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EVALUATING THE CAUSAL EFFECT OF UNIVERSITY GRANTS
ON STUDENT DROPOUT: EVIDENCE FROM A REGRESSION

DISCONTINUITY DESIGN USING PRINCIPAL STRATIFICATION

BY FAN LI∗,1, ALESSANDRA MATTEI†,2 AND FABRIZIA MEALLI†

Duke University∗ and University of Florence†

Regression discontinuity (RD) designs are often interpreted as locally
randomized experiments for units with a realized value of a pretreatment
variable falling around a threshold. Motivated by the evaluation of Italian uni-
versity grants, we consider a fuzzy RD design where the treatment status is
based on both eligibility criteria and a voluntary application status. Resting on
the fact that grant application and grant receipt statuses are post-assignment
(post-eligibility) intermediate variables, we use the principal stratification
framework to define causal estimands within the Rubin Causal Model. We
propose a probabilistic formulation of the assignment mechanism underlying
RD designs, by reformulating the Stable Unit Treatment Value Assumption
(SUTVA) and making an explicit local overlap assumption for a subpopu-
lation around the threshold. We invoke a local randomization assumption
instead of the more standard continuity assumptions. We also develop a
Bayesian approach to select the target subpopulation(s) with adjustment for
multiple comparisons, and to draw inference for the target causal estimands
within this framework. Applying the method to the data from two Italian uni-
versities, we find evidence that university grants are effective in preventing
students from low-income families from dropping out of higher education.

1. Introduction. Amid the recent economic crisis in Europe, there has been
a heated debate on how to arrange college students financial support, especially
in terms of the instruments used, for example, loans, grants, tuition waiver. Accu-
rate evaluation of the effectiveness of the existing financial aid systems is crucial
for providing information to policy makers to choose between different instru-
ments. In Italy state universities offer financial aid every year to a limited number
of eligible freshmen. This intervention aims to give equal opportunity to achieve
higher education to motivated students irrespective of their economic background.
Dropout from university is a relevant phenomenon in Italy: indeed, the low rate of
university graduates among Italian youths is mainly due to the high dropout rate
(about 30%) rather than to a low enrollment rate. In this paper, we will investigate
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the causal effects of Italian university grants on student dropout rate, using data on
first-year enrollees from two universities.

In the Italian university system, only students who both meet a prefixed eli-
gibility criteria and apply for a grant can receive the grant, consisting of tuition
waiver, free meals and accommodation, and a limited stipend of around 3000 Eu-
ros. Eligibility depends on an economic measurement of the student’s family in-
come and assets falling below or above a predetermined threshold. This allocation
rule motivates us to adopt the regression discontinuity (RD) design framework
for evaluation. RD design—a quasi-experimental design for causal inference—
was first introduced in psychology by Thistlethwaite and Campbell (1960) and has
became increasingly popular since the late 1990s in economics and other fields.
Recent surveys can be found in Cook (2008), Imbens and Lemieux (2008), Lee
and Lemieux (2010), van der Klaauw (2008). There are two general setups in RD
designs, the sharp and the fuzzy RD designs. In the sharp design, the original form
of the design, the treatment status is assumed to be a deterministic step function of
a so-called forcing variable or running variable. All units with a realized value of
the forcing variable on one side of a prefixed threshold are assigned to one regime
and all units on the other side are assigned to the other regime. The basic idea un-
derlying a RD analysis is that one can compare units with very similar values for
the forcing variable, but different levels of treatment, to draw causal inference of
the treatment at the threshold. Examples of sharp RD designs can be found, among
others, in Berk and de Leuuw (1999), Lee (2008), Mealli and Rampichini (2012).
In the fuzzy design, the realized value of the forcing variable does not alone deter-
mine the receipt of the treatment, although a value of the forcing variable falling
above or below the threshold acts as an encouragement or incentive to participate
in the treatment. In those cases, the receipt of the treatment depends also on indi-
vidual choices, which may confound treatment receipt. Hahn, Todd and Van der
Klaauw (2001) establish a connection between fuzzy RD designs and instrumental
variables (IV), and show that in a fuzzy RD setting one can identify the local aver-
age treatment effect [Imbens and Angrist (1994)] for a subpopulation of compliers
at the threshold. Examples of fuzzy RD designs can be found, among others, in
Battistin and Rettore (2008), Garibaldi et al. (2012), van der Klaauw (2002).

The Italian university grant allocation rule defines a fuzzy RD design because
not all eligible students get a grant; they must apply first, and application is vol-
untary. Also, ineligible students may apply, even if they will not receive any grant.
Comparing to standard fuzzy RD designs where only assignment (eligibility) and
receipt of the treatment (grant) are available, the additional data on the application
status in this study may provide valuable information for policy makers. In this
article we develop a framework for RD analysis that is embedded in the Rubin
Causal Model [RCM, Rubin (1974, 1978)]. Resting on the fact that grant appli-
cation and grant receipt statuses are post-assignment (post-eligibility) variables,
we adopt the principal stratification framework [Frangakis and Rubin (2002)]—a
generalization of the IV approach to noncompliance [Angrist, Imbens and Rubin



1908 F. LI, A. MATTEI AND F. MEALLI

(1996), Imbens and Rubin (1997)]—to define causal estimands and lay the basis
for inference.

Causal inference in RD designs is usually based on comparisons of units with
close but distinct values of the forcing variable and relies on smoothness assump-
tions about the relationship between outcomes and the forcing variable around the
threshold, which imply randomization at the single threshold value. For example,
in fuzzy RDs, estimands are usually specified as ratio of differences of regression
functions at the threshold, and inference generally relies on asymptotic approx-
imations [e.g., Imbens and Lemieux (2008)]. In real applications, large-sample
approximations might be unreliable due to the small sample size, and exact infer-
ence would be preferable. RD designs have been often described as leading to lo-
cally randomized experiments around the threshold [Dinardo and Lee (2011), Lee
(2008), Lee and Lemieux (2010)]. Expanding on this interpretation, a recent strand
of the literature [e.g., Cattaneo, Frandsen and Titiunik (2015), Sales and Hansen
(2014)] is moving toward a formal and well-structured definition of the conditions
under which RD designs are equivalent to local randomized experiments.

We further develop the idea of local randomization; we aim to provide a for-
mal definition of the hypothetical experiment underlying RD designs, formalizing
the assignment mechanism, that is, the process that describes which units got as-
signed to which treatment. The core of our framework is to assume there exists
at least one subpopulation around the threshold where a local overlap assumption
holds. For this subpopulation we explicitly introduce a local randomization as-
sumption. Though our framework is not tied to any mode of inference, we choose
the Bayesian approach for reasons explained later. We also develop a Bayesian hi-
erarchical modeling approach to adjust for multiple comparisons in selecting the
target subpopulation(s). Our work adds to the limited literature on Bayesian anal-
ysis of RD [Chib and Greenberg (2014), Chib and Jacobi (2015)].

In Section 2 we introduce the basic setup and the causal estimands. In Section 3
we propose a probabilistic formulation of the assignment mechanism for general
RD designs, explicitly formulating the key assumptions, and elaborate it for the
particular RD design used in the Italian university grants. Selection of the subpop-
ulations where these assumptions hold is also discussed. A Bayesian approach for
inferring causal effects in RD designs is developed in Section 4. We then apply the
proposed approach to evaluate causal effects of Italian university grants on student
dropout in Section 5. Section 6 concludes.

2. Causal estimands.

2.1. Basic setup. We introduce the notation in the context of Italian university
grants. Let Z be the eligibility status, which is the initial assignment and plays
the role of an “instrument” or an “encouragement,” as in randomized experiments
with noncompliance. Consider a sample or population of N units; each can be ei-
ther eligible to receive a treatment, z = 1, or ineligible, z = 0. In the Italian grants
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system, eligibility depends on the value of a combined measurement of one’s as-
sets including income and properties, adjusted for family size, denoted by S. If
a student, satisfying preliminary grade criteria, has a value of S falling below a
predetermined threshold, for example, s0 = 15,000 euros, he/she is eligible, and
he/she is not eligible otherwise. That is, the eligibility status Zi for student i is a
deterministic function of S: Zi = 1(Si ≤ s0), where 1(·) is the indicator function.
Using the terminology in RD designs, S is the forcing variable.

Three variables were measured after each student i is assigned eligibility Zi :
the application status, the receipt of the grant and the dropout status; and, in prin-
ciple, eligibility may affect them. Thus, we can define potential outcomes for these
variables: for each student i (i = 1, . . . ,N ), given eligibility status z (z = 0,1),
let Ai(z) be an indicator for the potential grant application status (equal to 1 if
student i applies for a grant and 0 otherwise), Wi(z) be an indicator for the poten-
tial treatment received (equal to 1 if student i receives a grant and 0 otherwise),
and Yi(z) be the potential indicator for dropout (1 if student i drops out of uni-
versity, 0 otherwise). This notation, with only two potential outcomes for each
post-treatment variable for each unit, reflects the acceptance of the Stable Unit
Treatment Value Assumption [SUTVA, Rubin (1980)], which implies that there is
no interference between units and that there are no levels of the eligibility status
other than zero and one. A more explicit formulation of SUTVA will be introduced
in Section 3.1.

For each student i, given the observed eligibility status Zi , the following
variables are observed: Aobs

i = Ai(Zi), the observed application status; W obs
i =

Wi(Zi), the observed treatment received; and Y obs
i = Yi(Zi), the observed dropout

status. The remaining potential outcomes are missing: Amis
i = Ai(1−Zi), Wmis

i =
Wi(1 − Zi), and Y mis

i = Yi(1 − Zi). A vector of p pretreatment variables, Xi , is
also observed for each unit. We use boldface upper-case letters to denote the vector
of values of a variable for all units from hereon. For example, Z = (Z1, . . . ,ZN)′,
Aobs = (Aobs

1 , . . . ,Aobs
N )′.

2.2. The role of principal stratification for causal inference in fuzzy RD de-
signs. In the RCM, a causal effect is defined as a comparison of the potential
outcomes Yi(1) and Yi(0) for a common set of units. Obviously, in our study, such
comparisons between potential dropout statuses only measure the effect of the el-
igibility status. To draw inference about the causal effect of receiving a grant,
additional structure and assumptions are required. Since both the application sta-
tus and receipt of the grant are post-assignment variables, we adopt the Principal
Stratification framework [Frangakis and Rubin (2002)].

For each post-assignment variable, principal stratification defines a cross-
classification of subjects into groups, namely, principal strata, defined by the
joint potential values of that post-assignment variable under each of the assign-
ments being compared. In our study, based on the application status A, subjects
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are classified into four principal strata, Gi ≡ (Ai(0),Ai(1)): compliant-applicants
Gi = (0,1) = CA, students who would not apply if ineligible, but would apply
if eligible; always-applicants Gi = (1,1) = AA, students who would apply irre-
spective of their eligibility status; never-applicants Gi = (0,0) = NA, students
who would not apply irrespective of their eligibility status; and defiant-applicants
Gi = (1,0) = DA, students who would not apply if eligible, but would apply if
ineligible. Because principal strata are not affected by assignment, we can define
population-average causal effects conditional on the principal strata, known as
principal causal effects:

τg ≡ E
[
Yi(1) − Yi(0)|Gi = g

]
,(1)

for g = AA,CA,NA,DA. Then the average causal effect of eligibility on dropout
is a weighted average of these principal causal effects:

E
[
Yi(1) − Yi(0)

] = ∑
g=AA,CA,NA,DA

πgτg,

where πg is the proportion of units in principal stratum g.
Never-applicants and defiant-applicants never receive a grant, so for them we

always observe the outcome in the absence of the grant. By contrast, for always-
applicants and compliant-applicants we can observe Yi(1) for some eligible stu-
dents who receive a grant and Yi(0) for some other ineligible students who do
not receive a grant. Therefore, always-applicants and compliant-applicants are the
only groups where we can learn information about the effect of receiving a grant
in this study, and thus the corresponding principal causal effects, τAA and τCA, are
the causal estimands of primary interest.

In the standard IV approach to noncompliance [Angrist, Imbens and Rubin
(1996), Imbens and Rubin (1997)] as well as the standard setting of fuzzy RD
designs [e.g., Imbens and Lemieux (2008)], data on application status are not uti-
lized, either because they are not available or because they are ignored. Instead,
the analysis is based on the principal strata formed by the post-assignment vari-
able of grant receipt status. Specifically, there are four principal strata based on the
joint potential grant receipt statuses, Ri = (Wi(0),Wi(1)): compliers Ri = (0,1),
students who would receive the grant if eligible and would not receive the grant
if ineligible; always-takers Ri = (1,1), students who would receive the grant re-
gardless of eligibility; never-takers Ri = (0,0), student would not receive the grant
regardless of eligibility; and defiers Ri = (1,0), students who would not receive
the grant if eligible and would receive the grant if ineligible. The focus is generally
on the causal effect for compliers:

τ ≡ E
[
Yi(1) − Yi(0)|Ri = (0,1)

]
.

We now establish the connection between these two sets of principal strata.
The Italian grant assignment rule implies that Wi(0) = 0 for all i, as ineligible
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units have no access to a grant, and Wi(1) = 0 if Ai(1) = 0, as eligible units
need to apply for a grant to receive a grant. Therefore, by design, there are no
always-takers or defiers, and the remaining principal strata R’s can be expressed as
unions of principal strata G’s: never-takers comprise never-applicants and defiant-
applicants, and compliers comprise always-applicants and compliant-applicants.
As such, τ can be rewritten as the weighted average of the causal effects for
always-applicants and compliant-applicants:

τ = E
[
Yi(1) − Yi(0)|Gi ∈ {AA,CA}] = πAAτAA + πCAτCA

πAA + πCA
.(2)

This illustrates that principal strata defined by the application status leads to a
finer partition of the units than principal strata defined by the grant-receipt sta-
tus. Indeed, the standard IV causal estimand—the causal effect for compliers τ—
provides information on a “marginal” (with respect to application behavior) causal
effect. If causal effects are homogeneous, marginalizing over application behavior
does not critically affect the evaluation analysis. Conversely, if causal effects are
heterogeneous, ignoring application behavior may represent a loss of potentially
useful information. For example, if the grants are found to have a higher positive
effect on always-applicants than on compliant-applicants, then it would be useful
and cost-effective to study the characteristics of ineligible applicants and include
those into the eligibility rule to allocate additional resources.

The estimands τAA, τCA and τ represent effects of eligibility, rather than effects
of the receipt of a grant. However, “the receipt of a grant” is completely con-
founded with “the eligibility status”: W(z) = z × A(z) = z for always-applicants
and compliant-applicants. To attribute these effects to “the receipt of a grant,” be-
low we can make an exclusion restriction assumption:

ASSUMPTION 1 (Exclusion restriction for compliant-applicants and always-
applicants). For all units with Gi ∈ {AA,CA} or, equivalently, Ri = (0,1), the
effect of eligibility is only through the receipt of the grant.3

3This assumption could be formalized by introducing potential outcomes of the form Yi(z, a,w),
that is, potential outcomes for Y if eligibility status Z was set to z, application status A was set to a,
and grant status W was set to w; z, a,w ∈ {0,1}. Specifically, in our setting, the (stochastic) exclusion
restriction assumption for compliant-applicants and always-applicants would require that for each
a′, a′′ ∈ {0,1}, Pr(Yi(0, a′,w)|Gi ∈ {AA,CA}) = Pr(Yi(1, a′′,w)|Gi ∈ {AA,CA}), w = 0,1. This
exclusion restriction assumes that for compliant-applicants and always-applicants, that is, compliers,
the potential outcome that would realize if they were eligible and received a grant (did not receive)
is equal to the potential outcome that would realize if they were ineligible and received (did not
receive) a grant, irrespective of their application status. The potential outcomes Yi(z, a,w) are a
priori counterfactuals for units who exhibit a value of the application status, Aobs

i , and a value of

the grant status, Wobs
i , under treatment z not equal to a and w, respectively, because in one specific

experiment, they can never be observed for such types of units. Here we prefer to avoid potential
outcomes of the form Yi(z, a,w) by focusing on observable potential outcomes Yi(z).
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Assumption 1 attributes the intention-to-treat (ITT) effect for compliers to the
receipt of grant rather than eligibility. A more formal version of this assumption,
which requires double-indexed notation, is given in Footnote 3 and also Imbens
and Rubin (2015) (Chapter 23, Assumption 23.4). This type of exclusion restric-
tion is routinely made, often implicitly, in randomized experiments with full com-
pliance [Mealli and Pacini (2013), Mealli and Rubin (2002)].

In real studies, the sample-average counterpart of the population-average esti-
mands may also be of interest:

τS
g ≡ 1

Ng

∑
i:Gi=g

[
Yi(1) − Yi(0)

]
,(3)

where g = AA,CA, {AA,CA} and Ng is the number of units in stratum g. Usually
the sample-average effects can be estimated more precisely than their population-
average counterparts. The subtle difference between them in Bayesian inference is
explained in Section 4. More details can be found, for example, in Imbens and Ru-
bin (1997), Rubin (1978) and Imbens (2004). For simplicity, we do not distinguish
between population-average and sample-average estimands in the methodological
discussion, but will present both estimates in the application.

3. The basis for inference.

3.1. Probabilistic treatment assignment mechanism in RD designs. The com-
plex selection process in the Italian university grants system implies that the mech-
anism governing the receipt of the grant, which depends on both institutional and
individual choices, is not ignorable. Below we introduce a probabilistic assignment
mechanism underlying the RD design considered here, which is also applicable to
general RD settings with minor modifications.

We first define the assignment mechanism, which is a row-exchangeable func-
tion that assigns probabilities to all 2N possible N -dimensional vectors of assign-
ments Z, as a row-exchangeable function that assigns probabilities to all possible
N -dimensional vectors of realizations of the forcing variable, S, above or below
the threshold value, s0. Formally,

Pr
(
Z = z|A(0),A(1),W(0),W(1),Y(0),Y(1),X

)
(4)

= Pr
(
S ∈ �|A(0),A(1),W(0),W(1),Y(0),Y(1),X

)
,

where z ∈ {0,1}N and � ∈ {(−∞, s0]N, (−∞, s0]N−1 × (s0,∞), (s0,∞) ×
(−∞, s0]N−1, . . . , (−∞, s0] × (s0,∞)N−1, (−∞, s0]N−1 × (s0,∞), (s0,∞)N }.
Since Z is a deterministic function of S, the assignment mechanism can be formu-
lated with respect to either Z or S. Here we prefer S because it is the underlying
random variable that describes the reasons for the missing and observed values
of potential outcomes: a value of S is assigned, which in turn determines a value
for Z.
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Statistical inference for causal effects requires assumptions on the assignment
mechanism. We introduce assumptions that allow us to describe RD settings as
classical randomized experiments around the threshold. The assignment mecha-
nism in equation (4) is a classical randomized experiment if (i) it is individualistic,

Pr
(
S ∈ �|A(0),A(1),W(0),W(1),Y(0),Y(1),X

)

=
n∏

i=1

Pr
(
Si ≤ s0|Ai(0),Ai(1),Wi(0),Wi(1), Yi(0), Yi(1),Xi

);
(ii) it is probabilistic, which implies that for each unit, i, both events Si ≤ s0 and
Si > s0 have a priori a nonzero probability of occurring; (iii) it is unconfounded,
that is, free of dependence of any potential outcomes; and (iv) it is a known func-
tion of its arguments.

The particular assignment rules underlying RD designs suggest that these as-
sumptions are more reasonable for subpopulations of units who have a relatively
large probability that the realized values of the forcing variable fall in a neighbor-
hood around the threshold, s0. For these subpopulations, we can reasonably assume
that the distribution of the forcing variable is unrelated to observed and unobserved
characteristics of students. On the other hand, students with a very small (close to
zero) or a very large (close to one) probability that Si ≤ s0 are likely systematically
different from other students. For example, potential outcomes observed for very
rich students, who do not receive any grant, are plausibly different from potential
outcomes for poor students with a realized value of S around the threshold, who
do not receive a grant, and vice versa. Therefore, we focus on subpopulations of
students who have a probability that Si ≤ s0 strictly between zero and one, and
sufficiently far away from zero and one. The following assumption guarantees that
at least one such subpopulation of units exists.

ASSUMPTION 2 (Local overlap). Let U be the random sample (or population)
of units in the study. There exists a subset of units, Us0 , such that for each i ∈ Us0 ,
Pr(Si ≤ s0) > ε and Pr(Si > s0) > ε for some sufficiently large ε > 0.

Assumption 2 assumes that there exists a subpopulation of units, each of whom
has a nonzero probability of being assigned to either treatment level. This repre-
sents a main distinction between our framework and the existing RD literature that
often describes RD designs as settings where the overlap assumption is violated.
Now within the subpopulation Us0 we can formally introduce a modified SUTVA
specific to the RD settings:

ASSUMPTION 3 (Local RD-SUTVA). For each i ∈ Us0 , consider two eligi-
bility statuses Z′

i = 1(S′
i ≤ s0) and Z′′

i = 1(S′′
i ≤ s0), with possibly S′

i �= S′′
i . If

Z′
i = Z′′

i , that is, if either S′
i ≤ s0 and S′′

i ≤ s0, or S′
i > s0 and S′′

i > s0, then
Ai(Z′) = Ai(Z′′), Wi(Z′) = Wi(Z′′), and Yi(Z′) = Yi(Z′′).
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Local RD-SUTVA rules out interference between units, implying that potential
outcomes for a student cannot be affected by the eligibility status of other students.
Local RD-SUTVA also assumes that there are no levels of the eligibility status
other than zero and one. This component of RD-SUTVA implies that values of
the forcing variable leading to the same eligibility status cannot alter potential
outcomes for any unit, and thus allows us to avoid defining potential outcomes as
functions of the forcing variable. Under the local RD-SUTVA for each unit within
Us0 there exist only two potential outcomes for each post-assignment variable,
corresponding to the realized value of the forcing variable falling below and above
the threshold, respectively.

Finally, we formalize the concept of RD design as a local randomized experi-
ment:

ASSUMPTION 4. (Local randomization). For each i ∈ Us0 ,

Pr
(
Si |Ai(0),Ai(1),Wi(0),Wi(1), Yi(0), Yi(1),Xi

) = Pr(Si).

Assumption 4 states that within the subpopulation Us0 a Bernoulli trial has been
conducted, with individual assignment probabilities depending only on the dis-
tribution of the forcing variable, Pr(Zi = 1) = Pr(Si ≤ s0), but not on either the
potential outcomes or pre-treatment variables. This assumption is crucial in justi-
fying the key idea underlying any RD design. It implies that the eligibility statuses
are randomly assigned in some small neighborhood, Us0 , around s0.

Assumption 4 may not always be plausible. For instance, when the forcing
variable is a deterministic variable, which conceptually cannot be interpreted as
a random variable with a nondegenerate probability distribution (such as time),
the underlying design cannot, in general, be interpreted as a locally randomized
experiment [see Section 6.3 in Lee and Lemieux (2010), page 347].

There are subtle but substantive differences between local RD-SUTVA and lo-
cal randomization. Local RD-SUTVA is an exclusion restriction assumption and it
is required to make the representation of potential outcomes as functions of the el-
igibility status adequate. Local randomization is an independence assumption that
is crucial for inference. RD-SUTVA is different from independence assumptions:
it does not imply that the probability that we observe a value of the forcing variable
above or below the threshold does not depend on potential outcomes. RD-SUTVA
simply implies that the exposure to assignment level z specifies a well-defined po-
tential outcome, for all unit i and assignment levels z. In other words, considering
potential outcomes as random variables, RD-SUTVA does not imply that poten-
tial outcomes have the same distribution for each value of the forcing variable. In
order to make the forcing variable independent of potential outcomes, we need an
additional assumption, such as Assumption 4.

Following Assumption 2, we can define a local version of the target estimands,

τg,s0 ≡ E
[
Yi(1) − Yi(0)|Gi = g, i ∈ Us0

]
,(5)
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for g = AA,CA, {AA,CA} and their finite-sample counterparts, and we have

τ{AA,CA},s0 ≡ τs0 = τAA,s0πAA,s0 + τCA,s0πCA,s0

πAA,s0 + πCA,s0

,

where πg,s0 = Pr(Gi = g|i ∈ Us0) for g = AA,CA,NA,DA, denote the proportion
of principal strata in Us0 . A special case of Us0 contains the subpopulation of units
with a realized value of the forcing variable exactly equal to s0.

Also, Assumption 4 implies that

E
[
Yi(1) − Yi(0)|Gi = g, i ∈ Us0

] = E
[
Yi(1) − Yi(0)|Zi = 1,Gi = g, i ∈ Us0

]
.

Under the allocation rule of the Italian university grants, Zi = W obs
i for always-

applicants and compliant-applicants. Therefore, the local randomization assump-
tion allows the estimands τAA,s0 , τCA,s0 and τs0 to be interpreted as causal effects
of receiving a grant for subpopulations of students who actually receive a grant,
analogous to the notion of average treatment effect for the treated (ATT).

3.2. Two additional assumptions. The following two assumptions—though
not necessary for Bayesian inference—are plausible in our study and can sharpen
the inference.

ASSUMPTION 5. Monotonicity of application status:

Ai(1) ≥ Ai(0), for all i ∈ Us0 .

ASSUMPTION 6. Stochastic exclusion restriction for never-applicants:

Pr
(
Yi(1)|Gi = NA, i ∈ Us0

) = Pr
(
Yi(0)|Gi = NA, i ∈ Us0

)
.

Monotonicity rules out the existence of defiant-applicants. The exclusion re-
striction rules out direct effects of eligibility on dropout for never-applicants.
Never-applicants are students who would never apply for a grant irrespective of
their eligibility status. These students would not receive the grant in any case. The
exclusion restriction for never-applicants (Assumption 6) is of a very different na-
ture from the exclusion restriction for compliant-applicants and always-applicants
(Assumption 1): Assumption 6 has implications for inference but not for inter-
pretation, whereas Assumption 1 is made solely for interpreting causal effects of
assignment on the outcome as causal effects of treatment on the outcome. More
discussions on the difference can be found in Imbens and Rubin (2015), Chapter 23
and Mealli and Pacini (2013).
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3.3. Selection of the subpopulations. An important issue in practice is how to
select the subpopulation Us0 . There can be a diverse choice of the shape of the
subpopulation. In this paper, we limit our choice to symmetric intervals about s0
for convenience. Specifically, we assume the following:

ASSUMPTION 7. There exists h > 0 such that for each ε > 0, Pr(s0 − h ≤
Si ≤ s0 + h) > 1 − ε, for each i ∈ Us0 .

Assumption 7 allows us to focus on the specific subsets of symmetric inter-
vals among all neighborhoods of different shape around the threshold, s0. Note
that Assumptions 2 and 7 do not imply that Us0 is unique. They only require that
there exists at least one subpopulation, Us0 . Consequently, we are not interested in
finding the largest h, but we only aim at determining plausible values for h.

Our approach for selecting bandwidth h exploits the “local” nature of Assump-
tion 4, in the sense that it holds for a subset of units, but may not hold in general
for other units. Therefore, under Assumption 4, covariates should be well balanced
in the two subsamples defined by assignment in Us0 , and thus any test of the null
hypothesis of no effect of assignment on covariates should fail to reject the null.

Assessing balance in the observed covariates raises problems of multiple com-
parisons, which may lead to a much higher than planned type I error if they are
ignored [e.g., Benjamini and Hochberg (1995)]. We account for multiplicities us-
ing a Bayesian hierarchical mixed model, which provides an explicit method for
borrowing information across covariates [e.g., Berry and Berry (2004), Scott and
Berger (2006)]. Following Berry and Berry (2004), we use a mixture for the prior
distribution of the eligibility parameters by assigning a point mass on equality of
the means of the covariates between eligible and ineligible units. This Bayesian
procedure provides a measure of the risk (posterior probability) that a chosen in-
terval around s0 defines a subpopulation of units that does not exactly match any
true Us0 , including units for which our RD assumptions do not hold. More de-
tails are given in Section 5. Cattaneo, Frandsen and Titiunik (2015) also exploit
balance tests of covariates to select Us0 , but their approach aims at selecting the
largest subpopulation and does not account for multiple comparisons.

Conventional RD approaches based on local polynomial regression also involve
bandwidth selection, but for a very different objective, namely, finding an optimal
balance between precision and bias at the threshold for local polynomials [e.g.,
Imbens and Kalyanaraman (2012), Lee and Lemieux (2010), Ludwig and Miller
(2007)], whereas our objective is to find a subpopulation where the RD assump-
tions are plausible and the selected subpopulation defines the target population.

3.4. Mode of inference. Once the subpopulation Us0 is chosen, and under the
RD Assumptions 2–4, one can choose different modes of inference. For exam-
ple, under the additional Assumptions 5 and 6, the average causal effect for com-
pliers, τs0 , is nonparametrically identified and can be estimated using standard
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moment-based methods. But the average causal effects for always-applicants and
compliant-applicants, τAA,s0 and τCA,s0 , are only nonparametrically partially iden-
tified [Mealli and Pacini (2013)]. One can also use likelihood approaches to para-
metrically estimate causal effects [e.g., Frumento et al. (2012), Mercatanti (2013)]
or use randomization-based inference [Cattaneo, Frandsen and Titiunik (2015)].

We choose Bayesian inference for the following reasons. First, causal inference
in RD designs usually involves complex observational data, with multiple sources
of uncertainties, including the missing potential outcomes; the Bayesian approach
is particularly useful for accounting for uncertainties and for pooling information
from the data in such complex settings. Second, RD analysis usually relies on a
sample of units with values of the forcing variable close to a single point, the size
of which may be small; Bayesian methods, not relying on asymptotic approxima-
tions, are attractive in dealing with small samples. Third, in the Bayesian paradigm,
the missing potential outcomes are treated as random variables, and all inferences
are based on the posterior distributions of causal estimands, which are functions of
potential outcomes. Thus, inference about sample-average and population-average
estimands can be drawn using the same inferential procedures. Finally, covariates
can be easily incorporated in the Bayesian approach, which may reduce posterior
variability of the estimates.

4. Bayesian inference. Our Bayesian analysis follows the seminal works of
Rubin (1978) and Imbens and Rubin (1997). Below we give a brief outline for con-
ducting Bayesian principal stratification analysis; the readers may refer to the ex-
isting literature for more details [e.g., Elliott, Raghunathan and Li (2010), Mattei,
Li and Mealli (2013), Schwartz, Li and Mealli (2011)]. Throughout the discussion,
we use p(·|·) and θ ·|· to denote generic conditional distributions and the corre-
sponding parameters, respectively.

Nine quantities are associated with each unit: Yi(0), Yi(1), Wi(0), Wi(1), Ai(0),
Ai(1), Xi , Zi , Si . Among these, Si completely determines Zi ; the principal stratum
Gi = (Ai(0),Ai(1)) and Si completely determine (Wi(0),Wi(1)). Therefore, in-
ference for causal effects involves only Yi(0), Yi(1), Ai(0), Ai(1), Xi , Si , of which
four are observed: Si , Xi , Aobs

i = Ai(Zi), Y obs
i = Yi(Zi), and two are unobserved:

Amis
i = Ai(1 − Zi), Y mis

i = Yi(1 − Zi).
Bayesian inference considers the observed values to be realizations of ran-

dom variables and the unobserved values to be unobserved random variables.
Let p(Y(0),Y(1),A(0),A(1), X,S;Us0) denote the joint probability density func-
tion of these random variables for all units in Us0 . We assume this distribution is
unit-exchangeable, that is, it is invariant under a permutation of the unit indices.
Then, with essentially no loss of generality, by appealing to de Finetti’s theorem
[de Finetti (1937)], we can assume that there exists an unknown parameter vec-
tor θ , which is itself a random variable having a known prior distribution p(θ)
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such that

p
(
Y(0),Y(1),A(0),A(1),X,S;Us0

)

=
∫ ∏

i∈Us0

p
(
Yi(0), Yi(1),Ai(0),Ai(1),Xi , Si |θ)

p(θ) dθ .

Bayesian inference of the causal estimands, which are functions of Yi(z)’s and
Ai(z)’s, centers around deriving the posterior distribution for the parameter vector
of their distribution, denoted by θY,G. Under Assumption 4, and assuming the pa-
rameters governing the distributions of the covariates, the forcing variable and the
potential outcomes are a priori distinct and independent, the posterior distribution
of θY,G can be written as follows:

p
(
θY,G|Yobs,Aobs,X,S;Us0

)
∝ p(θY |G) × p(θG)(6)

× ∏
i∈Us0

[∫ ∫
p

(
Yi(0), Yi(1)|Gi,Xi; θY |G

)
p(Gi |Xi; θG)dY mis

i dAmis
i

]
.

The above decomposition suggests that two models need to be specified for
model-based inference: (i) the model for potential outcomes conditional on prin-
cipal strata and covariates, and (ii) the model for principal strata conditional on
covariates, as well as the prior distribution for the parameters, p(θY,G), with
θY,G = (θG, θY |G).

Let πi,g = Pr(Gi = g|Xi; θG) and fi,gz = p(Yi(z)|Gi = g,Xi; θY |G). Then the
posterior distribution of θY,G given the observed data can be written as follows:

p
(
θY,G|Yobs,Aobs,X,S;Us0

)
∝ p(θY,G) × ∏

i∈Us0 :Si>s0,A
obs
i =0

(πi,CAfi,CA,0 + πi,NAfi,NA)(7)

× ∏
i∈Us0 :Si>s0,A

obs
i =1

πi,AAfi,AA,0 × ∏
i∈Us0 :Si≤s0,A

obs
i =0

πi,NAfi,NA

× ∏
i∈Us0 :Si≤s0,A

obs
i =1

(πi,AAfi,AA,1 + πi,CAfi,CA,1),

where fi,NA = fi,NA,0 = fi,NA,1 by the exclusion restriction (Assumption 6). The
likelihood function, specified by the four products, does not depend on the asso-
ciation between the potential outcomes Yi(0) and Yi(1). Therefore, the posterior
distribution of the association parameters equal their prior distribution as long as
the association parameters are a priori independent of the other parameters, as we
assume henceforth. The population-average causal estimands τAA,s0 , τCA,s0 and
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τs0 are functions of the parameter vector θY,G, which is free of the association pa-
rameters, therefore, inference for them does not involve the association parameters
[also see discussion in Imbens and Rubin (1997)]. Inference for sample-average
causal estimands for the units in the study, on the other hand, does generally in-
volve the association parameters. In our application inference for sample-average
causal estimands is drawn under the assumption that for each unit i, potential out-
comes, Yi(0) and Yi(1), are independent conditional on Xi and θ .

Posterior inference of θY,G can be obtained using Gibbs sampling with a
data augmentation step to impute the missing Amis

i , iteratively drawing from
the two posterior predictive distributions, p(θY,G|Yobs,Aobs,Amis,X,S;Us0) and
p(Amis|Yobs,Aobs,X,S, θY,S;Us0).

Specification of πi,g, fi,gz and the corresponding prior to posterior computation
depends on the specific application. Details of the models and computation in our
application will be provided in Section 5. As a general guideline, we recommend
to specify πi,g and fi,gz conditional on both covariates X and the forcing variable
S, even though equation (6) suggests conditioning on S is not required. Indeed,
if the true subpopulations Us0 were known, in theory, we would not need to ad-
just for S, because local randomization guarantees that for units in Us0 values of
the forcing variable falling above or below the threshold are independent of the
potential outcomes. However, in practice, the true subpopulations Us0 are usually
unknown and once a subpopulation has been selected, that is, once a value for h,
say h∗, has been chosen, there may be some units with a realized value of S be-
tween s0 − h∗ and s0 + h∗ who do not belong to Us0 . For these units there may be
a relationship between the forcing variable and potential outcomes, and these po-
tential dependences need to be modeled. Specifically, systematic differences in the
forcing variable S that, by definition, occur between eligible and ineligible units
may affect inference in the presence of students who do not belong to Us0 .

5. Evaluation of Italian university grants.

5.1. Data. We apply the proposed method to the data from the cohort of first-
year students enrolled in 2004 to 2006 at University of Pisa and University of
Florence. For each student, information on grant application status (Aobs

i ), grant
receipt status (W obs

i ) at the beginning of the academic year, dropout status at the
end of the academic year, and covariates (Xi) is obtained from the ministry of
education and university administrative records. The forcing variable S is a com-
bined economic measure of each student, calculated from one’s income tax return
and property adjusted for family size based on a formula that is typically not fully
known to the students. In all three years, the threshold of eligibility is s0 = 15,000
euros. Thus, the eligibility status (Z) is also observed. Typically, students need
support from fiscal experts to compute their value of S, and the income revenue
authority conducts random inspections to verify that the official tax returns are re-
ported. These factors make it extremely difficult, if not impossible, for students
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TABLE 1
Summary statistics of the first-year students enrolled in 2004–2006 at Universities of Pisa and

Florence, for the students with Si ∈ (14,000,16,000) euros (i.e., h = 1000, s0 = 15,000)

Z = 0 Z = 1

Variable Aobs = 0 Aobs = 1 Aobs = 0 Aobs = 1

Sample Size 657 304 703 444
Dropout 0.36 0.50 0.35 0.36
S (euros) 15,495 15,509 14,504 14,499
Female 0.59 0.61 0.60 0.55
HS grade 80.80 84.35 80.17 84.47
University (Pisa) 0.37 0.51 0.37 0.51

to manipulate the value of S in order to end up on the right side of the threshold.
Therefore, we argue that the local randomization assumption is reasonable here.
Ineligible students apply either because they are not fully aware of their eligibility
status or because they hope that their application will be still considered because
of extra funding or other considerations.

Covariates include sex, high school grade, high school type (4 categories), major
in university (6 categories), indicator of year of enrollment (2004, 2005, 2006) and
indicator of university (Pisa vs. Florence). The data only include students who had
a high school grade of at least 70/100 and applied either for a grant or for a reduc-
tion of tuition fee. Summary statistics of important variables for the students with
S within 1000 euros of the threshold are given in Table 1. An unadjusted compari-
son would suggest that the applicants have higher high-school grades, which is an
important indicator of a student’s academic performance, but also higher dropout
rate regardless of their eligibility status.

Application rate and dropout rate as a function of S among the students are
given in Figure 1. The overall dropout rate is high, consistently between 30% to
50% regardless of the economic measure. From the fitted lines using local logistic
polynomial models of order 3 on the two sides of the threshold, discontinuity is
clearly visible in both application rate and dropout rate at the threshold. As the
economic measure increases, application rate steadily decreases, while the trend
in dropout rate has a concave change at the threshold, increasing on the left of the
threshold and decreasing on the right.

5.2. Selection of the subpopulation. We apply the approach discussed in Sec-
tion 3.3 to find subpopulations of units where our RD assumptions hold. Specif-
ically, we use a hierarchical Bayesian model for assessing the balance of the
covariates between eligibility groups. We specify probit models for binary vari-
ables, conditional probit models for categorical variables, and Gaussian models
for continuous variables. Formally, we assume that Xj ∼ N(γ0j + γ1jZi, σ

2
j ) if
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FIG. 1. Application rate (a) and dropout rate (b) as a function of the forcing variable for the
first-year students in Universities of Florence and Pisa in 2004–2006. The smoothed lines are esti-
mated using polynomial logistic regression models (of order 3) on each side of the threshold sepa-
rately; each point is calculated from the units within a binwidth of 50 euros.

Xj is continuous, and Pr(Xij = 1) = Pr(X∗
ij > 0) with X∗

ij ∼ N(γ0j + γ1jZi,1)

if Xj is binary. If Xj is a categorical variable taking on K values, we assume that

Pr(Xij = 1) = Pr(X∗(1)
ij ≤ 0), and Pr(Xij = k) = Pr(

⋂k−1
�=1{X∗(�)

ij > 0}∩X
∗(k)
ij ≤ 0)

for k = 2, . . . ,K − 1, where X
∗(k)
ij ∼ N(γ

(k)
0j + γ

(k)
1j Zi,1), k = 1, . . . ,K − 1, inde-

pendently. Let γ 0j = (γ
(1)
0j , . . . , γ

(K−1)
0j )′ and γ 1j = (γ

(1)
1j , . . . , γ

(K−1)
1j )′.

We specify the following prior distributions for the model parameters. The
variances of the continuous variables have an inverse-Gamma distribution: σ 2

j ∼
IG(a, b). The γ0’s have Gaussian prior distributions: for continuous and binary
variables, γ0j ∼ N(μγ0, σ

2
γ0

), and for categorical variables, γ 0j ∼ N(μγ0uK−1,

σ 2
γ0

IK−1) with uK−1 and IK−1 being the K − 1-dimensional vector of ones and
the identity matrix of order K − 1, respectively. Further, for continuous and binary
variables, parameters γ1j are the difference between means/proportions for eligi-
ble and ineligible units. If γ1j = 0, then Xj has the same distribution for eligible
and ineligible units. For a categorical variable taking on K values, the proportion
of units in each category is the same for eligible and ineligible units if and only if
γ

(k)
1j = 0 for each k = 1, . . . ,K − 1. We assign positive probability to these possi-

bilities using the following mixture prior distributions:

γ1j ∼ πγ1δ0(γ1j ) + (1 − πγ1)N
(
μγ1, σ

2
γ1

)
and

γ 1j ∼
K−1∏
k=1

[
πγ1δ0

(
γ

(k)
1j

) + (1 − πγ1)N
(
μγ1, σ

2
γ1

)]
,

where δ0(·) is the Dirac delta distribution.
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For the hyperparameters, we assign the following prior distributions: μγ0 ∼
N(μ

γ0
, σ 2

γ0
); σ 2

γ0
∼ IG(aγ0

, bγ0
); μγ1 ∼ N(μ

γ1
, σ 2

γ1
); σ 2

γ1
∼ IG(aγ1

, bγ1
); and

πγ1 ∼ Beta(aπ , bπ).
We implement the Bayesian model for assessing the balance of covariates on the

two sides of the threshold for various subpopulations defined by different values
of h. Details of the Monte Carlo Markov Chain (MCMC) for the posterior com-
putation are relegated to the supplementary article [Li, Mattei and Mealli (2015)].
Table 2 shows the posterior probabilities that the covariates have the same distri-
bution between eligible and ineligible students for the subpopulations defined by
h = 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000, 5000. These values show
that the probability of the pre-assignment variables being well balanced is high for
subpopulations defined by values of h strictly lower than 1500: the vast majority
of these probabilities are larger than or close to 0.8. Note that the probabilities are
in general lower among the covariates of “major in university,” suggesting these
covariates may not be as balanced as other covariates. Nonetheless, nearly all these
probabilities are still higher 0.6 with a single lowest probability being 0.565 (Tech
major in university). For larger subpopulations, some covariates, such as the “in-
dicator of university,” are clearly unbalanced.

Given that the risk that a chosen interval around the threshold defines a sub-
population that includes units not belonging to the target subpopulation, Us0 , is not
zero, in order to account for the presence of these units, we conduct the subsequent
analyses conditioning on both covariates and the realized values on the forcing
variable. Also, we evaluate the robustness of our results conducting analyses using
various values of h (h = 500,1000,1500).

5.3. Parametric models. For the units within the selected subpopulation Us0 ,
we assume parametric models for the outcome (fgz) and principal strata (πg). Al-
ternative models, such as Student-t models [Chib and Jacobi (2015)] and Bayesian
nonparametric models [Schwartz, Li and Mealli (2011)], can be considered. Note
that although we are using parametric models, identification does not rely on para-
metric assumptions. The model for the principal strata of application consists of
two conditional probit models:

πi,AA = Pr
(
G∗

i (AA) ≤ 0
)
,

πi,NA = Pr
(
G∗

i (AA) > 0 and G∗
i (NA) ≤ 0

)
,

πi,CA = 1 − πi,AA − πi,NA,

where

G∗
i (AA) = αAA,0 + α

(S)
AAS∗

i + X′
iα

(X)
AA + εAA,i ,

G∗
i (NA) = αNA,0 + α

(S)
NAS∗

i + X′
iα

(X)
NA + εNA,i ,

with εAA,i ∼ N(0,1), εNA,i ∼ N(0,1) independently, and S∗
i = (Si − s0)/1000.
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TABLE 2
Posterior probabilities that the covariates have the same distribution between eligible and ineligible students for various subpopulation

h = 250 h = 500 h = 750 h = 1000 h = 1500 h = 2000 h = 2500 h = 3000 h = 4000 h = 5000
Variable (n = 528) (n = 1042) (n = 1577) (n = 2108) (n = 3166) (n = 4197) (n = 5159) (n = 6113) (n = 8061) (n = 9846)

Sex 0.955 0.950 0.960 0.962 0.977 0.970 0.991 0.960 0.968 0.797

High school type (Baseline: Other)
Humanity 0.951 0.952 0.949 0.955 0.979 0.970 0.965 0.986 0.953 0.962
Science 0.894 0.905 0.926 0.927 0.951 0.889 0.916 0.926 0.045 0.000
Tech 0.790 0.807 0.790 0.808 0.819 0.619 0.751 0.793 0.003 0.000

HS grade 0.955 0.958 0.972 0.978 0.971 0.981 0.987 0.990 0.984 0.986

Year (Baseline: 2004)
2005 0.932 0.964 0.954 0.926 0.973 0.977 0.976 0.983 0.861 0.918
2006 0.883 0.918 0.914 0.909 0.959 0.934 0.952 0.970 0.807 0.884

University (Pisa) 0.950 0.916 0.971 0.983 0.686 0.097 0.225 0.300 0.082 0.000

Major in university (Baseline: Other)
Humanity 0.946 0.899 0.689 0.797 0.798 0.932 0.958 0.990 0.964 0.946
Science 0.894 0.857 0.660 0.751 0.783 0.901 0.929 0.966 0.911 0.913
Social science 0.798 0.821 0.624 0.713 0.758 0.864 0.913 0.953 0.878 0.858
Bio-Med 0.728 0.776 0.604 0.677 0.736 0.837 0.889 0.926 0.839 0.832
Tech 0.632 0.634 0.565 0.624 0.699 0.794 0.863 0.876 0.719 0.453
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Dropout, the primary outcome in our application, is binary. Therefore, we as-
sume the following generalized linear outcome model with a probit link [Albert
and Chib (1993)]:

Pr
(
Yi(z) = 1|Gi = g,Si,Xi

) = 

(
β0,g,z + β(S)

g,zS
∗
i + X′

iβ
(X)
g,z

)
.

We impose prior equality of the slope coefficients in the outcome regressions:
β(X)

g,z ≡ β(X) for g = AA,CA,NA and z = 0,1.

Define αg = [αg0, α
(S)
g ,α

(X)
g ]′, g = AA,NA, and βg,z = [β0,g,z, β

(S)
g,z ]′, g =

AA,CA,NA; z = 0,1. By Assumption 6, βNA,0 = βNA,1. We assume that pa-
rameters are a priori independent and use multivariate normal prior distributions:

αg ∼ N
(
μ

αg
;σ 2

αg
I
)
, βg,z ∼ N

(
μ

βg,z
;σ 2

βg,z
I
)
, β(X) ∼ N

(
μ

β
;σ 2

βI
)
,

where I is the identity matrix. We specify flat priors setting the hyperparameters as
follows: setting μ

αg
, μ

βg,z
, μ

β
to be null vectors; and setting large prior variances

σ 2
αg

= 10, σ 2
βg,z

= 10, σ 2
β = 10 for g = AA,CA,NA; z = 0,1.

5.4. Posterior computation. Upon obtaining the posterior draws of the param-
eters, we calculate three estimates for each causal estimand: population-average
effect within Us0 and at s0, and sample-average effect within Us0 . The population-
average effects within Us0 are calculated averaging the model-based dropout pro-
portions over the empirical distribution of the pre-assignment variables and the
forcing variable:

∑
i∈Us0

πi,g
(β0,g,1 + β
(S)
g,1S

∗
i + X′

iβ
(X))∑

i∈Us0
πi,g

−
∑

i∈Us0
πi,g
(β0,g,0 + β

(S)
g,0S

∗
i + X′

iβ
(X))∑

i∈Us0
πi,g

,

for g = AA,CA, {AA,CA}. The population-average effects at s0 are calculated in
a similar way, setting S∗

i = 0 (i.e., Si = s0) for each i. To obtain the sample-average
estimates, we compute the posterior predictive distributions of the potential out-
comes for each student i in Us0 .

5.5. Results. We conducted Bayesian analysis using h = 500, 1000, 1500.
Posterior inference is based on 5000 draws from the posterior distributions sim-
ulated using single chains, which were run for 125,000 iterations. To assess
convergence of iterative simulation methods, we calculated the Cramer–von-Mises
statistic to test the null hypothesis that the sampled values come from a station-
ary distribution and visually inspected the trace-plots of the causal parameters
(functions of model parameters). We also run multiple MCMC chains from dif-
ferent starting values from each h to evaluate the mixing of the chains using the
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TABLE 3
Posterior median and 95% credible intervals of principal strata proportion and super-population
and finite-sample causal effects on dropout for always-applicants (τAA,s0 ), compliant-applicants

(τCA,s0 ) and their union (τs0 ), for the subpopulation within different bandwidths h

around the threshold

Population-average Sample-average Population-average at s0

h Median 95% CI Median 95% CI Median 95% CI

h = 500
Pr(Gi = AA) 0.323 (0.294;0.355) 0.322 (0.309;0.336) 0.320 (0.291;0.352)

Pr(Gi = CA) 0.060 (0.031;0.105) 0.041 (0.021;0.090) 0.058 (0.030;0.094)

Pr(Gi = NA) 0.616 (0.570;0.650) 0.637 (0.590;0.651) 0.621 (0.583;0.654)

τAA,s0 −0.153 (−0.313;−0.030) −0.152 (−0.307;−0.038) −0.154 (−0.298;−0.030)

τCA,s0 0.045 (−0.170;0.497) 0.074 (−0.256;0.545) 0.039 (−0.169;0.474)

τs0 −0.116 (−0.253;−0.005) −0.120 (−0.265;−0.009) −0.120 (−0.245;−0.012)

h = 1000
Pr(Gi = AA) 0.336 (0.312;0.365) 0.333 (0.318;0.354) 0.335 (0.311;0.363)

Pr(Gi = CA) 0.043 (0.002;0.086) 0.027 (0.002;0.075) 0.043 (0.001;0.075)

Pr(Gi = NA) 0.623 (0.584;0.652) 0.640 (0.599;0.645) 0.625 (0.594;0.656)

τAA,s0 −0.161 (−0.273;−0.052) −0.161 (−0.270;−0.057) −0.154 (−0.259;−0.052)

τCA,s0 0.028 (−0.745;0.828) 0.031 (−0.778;0.871) 0.010 (−0.918;0.933)

τs0 −0.132 (−0.242;−0.021) −0.139 (−0.247;−0.034) −0.128 (−0.229;−0.020)

h = 1500
Pr(Gi = AA) 0.332 (0.315;0.349) 0.332 (0.326;0.337) 0.329 (0.312;0.346)

Pr(Gi = CA) 0.042 (0.035;0.077) 0.027 (0.020;0.066) 0.042 (0.036;0.062)

Pr(Gi = NA) 0.625 (0.591;0.642) 0.642 (0.605;0.644) 0.628 (0.606;0.646)

τAA,s0 −0.183 (−0.286;−0.077) −0.187 (−0.291;−0.085) −0.153 (−0.247;−0.063)

τCA,s0 0.010 (−0.304;0.797) 0.011 (−0.207;0.928) 0.000 (−0.154;0.951)

τs0 −0.153 (−0.256;−0.040) −0.165 (−0.266;−0.057) −0.130 (−0.217;−0.019)

Gelman–Rubin statistic [Gelman and Rubin (1992)]. The results provided no evi-
dence against convergence.4

Table 3 shows posterior medians and 95% credible intervals for the principal
strata proportions under monotonicity and for the causal parameters τAA,s0, τCA,s0,

τs0 , for bandwidths ranging from 500 to 1500 euros. The results are robust across
different bandwidths. The estimated proportions of the principal strata are very
similar across different h: there are more than 61% never-applicants, more than

4We also conducted Bayesian analysis using alternative models with different order polynomials
in S as well as models conditioning only on S (without using the pretreatment variables) and null
models, conditioning on neither S nor the pretreatment covariates. Consistent with results found
in Mealli and Rampichini (2012), higher order polynomials do not lead to substantial inferential
benefits, and posterior distributions of the causal effects of interest did not substantially change with
the alternative models, so here we only show the results based on models conditional on both S and
the pretreatment covariates.
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32% always-applicants and less than 6.5% compliant-applicants. The three esti-
mates for the same causal parameter are also similar. The posterior distributions of
the causal effect for always-applicants, τAA,s0 , and the union of always-applicants
and compliant-applicants, τs0 , are centered on negative values, and the 95% credi-
ble intervals do not cover 0, irrespective of the choice of the bandwidth.

For instance, consider the finite-sample causal effects for the subpopulation
within h = 1000 euros around the threshold (middle block of columns in Ta-
ble 3). The estimated τs0 suggests a 13.9% [95% CI: (3.4%;24.7%)] reduction
in dropout rate for the students who receive the grants. The estimated τAA,s0

suggests an even stronger positive effect among the always-applicants: a 16.1%
[95% CI: (5%;27%)] reduction in dropout rate. In fact, τs0 , which is a weighted
average of the effects for always-applicants and compliant-applicants, appears
to be diluted by the somewhat surprising small and negative effect among the
compliant-applicant. However, the data do not seem to contain much information
on compliant-applicants (the estimated proportion of compliant-applicants is very
small, less than 5%), and the effects were estimated with large uncertainties.

These results suggest that the current Italian university grants are effective in
reducing dropout from universities among students from families with annual eco-
nomic measure around 15,000 euros, and also reveal that the effects are heteroge-
neous among always-applicants and compliant-applicants. From a cost-effective
perspective, our results suggest that it might be beneficial for the education ad-
ministration to weaken the eligibility criteria (i.e., increase the threshold) to allow
more applicants and thus always-applicants to get the grant. The combination of a
low percentage of compliant-applicants and a high percentage of always-applicants
suggests that most students with the economic measure being around the thresh-
old who intend to apply for the grants would apply irrespective of their eligibility.
From a policy perspective, this implies that the educational administration should
better explain the rule of eligibility to potential applicants to discourage ineligible
students from applying, and thus reduce unnecessary efforts from these students
and the administration for processing these applications.

5.6. Posterior predictive model checking. Assessing the plausibility of model
assumptions is critical in model-based approaches. Model checking here is not
as crucial as in other model-based approaches, thanks to the randomization as-
sumption, but it is still prudent to check the model fit since there are uncertainties
in the selection of Us0 . We adopt Bayesian posterior predictive checks [Gelman,
Meng and Stern (1996)] to assess goodness of fit of our models in the applica-
tion. Posterior predictive checks evaluate goodness of fit of models by measuring
the discrepancy between the observed data and replicated data simulated from its
posterior predictive distribution. The particular procedure adopted here is similar
to that in Mattei, Li and Mealli (2013), Section 6. Specifically, we consider three
discrepancy measures aimed at assessing whether the model can preserve broad
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TABLE 4
Bayesian p-values of signal, noise and SNR under different h for

the model used in the application to Italian university grants

h Principal strata Signal Noise SNR

500 {CA} 0.095 0.630 0.094
{AA} 0.254 0.325 0.254

{AA,CA} 0.338 0.273 0.370

1000 {CA} 0.411 0.425 0.419
{AA} 0.400 0.444 0.473

{AA,CA} 0.493 0.335 0.518

{CA} 0.208 0.444 0.210
1500 {AA} 0.372 0.400 0.261

{AA,CA} 0.455 0.337 0.470

features of signal, noise and signal-to-noise ratio (SNR) in the dropout status dis-
tribution for compliant-applicants, always-applicants and the union of these two
principal strata, and calculate posterior predictive p-values (PPPVs) to summarize
discrepancies between the observed data and replicated data. Extreme (close to 0
or 1) PPPVs can be interpreted as evidence of lack of fit of the model in, at least
some aspects of, the observed data. Further details of the procedure are relegated
to the supplementary article [Li, Mattei and Mealli (2015)].

Table 4 shows the PPPVs for the model fit to the subpopulation with bandwidth
of 500, 1000 and 1500 euros, respectively. The PPPVs suggest good model fit for
all bandwidths, except for a slight under-fit for always-applicants in the subpopu-
lation with h = 500, which is possibly due to the small sample size. We have also
calculated the less conservative sampled posterior predictive p-values [Gosselin
(2011), Johnson (2007)] and obtained similar conclusions.

6. Discussion. Motivated by the evaluation of Italian university grants, we
propose a probabilistic formulation of the assignment mechanism for regression
discontinuity designs and develop a full Bayesian approach to draw causal infer-
ence within the framework of principal stratification. In particular, we illustrate
how to utilize information on application status to gain additional insights in pro-
gram evaluation. Applying the method to the data from two Italian universities,
we find that university grants reduce dropping out of higher education for students
from low-income families and the effect size is especially pronounced for moti-
vated students (always-applicants). Because the amount of grants is the same for
all awardees in the data, we were not able to study the dose-response relation be-
tween the amount of grants and dropout, which is a topic of potentially important
policy implications that merits further investigation.

The core of our approach is the local randomization assumption, which is intrin-
sically nontestable. Therefore, it may be worthwhile to conduct sensitivity analyses
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to assess the robustness of the results with respect to violations of local randomiza-
tion. To this end, we conduct further analyses deriving the posterior distributions
of the causal effects under three additional model specifications: (i) a model where
we specify the model for principal strata, πi,g , and the conditional model for po-
tential outcomes given principal strata, fi,gz, conditioning on neither the forcing
variable nor the pretreatment variables; (ii) a model where we specify πi,g and
fi,gz conditioning only on the forcing variable, without including the pretreatment
variables; and (iii) a model where we specify πi,g and fi,gz conditioning only on
the pretreatment variables, without including the forcing variable. Under local ran-
domization, adjusting inference for either the forcing variable or the pretreatment
variables should not be required, therefore, we expect that results are similar across
different model specifications. Indeed, results, shown in the supplementary article
[Li, Mattei and Mealli (2015)], are robust across different models, suggesting that
causal inference under the local randomization assumption is robust and credible.

A fundamental distinction between our approach and the previous local-
regression based RD approaches lies in the role of the forcing variable in the
analysis. Specifically, previous approaches generally view the forcing variable as
a pre-assignment covariate rather than a random variable as in our approach. As
a consequence, the standard overlap assumption, which requires that there are
both treated and control units for all values of the covariates including the forcing
variable, is violated. Violation of the overlap assumption implies that the condi-
tional independence assumption, which trivially holds in RD settings, cannot be
exploited directly. Instead some kind of extrapolation is required and, in order
to avoid that estimates heavily rely on extrapolation, previous analyses focus on
causal effects of the treatment for units at the threshold. Smoothness assumptions,
for example, continuity of conditional regression functions of potential outcomes
given the forcing variable, are usually assumed to draw inference on those causal
effects. Local randomization and continuity are different assumptions, leading to
different causal estimands: under continuity assumptions, units with a realized
value of the forcing variable around the threshold are used to draw inference on
causal effects for units at the threshold, whereas under local randomization, infer-
ence is drawn on causal effects for units around the threshold.

In the evaluation of Italian university grants, student’s academic performance
(measured by total credits taken or passing rate of exams) is also of great interest
in policy. As illustrated by Mattei, Li and Mealli (2013) and Mercatanti, Li and
Mealli (2015), jointly modeling two outcomes, dropout and academic performance
in this case, would be worthwhile for both practical and inferential purposes.

After the first year, the Italian university grant assignment rule combines se-
quential and RD designs [Cellini, Ferreira and Rothstein (2010)]: grants are allo-
cated both on the basis of students’ family economic indicator and on the ground of
their academic performance (exam scores above a certain threshold). Such com-
plex assignment mechanisms pose challenges to causal inference, requiring new
structures and assumptions; meanwhile, they also present great opportunities for
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extending the existing framework to more general RD settings. One specific di-
rection of our future research is to develop methods that combine Bayesian tools
for RDs and dynamic treatment regimes [Murphy (2003), Zajonc (2012)] in the
presence of multiple forcing variables [Imbens and Zajonc (2011)].
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SUPPLEMENTARY MATERIAL

Supplement to “Evaluating the causal effect of university grants on stu-
dent dropout: Evidence from a regression discontinuity design using principal
stratification” (DOI: 10.1214/15-AOAS881SUPP; .pdf). We describe in detail the
Bayesian approach we used to select the subpopulations, the Markov Chain Monte
Carlo (MCMC) methods used to simulate the posterior distributions of the param-
eters of the models, the posterior predictive checks, and the sensitivity analysis
regarding local randomization described in Section 6.
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