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NONPARAMETRIC INFERENCE IN GENERALIZED
FUNCTIONAL LINEAR MODELS

BY ZUOFENG SHANG1 AND GUANG CHENG

Purdue University

We propose a roughness regularization approach in making nonparamet-
ric inference for generalized functional linear models. In a reproducing kernel
Hilbert space framework, we construct asymptotically valid confidence inter-
vals for regression mean, prediction intervals for future response and various
statistical procedures for hypothesis testing. In particular, one procedure for
testing global behaviors of the slope function is adaptive to the smoothness
of the slope function and to the structure of the predictors. As a by-product,
a new type of Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60–62; Ann.
Statist. 29 (2001) 153–193] is discovered when testing the functional linear
models. Despite the generality, our inference procedures are easy to imple-
ment. Numerical examples are provided to demonstrate the empirical advan-
tages over the competing methods. A collection of technical tools such as
integro-differential equation techniques [Trans. Amer. Math. Soc. (1927) 29
755–800; Trans. Amer. Math. Soc. (1928) 30 453–471; Trans. Amer. Math.
Soc. (1930) 32 860–868], Stein’s method [Ann. Statist. 41 (2013) 2786–
2819] [Stein, Approximate Computation of Expectations (1986) IMS] and
functional Bahadur representation [Ann. Statist. 41 (2013) 2608–2638] are
employed in this paper.

1. Introduction. Rapid development in technology makes it possible to col-
lect measurements intensively over an entire time domain. This forms the so-called
sample curve. In functional data analysis, one may regress the response variable
on the sample curve using (generalized) functional linear models, as in, for exam-
ple, [8, 20]. Functional principle component analysis (FPCA) is commonly used
for analyzing such models; see, for instance, [2, 3, 13–15, 17, 34]. For example,
Müller and Stadtmüller [20] proposed a set of FPCA-based inference procedures,
while Dou et al. [8] established minimax estimation rates in a similar framework.
The success of these FPCA-based approaches hinges on the availability of a good
estimate of the functional principal components for the slope function; see [4]. On
the other hand, the truncation parameter in the FPCA changes in a discrete man-
ner, which may yield an imprecise control on the model complexity, as pointed
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out in [21]. Recently, Crambes et al. [6], Yuan and Cai [35] and Cai and Yuan [4],
among others, have proposed roughness regularization methods that circumvent
the aforementioned perfect alignment requirement and allow one to regularize the
model complexity in a continuous manner. As far as we are aware, these works
focus mostly on the estimation or prediction in the functional linear models. An
exception is the prediction intervals obtained in [6] under the restrictive Gaussian
errors; see (5.3) therein. However, it is yet unknown how to handle a broader range
of inference problems such as (adaptive) hypothesis testing for generalized func-
tional linear models in the above roughness regularization framework.

The major goal of this paper is to systematically conduct asymptotic inference
in the class of generalized functional linear models, which cover �2 regression,
logistic regression and exponential family models. Specifically, we construct con-
fidence intervals for regression mean, prediction intervals for future response and
various statistical procedures for hypothesis testing. As far as we are aware, all
these inference results are new. In particular, these inference procedures maintain
the modeling and computation flexibility by taking advantage of the roughness
regularization. However, this practical superiority comes at the price of a much
harder theoretical investigation. A key technical tool we develop in this paper is
the Bahadur representation for functional data, which provides a unified treatment
for various inference problems. Due to the involvement of a covariance operator,
we note that this new Bahadur representation is dramatically different from that
recently established in the nonparametric regression framework [26]. In addition,
we employ the integro-differential equation techniques [29–31] to explicitly char-
acterize the underlying eigen-system that leads to more transparent inference pro-
cedures; see Proposition 2.2. As a side remark, our general theory does not require
the Sacks–Ylvisaker (SY) conditions as in [35], although assuming a pseudo ver-
sion of SY conditions (given in Section S.2) can facilitate the implementation.

To be more specific, we show that the proposed confidence/prediction inter-
vals asymptotically achieve the desirable coverage probability. We also propose a
procedure for testing functional contrast and show the null limit distribution as a
standard normal distribution. As for testing global behaviors of the slope function,
we propose a penalized likelihood ratio test (PLRT) that achieves the minimax rate
of testing established in [15]. In the particular case of functional linear models, we
observe a new version of the Wilks phenomenon [11, 33] arising from PLRT, by
which we mean that the null limit distribution, which is derived as a Chi-square
distribution with diverging degrees of freedom, is free of the true model parame-
ters. A major advantage of the Wilks type of results is that we can directly simulate
the null limit distribution (without resorting to bootstrap) in practice. In PLRT, we
also point out that the class of functions in the alternative hypothesis is allowed to
be infinite-dimensional in contrast to the parametric class considered in [15]. Be-
sides, the rejection region of PLRT is based on the asymptotic distribution, which
makes the procedure more applicable in general modeling setup, that is, in gener-
alized functional linear models.
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In reality, the smoothness of the slope function and the structure of the predic-
tors are typically unknown. To address this issue, we modify the above PLRT in
an “adaptive” fashion. Explicitly, we conduct a sequence of standardized PLRT
procedures over multiple smoothness levels, and then use the maximal one as the
new test (after a second standardization). This new testing method does not rely
on prior knowledge of the above two crucial quantities, and is shown to achieve
the minimax rate of testing (up to logarithm term) established in [15]. In fact, our
adaptive procedures can be viewed as a generalization of the adaptive Neyman test
studied in [9, 10] to functional data. Due to the distinct model structure and test
construction, the Darling–Erdős theorem used in [9, 10] is no longer applicable. In-
stead, we adapt the impressive and powerful Gaussian approximation tool recently
proposed in [5] to show that in both Gaussian and sub-Gaussian settings, the null
limit is a type of extreme value distribution. Our adaptive testing procedures differ
from the FPCA-based tests such as those considered in [15, 17] in two ways: (i) our
tests work for non-Gaussian models; (ii) our tests provide an asymptotic null limit
distribution, from which the correct test size can be achieved. Besides, our tests do
not require the “eigen-gap” condition in the FPCA literature, as in, for example,
[17]. Simulation results demonstrate the advantages of our methods in terms of
desirable sizes and powers. In particular, we observe that PLRT is more powerful
than the adaptive testing procedures. This is reasonable since PLRT incorporates
prior knowledge on smoothness of the covariance and reproducing kernels. How-
ever, their difference quickly vanishes when the sample size is large or the signal
strength is strong.

The rest of this paper is organized in the following way. In Section 2, basic
assumptions on model and parameter space are given. Section 3 presents the key
technical device of this paper: Bahadur representation for functional data. In Sec-
tion 4, asymptotically valid confidence intervals for regression mean and predic-
tion intervals for future response are constructed. In Section 5, a procedure for test-
ing functional contrast and a global testing for the slope function, that is, PLRT, are
established. Theoretical properties are also demonstrated. Section 6 contains two
adaptive testing procedures for either Gaussian or sub-Gaussian errors. Their null
limit distributions and minimax properties are carefully examined. A simulation
study is provided in Section 7. The generalized cross validation (GCV) is used to
select the roughness penalty parameter in the simulations. Section 8 discusses the
technical connection between our work and [26]. All technical proofs are deferred
to the Supplementary Material [27].

2. Preliminaries.

2.1. Model assumptions. Suppose the data (Yi,Xi(t)), i = 1, . . . , n, are i.i.d.
copies of (Y,X(t)), where Y is a univariate response variable taking values in Y ,
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a subset of real numbers, and X(t) is a real-valued random predictor process over
I = [0,1]. Consider the following generalized functional linear model:

μ0(X) ≡ E{Y |X} = F

(
α0 +

∫ 1

0
X(t)β0(t) dt

)
,(2.1)

where F is a known link function, α0 is a scalar and β0(·) is a real-valued function.
The conditional mean w.r.t. X = X(·) can be understood as a function of a collec-
tion of random variables {X(t) : 0 ≤ t ≤ 1} throughout the paper. Let β ∈ Hm(I),
the m-order Sobolev space defined by

Hm(I) = {
β : I �→R|β(j), j = 0, . . . ,m − 1,

are absolutely continuous, and β(m) ∈ L2(I)
}
.

Therefore, the unknown parameter θ ≡ (α,β) belongs to H ≡ R
1 × Hm(I). We

further assume m > 1/2 such that Hm(I) is a reproducing kernel Hilbert space.
In this paper, we consider a general loss function �(y;a) defined over

y ∈ Y and a ∈ R, which covers two important classes of statistical models:
(i) �(y;a) = logp(y;F(a)), where y|x ∼ p(y;μ0(x)) for a conditional distribu-
tion p; (ii) �(y;a) = Q(y;F(a)), where Q(y;μ) ≡ ∫ μ

y (y − s)/V(s) ds is a quasi-
likelihood with some known positive-valued function V satisfying V(μ0(X)) =
Var(Y |X); see [32]. Note that these two criterion functions coincide under some
choices of V . The regularized estimator is given by

(α̂n,λ, β̂n,λ)

= arg sup
(α,β)∈H

�n,λ(θ)(2.2)

≡ arg sup
(α,β)∈H

{
1

n

n∑
i=1

�

(
Yi;α +

∫ 1

0
Xi(t)β(t) dt

)
− (λ/2)J (β,β)

}
,

where J (β, β̃) = ∫ 1
0 β(m)(t)β̃(m)(t) dt is a roughness penalty. Here, we use λ/2 to

simplify future expressions. In the special �2-regression, Yuan and Cai [35] study
the minimax optimal estimation and prediction by assuming the same roughness
penalty.

We next assume the following smoothness and tail conditions on �. Denote the
first-, second- and third-order derivatives of �(y;a) w.r.t. a by �̇a(y;a), �̈a(y;a)

and �′′′
a (y;a), respectively.

ASSUMPTION A1. (a) �(y;a) is three times continuously differentiable and
strictly concave w.r.t a. There exist positive constants C0 and C1 s.t.,

E
{
exp

(
sup
a∈R

∣∣�̈a(Y ;a)
∣∣/C0

)∣∣X}
≤ C1,

(2.3)
E

{
exp

(
sup
a∈R

∣∣�′′′
a (Y ;a)

∣∣/C0

)∣∣X}
≤ C1, a.s.
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(b) There exists a positive constant C2 s.t.,

C−1
2 ≤ B(X) ≡ −E

{
�̈a

(
Y ;α0 +

∫ 1

0
X(t)β0(t) dt

)∣∣X}
≤ C2 a.s.

In addition, X is weighted-centered in the sense that E{B(X)X(t)} = 0 for any
t ∈ I.

(c) ε ≡ �̇a(Y ;α0 +∫ 1
0 X(t)β0(t) dt) satisfies E{ε|X} = 0 and E{ε2|X} = B(X),

a.s.

The weighted center condition in Assumption A1(b) is only used to simplify our
technical arguments. Actually, it always holds after a simple data transformation;
see the Supplementary Material [27], Section S.1. Next, we give three examples to
illustrate the validity of Assumption A1.

EXAMPLE 2.1 (Gaussian model). In the functional linear models under Gaus-
sian errors, that is, Y = α0 + ∫ 1

0 X(t)β0(t) dt +v and v|X ∼ N(0, σ 2), we can eas-
ily verify Assumption A1 with B(X) = σ−2 and ε = v/σ 2 given that E{X(t)} = 0.

EXAMPLE 2.2 (Logistic model). In the logistic regression, we assume
P(Y = 1|X) = 1 − P(Y = 0|X) = exp(α0 + ∫ 1

0 X(t)β0(t) dt)/(1 + exp(α0 +∫ 1
0 X(t)β0(t) dt)). It is easy to see that �(y;a) = ay − log(1 + exp(a)) and

B(X) = exp(α0 + ∫ 1
0 X(t)β0(t) dt)/(1 + exp(α0 + ∫ 1

0 X(t)β0(t)))
2 ≤ 1. Assump-

tion A1(a) follows from simple algebra. Assumption A1(b) follows from data
transformation and the following L2 bounded condition:

∫ 1
0 X2(t) dt ≤ c a.s. The

latter condition implies that the range of μ0(X) is finite, and thus B(X) is bounded
away from zero. Since ε = Y − exp(XT θ0 + g0(Z))/(1 + exp(XT θ0 + g0(Z))),
Assumption A1(c) can be verified by direct calculations.

EXAMPLE 2.3 (Exponential family). Let (Y,X) follow the one-parameter ex-
ponential family

Y |X ∼ exp
{
Y

(
α0 +

∫ 1

0
X(t)β0(t) dt

)
+ A(Y ) − G

(
α0 +

∫ 1

0
X(t)β0(t) dt

)}
,

where A(·) and G(·) are known, and Ġ = F [recall that F is the link func-
tion satisfying (2.1)]. We assume that G has bounded second- and third-order
derivatives, and G̈ ≥ δ for some constant δ > 0; see similar conditions on
page 738 of [20]. It is easy to see that �(y;a) = ya + A(y) − G(a), and hence,
�̇a(y;a) = y − Ġ(a), �̈a(y;a) = −G̈(a) and �′′′

a (y;a) = − ...
G(a). Clearly, �̈a and

�′′′
a are both bounded, and hence Assumption A1(a) holds. Furthermore, B(X) =

G̈(α0 + ∫ 1
0 X(t)β0(t) dt) satisfies Assumption A1(b). Since ε = Y − Ġ(α0 +∫ 1

0 X(t)β0(t) dt) = Y −μ0(X), it is easy to see that E{ε|X} = E{Y |X}−μ0(X) =
0, and E{ε2|X} = Var(Y |X) = G̈(α0 + ∫ 1

0 X(t)β0(t) dt) (see [19]), and therefore,
Assumption A1(c) holds.
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2.2. Reproducing kernel Hilbert space. We introduce an inner product in
Hm(I), that is,

〈β, β̃〉1 = V (β, β̃) + λJ (β, β̃),(2.4)

where V (β, β̃) ≡ ∫ 1
0

∫ 1
0 C(s, t)β(t)β̃(s) ds dt and C(s, t) ≡ E{B(X)X(t)X(s)} is

a weighted covariance function. Denote the corresponding norm as ‖ · ‖1. Define
a linear bounded operator C(·) from L2(I) to L2(I): (Cβ)(t) = ∫ 1

0 C(s, t)β(s) ds.
Below we assume a regularity condition on Cβ , which implies the positive defi-
niteness of V , such that the above inner product (2.4) is well defined.

ASSUMPTION A2. C(s, t) is continuous on I × I. Furthermore, for any β ∈
L2(I) satisfying Cβ = 0, we have β = 0.

Suppose that C is continuous over I × I. By Mercer’s theorem, C admits the
spectral decomposition C(s, t) = ∑∞

ν=1 ζνψν(s)ψν(t), where {ψν(·), ζν ≥ 0}ν≥1

forms an orthonormal basis in L2(I) under the usual L2-norm. Therefore, for
any β ∈ L2(I), we have β(·) = ∑∞

ν=1 bνψν(·) and V (β,β) = ∑∞
ν=1 ζνb

2
ν for

a sequence of square summable bν ’s. Assumption A2 directly implies that all
the eigenvalues of C are positive, that is, ζν > 0 for all ν ≥ 1. Therefore, if
V (β,β) = 0, that is,

∑∞
ν=1 ζνb

2
ν = 0, we can easily show that β = ∑∞

ν=1 bνψν = 0.
Hence 〈·, ·〉1 is well defined. Moreover, together with Proposition 2 of [35], As-
sumption A2 implies that Hm(I) is indeed a reproducing kernel Hilbert space
(RKHS) under 〈·, ·〉1. We denote its reproducing kernel function as K(s, t).

As for the joint parameter space H, we also need to assume a proper inner
product under which it is a well-defined Hilbert space. Define, for any θ = (α,β),
θ̃ = (α̃, β̃) ∈ H,

〈θ, θ̃〉 ≡ E

{
B(X)

(
α +

∫ 1

0
X(t)β(t) dt

)(
α̃ +

∫ 1

0
X(t)β̃(t) dt

)}
(2.5)

+ λJ (β̃, β).

By rewriting 〈θ, θ̃〉 = E{B(X)}αα̃ + 〈β, β̃〉1, we note that 〈·, ·〉 is a well-defined
inner product under Assumptions A1(b) and A2. The corresponding norm is de-
noted as ‖ · ‖. Given the above relation between 〈·, ·〉 and 〈·, ·〉1, it is easy to show
that H inherits the completeness of Hm(I). This means H is indeed a Hilbert space
as described in Proposition 2.1 below.

PROPOSITION 2.1. Under 〈·, ·〉, H is a Hilbert space.

In the literature, the estimation/prediction rate results in the (generalized) func-
tional linear models are mostly expressed in terms of L2-norm; see [13, 14, 20,
35]. We remark that our norm ‖ · ‖ is stronger than the L2-norm used in the above
literature under Assumption A1(b).
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We next assume a sequence of basis functions in Hm(I) which can simultane-
ously diagonalize V and J . Let ‖ · ‖L2 and ‖ · ‖sup denote the L2 and supremum
norms, respectively. Denote an � bn if and only if there exist positive constants
c1, c2 such that c1 ≤ aν/bν ≤ c2 for all ν.

ASSUMPTION A3. There exists a sequence of functions {ϕν}ν≥1 ⊂ Hm(I)

such that ‖ϕν‖L2 ≤ Cϕνa for each ν ≥ 1, some constants a ≥ 0,Cϕ > 0 and

V (ϕν,ϕμ) = δνμ, J (ϕν,ϕμ) = ρνδνμ for any ν,μ ≥ 1,(2.6)

where δνμ is Kronecker’s notation, and ρν is a nondecreasing nonnegative se-
quence satisfying ρν � ν2k for some constant k > a + 1/2. Furthermore, any
β ∈ Hm(I) admits the Fourier expansion β = ∑∞

ν=1 V (β,ϕν)ϕν with convergence
in Hm(I) under 〈·, ·〉1.

We remark that Assumption A3 is the price we need to pay for making valid
statistical inference in addition to those required for minimax estimation, as in, for
example, [4, 35].

Assumption A3 can be directly implied by the pseudo Sacks–Ylvisaker (SY)
conditions, which are slightly different from the conventional SY conditions pro-
posed in [22–25]; see Section S.2 in the Supplementary Material [27] for more
details. Proposition 2.2 below discusses the construction of an eigen-system satis-
fying Assumption A3 under this condition.

PROPOSITION 2.2 (Eigen-system construction). Suppose the covariance
function C satisfies Assumption A2 and the pseudo SY conditions of order r ≥ 0
specified in Section S.2. Furthermore, the boundary value problem (S.2) in Sec-
tion S.3 is regular in the sense of [1]. Consider the following integro-differential
equations: ⎧⎪⎨⎪⎩ (−1)my(2m)

ν (t) = ρν

∫ 1

0
C(s, t)yν(s) ds,

y(j)
ν (0) = y(j)

ν (1) = 0, j = m, . . . ,2m − 1.

(2.7)

Let (ρν, yν) be the corresponding eigenvalues and eigenfunctions of problem (2.7),
and let ϕν = yν/

√
V (yν, yν). Then (ρν, ϕν) satisfy Assumption A3 with k = m +

r + 1 and a = r + 1 if one of the following additional assumptions is satisfied:

(i) r = 0;
(ii) r ≥ 1, and for j = 0,1, . . . , r − 1, C(j,0)(0, t) = 0 for any 0 ≤ t ≤ 1, where

C(j,0)(s, t) is the j th-order partial derivative with respect to s.

The proof of Proposition 2.2 relies on a nontrivial application of the general
integro-differential equation theory developed in [29–31]. In particular, the order
of ρν in problem (2.7) is, in general, equivalent to the order of eigenvalues in an
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ordinary differential problem; see [29], Theorem 7. More explicitly, ρν ≈ (cπν)2k

as ν → ∞ for some constant c > 0; see [31], equation (20).
In the Gaussian model with unit variance (see Example 2.1), it can be shown

with arguments similar to those in [23–25] that the covariance function C sat-
isfies the pseudo SY conditions of order r = 0 when X(t) is Brownian motion
with C(s, t) = min{s, t}. We also note that the boundary condition in Proposi-
tion 2.2(ii) was also assumed in [22] when X is Gaussian of order r > 0. The
integro-differential equations (2.7) can be translated into easily computable dif-
ferential equations. More specifically, we rewrite yν(t) in (2.7) as g̈ν(t), and thus
obtain that ⎧⎪⎪⎨⎪⎪⎩

(−1)m+1g
(2m+2)
ν (t) = ρνgν(t),

g
(j)
ν (0) = g

(j)
ν (1) = 0, j = m + 2, . . . ,2m + 1,

gν(0) = ġν(1) = 0.

(2.8)

Note that (2.7) and (2.8) share the same eigenvalues. Numerical examinations
show that ρν ≈ (πν)2(m+1). The function gν’s have closed forms

gν(t) = Re

(2(m+1)∑
j=1

aν,j exp
(
ρ1/(2(m+1))

ν zj t
))

, ν = 1,2, . . . ,

where Re(·) means the real part of a complex number, z1, . . . , z2(m+1) are the
complex (distinct) roots of z2(m+1) = (−1)m+1 and aν,1, . . . , aν,2(m+1) are com-
plex constant coefficients determined by the boundary value conditions in (2.8).
It follows by Proposition 2.2 that the resultant ρν and the corresponding scaled
functions ϕν = yν/

√
V (yν, yν) satisfy Assumption A3, where recall that yν is the

second-order derivative of gν .
In the logistic regression (Example 2.2) or exponential family models (Ex-

ample 2.3), the approach given in Section S.5 (Supplementary Material [27])
can be used to find (ρν, ϕν) without verifying the pseudo SY conditions. To do
so, we need to replace the kernel function C by its sample version Cn(s, t) ≡
n−1 ∑n

i=1 B̂(Xi)Xi(s)Xi(t), where B̂(X) is the plug-in estimate of B(X).
Recall that K is the reproducing kernel function for Hm(I) under 〈·, ·〉1. For

any t ∈ I, define Kt(·) = K(t, ·) ∈ Hm(I). Under Assumption A3, we may write
Kt = ∑

ν≥1 aνϕν for a real sequence aν . Clearly, ϕν(t) = 〈Kt,ϕν〉1 = aν(1+λρν),

for all ν ≥ 1. So Kt = ∑
ν≥1

ϕν(t)
1+λρν

ϕν . Define Wλ as an operator from Hm(I) to

Hm(I) satisfying 〈Wλβ, β̃〉1 = λJ (β, β̃), for all β, β̃ ∈ Hm(I). Hence Wλ is lin-
ear, nonnegative definite and self-adjoint. For any ν ≥ 1, write Wλϕν = ∑

μ bμϕμ.
Then by Assumption A3, for any μ ≥ 1, λρνδνμ = λJ (ϕν,ϕμ) = 〈Wλϕν,ϕμ〉1 =
bμ(1 + λρμ). Therefore, bν = λρν/(1 + λρν) and bμ = 0 if μ �= ν, which implies
Wλϕν = λρν

1+λρν
ϕν . Thus we have shown the following result.
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PROPOSITION 2.3. Suppose Assumption A3 holds. For any t ∈ I,

Kt(·) = ∑
ν

ϕν(t)

1 + λρν

ϕν(·),
and for any ν ≥ 1,

(Wλϕν)(·) = λρν

1 + λρν

ϕν(·).

Propositions 2.4 and 2.5 below define two operators, Rx and Pλ, that will
be used in the Fréchet derivatives of the criterion function �n,λ. We first de-
fine τ(x) as follows. For any L2 integrable function x = x(t) and β ∈ Hm(I),
Lx(β) ≡ ∫ 1

0 x(t)β(t) dt defines a linear bounded functional. Then by the Riesz
representation theorem, there exists an element in Hm(I), denoted as τ(x), such
that Lx(β) = 〈τ(x), β〉1 for all β ∈ Hm(I). If we denote τ(x) = ∑∞

ν=1 x∗
ν ϕν , then

x∗
ν (1 + λρν) = 〈τ(x), ϕν〉1 = ∫ 1

0 x(t)ϕν(t) dt ≡ xν for any ν ≥ 1. Thus τ(x) =∑∞
ν=1

xν

1+λρν
ϕν .

PROPOSITION 2.4. For any x ∈ L2(I), define Rx = (E{B(X)}−1, τ (x)). Then
Rx ∈ H and 〈Rx, θ〉 = α + ∫ 1

0 x(t)β(t) dt for any θ = (α,β) ∈ H.

It should be noted that Rx depends on h according to the definition of τ(x).

PROPOSITION 2.5. For any θ = (α,β) ∈ H, define Pλθ = (0,Wλβ). Then
Pλθ ∈ H and 〈Pλθ, θ̃〉 = 〈Wλβ, β̃〉1 for any θ̃ = (α̃, β̃) ∈H.

For notational convenience, denote �θ = (�α,�β) and �θj = (�αj ,�βj ) for
j = 1,2,3. The Fréchet derivative of �n,λ(θ) w.r.t. θ is given by

Sn,λ(θ)�θ ≡ D�n,λ(θ)�θ = 1

n

n∑
i=1

�̇a

(
Yi; 〈RXi

, θ〉)〈RXi
,�θ〉 − 〈Pλθ,�θ〉.

The second- and third-order Fréchet derivatives of �n,λ(θ) can be shown to be,
respectively,

DSn,λ(θ)�θ1�θ2

≡ D2�n,λ(θ)�θ1�θ2

= 1

n

n∑
i=1

�̈a

(
Yi; 〈RXi

, θ〉)〈RXi
,�θ1〉〈RXi

,�θ2〉 − 〈Pλ�θ1,�θ2〉

and

D2Sn,λ(θ)�θ1�θ2�θ3

≡ D3�n,λ(θ)�θ1�θ2�θ3

= 1

n

n∑
i=1

�′′′
a

(
Yi; 〈RXi

, θ〉)〈RXi
,�θ1〉〈RXi

,�θ2〉〈RXi
,�θ3〉.
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Define Sn(θ) = 1
n

∑n
i=1 �̇a(Yi; 〈RXi

, θ〉)RXi
, S(θ) = E{Sn(θ)} and Sλ(θ) =

E{Sn,λ(θ)} with expectations taken under the true model.

3. Bahadur representation for functional data. In this section, we extend
the functional Bahadur representation originally established in the nonparametric
regression framework [26] to the generalized functional linear models. This new
technical tool is fundamentally important in the sense that it provides a unified
treatment for various inference problems.

Denote h = λ1/(2k), where k is specified in Assumption A3. An auxiliary norm
is introduced for technical purpose: ‖θ‖2 = |α| + ‖β‖L2 for any θ = (α,β) ∈ H.
The following result gives a useful relationship between the two norms ‖ · ‖2 and
‖ · ‖. Recall that a is defined in Assumption A3.

LEMMA 3.1. There exists a constant κ > 0 such that for any θ ∈ H, ‖θ‖2 ≤
κh−(2a+1)/2‖θ‖.

To obtain an appropriate Bahadur representation for the functional data, we need
the following regularity conditions on X. Recall that ‖X‖2

L2 = ∫ 1
0 X2(t) dt .

ASSUMPTION A4. There exists a constant s ∈ (0,1) such that

E
{
exp

(
s‖X‖L2

)}
< ∞.(3.1)

Moreover, suppose that there exists a constant M0 > 0 such that for any β ∈
Hm(I),

E

{∣∣∣∣∫ 1

0
X(t)β(t) dt

∣∣∣∣4} ≤ M0

[
E

{∣∣∣∣∫ 1

0
X(t)β(t) dt

∣∣∣∣2}]2

.(3.2)

It is easy to see that (3.1) holds for any bounded stochastic process X, that is,
‖X‖L2 ≤ c a.s. for some constant c > 0. This applies to Example 2.2 which usually
requires X to be almost surely bounded in terms of L2-norm. Equation (3.1) also
holds for the Gaussian process as described in Proposition 3.2 below. The result
applies to Examples 2.1 and 2.3 where X can be Gaussian.

PROPOSITION 3.2. If X is a Gaussian process with square-integrable mean
function, then (3.1) holds for any s ∈ (0,1/4).

The fourth moment condition (3.2) is valid for M0 = 3 when X is a Gaussian
process; see [35] for more discussions. The following result shows that (3.2) actu-
ally holds in more general settings.

PROPOSITION 3.3. Suppose X(t) = u(t) + ∑∞
ν=1 ξνωνψν(t), where u(·) ∈

L2(I) is nonrandom, ψν is orthonormal L2(I)-basis, ων is a real square-
summable sequence and ξν are independent random variables drawn from some
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symmetric distribution with finite fourth-order moment. Then for any β(t) =∑∞
ν=1 bνψν(t) with bν being real square-summable, (3.2) holds with M0 =

max{E{ξ4
ν }/E{ξ2

ν }2,3}.

Lemma 3.4 below proves a concentration inequality as a preliminary step in
obtaining the Bahadur representation. Denote T = (Y,X) ∈ T as the data variable.
Let ψn(T ; θ) be a function over T ×H, which might depend on n. Define

Hn(θ) = 1√
n

n∑
i=1

[
ψn(Ti; θ)RXi

− ET

{
ψn(T ; θ)RX

}]
,

where ET {·} means the expectation w.r.t. T . Define Fpn = {θ = (α,β) ∈ H : |α| ≤
1,‖β‖L2 ≤ 1, J (β,β) ≤ pn}, where pn ≥ 1.

LEMMA 3.4. Suppose Assumptions A1 to A4 hold. In addition, ψn(Ti;0) = 0
a.s., there exists a constant Cψ > 0 s.t., and the following Lipschitz continuity
holds: ∣∣ψn(T ; θ) − ψn(T ; θ̃ )

∣∣ ≤ Cψ‖θ − θ̃‖2 for any θ, θ̃ ∈Fpn.(3.3)

Then as n → ∞,

sup
θ∈Fpn

‖Hn(θ)‖
p

1/(4m)
n ‖θ‖γ

2 + n−1/2
= OP

((
h−1 log logn

)1/2)
,

where γ = 1 − 1/(2m).

Our last assumption is concerned with the convergence rate of θ̂n,λ. Define rn =
(nh)−1/2 + hk . Recall that k is specified in Assumption A3.

ASSUMPTION A5. ‖θ̂n,λ − θ0‖ = OP (rn).

Proposition 3.5 states that Assumptions A1 to A4 are actually sufficient to imply
the above rate of convergence if the smoothing parameter is properly chosen. Note
that no estimation consistency is required in Proposition 3.5.

PROPOSITION 3.5. Suppose that Assumptions A1 to A4 hold, and that the
following rate conditions on h (or equivalently, λ) are satisfied:

h = o(1),

n−1/2h−1 = o(1),(3.4)

n−1/2h−(a+1)−((2k−2a−1)/(4m))(logn)2(log logn)1/2 = o(1).

Then Assumption A5 is satisfied.
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It follows by Proposition 3.3 that if X(t) = u(t) + ∑∞
ν=1 ξνωνψν(t) with ξν be-

ing independent random variables following symmetric distribution with bounded
support, say, [−N,N], then (3.2) holds. In this case, X is almost surely L2

bounded since ‖X‖L2 ≤ ‖u‖L2 +
√∑

ν ξ2
ν ω2

ν ≤ ‖u‖L2 + N
√∑

ν ω2
ν , a.s. Then

Proposition 3.5 states that if Assumptions A1 to A4 hold and the smoothing pa-
rameter is tuned to satisfy (3.4), then Assumption A5 holds for the above L2

bounded X.
Condition (3.4) is satisfied for a suitable range of h. To illustrate this point,

we consider the following simple but representative case. Under the setup of
Proposition 2.2, we have a = r + 1 and k = m + r + 1. Suppose r = 0, that
is, X corresponds to zero-order covariance. Thus a = 1 and k = m + 1. Denote
h∗ � n−1/(2k+1), h∗∗ � n−2/(4k+1) and h∗∗∗ � n−1/(2k). It can be shown that when
m > (3 + √

5)/4, h∗, h∗∗ and h∗∗∗ all satisfy the conditions of (3.4). It should be
mentioned that h∗ yields the optimal estimation rate n−k/(2k+1) [35], h∗∗ yields
the optimal testing rate n−2k/(4k+1) as will be shown in later sections, and h∗∗∗
yields the optimal prediction rate [3].

Now we are ready to present the Bahadur representation based on the functional
data.

THEOREM 3.6 (Bahadur representation for functional data). Suppose that As-
sumptions A1–A5 hold, and as n → ∞, h = o(1) and log(h−1) = O(logn). Fur-
thermore, (3.2) holds. Then, as n → ∞, ‖θ̂n,λ − θ0 − Sn,λ(θ0)‖ = OP (an), where

an = n−1/2h−(4ma+6m−1)/(4m)rn(logn)2(log logn)1/2 + C�h
−1/2r2

n,

and

C� ≡ sup
x∈L2(I)

E
{

sup
a∈R

∣∣�′′′
a (Y ;a)

∣∣∣∣X = x
}
.

We next give an example rate of an in Theorem 3.6 when � is quadratic. In this
case, we have C� = 0. Suppose a = 1 and k = m + 1; see the discussions below
Proposition 3.5. Direct examinations show that an is of the order o(n−1/2) when
m > 1 + √

3/2 ≈ 1.866 and h = h∗, h∗∗ and h∗∗∗.
An immediate consequence of Bahadur representation is the following point-

wise limit distribution of the slope function estimate. This local result is new and
of independent interest, for example, point-wise CI.

COROLLARY 3.7. Suppose that the conditions of Theorem 3.6 are satisfied,
supν≥1 ‖ϕν‖sup ≤ Cϕνa for ν ≥ 1 and that E{exp(s|ε|)} < ∞, for some constant
s > 0. Furthermore, as n → ∞, nh2a+1(log(1/h))−4 → ∞, n1/2an = o(1) and∑∞

ν=1
|ϕν(z)|2

(1+λρν)2 � h−(2a+1). Then we have for any z ∈ I,
√

n(β̂n,λ(z) − β0(z) + (Wλβ0)(z))√∑∞
ν=1(|ϕν(z)|2/(1 + λρν)2)

d−→ N(0,1).
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In addition, if
√

n(Wλβ0)(z)/

√∑∞
ν=1

|ϕν(z)|2
(1+λρν)2 = o(1), then

√
n(β̂n,λ(z) − β0(z))√∑∞

ν=1 |ϕν(z)|2/(1 + λρν)2

d−→ N(0,1).

Corollary 3.7 applies to any point z ∈ I satisfying
∑∞

ν=1
|ϕν(z)|2

(1+λρν)2 � h−(2a+1).

Validity of this condition is discussed in Section S.14 of the Supplementary Mate-
rial [27].

The condition
√

n(Wλβ0)(z)/

√∑∞
ν=1

|ϕν(z)|2
(1+λρν)2 = o(1) holds if nh4k = o(1) and

the true slope function β0 = ∑
ν bνϕν satisfies the condition (U):

∑
ν b2

νρ
2
ν < ∞.

To see this, observe that∣∣(Wλβ0)(z)
∣∣ =

∣∣∣∣∑
ν

bν

λρν

1 + λρν

ϕν(z)

∣∣∣∣
≤ Cϕλ

∑
ν

|bν | ρνν
a

1 + λρν

≤ Cϕλ

√∑
ν

b2
νρ

2
ν

√√√√∑
ν

ν2a

(1 + λρν)2 ,

where the last term is of the order O(λh−(2a+1)/2). Hence, it leads to

√
n(Wλβ0)(z)

/√√√√ ∞∑
ν=1

|ϕν(z)|2
(1 + λρν)2 �

√
nh2a+1(Wλβ0)(z) = o(1).

REMARK 3.1 (Convergence rate). Corollary 3.7 derives the convergence rate
of the local estimate β̂n,λ(z) as

√
nh2a+1. The factor a (defined in Assumption A3)

generically reflects the impact of the covariance operator on the convergence rate.
For example, Proposition 2.2 shows that a = r + 1 with r being the order of the
covariance function under the pseudo SY condition. The above observation coin-
cides with the arguments in [13], that the covariance effect in general influences
the (global) rate expressions. When the eigenfunctions are uniformly bounded,
that is, a = 0, the above rate becomes

√
nh, which is exactly the rate derived in the

general nonparametric regression setup; see Theorem 3.5 in [26].

REMARK 3.2. (Undersmoothing) Assumption A3 implies that β0 ∈ Hm(I)

has the property that
∑

ν b2
νρν < ∞. However, the condition (U) imposes a faster

decay rate on the generalized Fourier coefficients bν , which in turn requires more
smoothness of β0. Since we still employ the mth order penalty in (2.2), condi-
tion (U) can be treated as a type of undersmoothing condition. More generally,
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similar conditions will be implicitly imposed in the inference procedures to be
presented later.

4. Confidence/prediction interval. In this section, we consider two inter-
connected inference procedures: (i) confidence interval for the conditional mean
and (ii) prediction interval for a future response.

4.1. Confidence interval for conditional mean. For any (nonrandom) x0 ∈
L2(I), we construct a confidence interval μ0(x0) = E{Y |X = x0} by cen-
tering around the plug-in estimate Ŷ0 ≡ F(α̂n,λ + ∫ 1

0 x0(t)β̂n,λ(t) dt). Define

μ′
0(x0) = Ḟ (α0 + ∫ 1

0 x0(t)β0(t) dt), σ 2
n = E{B(X)}−1 + ∑∞

ν=1
|x0

ν |2
(1+λρν)2 , where

x0
ν = ∫ 1

0 x0(t)ϕν(t) dt .

THEOREM 4.1 (Confidence interval construction). Let Assumptions A1
through A5 be satisfied for the true parameter θ0 = (α0, β0), and μ′

0(x0) �= 0.
Furthermore, assume (3.2) and E{exp(s|ε|)} < ∞ for some s > 0. If h = o(1),
log(h−1) = O(logn), nh2a+1(logn)−4 → ∞, na2

n = o(1) and ‖Rx0‖ � σn, then
as n → ∞, √

n

σn

(
α̂n,λ +

∫ 1

0
x0(t)β̂n,λ(t) dt − α0 −

∫ 1

0
x0(t)β0(t) dt

−
∫ 1

0
x0(t)(Wλβ0)(t) dt

)
d−→ N(0,1).

Furthermore, if β0 = ∑
ν bνϕν with

∑
ν b2

νρ
2
ν < ∞ and nh4k = o(1), then√

n
σn

∫ 1
0 x0(t)(Wλβ0)(t) dt = o(1) so that we have

√
n

σnμ
′
0(x0)

(
Ŷ0 − μ0(x0)

) d−→ N(0,1).(4.1)

Hence the 100(1 − α̃)% confidence interval for μ0(x0) is[
Ŷ0 ± n−1/2zα̃/2σnμ̂

′
0(x0)

]
,(4.2)

where zα̃/2 is the (1− α̃/2)-quantile of N(0,1) and μ̂′
0(x0) ≡ Ḟ (α̂n,λ + ∫ 1

0 x0(t) ×
β̂n,λ(t) dt).

In the Gaussian model (Example 2.1) with B(X) ≡ 1, if X is Brownian motion
with C(s, t) = min{s, t}, then σ 2

n has an explicit form with ρν ≈ (2πν)2(m+1) and
ϕν solved by (2.8). As for Examples 2.2 and 2.3, one can obtain σ 2

n by following
the approach outlined in Section S.5 (Supplementary Material [27]).

A direct byproduct of Theorem 4.1 is the prediction rate σn/
√

n. Proposition 4.2
further characterizes this rate in various situations. Suppose that |x0

ν | � νa−d for
some constant d . A larger d usually yields a smoother function x0.
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PROPOSITION 4.2. The prediction rate in Theorem 4.1 satisfies

σn/
√

n =
⎧⎪⎨⎪⎩

n−1/2, if d − a > 1/2,

n−1/2(log(1/h)
)1/2

, if d − a = 1/2,

n−1/2hd−a−1/2, if d − a < 1/2.

In particular, if d − a < 1/2 and h = h∗∗∗ � n−1/(2(m+a)), then σn/
√

n =
n−(d+m−1/2)/(2(m+a)). Furthermore, if k = m + a as in the setting of Proposi-
tion 2.2, then σn/

√
n is minimax optimal when h = h∗∗∗.

Proposition 4.2 states that when d − a > 1/2, that is, the process x0 is suffi-
ciently smooth, then the prediction can be conducted in terms of root-n rate re-
gardless of the choice of h. This result coincides with [3] in the special FPCA
setting. Moreover, when d − a < 1/2 and h = h∗∗∗, the rate becomes optimal.
Again, this is consistent with [3] in the setting that the true slope function belongs
to a Sobolev rectangle. Interestingly, it can be checked that h = h∗∗∗ satisfies the
rate conditions in Theorem 4.1 if a = 1, k = m + 1 and m > 1 + √

3/2; see the
discussions below Theorem 3.6.

4.2. Prediction interval for future response. Following Theorem 4.1, we
can establish the prediction interval for the future response Y0 conditional on
X = x0. Write Y0 − Ŷ0 = ξn + ε0, where ξn = μ0(x0) − Ŷ0 and ε0 = �̇a(Y0;α0 +∫ 1

0 x0(t)β0(t) dt). Since ε0 is independent of ξn depending on all the past data
{Yi,Xi}ni=1, we can easily incorporate the additional randomness from ε0 into the
construction of the prediction interval. This leads to a nonvanishing interval length
as sample size increases. This is crucially different from that of confidence interval.

Let Fξn and Fε0 be the distribution functions of ξn and ε0, respectively. Denote
the distribution function of ξn + ε0 as G ≡ Fξn ∗ Fε0 , and (lα̃, uα̃) as its (α̃/2)th
and (1 − α̃/2)th quantiles, respectively. Then the 100(1 − α̃)% prediction interval
for Y0 is given as

[Ŷ0 + lα̃, Ŷ0 + uα̃].
Theorem 4.1 directly implies that ξn

a∼ N(0, (n−1/2σnμ̂
′
0(x0))

2), where
a∼ means

approximately distributed. If we further assume that ε0 ∼ N(0,B−1(x0)) [see As-
sumption A1(c)], that is, B(x0) is the reciprocal error variance for the L2 loss, the
above general formula reduces to[

Ŷ0 ± zα̃/2

√
B(x0) + (

n−1/2σnμ̂
′
0(x0)

)2
]
.(4.3)

The unknown quantities in (4.2) and (4.3) can be estimated by plug-in approach.

5. Hypothesis testing. We consider two types of testing for the gener-
alized functional linear models: (i) testing the functional contrast defined as∫ 1

0 w(t)β(t) dt for some given weight function w(·), for example, w = X and
(ii) testing the intercept value and the global behavior of the slope function, for
example, α = 0 and β is a linear function.
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5.1. Testing functional contrast. In practice, it is often of interest to test the
functional contrast. For example, we may test single frequency or frequency
contrast of the slope function; see Examples 5.1 and 5.2. In general, we test
HCT

0 :
∫ 1

0 w(t)β(t) dt = c for some known w(·) and c.
Consider the following test statistic:

CTn,λ =
√

n(
∫ 1

0 w(t)β̂n,λ(t) dt − c)√∑∞
ν=1(w

2
ν/(1 + λρν)2)

,(5.1)

where wν = ∫ 1
0 w(t)ϕν(t) dt . Recall that (ϕν, ρν) is the eigensystem satisfying

Assumption A3. Let w ∈ L2(I) and τ(w) ∈ Hm(I) be such that 〈τ(w),β〉1 =∫ 1
0 w(t)β(t) dt , for any β ∈ Hm(I). We can verify that τ(w) = ∑∞

ν=1
wν

1+λρν
ϕν .

Then, under HCT
0 , CTn,λ can be rewritten as

√
n〈τ(w), (β̂n,λ − β)〉1

‖τ(w)‖1
.(5.2)

It follows from Theorem 4.1 that (5.2) converges weakly to a standard nor-
mal distribution. This is summarized in the following theorem. Define Ma =∑∞

ν=1
w2

ν

(1+λρν)a
for a = 1,2.

THEOREM 5.1 (Functional contrast testing). Suppose that Assumptions A1
through A5 hold. Furthermore, let β0 = ∑

ν bνϕν with
∑

ν b2
νρ

2
ν < ∞, and as-

sume (3.2), E{exp(s|ε|)} < ∞ for some s > 0, and as n → ∞, h = o(1),
log(h−1) = O(logn), nh2a+1(log(1/h))−4 → ∞, M1 � M2, na2

n = o(1), nh4k =
o(1). Then, under HCT

0 , we have CTn,λ
d−→ N(0,1) as n → ∞.

EXAMPLE 5.1 (Testing single frequency). Suppose that the slope function has
an expansion β = ∑∞

ν=1 bνϕν , and we want to test whether bν∗ = 0 for some
ν∗ ≥ 1. In other words, we are interested in knowing whether the ν∗-level fre-
quency of β vanishes. Let w(t) = (Cϕν∗)(t). Then it is easy to see that

∫ 1
0 w(t) ×

β(t) dt = bν∗ . That is, the problem reduces to testing HCT
0 :

∫ 1
0 w(t)β(t) dt = 0.

It can be shown directly that Ma = (1 + λρν∗)−a � 1 for a = 1,2. If r = 0 (see
Proposition 3.2 for validity), then it can be shown that when m > (3 + √

5)/4 ≈
1.309, the rate conditions in Theorem 5.1 are satisfied for h = h∗. This means that
HCT

0 is rejected at level 0.05 if |CTn,λ| > 1.96.

EXAMPLE 5.2 (Testing frequency contrast). Following Example 5.1, we now
test whether

∑∞
ν=1 cνbν = 0, for some real sequence cν satisfying 0 < infν≥1 |cν | ≤

supν≥1 |cν | < ∞. Suppose that the covariance function C(·, ·) satisfies the condi-
tions in Proposition 2.2 with order r > 0. It follows from Proposition 2.2 and its

proof that the eigenfunction ϕν can be managed so that ‖ϕ(2m)
ν ‖sup ≤ Cϕν2m+r+1
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and ‖Cϕν‖sup ≤ ρ−1
ν ‖ϕ(2m)

ν ‖sup � ν−(r+1), for all ν ≥ 1. So the function w(t) =∑∞
ν=1 cν(Cϕν)(t) is well defined since the series is absolutely convergent on [0,1].

It is easy to see that
∫ 1

0 w(t)β(t) dt = ∑
ν cνbν and cν = ∫ 1

0 w(t)ϕν(t) dt = wν . So
the problem reduces to testing HCT

0 :
∫ 1

0 w(t)β(t) dt = 0. For a = 1,2

Ma =
∞∑

ν=1

w2
ν

(1 + λρν)a
=

∞∑
ν=1

c2
ν

(1 + λρν)a
�

∞∑
ν=1

1

(1 + λρν)a
� h−1.

It can be shown that when m > (3 + √
5), the rate conditions in Theorem 5.1 are

satisfied for h = h∗. We reject HCT
0 at level 0.05 if |CTn,λ| > 1.96.

5.2. Likelihood ratio testing. Consider the following simple hypothesis:

H0 : θ = θ0 versus H1 : θ ∈ H− {θ0},(5.3)

where θ0 ∈H. The penalized likelihood ratio test statistic is defined as

PLRT = �n,λ(θ0) − �n,λ(θ̂n,λ).(5.4)

Recall that θ̂n,λ is the maximizer of �n,λ(θ) over H. The proposed likelihood ratio
testing also applies to the composite hypothesis; that is, θ belongs to a certain
class. See Remark 5.1 for more details.

Theorem 5.2 below derives the null limiting distribution of PLRTn,λ.

THEOREM 5.2 (Likelihood ratio testing). Suppose that H0 holds, and As-
sumptions A1 through A5 are satisfied for the hypothesized value θ0. Let h satisfy
the following rate conditions: as n → ∞, nh2k+1 = O(1), nh → ∞, n1/2an =
o(1), nr3

n = o(1), n1/2h−(a+1/2+(2k−2a−1)/(4m))r2
n(logn)2(log logn)1/2 = o(1)

and n1/2h−(2a+1+(2k−2a−1)/(4m)) × r3
n(logn)3(log logn)1/2 = o(1). Furthermore,

there exists a constant M4 > 0 s.t. E{ε4|X} ≤ M4, a.s. Then as n → ∞,

−(2un)
−1/2(2nσ 2 · PLRT + un + nσ 2‖Wλβ0‖2

1
) d−→ N(0,1),(5.5)

where un = h−1σ 4
1 /σ 2

2 , σ 2 = σ 2
1 /σ 2

2 and σ 2
l = h

∑
ν(1 + λρν)

−l for l = 1,2.

By carefully examining the proof of Theorem 5.2, it can be shown that
n‖Wλβ0‖2

1 = o(nλ) = o(un). Therefore, −2nσ 2 · PLRT is asymptotically N(un,

2un) which is nearly χ2
un

as n → ∞. Hence we claim the null limit distribution as
being approximately χ2

un
, denoted as

−2nσ 2 · PLRT
a∼ χ2

un
,(5.6)

where
a∼ means approximately distributed; see [11]. If C satisfies the conditions

of Proposition 2.2 with order r ≥ 0, then ρν ≈ (cν)2k (see the comments below
Proposition 2.2), where k = m + r + 1 and c > 0 is constant. It is easy to see
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that σ 2
l ≈ c−1 ∫ ∞

0 (1 + x2k)−l dx for l = 1,2. In Example 2.1, since the covariance
function is free of the model parameters α0, β0, we can see that c is also free of
the model parameters. In particular, when B(X) ≡ 1, m = 2 and X(t) is Brownian
motion with C(s, t) = min{s, t} and r = 0, we have k = 3 and c = π [by solv-
ing (2.8)]. This yields σ 2

l ≈ 0.2876697, 0.2662496 for l = 1,2, respectively. In the
end, we obtain σ 2 ≈ 1.080451 and un ≈ 0.3108129/h in (5.6). As seen above, the
null limiting distribution has the nice property that it is free of the unknown model
parameters, that is, so-called Wilks phenomenon [11, 33]. Hence we unveil a new
version of Wilks phenomenon that applies to the functional data. This Wilks type
of result enables us to simulate the null limit distribution directly without resorting
to bootstrap or other resampling methods.

The quantities σ 2
1 , σ 2

2 in Theorem 5.2 depend on the population eigenpairs.
However, it is possible to replace these quantities by suitable estimators so that the
results become more applicable. In Section S.18 (Supplementary Material [27]),
we discuss the validity of this “plug-in” approach for Theorems 4.1, 5.1 and 5.2.

REMARK 5.1 (Composite hypothesis). By examining the proof of Theo-
rem 5.2, we find that the null limiting distribution derived therein remains the same
even when the hypothesized value θ0 is unknown. An important consequence is
that the proposed likelihood ratio approach can also be used to test a composite
hypothesis such as H0 :α = α0 and β ∈ Pj , where Pj represents the class of the

j th-order polynomials. Under H0, β is of the form β(t) = ∑j
l=0 blt

l for some un-
known vector b = (b0, b1, . . . , bj )

T . In this case, the slope function and intercept
can be estimated through the following “parametric” optimization:

(
α̂0, b̂0) = arg max

α,b0,...,bj∈Rn−1
n∑

i=1

�

(
Yi;α +

j∑
l=0

bl

∫ 1

0
Xi(t)t

l dt

)
(5.7)

− (λ/2)bT Db,

where D = [Dl1L
2]l1,l2=0,...,j is a (j + 1) × (j + 1) matrix with Dl1l2 = J (t l1, t l2).

The corresponding slope function estimate is β̂0(t) = ∑j
l=0 b̂0

l t
l . The test statistic

for this composite hypothesis is defined as PLRT = �n,λ(α̂
0, β̂0)−�n,λ(α̂n,λ, β̂n,λ).

Let θ0 = (α0, β0) be the unknown true model parameter under H0, where β0 can
be represented as

∑j
l=0 b0

l t
l . Hence, we can further decompose the above PLRT as

PLRT1 −PLRT2, where PLRT1 = �n,λ(θ0)−�n,λ(α̂n,λ, β̂n,λ), PLRT2 = �n,λ(θ0)−
�n,λ(α̂

0, β̂0). Note that PLRT1 is the test statistic for the simple hypothesis θ = θ0
versus θ �= θ0, and PLRT2 for the parametric hypothesis (α,b) = (α0,b0) versus
(α,b) �= (α0,b0), where b0 = (b0

0, . . . , b
0
j )

T . Conventional theory on parametric
likelihood ratio testing leads to −2n · PLRT2 = OP (1). On the other hand, The-
orem 5.2 shows that −2nσ 2 · PLRT1

a∼ χ2
un

. Therefore, we conclude that the null
limit distribution for testing the composite hypothesis also follows χ2

un
.
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In the end of this section, we show that the proposed PLRT is optimal in the min-
imax sense [16] when h = h∗∗. To derive the minimax rate of testing (also called as
minimum separation rate), we consider a local alternative written as H1n : θ = θn0,
where the alternative value is assumed to deviate from the null value by an amount
of θn, that is, θn0 = θ0 + θn. For simplicity, we assume θ0 = 0, and thus θn0 = θn.
Define the alternative value set θn ∈ �b ≡ {(α,β) ∈ H : |α| ≤ b,‖β‖L2 ≤ b,

J (β,β) ≤ b} for some fixed constant b > 0.

THEOREM 5.3. Let Assumptions A1–A5 be satisfied uniformly under θ =
θn0 ∈ �b. Let h satisfy nh3/2 → ∞, as n → ∞, and also the rate conditions
specified in Theorem 5.2. Furthermore, infy∈Y,a∈R(−�̈a(y;a)) > 0, and there is
a constant M4 > 0 s.t. for θn = (αn,βn) ∈ �b, εn ≡ �̇a(Y ;αn + ∫ 1

0 X(t)βn(t) dt)

satisfies E{ε4
n|X} ≤ M4, a.s. Then for any ε > 0, there exist positive constants Nε

and Cε s.t. when n ≥ Nε ,

inf
θn∈�b : ‖θn‖≥Cεηn

Pθn(reject H0) ≥ 1 − ε,

where ηn � √
(nh1/2)−1 + λ.

The model assumption infy∈Y,a∈R(−�̈a(y;a)) > 0 trivially holds for Gaus-
sian regression and exponential family considered in Examples 2.1 and 2.3. As
for the logistic model with L2 bounded X, this condition can be replaced by
infy∈Y,a∈I(−�̈a(y;a)) > 0 under which the same conclusion as in Theorem 5.3
holds, where I is some bounded open interval including the range of 〈RX, θn0〉 for
every θn0 ∈ �b.

Theorem 5.3 states that the PLRT is able to detect any local alternative with
separation rate no faster than ηn. In particular, the minimum separation rate, that
is, n−2k/(4k+1), is achieved when h = h∗∗. Note that h∗∗ satisfies the rate condi-
tions required by Theorem 5.3. For example, when k = m + r + 1, a = r + 1,
r = 0 (see the discussions below Proposition 3.5), we can verify this fact for
m > (7 + √

33)/8 ≈ 1.593 by direct calculations. In the specific �2 regression,
Corollary 4.6 of [15] proves that the above minimax rate, that is, n−2k/(4k+1), is
optimal but under the perfect alignment condition. Therefore, we prove that the
proposed PLRT can achieve the minimax optimality under more general settings.

The likelihood ratio testing procedure developed in this section requires prior
knowledge on the smoothness of the true slope function and covariance kernel
function, which might not be available in practice. This motivates us to propose
two adaptive testing procedures in the next section.

6. Adaptive testing construction. In this section, we develop two adaptive
testing procedures for H0 :β = β0 without knowing m and r , that is, the smooth-
ness of the true slope function and covariance kernel function. One works for Gaus-
sian errors, and another works for sub-Gaussian errors. The test statistics for both
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cases are maximizers over a sequence of standardized PLRTs. We derive the null
limit distribution as an extreme value distribution using Stein’s method [5, 28].
Their minimax properties will also be carefully studied. To the best of our knowl-
edge, our adaptive testing procedures are the first ones developed in the roughness
regularization framework, which forms an interesting complement to those based
on FPCA techniques [15, 17].

In this section, we focus on the �2 regression with two types of error: Gaussian
error (Section 6.1) and sub-Gaussian error (Section 6.2). For simplicity, we assume
β0 = 0, α = 0, and the errors to be of unit standard deviations. In addition, we
assume that the covariate process X(t) has zero mean and is independent of the
error term. We remark that it is possible to extend our results in this section to the
general loss functions, but with extremely tedious technical arguments.

Our test statistic is built upon a modified estimator β̃n,λ that is constructed in
the following three steps. The first step is to find a sequence of empirical eigen-
functions ϕ̂ν that satisfy V̂ (ϕ̂ν, ϕ̂μ) = δνμ for all ν,μ ≥ 1, where V̂ (β, β̃) =∫ 1

0
∫ 1

0 Ĉ(s, t)β(s)β̃(t) ds dt and Ĉ(s, t) = n−1 ∑n
i=1 Xi(s)Xi(t). We offer two

methods for finding ϕ̂ν . The first method conducts a spectral decomposition,
Ĉ(s, t) = ∑∞

ν=1 ζ̂νψ̂ν(s)ψ̂ν(t), with some nonincreasing positive sequence ζ̂ν and

orthonormal functions ψ̂ν in the usual L2-norm. Construct ϕ̂ν = ψ̂ν/

√
ζ̂ν . This

method is easy to implement, but implicitly assumes the perfect alignment condi-
tion. Our second method is more generally applicable, but requires more tedious
implementation. Specifically, we apply similar construction techniques as in Sec-
tion S.5 (Supplementary Material [27]) by using the sample versions of K̃ , C and
T therein. In particular, we choose m = 1,2 such that the true slope function is
more possible to be covered.

The second step is to define a data-dependent parameter space. Note that
Hm(I) can be alternatively defined as {∑∞

ν=1 bνϕν :
∑∞

ν=1 b2
νν

2k < ∞}, where
k depends on m in an implicit manner. An approximate parameter space is
Bk = {∑∞

ν=1 bνϕ̂ν :
∑∞

ν=1 b2
νν

2k < ∞}. The consistency of the sample eigenfunc-
tions implies that Bk is a reasonable approximation of Hm(I); see [14]. The data-
dependent parameter space is thus defined as

Bkn ≡
{

n∑
ν=1

bνϕ̂ν

∣∣∣∣b1, . . . , bn ∈ R

}
.

In Bkn, we can actually use the first Kn → ∞ (Kn � n) eigenfunctions as the
basis. However, such a general choice would give rise to unnecessary tuning of Kn

in practice.
In the last step, we obtain the desirable estimator as β̃n,λ = arg supβ∈Bkn

�n,λ(β),
where

�n,λ(β) = −1

n

n∑
i=1

(
Yi −

n∑
ν=1

bνωiν

)2/
2 − (λ/2)

n∑
ν=1

b2
νν

2k,(6.1)
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and ωiν = ∫ 1
0 Xi(t)ϕ̂ν(t) dt for i = 1, . . . , n and ν ≥ 1. The smoothing param-

eter λ depends on both n and k, denoted as λk . In particular, we choose λk

as c2k
0 n−4k/(4k+1)(log logn)2k/(4k+1) for some constant c0 > 0 irrelevant to k.

As will be seen in later theorems, this choice yields the minimax optimal-
ity of the adaptive testing. Define Y = (Y1, . . . , Yn)

T , b = (b1, . . . , bn)
T , �k =

diag(12k,22k, . . . , n2k), �i = (ωi1, . . . ,ωin) and � = (�T
1 , . . . ,�T

n )T . Hence we
can rewrite −2n�n,λ(β) as

(Y − �b)T (Y − �b) + nλkb
T �kb,

whose minimizer [equivalently, the maximizer of �n,λ(β)] is b̂n,k = (�T � +
nλk�k)

−1�T Y . Note that �T � = nIn by the following analysis: for any ν,μ ≥ 1,
n∑

i=1

ωiνωiμ =
n∑

i=1

∫ 1

0
Xi(t)ϕ̂ν(t) dt

∫ 1

0
Xi(s)ϕ̂μ(s) ds

=
∫ 1

0

∫ 1

0

n∑
i=1

Xi(s)Xi(t)ϕ̂ν(s)ϕ̂μ(t) ds dt

= n

∫ 1

0

∫ 1

0
Ĉ(s, t)ϕ̂ν(s)ϕ̂μ(t) ds dt = nδνμ.

Therefore, b̂n,k = (nIn + nλk�k)
−1�T Y and β̃n,λ = (ϕ̂1, . . . , ϕ̂n)b̂n,k .

In the above analysis, we implicitly assume k to be known. However, the value
of k is usually unavailable in practice. To resolve this issue, we will conduct our
testing procedure over a sequence of integer k, that is, {1,2, . . . , kn}, as will be seen
in the next two subsections. The full adaptivity of testing procedure is achieved
when we allow kn → ∞ so that the unknown k can eventually be captured by this
sequence.

6.1. Gaussian error. In this subsection, we denote the PLRT as PLRTk ≡
�n,λ(0) − �n,λ(β̃n,λ) due to its dependence on k. By plugging in the above form
of β̃n,λ, we obtain

PLRTk = − 1

2n
YT �(nIn + nλk�k)

−1�T Y.(6.2)

We next derive a standardized version of PLRTk under H0. Define dν(k) =
1/(1+λkρν(k)), where ρν(k) = ν2k , for any ν, k ≥ 1. Under H0, we have Y = ε =
(ε1, . . . , εn)

T , and thus −2nPLRTk = ∑n
ν=1 dν(k)η2

ν for η1, . . . , ηn
i.i.d.∼ N(0,1)

by straightforward calculation. Hence, we have E{−2nPLRTk} = ∑n
ν=1 dν(k) and

Var(−2nPLRTk) = 2
∑n

ν=1 d2
ν (k). The standardized version of PLRTk can be writ-

ten as

τk = −2n · PLRTk − ∑n
ν=1 dν(k)

(2
∑n

ν=1 dν(k)2)1/2 .(6.3)
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Inspired by Theorem 5.1, τk is presumably of standard normal distribution for any
particular k. However, k is often unavailable in practice. As discussed previously,
we shall construct the adaptive testing based on a sequence of τk as follows: (i) de-
fine AT ∗

n = max1≤k≤kn τk , and (ii) standardize AT ∗
n as

ATn = Bn

(
AT ∗

n − Bn

)
,

where Bn satisfies 2πB2
n exp(B2

n) = k2
n; see [12]. By Cramér [7], Bn = √

2 log kn −
1
2(log log kn + log 4π)/

√
2 log kn + O(1/ log kn) � √

2 log kn as n becomes suffi-
ciently large.

THEOREM 6.1. Suppose kn � (logn)d0 , for some constant d0 ∈ (0,1/2). Then
for any ᾱ ∈ (0,1), we have under H0 :β = 0,

P(ATn ≤ cᾱ) → 1 − ᾱ as n → ∞,

where cᾱ = − log(− log(1 − ᾱ)).

The proof of Theorem 6.1 is mainly based on Stein’s leave-one-out method [28]
since under H0, τk can be written as a sum of independent random variables, that
is, τk = ∑n

ν=1[dν(k)/sn,k](η2
ν − 1), where s2

n,k = 2
∑n

ν=1 dν(k)2.
In the end, we investigate the optimality of the proposed adaptive testing proce-

dure. Consider the local alternative H1n :β ∈ Bk,1, where

Bk,1 ≡
{ ∞∑

ν=1

bνϕ̂ν :
∞∑

ν=1

b2
νν

2k ≤ 1

}
,

for some fixed but unknown integer k ≥ 1. For any real sequence b = {bν} satis-
fying

∑∞
ν=1 b2

νν
2k ≤ 1, let βb = ∑∞

ν=1 bνϕ̂ν be the alternative function value, and
let Pb be the corresponding probability measure. The following result shows that
the adaptive test ATn achieves the optimal minimax rate (up to an logarithmic
order), that is, δ(n, k) ≡ n−2k/(4k+1)(log logn)k/(4k+1), for testing the hypothesis
H0 :β = 0, with the alternative set being certain Sobolev ellipsoid Bk,1; see [15].

Define ‖b‖2
�2 = ∑∞

ν=1 b2
ν and ‖b‖2

k,�2 = ∑∞
ν=1 b2

νρν(k).

THEOREM 6.2. Suppose kn � (logn)d0 , for some constant d0 ∈ (0,1/2).
Then, for any ε ∈ (0,1), there exist positive constants Nε and Cε such that for
any n ≥ Nε ,

inf‖b‖
�2≥Cεδ(n,k)

‖b‖
k,�2≤1

Pb(reject H0) ≥ 1 − ε.

In Gaussian white noise models, Fan [9] and Fan and Lin [10] proposed an
adaptive Neyman test based on multiple standardized test, and derived the null
limit distribution using the Darling–Erdős theorem. Theorems 6.1 and 6.2 can
be viewed as extensions of such results to functional data under Gaussian errors.
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However, the Darling–Erdős theorem is no longer applicable in our setup due to
the difference in modeling and test construction. Instead, we employ the Stein
leave-one-out method. More interestingly, Stein’s method can even be applied to
handle sub-Gaussian errors, as will be seen in Section 6.2.

6.2. Sub-Gaussian error. In this subsection, we consider models with sub-
Gaussian errors; that is, there exists a positive constant Cε such that E{exp(tε)} ≤
exp(Cεt

2) for all t ∈ R. Further relaxation to the error term with finite fourth mo-
ment is straightforward, but requires more stringent conditions on the design. For
simplicity, we assume deterministic design, and suppose that Xi ’s satisfy the fol-
lowing moment condition:

max
1≤ν≤n

n∑
i=1

ω4
iν = o

(
n8/5(log logn)−14/5).(6.4)

Recall that ωiν = ∫ 1
0 Xi(t)ϕ̂ν(t) dt and is nonrandom under deterministic design.

Condition (6.4) implies that for any ν = 1, . . . , n, the magnitudes of ω1ν, . . . ,ωnν

should be comparable given the restriction that
∑n

i=1 ω2
iν = n. It rules out the situ-

ation that the sequence ωiν is spiked at i = ν, that is, ω2
νν = n and ωiν = 0, for any

i �= ν. This special situation essentially gives rise to � = √
nI such that PLRTk

defined in (6.2) can be written as a scaled sum of independent centered squares
of the errors. The leave-one-out method employed in Theorem 6.1 can handle this
special case.

We first standardize PLRTk . The non-Gaussian assumption yields a substan-
tially different design matrix. Hence, the scale factor is chosen to be different
from the one used in Section 6.1, as described below. The standardized version is
defined as

τ̃k = −2n · PLRTk − ∑n
ν=1 dν(k)

(2
∑

i �=j a2
ij (k))1/2

,

where aij (k) is the (i, j)th entry of Ak ≡ n−1�(In +λk�k)
−1�T for 1 ≤ i, j ≤ n.

Note that the scale factor in τ̃k , that is, the term (2
∑

i �=j aij (k)2)1/2, differs
from the one in τk . Technically, this new scale factor will facilitate the asymp-
totic theory developed later in this section. Let AT ∗

n = max1≤k≤kn τ̃k , and ATn =
Bn(AT ∗

n − Bn), where Bn satisfies 2πB2
n exp(B2

n) = k2
n.

THEOREM 6.3. Suppose kn � (logn)d0 , for some constant d0 ∈ (0,1/2). Fur-
thermore, ε is sub-Gaussian, and (6.4) holds. Then for any ᾱ ∈ (0,1), we have
under H0 :β = 0,

P(ATn ≤ cᾱ) → 1 − ᾱ as n → ∞,

where cᾱ = − log(− log(1 − ᾱ)).

The proof of Theorem 6.3 is mainly based on Stein’s exchangeable pair method;
see [28].
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We conclude this subsection by showing that the proposed adaptive test can still
achieve the optimal minimax rate (up to a logarithmic order) specified in [15], that
is, δ(n, k), even under non-Gaussian errors. Recall that δ(n, k), ‖b‖�2 , ‖b‖k,�2 and
Pb are defined in Section 6.1.

THEOREM 6.4. Suppose kn � (logn)d0 , for some constant d0 ∈ (0,1/2). Fur-
thermore, ε is sub-Gaussian, and (6.4) holds. Then, for any ε ∈ (0,1), there exist
positive constants Nε and Cε such that for any n ≥ Nε ,

inf‖b‖
�2≥Cεδ(n,k)

‖b‖
k,�2≤1

Pb(reject H0) ≥ 1 − ε.

7. Simulation study. In this section, we investigate the numerical perfor-
mance of the proposed procedures for inference. We consider four different sim-
ulation settings. The settings in Sections 7.1–7.3 are exactly the same as those in
Hilgert et al. [15] and Lei [17] so that we can fairly compare our testing results
with theirs. We focus on models with Gaussian error and choose m = 2, that is,
cubic spline. Confidence interval in Section 4, penalized likelihood ratio test in
Section 5.2 and adaptive testing procedure in Section 6.1 are examined. The set-
ting in Section 7.4 is about functional linear logistic regression. Size and power of
the PLRT test are examined.

7.1. Setting 1. Data were generated in the same way as in Hilgert et al. [15].
Consider the functional linear model Yi = ∫ 1

0 Xi(t)β0(t) dt + εi , with εi being
independent standard normal for i = 1, . . . , n. Let λj = (j − 0.5)−2π−2 and
Vj (t) = √

2 sin((j − 0.5)πt), t ∈ [0,1], j = 1,2, . . . ,100. The covariate curve
Xi(t) was Brownian motion simulated as Xi(t) = ∑100

j=1
√

λjηijVj (t), where ηij ’s
are independent standard normal for i = 1, . . . , n and j = 1, . . . ,100. Each Xi(t)

was observed at 1000 evenly spaced points over [0,1]. The true slope function was
chosen as

β
B,ξ
0 (t) = B√∑∞

k=1 k−2ξ−1

100∑
j=1

j−ξ−0.5Vj (t).

Figure 1 displays β0. Four different signal strengths B = (0,0.1,0.5,1) and three
smoothness parameters ξ = (0.1,0.5,1) were considered. Note that B = 0 implies
β0 = 0.

For each case study, we considered sample sizes n = 100 and n = 500 respec-
tively, and ran 10,000 trials to investigate the Monte Carlo performance of our
methods.

Case study 1: 95% confidence interval for conditional mean. In this study, we
set μ0(x0) = E{Y |X0 = x0} = ∫ 1

0 x0(t)β0(t) dt with B = 1, ξ = 1, where x0 is
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FIG. 1. Plots of β0(t) in settings 1 and 2.

independent of X1, . . . ,Xn and randomly generated from the same distribution
as X1. From (4.2), the 95% confidence interval for μ0(x0) is[

Ŷ0 − n−1/2z0.025σn, Ŷ0 + n−1/2z0.025σn

]
,

where σ 2
n = 1 + ∑∞

ν=1 x2
ν /(1 + λρν), xν = ∫ 1

0 x0(t)ϕν(t) dt . Here ϕν and ρν are
both obtained through (2.8).

With 10,000 replications, percentages of the conditional mean μ0(x0) beyond
the scope of CI and the average lengths of the confidence intervals are summarized
in Table 1.

Case study 2: Size of the tests. Denote the testing methods proposed by Hilgert
et al. [15] as HMV13(1) and HMV13(2). Under H0 :β = 0, we calculated the sizes
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TABLE 1
Case study 1: Percentage of μ0(x0) outside the
95% confidence intervals ± standard deviation

(average length of the 95% confidence intervals)

n = 100 n = 500

4.89 ± 0.42 (0.56) 5.01 ± 0.19 (0.39)

of PLRT and AT (adaptive testing), that is, the percentages of rejecting H0, and
then compared them with HMV13(1) and HMV13(2) (directly cited from [15]) in
Table 2. Numerically, we found that AT converges to the Gumbel distribution very
slowly, which is a common phenomenon in the extreme value literature; see [9,
10]. Following an idea similar to [10], finite sample distributions of AT based on
one million replications were instead used. Obviously, from Table 2, the proposed
PLRT and AT are both valid test statistics achieving desirable sizes.

Case study 3: Power comparison. In this study, we generated β0 under differ-
ent signal strengths B = (0.1,0.5,1) and smoothing parameters ξ = (0.1,0.5,1).
Tables 3 and 4 summarize the powers of four different testing methods, that is,
the percentages of rejecting H0 :β = 0 at 95% significance level, under n = 100
and n = 500. From n = 100 to n = 500, the powers of all tests increase. In par-
ticular, PLRT generally performs better than AT since PLRT incorporates known
information from the model, that is, r = 0 (smoothness of the covariance kernel)
and m = 2 (smoothness of the functional parameter), while AT is adaptive on these
quantities. The power loss is the price paid for adaptiveness. We also note that for
weaker signals B = 0.1, the powers of PLRT and AT improve those of HMV13(1),
HMV13(2), while for stronger signals B = 0.5,1, the powers of all tests are com-
parable.

7.2. Setting 2. Let the true slope function be

β
B,τ
0 (t) = B exp

{
−(t − 0.5)2

2τ 2

}{∫ 1

0
exp

{
−(x − 0.5)2

τ 2

}
dx

}−1/2

,

TABLE 2
Case study 2: Sizes of the tests

n = 100 n = 500

HMV13(1) 3.47 (±0.36) 2.61 (±0.14)

HMV13(2) 4.97 (±0.43) 5.26 (±0.20)

AT 5.13 (±0.43) 5.04 (±0.19)

PLRT 5.45 (±0.45) 5.19 (±0.20)
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TABLE 3
Case study 3: n = 100. Powers

Test B = 0.1 B = 0.5 B = 1

ξ = 0.1 HMV13(1) 3.88 (±0.38) 21.41 (±0.8) 77.24 (±0.82)

HMV13(2) 5.80 (±0.46) 26.38 (±0.86) 81.78 (±0.76)

AT 6.12 (±0.47) 30.77 (±0.90) 81.56 (±0.76)

PLRT 21.27 (±0.80) 42.34 (±0.97) 84.20 (±0.71)

ξ = 0.5 HMV13(1) 4.74 (±0.42) 46.47 (±0.98) 98.68 (±0.22)

HMV13(2) 6.65 (±0.49) 52.79 (±0.98) 99.06 (±0.19)

AT 8.28 (±0.54) 71.08 (±0.89) 99.86 (±0.07)

PLRT 23.13 (±0.83) 74.74 (±0.85) 99.70 (±0.11)

ξ = 1 HMV13(1) 4.8 (±0.42) 62.67 (±0.95) 99.75 (±0.10)

HMV13(2) 7.07 (±0.5) 68.30 (±0.91) 99.84 (±0.08)

AT 9.47 (±0.57) 83.20 (±0.73) 99.98 (±0.03)

PLRT 23.95 (±0.84) 84.03 (±0.72) 99.98 (±0.03)

where B = (0.5,1,2) and τ = (0.01,0.02,0.05). The processes Xi(t) and the
samples were generated in the same way as in Setting 1.

The powers in Setting 2 are summarized in Tables 5 and 6. We observe simi-
lar phenomena as in Setting 1, that under weaker signals, say τ = 0.01,B = 0.5,
PLRT and AT demonstrate larger powers, while the powers of all procedures be-
come comparable under stronger signals. Again, PLRT generally has larger powers
than the adaptive procedure AT. All the powers increase as sample size becomes
larger.

TABLE 4
Case study 3: n = 500. Powers

Test B = 0.1 B = 0.5 B = 1

ξ = 0.1 HMV13(1) 5.17 (±0.19) 86.98 (±0.29) 100 (±0)

HMV13(2) 8.48 (±0.24) 90.89 (±0.25) 100 (±0)

AT 9.57 (±0.26) 89.14 (±0.27) 100 (±0)

PLRT 20.00 (±0.35) 88.19 (±0.28) 100 (±0)

ξ = 0.5 HMV13(1) 8.81 (±0.25) 99.85 (±0.03) 100 (±0)

HMV13(2) 13.07 (±0.30) 99.88 (±0.03) 100 (±0)

AT 20.20 (±0.35) 100 (±0) 100 (±0)

PLRT 29.47 (±0.40) 99.90 (±0.03) 100 (±0)

ξ = 1 HMV13(1) 11.38 (±0.28) 99.99 (±0.01) 100 (±0)

HMV13(2) 16.13 (±0.32) 100 (±0) 100 (±0)

AT 26.51 (±0.39) 100 (±0) 100 (±0)

PLRT 34.08 (±0.42) 100 (±0) 100 (±0)
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TABLE 5
Setting 2: n = 100. Powers

Test B = 0.5 B = 1 B = 2

τ = 0.01 HMV13(1) 4.94 (±0.42) 11.85 (±0.63) 46.69 (±0.98)

HMV13(2) 7.25 (±0.51) 15.49 (±0.71) 53.56 (±0.98)

AT 9.88 (±0.58) 23.86 (±0.84) 69.46 (±0.90)

PLRT 17.9 (±0.75) 33.25 (±0.92) 81.04 (±0.77)

τ = 0.02 HMV13(1) 7.33 (±0.51) 23.09 (±0.83) 80.26 (±0.78)

HMV13(2) 10 (±0.59) 28.54 (±0.89) 84.04 (±0.72)

AT 14.58 (±0.69) 42.21 (±0.97) 93.54 (±0.48)

PLRT 22.87 (±0.82) 53.21 (±0.98) 97.83 (±0.29)

τ = 0.05 HMV13(1) 13.85 (±0.68) 56.51 (±0.97) 99.48 (±0.14)

HMV13(2) 18.13 (±0.50) 63.09 (±0.95) 99.65 (±0.12)

AT 28.31 (±0.88) 78.52 (±0.80) 99.96 (±0.04)

PLRT 37.54 (±0.95) 87.63 (±0.65) 100 (±0)

7.3. Setting 3. In this setting, data were generated in the same way as in Sec-
tion 4.2 of [17]. Hence we will compare our PLRT and AT with the testing proce-
dure in [17], denoted as L13. Specifically, the covariance operator has eigenvalues
κj = j−1.7 and eigenfunctions φ1(t) = 1, φj (t) = √

2 cos((j − 1)πt) for j ≥ 2.
The covariate processes are Xi(t) = ∑100

j=1
√

κjηjφj (t), where ηj ’s are indepen-
dent standard normal. Each Xi(t) was observed on 1000 evenly spaced points
over [0,1].

In the first case denoted as Model(2,1), let θj = θ̄j /‖θ̄‖2, where θ̄j = 0 for
j > 2, θ̄j = bj · Ij for j = 1,2, b1 and b2 are independent Unif(0,1), and

TABLE 6
Setting 2: n = 500. Powers

Test B = 0.5 B = 1 B = 2

τ = 0.01 HMV13(1) 12.41 (±0.42) 54.6 (±0.63) 99.75 (±0.98)

HMV13(2) 17.99 (±0.51) 63.16 (±0.71) 99.98 (±0.98)

AT 28.93 (±0.40) 79.75 (±0.35) 100 (±0)

PLRT 34.77 (±0.42) 86.08 (±0.30) 100 (±0)

τ = 0.02 HMV13(1) 26.11 (±0.51) 88.91 (±0.83) 100 (±0)

HMV13(2) 33.95 (±0.59) 92.62 (±0.89) 100 (±0)

AT 50.25 (±0.44) 97.03 (±0.15) 100 (±0)

PLRT 56.57 (±0.43) 99.20 (±0.08) 100 (±0)

τ = 0.05 HMV13(1) 65.38 (±0.68) 99.95 (±0.97) 100 (±0)

HMV13(2) 72.74 (±0.50) 99.99 (±0.95) 100 (±0)

AT 86.92 (±0.30) 100 (±0) 100 (±0)

PLRT 92.07 (±0.24) 100 (±0) 100 (±0)
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TABLE 7
Setting 3: Powers

Sample size Test r2 = 0.1 r2 = 0.2 r2 = 0.5 r2 = 1.5

Model(2,1) n = 50 L13 16.20 (±1.02) 26.40 (±1.22) 54.20 (±1.38) 80.80 (±1.09)

AT 47.81 (±1.38) 64.94 (±1.32) 84.75 (±1.00) 99.13 (±0.26)

PLRT 57.76 (±1.37) 72.70 (±1.23) 90.18 (±0.82) 99.52 (±0.19)

n = 100 L13 25.80 (±0.86) 42.20 (±0.97) 68.20 (±0.91) 90.40 (±0.58)

AT 65.53 (±0.93) 79.75 (±0.79) 96.97 (±0.34) 99.99 (±0.02)

PLRT 74.04 (±0.86) 87.98 (±0.64) 98.22 (±0.26) 100 (±0)

n = 500 L13 67.20 (±0.41) 84.60 (±0.32) 94.40 (±0.20) 97.20 (±0.14)

AT 97.81 (±0.13) 100 (±0) 100 (±0) 100 (±0)

PLRT 98.5 (±0.11) 99.94 (±0.02) 100 (±0) 100 (±0)

Model(9,2) n = 50 L13 9.00 (±0.79) 14.00 (±0.96) 29.60 (±1.27) 43.40 (±1.37)

AT 21.72 (±1.14) 27.57 (±1.24) 37.67 (±1.34) 53.33 (±1.38)

PLRT 39.54 (±1.36) 46.22 (±1.38) 56.92 (±1.37) 73.42 (±1.22)

n = 100 L13 13.4 (±0.67) 27.8 (±0.88) 39.8 (±0.96) 65.8 (±0.93)

AT 27.86 (±0.88) 21.63 (±0.81) 47.61 (±0.98) 65.69 (±0.93)

PLRT 45.80 (±0.98) 53.72 (±0.98) 67.12 (±0.92) 83.88 (±0.72)

n = 500 L13 42.40 (±0.43) 47.8 (±0.44) 72.4 (±0.39) 93.4 (±0.22)

AT 49.40 (±0.44) 58.29 (±0.43) 80.21 (±0.35) 91.23 (±0.25)

PLRT 69.44 (±0.40) 80.00 (±0.35) 91.70 (±0.24) 99.22 (±0.08)

(I1, I2) follows a multinomial distribution Mult(1;0.5,0.5). Let the true function
be β0(t) = r

∑100
j=1 θjφj (t), where r2 = (0,1,0.2,0.5,1.5).

In the second case denoted as Model(9,2), a different choice of θj was con-
sidered. Specifically, θj = θ̄j /‖θ̄‖2, where θ̄j = 0 for j > 9, θ̄j = bj · Ij for
j = 1, . . . ,9, b1, . . . , b9 are independent Unif(0,1), and (I1, . . . , I9) follows a
multinomial distribution Mult(2;1/9, . . . ,1/9).

In both cases, the samples were drawn from Yi = ∫ 1
0 Xi(t)β(t) dt + εi , i =

1, . . . , n, where εi are independent standard Gaussian. 5000 Monte Carlo trials
were conducted in each case under different sample sizes n = 50,100 and 500.

Results are summarized in Table 7, from which we can see that the powers of AT
and PLRT improve those of L13, especially when r2 = 0.1,0.2 (weaker signals).
As n increases, the power of L13 becomes more comparable to those of PLRT and
AT especially when r2 = 1.5 (stronger signal). Again, PLRT generally has larger
powers than adaptive methods.

7.4. Setting 4. Let Y ∈ {0,1} be a binary variable generated from the follow-
ing functional logistic regression model:

P(Y = 1|X) = exp(
∫ 1

0 X(t)β0(t) dt)

1 + exp(
∫ 1

0 X(t)β0(t) dt)
.
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TABLE 8
Setting 4: Size and power

n = 100 n = 500

Size 0.054 0.046
Power 0.387 0.985

The predictor process Xi was simulated as Xi(t) = ∑100
j=1

√
λjηijVj (t), where λj

and Vj (t) are exactly the same as in Setting 1, ηij ’s are independent truncated
normals, that is, ηij = ξij I{|ξij |≤0.5} +0.5I{ξij>0.5} −0.5I{ξij<−0.5}, with ξij being a
standard normal random variable. Each Xi(t) was observed at 1000 evenly spaced
points over [0,1]. We intend to test H0 :β = 0. To examine the power, data were
generated under β0(t) = 3 ∗ 105(t11(1 − t)6) for t ∈ [0,1].

We examined two sample sizes: n = 100 and n = 500. Results (summarized in
Table 8) were based on 10,000 independent trials. It can be seen that when n = 100
and 500, the test achieves the desired sizes. The power at n = 100 is small, but the
power at n = 500 approaches one, demonstrating the asymptotic property of the
test.

8. Discussion. The current paper and our previous work on nonparametric re-
gression models [26] are both built upon the RKHS framework and theory. Hence
it seems necessary for us to comment their technical connections and differences
to facilitate the reading. Compared to [26], the RKHS considered in the current
paper has a substantially different structure that involves a covariance function of
the predictor process. This immediately causes a difference in building the eigen-
systems: [26] relies on an ODE system, but the current paper relies on an integro-
differential system. Hence the methods of analyzing both systems are crucially
different. Meanwhile, the asymptotic analysis on the statistical inference such as
the penalized likelihood ratio test are also different. For example, [26] only consid-
ers the reproducing kernel, while the current work requires a delicate interaction
between the reproducing kernel and the covariance kernel. More importantly, the
relaxation of perfect alignment between both kernels poses more technical chal-
lenges.

Besides, Assumption A3 requires ‖ϕν‖L2 ≤ Cϕνa for ν ≥ 1 and a constant
a ≥ 0. The introduction of factor a in Assumption A3 is helpful in simplifying
our proofs. However, it is interesting to investigate how to avoid imposing this
seemingly “redundant” a. As indicated by Proposition 2.2, that a relates to C (and
hence V ), one possible strategy is to avoid the use of V . Instead, one may use its
empirical version, namely Vn, as suggested by one referee. This would require a
delicate analysis of the convergence of Vn, which may be handled by techniques
in [18]. We leave this as a future exploration.
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