (T1) and (S3).

As a special case, we may now consider ARMA(p,q, ε) processes, which we
introduce as

Xk,h = α∗
1,hεk,h + · · · + α∗

p,hεk−p,h + β∗
1,hXk−1,h + · · · + β∗

q,hXk−q,h,
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α∗
1,h, . . . , α

∗
p,h, β

∗
1,h, . . . , β

∗
q,h ∈ R. As in the univariate case, we consider the poly-

nomials

Ah(z) =
p∑

j=0

α∗
j,hz

j , Bh(z) =
q∑

j=0

β∗
j,hz

j ,(5.2)

where Ah(z) and Bh(z) are assumed to be relative prime. Then following, for in-
stance, [11], one readily verifies the following result.

PROPOSITION 5.3. If the associated polynomials Ch(z) = Ah(z)B
−1
h (z) sat-

isfy inf∗h |Ch(z)| > 0 for |z| ≤ 1, then Xk,h admits a causal representation

Xk,h =
∞∑
i=0

αi,hεk−i,h where
∗

sup
h

|αk,h| � qk for 0 < q < 1.

It is now easy to see that we may choose a > 5/2 arbitrarily large, hence
Assumption (T1) holds. The validity of (S3) can be obtained as in Proposi-
tion 5.2. Next, we demonstrate how model (5.1) fits into our framework. Recall
that Zk = {Zk,h}h∈Z. We impose the following conditions.

ASSUMPTION 5.4. The sequence {Zk}k∈Z is IID, and for p > 4:

(i) γ Z
i,j = E[Zk,iZk,j ] ≤ C log(|i − j | + 2)−2−δ , δ > 0,

(ii) Rl = (r
(l)
i,j )1≤i,j≤d with |r(l)

i,j | ≤ C(l + 1)−q(|i − j | + 1)−p, q,p> 2.

Condition (ii) is mild, allowing for a large variety of matrix sequences Rl . We
have the following result.

PROPOSITION 5.5. Assume that Assumptions 5.4 and (T2) hold. Then
{Xk,h}k,h∈Z meets Assumptions (T1) and (S3).

Based on the above proposition, one can derive a related result for multivariate
ARMA processes, we omit the details.

EXAMPLE 5.6 (Factor models). In econometric theory, it is often believed that
the dynamics of a multivariate or high-dimensional time series Xk can be described
via so-called (normally unobserved) common factors Zk ∈ R

d ′
, where it is usually

assumed in the literature that d ′ is much smaller than d . This amounts to the model

Xk = RZk + ξ k, k ∈ Z,(5.3)

where R = (ri,j )1≤i≤d,1≤j≤d ′ is a d × d ′ matrix of factor loadings, and ξ k =
{ξk,h}h∈Z denotes the noise sequence. We also denote with s2

h,ξ the coordinate-wise

standard deviation of {ξk,h}k∈Z, and with φZ
k,i,j = E[Zk,iZ0,j ], φξ

k,i,j = E[ξk,iξ0,j ].
We then make the following assumptions.
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ASSUMPTION 5.7. For δ > 0 and p > 4, we have:

(i) {Zk}k∈Z and {ξ k}k∈Z are independent and both satisfy Assumption (T1),
(ii) φZ

k,i,j , φ
ξ
k,i,j ≤ C(k + 1)−q(|i − j | + 1)−p, q,p> 2 and inf∗h s2

h,ξ > 0,

(iii) sup∗
i

∑d ′
j=1 |ri,j | < ∞ and |∑d ′

j=1 ri1,j ri2,j | ≤ C(log |i1 − i2|)−2−δ for |i1 −
i2| ≥ 2.

The above assumptions are related to those of Assumption 5.4. This comes as
no surprise, since both process are very similar. As we shall see, rather straightfor-
ward computations show that the corresponding spatial correlation matrix �d =
(ρi,j )1≤i,j≤d only needs to satisfy

|ρi,j | ≤ C
(
log |i − j |)−2−δ

δ > 0 if |i − j | ≥ 2.(5.4)

We now have the following result.

PROPOSITION 5.8. Assume that d ′ = d ′
n with d ′

n → ∞ and d ′ ≤ d . Suppose
that Assumptions 5.7, (S1) and (S2) hold. Then Theorem 2.5 is valid.

The above result shows that under reasonable assumptions, high-dimensional
factor models fit into our framework. Note that the limit distribution is pivotal, no
additional information on R is required. This is important from a statistical point
of view, since the factor loadings R are usually unobservable in practice. In this
context, the question arises whether a structural condition like∣∣∣∣∣

d ′∑
j=1

ri1,j ri2,j

∣∣∣∣∣ �
(
log |i1 − i2|)−2−δ if |i1 − i2| ≥ 2(5.5)

is necessary to obtain a pivotal limit distribution. If (5.5) does not hold, one can
still show via Theorems 2.5, 2.8 and the triangle inequality that with probability
one

lim inf
n

max1≤h≤d Bσ̂
n,h√

logd
> 0 and lim sup

n

max1≤h≤d Bσ̂
n,h√

logd
≤ 1√

2
,(5.6)

hence
√

logd is the right scaling, even without (5.5). However, determining the ex-
act limit distribution in the absence of (5.5) seems to be very difficult, and is likely
to depend on R, questioning its usefulness for applications. In fact, if we drop con-
dition (5.5) in Assumption 5.7(iii), a pivotal result like Theorem 2.5 cannot hold
as the next result shows.

PROPOSITION 5.9. Assume that the conditions of Proposition 5.8 hold, with
the exception that we do not have (5.5). Then universal sequences ad , bd , only
depending on d such that

ad

(
max

1≤h≤d
Bσ̂

n,h − bd

)
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converges in distribution to a nondegenerate limit do not exist.

Proposition 5.9 tells us that an exact fluctuation control without any intrinsic
knowledge on R is not possible. In this sense, Assumption 5.7 seems to be near the
minimum requirements to obtain a pivotal, nonparametric result like Theorem 2.5.
In any case, relation (5.6) tells us that we always remain in control of the Type I
error, and the possible loss in power is only marginal.

EXAMPLE 5.10 (GARCH process). In this example, we discuss one possible
way to extend the constant conditional GARCH model (CCG) of Bollerslev [9].
If the dimension d is fixed, related multivariate extensions can be found in the
literature; see, for instance, [3]. Here, we define the GARCH(p,q, ε) sequence as

Xk,h = εk,hsk,h where {sk,h}k,h∈Z meets,

s2
k,h = ηh + α1,hs

2
k−1,h + · · · + αp,hs

2
k−p,h + β1,hX

2
k−1,h + · · · + βq,hX

2
k−q,h,

with ηh,α1,h, . . . , αp,h, β1,h, . . . , βq,h ∈ R. Note that p and q denote the maximal
degree of αi,h, βi,h. Possible undefined αi,h and βi,h are replaced with zeros. As in
the univariate case, a crucial quantity in this context is

γC = max
1≤h≤d

r∑
i=1

∥∥αi,h + βi,hε
2
i,h

∥∥
p/2 with r = max{p,q}.(5.7)

If γC < 1, then it can be shown that {Xk,h}k,h∈Z is stationary (cf. [10]). We have
the following result, establishing a link between the underlying parameters and
Assumption 2.1.

PROPOSITION 5.11. Suppose that γC < 1 and γ ε
i,j = E[εk,iεk,j ] satisfies∣∣γ ε

i,j

∣∣ ≤ C
(
log |i − j |)−2−δ

δ > 0 if |i − j | ≥ 2.

Then {Xk,h}k,∈Z,h∈N meets Assumptions (T1) and (S3).

In [33], we additionally discuss time series that arise as iterated random func-
tions. Moreover, as in the univariate case, many more examples can be constructed
based on the vast time series literature (cf. [25, 29, 44]). Also note that any com-
bination of the previous examples fulfills Assumption 2.1. This means that in one
coordinate we may have a GARCH model, but in another coordinate, the process
has a linear dynamic, and so on.

6. Empirical results and applications. In the empirical part of the paper, we
first discuss the implications and relevance of our assumptions for real data sets.
We then move on to the computation of critical values. In the third part, we asses
the accuracy and behavior of Ŝc

d in a small simulation study. In [33], the S&P
500 companies over a period of one year, with a particular emphasis of detecting
companies with an unusual behavior.
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6.1. Assumptions and real data. The necessary assumptions of Theorem 2.5
can be divided into temporal and spatial conditions. Assumption 2.1 concerns tem-
poral dependence, and is standard in the literature (cf. [50]). We therefore focus
on the spatial conditions, in particular (S3). This condition implicitly assumes that
the coordinates of the data-vector Xk can be ordered such that two coordinates
Xk,i and Xk,j become less dependent as the difference |i − j | increases. In many
cases, the data at hand already has a natural ordering with corresponding weak
spatial dependence. Such examples can be found in the ever growing literature
on high-dimensional covariance estimation (cf. [12]), where spatial dependence is
modelled (or expressed) by a banding or block-wise structure of the matrix. Note
that in this case, the order of the coordinates is essential for the covariance estima-
tor and needs to be specified in advance. In our setup, however, the advantageous
order need not be known explicitly to the practitioner due to the maximum statistic.

If a spatial condition like (S3) cannot be assumed to hold (see Example 5.6),
we can use the bootstrap procedures from Section 4. However, at least some pre-
liminary considerations should be made; see the short discussion in Section 4.3.
One way to check whether the permutation bootstrap is necessary is by means of a
PCA. The literature on factor models provides a simple heuristic test (cf. [17]) in
this direction. Compute the largest empirical eigenvalue λ̂1 of the empirical corre-
lation matrix �̂d . In the presence of a common factor, λ̂1 will explode with rate d ,
that is,

lim inf
d→∞ λ̂1/d ≥ C > 0 a.s.(6.1)

Hence, if λ̂1/d is small, a common factor is rather unlikely or its overall influence
very weak, and a bootstrap is not necessary. As a final remark, let us mention that if
controlling the Type I error is essential, the parametric bootstrap is highly recom-
mended as a first tool for inference. The empirical results regarding the bootstrap in
Section 6.3.2 reveal that the behavior may be significantly influenced by the choice
of the number of blocks L and the connected size K , which makes controlling the
Type I error not so easy.

6.2. Critical values. Deriving reasonable critical values for extreme value
statistics is a delicate issue. The root of the problem typically lies in the slow con-
vergence rate of extreme value statistics. In our case, the domain of attraction is the
Gumbel distribution, and the rate of convergence (for Gaussian random variables)
is no better than O(logn−1); see [28]. Hence, using the normalizing sequences
ed, fd given in Theorem 2.5 may not be the best thing to do. On the other hand,
as is demonstrated by Proposition 2.7, approximative critical values can either be
obtained by a parametric bootstrap or numerical computations. In principle, there
are two methods for obtaining critical values in case of the parametric bootstrap.

(a) Simulate max1≤h≤d BZ
n,h directly.
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TABLE 1
Parametric bootstrap. Sample size n ∈ {100,250,500}, dimension d ∈ {100,250,500}

n = 100 n = 250 n = 500 Numerical

d 100 250 500 100 250 500 100 250 500 100 250 500

q0.9 1.83 1.93 2.00 1.88 1.99 2.07 1.9 2.02 2.10 1.95 2.05 2.14
q0.95 1.91 2.00 2.10 1.97 2.07 2.15 1.99 2.10 2.19 2.03 2.15 2.22
q0.975 1.98 2.07 2.15 2.05 2.15 2.22 2.08 2.19 2.28 2.12 2.21 2.30
q0.99 2.07 2.17 2.24 2.15 2.25 2.31 2.19 2.30 2.36 2.22 2.32 2.40

(b) Estimate Fn(x) = P(BZ
n,h ≤ x), and obtain the critical values via 1 − α =

Fn(zα)d .

Method (b) is more flexible and was used to obtain the results. The correspond-
ing critical values are tabulated in Table 1. A total of 106 MC-runs was used to
compute each critical value. Generally speaking, the quantiles obtained by numer-
ical computations (Table 1, column “Numerical”) are larger. This can be explained
by the fact that in the “discrete” version BZ

n,h, the maximum is taken over the set
{1, . . . , n}, whereas in the limit Bh, the supremum is taken over the whole interval
[0,1], which is a larger set, and hence leads to this relation. In case of the per-
mutation bootstrap, very similar results are obtained in the same Gaussian setup.
Empirical evidence for the validity of the permutation bootstrap in the presence of
dependence and change points is given in Section 6.3.2, where critical values are
tabulated in Table 7.

6.3. Simulation study. In this subsection, we investigate the Type I error and
power of the estimator Ŝc

d in a small simulation study. We consider estimates
originating from the parametric as well as the permutation bootstrap. To as-
sess the power, several alternatives are considered: we insert artificial changes
in certain coordinates h at τh ∈ {(2i + 1)/10}, 0 ≤ i ≤ 4 with size δ/10 where
δ ∈ {0,0.25,0.5,0.75,1}. We then study the behavior and estimation accuracy on
the sets

Sc
d = Sc

d,1 � Sc
d,2 � Sc

d,3 � Sc
d,4 � Sc

d,5,

where

Sc
d,i = {

h ∈ Sc
d : τh ∈ [

(i − 1)/5, i/5
)}

, 1 ≤ i ≤ 5.

Note that this means that we check whether the test detects a change and also
classifies the time of change correctly. As a measure of comparison, we evaluate
the relative estimation accuracy (in %) as

rc
d,i = E[|Ŝc

d,i ∩ Sc
d,i |]

|Sc
d,i |

× 100, 1 ≤ i ≤ 5,
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TABLE 2
Sample size n = 100, dimension d = 100, TI∗h = TIh × 100, α = 0.05, σ̂∗

h

Bootstrap II d = 100 Parametric d = 100

δ rc
d,1 rc

d,2 rc
d,3 rc

d,4 rc
d,5 TI∗h rc

d,1 rc
d,2 rc

d,3 rc
d,4 rc

d,5 TI∗h

0 – – – – – 3.12 – – – – – 1.86
0.025 0.3 3.3 8.7 3.2 0.2 3.2 0.3 2.6 6.6 1.8 0.1 1.86
0.05 1.3 18.6 34.6 18.1 1.0 3.52 0.8 12.8 26.4 11.6 0.6 1.86
0.075 3.6 48.2 68.4 46.5 3.3 3.76 2.7 39.3 59.3 37.2 1.6 1.86
0.1 8.7 72.0 85.9 70.1 6.2 2.9 6.2 65.8 82.6 64.3 5.0 1.86

where the mean E[|Ŝc
d,i ∩ Sc

d |] is estimated from the overall simulated sample.
This gives an accurate measure of the performance of the test procedure. We also
consider the coordinatewise Type I error, described by the probability

TIh = P
(
h ∈ Ŝc

d ∩ Sd

)
, h ∈ Sd .

Note that if {Xk,h}k∈Z,h∈N is a stationary random field (which is the case in all of
our simulations), then TIh is the same for all h ∈ Sd and can be written as

TIh = E[|Ŝc
d \ Sc

d |]
|Sd | , h ∈ Sd .

To allow for reproducibility and transparency, all simulations use exactly the same
random seed, and also the sets Sc

d,i remain the same. This implies that for n,d

fixed, the Type I error TIh remains the same for all δ. Natural exceptions are only
when δ = 0 or the long run simulations in Tables 2 and 3 concerning the bootstrap
results. The number of change points for each Sc

d,i is set to 10 for d = 100 and
15 for d = 250. This gives a total amount of changes |Sc

100| = 50 and |Sc
250| = 75.

As sample size, we consider n ∈ {100,250} and 1000 MC runs for each setting,
unless stated otherwise. We use two different models for our simulations, namely

TABLE 3
Sample size n = 100, dimension d = 100, TI∗h = TIh × 100, α = 0.05, σ̂∗

h

Bootstrap III d = 100 Parametric d = 100

δ rc
d,1 rc

d,2 rc
d,3 rc

d,4 rc
d,5 TI∗h rc

d,1 rc
d,2 rc

d,3 rc
d,4 rc

d,5 TI∗h

0 – – – – – 2.3 – – – – – 1.86
0.025 0.3 2.9 7.3 2.5 0.1 2.4 0.3 2.6 6.6 1.8 0.1 1.86
0.05 0.8 15.2 30.0 14.0 0.8 2.52 0.8 12.8 26.4 11.6 0.6 1.86
0.075 3.0 43.5 63.0 40.7 2.2 2.66 2.7 39.3 59.3 37.2 1.6 1.86
0.1 9.3 70.5 85.0 68.8 5.9 2.92 6.2 65.8 82.6 64.3 5.0 1.86
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TABLE 4
Sample size n = 100, dimension d ∈ {100,250}, TI∗h = TIh × 100, α = 0.05, σ̂∗

h

Parametric d = 100 Parametric d = 250

δ rc
d,1 rc

d,2 rc
d,3 rc

d,4 rc
d,5 TI∗h rc

d,1 rc
d,2 rc

d,3 rc
d,4 rc

d,5 TI∗h

0 – – – – – 2.01 – – – – – 1.23
0.025 0.19 2.46 6.67 2.24 0.11 2.01 0.06 1.43 5.05 1.76 0.06 1.23
0.05 0.74 13.1 28.1 12.5 0.55 2.01 0.37 9.97 22.8 9.87 0.27 1.23
0.075 2.54 38.8 58.4 38.0 1.85 2.01 1.52 32.3 51.6 30.7 0.95 1.23
0.1 7.21 67.2 82.5 65.8 4.61 2.01 5.03 61.2 77.3 59.8 2.90 1.23

autoregressive and factor models. In case of the factor model, we also investigate
the behavior of the bootstrap Algorithms 4.5 and 4.7.

6.3.1. Autoregressive models. We use the following model. We take Yk,h as an
MA(100) process

Yk,h =
99∑
i=0

αiεk,h−i , αi = 0.1|i|−3 and εk,h ∼N
(
0, s2)

, s = 0.1.(6.2)

We then consider the ARMA(2,2) model

Xk,h = 0.2Xk−1,h − 0.3Xk−2,h − 0.1Yk,h + 0.2Yk−1,h, 1 ≤ h ≤ d.(6.3)

Note that we stick to the same model in each coordinate, which makes the compar-
ison and analysis easier and more transparent. Throughout this section, the nom-
inal level of all tests is α = 0.05, that is, we always use the corresponding quan-
tiles q0.95. We first analyze the parametric bootstrap. The corresponding results are
given in Tables 4 and 5. Note that in both tables, the row with δ = 0 corresponds
to the empirical levels of the test. The Type I error is slightly different from the
cases where δ > 0 (not visible due to rounded values), which is due to the fact

TABLE 5
Sample size n = 250, dimension d ∈ {100,250}, TI∗h = TIh × 100, α = 0.05, σ̂∗

h

Parametric d = 100 Parametric d = 250

δ rc
d,1 rc

d,2 rc
d,3 rc

d,4 rc
d,5 TI∗h rc

d,1 rc
d,2 rc

d,3 rc
d,4 rc

d,5 TI∗h

0 – – – – – 0.94 – – – – – 0.50
0.025 0.04 4.96 13.9 5.02 0.04 0.94 0.02 3.22 10.2 3.52 0.03 0.50
0.05 0.76 42.5 65.8 41.5 0.56 0.94 0.25 34.1 58.7 33.4 0.27 0.50
0.075 5.35 84.7 95.5 83.9 4.08 0.94 1.98 79.6 93.6 79.9 2.28 0.50
0.1 19.7 96.3 99.6 95.6 16.9 0.94 10.7 96.2 99.6 95.6 11.4 0.50
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TABLE 6
Sample size n = 250, dimension d ∈ {100,250}, TI∗h = TIh × 100, α = 0.05, σ̂�

h

Parametric d = 100 Parametric d = 250

δ rc
d,1 rc

d,2 rc
d,3 rc

d,4 rc
d,5 TI∗h rc

d,1 rc
d,2 rc

d,3 rc
d,4 rc

d,5 TI∗h

0 – – – – – 1.51 – – – – – 0.99
0.025 0.12 8.12 16.6 8.64 0.06 1.42 0.04 6.25 12.6 6.47 0.05 1.01
0.05 1.58 53.7 64.1 54.0 1.26 1.42 0.80 48.0 57.5 48.4 0.68 1.01
0.075 9.12 88.6 90.2 88.6 8.56 1.42 5.95 87.5 85.6 86.8 5.93 1.01
0.1 29.5 96.8 97.9 96.4 29.4 1.42 23.5 96.2 95.6 96.1 23.2 1.01

that Sd = {1, . . . , d} if δ = 0, and Sd ⊂ {1, . . . , d} otherwise. Observe that small
changes are found with difficulty if the sample size is small, and this effect natu-
rally gets amplified in higher dimensions. The power for bigger samples/changes
is however very reasonable. As expected, the test loses power if the time of change
τh moves away from the center 1/2. Unreported simulations exhibit a similar be-
havior in case of GARCH-sequences, or tests for changes in the second moment
or variance.

Next, we briefly discuss a possible effect in the choice of variance estimator. In
the previous results, estimator σ̂ ∗

h was used; see Section 3 to recall the definition.
As one comparison, we now use σ̂ �

h ; see Table 6 for corresponding results. An in-
teresting phenomena appears. We note that σ̂ ∗

h yields the better results if τh = 1/2,
and σ̂ �

h if the change is more away from 1/2. This is a little surprising, since one
can show that for large enough n, σ̂ ∗

h has the smaller MSE. A possible explanation
could be the quality of estimation of τ̂h, and the actual choice of Bτ .

We now turn to the behavior of the bootstrap procedures, more precisely, we
consider Algorithms 4.5 and 4.7, where we “illegally” set t = 0. We use the same
model (6.3). In order to obtain an overall feasible computational time, we restrict
ourselves to the setup where n = 100, d = 100 and we only used 100 overall
simulations for comparison (note: comparing the parametric results indicates that
there actually is not much difference between 100 or 1000 simulations). Moreover,
we only use M = 100 Monte Carlo runs for the bootstrap procedures. Arguably,
this might be too low to obtain a necessary accuracy for a 95% quantile, but it
turns out that this is not the case. We choose L = 25 as the number of blocks,
and thus K = 4 for the block length. The results of Algorithm 4.5 are given in
Table 2. Even though we only set M = 100, we get slightly better results than the
parametric procedure. Observe that the results are also conservative. The behavior
of Algorithm 4.7 in Table 3 is slightly worse, but overall very similar.

6.3.2. Factor models and number of block length effect. We consider a factor
model that shows that block and parametric bootstrap may behave very differently.
As explained in Example 5.6, this is the case if overall dependence on certain
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factors is present. To allow for a comparison to the autoregressive model, we use
the same model for the general dynamics. We take Yk,h as an MA(100) process

Yk,h =
99∑
i=0

αiεk,h−i , αi = 0.1|i|−3 and εk,h ∼N
(
0, s2)

, s = 0.1.(6.4)

We then consider the ARMA(2,2)-factor model

Xk,h = αF Fk + 0.2Xk−1,h − 0.3Xk−2,h − 0.1Yk,h + 0.2Yk−1,h, 1 ≤ h ≤ d,

where αF ≥ 0 is a constant, and the factors {Fk}k∈Z are IID standard Gaussian
random variables. The primary focus in this section is to demonstrate the effect of
high spatial dependence and the size L on the quantiles. The pronounced effect of
the factors is visible in Table 7, where the critical values of Algorithms 4.5 and 4.7
are tabulated for αF ∈ {0.1,0.3}. A value of δ = 0 and M = 1000 were used in the
simulations. We see that the factor has an expected significant reciprocal impact on
the quantiles, that is, larger factors result in lower quantiles. We also observe that
in this setup, the number of blocks L ∈ {25,50} does not have a notable impact.
A slight outlier seems to be the results of Algorithm 4.5(II) in case of L = 25. Also
note that particularly the results about the more extremal quantiles q0.975 and q0.99
have to be considered with care, since “only” M = 1000 was used.

Unreported simulations show that the power and size are different from the au-
toregressive model. Particularly if αF is large, (e.g., αF = 0.3), one has to consider
a larger size of change δ > 0.1 in order to obtain visible effects. The reason for
this loss in power is the (considerably) larger long-run variance σh in this model,
induced by the factor loading αF . More precisely, since we scale by a (larger)
consistent estimate of σh, changes become harder to detect [see also (3.2)].

Finally, we take a look at Table 8, which reveals that the choice of L may have a
serious impact. Here, we set αF = 0 to allow for a comparison to the results in Sec-
tions 6.2 and 6.3.1. We observe that raising K only by one from K = 4 to K = 5

TABLE 7
Bootstrap Alg. II, III. Sample size n = 250, dimension d = 100, δ = 0, αF ∈ {0.1,0.3}

Bootstrap αF = 0.1 Bootstrap αF = 0.3

n = 250 n = 250 n = 250 n = 250
K × L 5 × 50 10 × 25 5 × 50 10 × 25
d 100 100 100 100

Algorithm II III II III II III II III

q0.9 1.69 1.73 1.69 1.77 1.47 1.49 1.44 1.51
q0.95 1.75 1.83 1.78 1.87 1.56 1.59 1.56 1.61
q0.975 1.81 1.89 1.91 1.94 1.69 1.68 1.63 1.75
q0.99 1.89 1.95 2.05 2.14 1.82 1.80 1.73 1.85
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TABLE 8
Bootstrap Alg. II, III. Sample size n = 100, dimension d = 100, δ = 0, αF = 0

n = 100 n = 100
K × L 5 × 20 4 × 25
d 100 100

Algorithm II III II III

q0.9 1.91 2.04 1.75 1.81
q0.95 2.08 2.23 1.89 1.92
q0.975 2.25 2.44 1.95 2.02
q0.99 2.38 2.68 2.05 2.11

leads to much larger quantiles. In view of the results presented in Section 6.3.1,
these would lead to a high loss in power. The setup itself appears rather harm-
less; we note, however, that d/n = 1 have the same size, unlike to the situation
in Table 7 where d/n = 2/5. It appears that at least if d/n ≥ 1, block bootstrap
procedures based on multipliers can require careful tuning. Particularly if d � n,
the parametric bootstrap seems to be the more stable option.

7. Proofs. All proofs together with additional results are given in detail
in [33].
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SUPPLEMENTARY MATERIAL

Supplement to “Uniform change point tests in high dimension.” (DOI:
10.1214/15-AOS1347SUPP; .pdf). The supplement contains all proofs. In addi-
tion, a detailed analysis of a data set (S&P 500) is presented.
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[19] CSÖRGŐ, M. and HORVÁTH, L. (1993). Weighted Approximations in Probability and Statis-
tics. Wiley, Chichester. MR1215046
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