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Abstract. In this paper, we prove pathwise uniqueness for stochastic degenerate systems with a Hölder drift, for a Hölder exponent
larger than the critical value 2/3. This work extends to the degenerate setting the earlier results obtained by Zvonkin (Mat. Sb.
(N.S.) 93(135) (1974) 129–149, 152), Veretennikov (Mat. Sb. (N.S.) 111(153) (1980) 434–452, 480), Krylov and Röckner (Probab.
Theory Related Fields 131(2) (2005) 154–196) from non-degenerate to degenerate cases. The existence of a threshold for the
Hölder exponent in the degenerate case may be understood as the price to pay to balance the degeneracy of the noise. Our proof
relies on regularization properties of the associated PDE, which is degenerate in the current framework and is based on a parametrix
method.

Résumé. Dans ce travail, on montre qu’un système hypoelliptique, composé d’une composante diffusive et d’une composante
totalement dégénérée, est fortement résoluble lorsque l’exposant de la régularité Hölder de la dérive par rapport à la composante
dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (Mat. Sb. (N.S.)
93(135) (1974) 129–149, 152), Veretennikov (Mat. Sb. (N.S.) 111(153) (1980) 434–452, 480), Krylov et Röckner (Probab. Theory
Related Fields 131(2) (2005) 154–196). L’apparition d’un seuil critique pour l’exposant peut-être vue comme le prix à payer pour
la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l’EDP associée, qui est dégénérée, et est basée
sur une méthode parametrix.
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1. Introduction

Let T be a positive number and d be a positive integer, we consider the following R
d ×R

d system for any t in [0, T ]:{
dX1

t = F1(t,X
1
t ,X

2
t )dt + σ(t,X1

t ,X
2
t )dWt, X1

0 = x1,

dX2
t = F2(t,X

1
t ,X

2
t )dt, X2

0 = x2,
(1.1)

where x1, x2 belong to R
d , (Wt , t ≥ 0) is a standard d-dimensional Brownian motion defined on some filtered proba-

bility space (�,F,P, (Ft )t≥0) and F1,F2, σ : [0, T ]×R
d ×R

d → R
d ×R

d ×Md(R) (the set of real d ×d matrices)
are measurable functions. The diffusion matrix a := σσ ∗ is supposed to be uniformly elliptic. The notation “∗” stands
for the transpose.

In this paper, we investigate the well posedness of (1.1) outside the Cauchy–Lipschitz framework. Notably, we are
interested in the strong posedness, i.e. strong existence and uniqueness of a solution. Strong existence means that there
exists a process (X1

t ,X
2
t ,0 ≤ t ≤ T ) adapted to the filtration generated by the Brownian motion (Wt ,0 ≤ t ≤ T ) which

satisfies (1.1). Strong uniqueness means that if two processes satisfy this equation with the same initial conditions,
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their trajectories are almost surely indistinguishable. Here, we show that under a suitable Hölder assumption on the
drift coefficients and Lipschitz condition on the diffusion matrix, the strong well-posedness holds for (1.1).

It may be a real challenge to prove the existence of a unique solution for a differential system without Lipschitz
conditions on the coefficients. For example, in [18] Zhang showed that SDE with Sobolev coefficients admits a unique
generalized solution (as Lebesgue almost everywhere stochastic flow, see Definition 2.1 in [19]) under integrability
conditions on the drift, the divergence of the drift and the diffusion coefficient. The case of drift with divergence of
polynomial growth being also handled.

Concerning strong solutions, the first result in this direction is due to Zvonkin. In [20], the author showed that the
strong well-posedness holds for the one-dimensional system

Yt =
∫ t

0
b(s,Ys)ds + Wt, Y0 = y, t ∈ [0, T ], (1.2)

for a measurable function b in L
∞. Then, Veretennikov [16] generalized this result to the multi-dimensional case.

Krylov and Röckner showed in [12] the strong well-posedness for b in L
p

loc,p > d and Zhang in [19] handled the
case of non-constant, Sobolev and non-degenerate diffusion coefficient. Finally, when b is a measurable and bounded
function, Davie showed in [2] that for almost every Brownian path, there exists a unique solution for the system (1.2).
We emphasize that this result implies the strong uniqueness, but the converse is not true. Indeed, in such a case, there
exists an a priori set �′ ⊂ � with P(�′) = 1 such that for all ω in �′ the solution of (1.2) is unique.

All these results rely on the regularization of differential systems by adding a non-degenerate noise, and we refer
to [6] for a partial review on this subject. The proofs of such results rely on the deep connection between SDEs and
PDEs (see [1] or [9] for a partial review in the elliptic and parabolic cases). The generator associated to the Markov
process Y is a linear partial differential operator of second order (usually denoted by L) with the transition density of
Y as fundamental solution. As explained by Fedrizzi and Flandoli in [5]: “if we have a good theory for the PDE:

∂

∂t
u +Lu = �, on [0, T ], uT = 0, (1.3)

where the source term � has the same regularity as the drift, then, we have the main tools to prove strong uniqueness”.
In (1.1), the noise added is completely degenerate w.r.t. the component X2. This sort of system has also been stud-

ied by Veretennikov in [17] but without considering any regularization in the degenerate direction. Indeed, the author
showed that strong well-posedness holds when the drift is measurable and bounded and the diffusion matrix is Lips-
chitz w.r.t. the non-degenerate component X1 and when both the drift and the diffusion matrix are twice continuously
differentiable functions with bounded derivatives w.r.t. the degenerate component.

In this paper, we show that the noise regularizes, even in the degenerate direction, by means of the random drift.
Unfortunately, there is a price to pay to balance the degeneracy of the noise. First, the drift must be at least 2/3-Hölder
continuous w.r.t. the degenerate component. We do not know how sharp is this critical value, but it is consistent with
our approach. Secondly, the drift F2 of the second component must be Lipschitz continuous w.r.t. the first component
and its derivative in this direction has to be uniformly non-degenerate: this allows the noise to propagate through the
system and then the drift to regularize.

Our proof also relies on regularization properties of the associated PDE, and the aforementioned “good theory” is
here a “strong theory”: a Lipschitz bound on the solution of (1.3) and on its derivative w.r.t. the first component. We
emphasize that, in our case, the generator L is given by: for all ψ in C1,2,1([0, T ] ×R

d ×R
d ,Rd)1

Lψ(t, x1, x2) = 1

2
Tr

(
a(t, x1, x2)D

2
x1

ψ(t, x1, x2)
) + [

F1(t, x1, x2)
] · [Dx1ψ(t, x1, x2)

]
+ [

F2(t, x1, x2)
] · [Dx2ψ(t, x1, x2)

]
, (1.4)

where Tr(a) stands for the trace of the matrix a, “·” denotes the standard Euclidean inner product on R
d and where

for any z in R
d , the notation Dz means the derivative w.r.t. the variable z. Here, the crucial point is that the operator

is not uniformly parabolic.

1That is, continuously differentiable w.r.t. the first variable, twice continuously differentiable w.r.t. the second variable and once continuously
differentiable w.r.t. the third variable.
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When the coefficients are smooth and when the Lie algebra generated by the vector fields spans the whole space,
it is known that such an operator admits a smooth fundamental solution (see [10]): it is said to be hypoelliptic and
the coefficients are said to satisfy a Hörmander condition. The assumption on the uniform non-degeneracy of the
derivative of the drift F2 w.r.t. x1 together with the uniform ellipticity of the matrix σ can be understood as a sort of
weak Hörmander condition.

This particular form of degeneracy is a non-linear generalization of Kolmogorov’s degeneracy, in reference to the
first work [11] of Kolmogorov in this direction. Degenerate operators of this form have been studied by many authors
see e.g. the work of Di Francesco and Polidoro [4], and Delarue and Menozzi [3]. We also emphasize that, in [14],
Menozzi deduced from the regularization property exhibited in ([3]) the well weak posedness of a generalization of
(1.1). Nevertheless, to the best of our knowledge, there does not exist a strong theory, in the sense defined above, for
the PDE (1.3) when L is defined by (1.4). We investigate it by using the so called parametrix approach (see [8] for
partial review in the elliptic setting).

To conclude this introduction, we just come back to the regularity assumed on the drift of the non-degenerate com-
ponent. In comparison with the works of Veretennikov [16,17], Krylov and Röckner [12], and Flandoli and Fedrizzi
[5], asking for F1 to be only in L

p , p > d might appear as the right framework. Since the parametrix is a perturbation
method and since we are interested in L

∞ estimates, we suppose the drift F1 to be Hölder continuous w.r.t. x1.

1.1. Organization of this paper

Section 1.2 states useful notations. In Section 1.3 we give the detailed assumptions and the main result of this paper:
strong existence and uniqueness for (1.1). In Section 1.4, we expose the strategy to prove this result. It is based on the
regularization properties of the associated PDE which are, in fact, the main contribution of this work. These properties
are given in Section 1.5. Finally, our main result is proved in Section 1.6.

The remainder of this paper is dedicated to the proof of the regularization properties of the associated PDE.
We present in Section 2 the linear and Brownian heuristic. It explains how the proof of the regularization properties

in a simple case works and allows to understand our assumptions and how the proof in the general case can be
achieved. Then, we give in Section 3 the mathematical tools, and the proof of the regularization properties of the PDE
is given in Section 4. This is the technical part of this paper.

1.2. Notations

In order to simplify the notations, we adopt the following convention: x, y, z, ξ , etc. denote the 2d-dimensional
real variables (x1, x2), (y1, y2), (z1, z2), (ξ1, ξ2), etc. Consequently, each component of the d-dimensional variables
xk, k = 1,2 is denoted by xkl, l = 1, . . . , d . We denote by g(t,Xt ) any function g(t,X1

t ,X
2
t ) from [0, T ] ×R

d ×R
d

to R
N,N ∈ N. Here, Xt = (X1

t ,X
2
t ) and then F(t,Xt ) is the R

2d valued function (F1(t,X
1
t ,X

2
t ),F2(t,X

1
t ,X

2
t ))

∗.
We rewrite the system (1.1) in a shortened form:

dXt = F(t,Xt )dt + Bσ(t,Xt )dWt, (1.5)

where B is the 2d × d matrix: B = (Id,0Rd×Rd )∗. “Id” stands for the identity matrix of Md(R), the set of real d × d

matrices. When necessary, we write (X
t,x
s )t≤s≤T the process in (1.1) which starts from x at time t , i.e. such that

X
t,x
t = x.
We recall that the canonical Euclidean inner product on R

d is denoted by “·”. We denote by GLd(R) the set of
d × d invertible matrices with real coefficients and by φ a measurable function from [0, T ] × R

d × R
d to R

2. Each
one-dimensional component of this function is denoted by φi , i = 1,2 and plays the role of one coordinate of Fi .
Hence, φi satisfies the same regularity as Fi given latter. We recall that a denotes the square of the diffusion matrix σ ,
a := σσ ∗. Subsequently, we denote by c, C, c′, C′, c′′ etc. a positive constant, depending only on known parameters
in (H), given just below, that may change from line to line and from an equation to another.

We denote by C1,2,1 the space of functions that are continuously differentiable w.r.t. the first variable, twice con-
tinuously differentiable w.r.t. the second variable and once continuously differentiable w.r.t. the third variable.

The notation D stands for the total space derivative. For any function from [0, T ] × R
d × R

d we denote by D1
(resp. D2) the derivative with respect to the first (resp. second) d-dimensional space component. In the same spirit,
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the notation Dz means the derivative w.r.t. the variable z. Hence, for all integer n, Dn
z is the nth derivative w.r.t. z and

for all integer m the n × m cross differentiations w.r.t. z, y are denoted by Dn
z Dm

y . Furthermore, the partial derivative
∂/∂t is denoted by ∂t .

1.3. Main result

Assumptions (H). We say that assumptions (H) hold if the following assumptions are satisfied:

(H1) Regularity of the coefficients. There exist 0 < β
j
i < 1, 1 ≤ i, j ≤ 2 and three positive constants C1,C2,Cσ

such that for all t in [0, T ] and all (x1, x2) and (y1, y2) in R
d ×R

d

∣∣F1(t, x1, x2) − F1(t, y1, y2)
∣∣ ≤ C1

(|x1 − y1|β1
1 + |x2 − y2|β2

1
)
,∣∣F2(t, x1, x2) − F2(t, y1, y2)

∣∣ ≤ C2
(|x1 − y1| + |x2 − y2|β2

2
)
,∣∣σ(t, x1, x2) − σ(t, y1, y2)

∣∣ ≤ Cσ

(|x1 − y1| + |x2 − y2|
)
.

Moreover, the coefficients are supposed to be continuous w.r.t. the time and the exponents β2
i , i = 1,2 are

supposed to be strictly greater than 2/3. Thereafter, we set β1
2 = 1 for notational convenience.

(H2) Uniform ellipticity of σσ ∗. The function σσ ∗ satisfies the uniform ellipticity hypothesis:

∃� > 1,∀ζ ∈ R
2d, �−1|ζ |2 ≤ [

σσ ∗(t, x1, x2)ζ
] · ζ ≤ �|ζ |2,

for all (t, x1, x2) ∈ [0, T ] ×R
d ×R

d .
(H3-a) Differentiability and regularity of x1 �→ F2(·, x1, ·). For all (t, x2) ∈ [0, T ] × R

d , the function F2(t, ·, x2) :
x1 �→ F2(t, x1, x2) is continuously differentiable and there exist 0 < α1 < 1 and a positive constant C̄2 such
that, for all (t, x2) in [0, T ] ×R

d and x1, y1 in R
d

∣∣D1F2(t, x1, x2) − D1F2(t, y1, x2)
∣∣ ≤ C̄2|x1 − y1|α1

.

(H3-b) Non-degeneracy of (D1F2)(D1F2)
∗. There exists a closed convex subset E ⊂ GLd(R) (the set of d × d invert-

ible matrices with real coefficients) such that for all t in [0, T ] and (x1, x2) in R
2d the matrix D1F2(t, x1, x2)

belongs to E . We emphasize that this implies that

∃�̄ > 1,∀ζ ∈ R
2d, �̄−1|ζ |2 ≤ [

(D1F2)(D1F2)
∗(t, x1, x2)ζ

] · ζ ≤ �̄|ζ |2,
for all (t, x1, x2) ∈ [0, T ] ×R

d ×R
d .

Remark 1. The reason for the existence of the critical value 2/3 for the Hölder regularity of the drift in (H1) and
the particular “convexity” assumption (H3-b) are discussed in Section 2. In the following, the sentence “known
parameters in (H)” refers to the parameters belonging to these assumptions.

The following Theorem is the main result of this paper and regards the strong well-posedness of the system (1.1).

Theorem 1.1. Under (H), strong existence and uniqueness hold for (1.1) for any positif T .

1.4. Strategy of proof

Let us expose the basic arguments to prove Theorem 1.1. Existence of a weak solution follows from a compactness
argument. Then, if the strong uniqueness holds, the strong existence follows. The main issue consists in proving the
strong uniqueness.

This works as follows: suppose that there exists a unique C1,2,1([0, T ] × R
d ×R

d ,Rd) solution u = (u1,u2)
∗ of

the linear system of PDEs:{
∂tui (t, x) +Lui (t, x) = Fi(t, x), for (t, x) ∈ [0, T ) ×R

2d ,
ui (T , x) = 0Rd , i = 1,2,

(1.6)
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then, thanks to Itô’s formula, for all t in [0, T ] we have that∫ t

0
F

(
s,Xx

s

)
ds = u

(
t,Xx

t

) − u(0, x) −
∫ t

0
Du

(
s,Xx

s

)
Bσ

(
s,Xx

s

)
dWs.

Thus, if the functions u and DuB = (D1u,0Rd×Rd )∗ are CT Lipschitz continuous, the drift
∫ t

0 F(s,Xx
s )ds is Lipschitz

continuous w.r.t. the argument Xx , with Lipschitz constant CT .
Now suppose that CT tends to 0 when T goes to 0. Uniqueness then follows by mean of classical and circular

arguments for T small enough. Since the strategy can be iterated, one can deduce strong uniqueness on any positive
interval.

The main issue here is then to obtain a strong theory for the PDE (1.6). The problem is that, to the best of our
knowledge, it is not known that this PDE admits a Lipschitz C1,2,1([0, T ] × R

d × R
d,Rd) solution under our weak

Hörmander assumptions. Nevertheless, in our analysis we do not need to obtain the existence of a regular solution,
but only the existence of the Lipschitz bounds for u and D1u depending only on known parameters in (H).

Therefore, we investigate these bounds in a smooth setting. Thanks to assumptions (H), there exists a sequence
of smooth (say infinitely differentiable with bounded derivatives of all order greater than 1) mollified coefficients
(an,F n

1 ,F n
2 )n≥1 satisfying (H) uniformly (in n), such that this sequence converges in supremum norm to (a,F1,F2).

More details on the regularization procedure are given in Section 1.5 below. In this regularized setting, we know that
the PDE (1.6) admits a unique smooth solution.

Then, thanks to a first order parametrix expansion of the solution un of the regularized PDE (1.6) (see e.g. [8]), we
show that for T small enough there exists a positive constant CT , which is independent of the regularization procedure,
such that the supremum norm of D1un, D2un, D2

1un and D2D1un are bounded by CT . We then recover the Lipschitz
regularity of the drift in small time and we obtain strong uniqueness by letting the regularization procedure tends to
the infinity.

1.5. PDE’s results

This section summarizes the PDE’s results used for proving Theorem 1.1.
The mollifying procedure. Let us first detail how the smooth approximation of the coefficients a,F1,F2 works. For

all positive integer n, we set:

Fn
2 (t, x) =

∫
F2(t − s, x − y)ϕn

1 (y)ϕn
2 (s)dy ds,

where ϕn
1 (·) = c1n

2dϕ(n| · |) and ϕn
2 (·) = c2nϕ(n| · |) for c1, c2 two constants of normalization and for a smooth

function ϕ with support in the unit ball. For example ϕ : z ∈ R �→ exp(− 1
1−z2 )1]−1;1[(z).

By defining (F n
1 )n≥1 and (an)n≥1 with the same procedure, it is then clear that for every n the mollified coefficients

an,F n
1 ,F n

2 are infinitely differentiable with bounded derivatives of all order greater than 1 and such that(
an,F n

1 ,F n
2

) −→
n→+∞(a,F1,F2), (1.7)

uniformly on [0, T ] × R
d × R

d . Moreover, it is well-seen that they satisfy the same assumptions as (a,F1,F2) uni-
formly in n.

Let us just check the non-degeneracy assumption (H3-b) on D1F
n
2 . For all positive δ, one can find a positive

integer N(δ) and a sequence of rectangles (Rk)1≤k≤N(δ) having sides of length less than δ and a family of points
{(sk, yk) ∈ Rk,1 ≤ k ≤ N(δ)} such that, for all (t, x) in [0, T ] ×R

2d :

D1F
n
2 (t, x) = lim

δ→0

N(δ)∑
k=1

D1F2(t − sk, x − yk)

∫
Rk

ϕn
1 (y)ϕn

2 (s)dy ds.

Since D1F2 belongs to the closed convex subset E , it is clear that D1F
n
2 belongs to E .
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The regularized PDE. As we said, we do not solve the limit PDE problem (1.6). The investigations are done with
the mollified coefficients (an,F n

1 ,F n
2 )n≥1 defined above. Let us denote by Ln the regularized version of L (that is the

version of L with mollified coefficients). We have from Section 2.1, Chapter II of [7] (note that the time dependence
here is not a problem to do so):

Lemma 1.2. Let n be a positive integer. The PDE,

∂tun
i (t, x) +Lnun

i (t, x) = Fn
i (t, x), for (t, x) ∈ [0, T ] ×R

2d ,un
i (T , x) = 0Rd , i = 1,2, (1.8)

where Ln is the regularized version of the operator L defined by (1.4), admits a unique solution un = (un
1,un

2)∗, which
is infinitely differentiable.

Besides, the terminal condition un(T , ·) = 0R2d is very important: it guarantees that the solution and its derivatives
vanish at time T . Hence, it allows to control the Lipschitz constant of un by a constant small as T is small. Indeed,
we show in Section 4 that the solutions un, n ≥ 1 satisfy:

Proposition 1.3. There exist a positive T , a positive δ1.3 and a positive constant C, depending only on known param-
eters in (H) and not on n, such that, for all positive T less than T :∥∥D1un

∥∥∞ + ∥∥D2un
∥∥∞ + ∥∥D2

1un
∥∥∞ + ∥∥D1D2un

∥∥∞ ≤ CT δ1.3 .

In order to prove these results, we emphasize that each coordinate of the vectorial solution un
i of the decoupled

linear PDE (1.8) can be described by the PDE

∂tu
n
i (t, x) +Lnui(t, x) = φn

i (t, x), for (t, x) ∈ [0, T ] ×R
2d, un

i (T , x) = 0, i = 1,2, (1.9)

where φn
i : R2d → R denotes the mollified (by the procedure described above) coefficient φi : a function that satisfies

the same regularity assumptions as Fi given in (H1) (this function plays the role of one of the coordinates of Fi ).
Therefore, we only have to prove Lemma 1.2 and Proposition 1.3 for (1.9) instead of (1.8).

Since the estimates on the solutions un, n ≥ 1 are obtained uniformly in n (that is independently of the procedure of
regularization), when we investigate the properties of the solution of the PDE (1.9) in the following sections, we forget
the superscript “n” which arises from the mollifying procedure, and we further assume that the following assumptions
hold:

Assumptions (HR). We say that assumptions (HR) hold if assumptions (H) hold true and F1,F2, φ1, φ2 and a are
infinitely differentiable functions with bounded derivatives of all order greater than 1.

1.6. Proof of Theorem 1.1

We know from Theorem 6.1.7 of [15] that the system (1.1) admits a weak solution (we emphasize that this result
remains valid under the linear growth conditions assumed on the coefficients). Hence, we only have to prove the
strong uniqueness. Thereafter, we denote by “1” the 2d × 2d matrix:(

Id 0Rd×Rd

0Rd×Rd 0Rd×Rd

)
. (1.10)

Let (Xt , t ≥ 0) and (Yt , t ≥ 0) be two solutions of (1.1) with the same initial condition x in R
2d . Let un be the

solution of the linear system of PDEs (1.8). Thanks to Lemma 1.2, we can apply Itô’s formula on un(t,Xt ) − Xt and
we obtain

un(t,Xt ) − Xt =
∫ t

0

[
∂tun +Lun

]
(s,Xs)ds −

∫ t

0
F(s,Xs)ds + un(0, x) − x

+
∫ t

0

[
Dun − 1

]
Bσ(s,Xs)dWs.
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In order to use the fact that ∂tun +Lnun = Fn, we rewrite

un(t,Xt ) − Xt =
∫ t

0

[
∂tun +Lnun

]
(s,Xs)ds +

∫ t

0

(
L−Ln

)
un(s,Xs)ds −

∫ t

0
F(s,Xs)ds + un(0, x) − x

+
∫ t

0

[
Dun − 1

]
Bσ(s,Xs)dWs,

and then,

un(t,Xt ) − Xt =
∫ t

0

(
L−Ln

)
un(s,Xs)ds +

∫ t

0

(
Fn(s,Xs) − F(s,Xs)

)
ds + un(0, x) − x

+
∫ t

0

[
Dun − 1

]
Bσ(s,Xs)dWs.

By the same arguments, we have:

un(t, Yt ) − Yt =
∫ t

0

(
L−Ln

)
un(s, Ys)ds +

∫ t

0

(
Fn(s,Ys) − F(s,Ys)

)
ds + un(0, x) − x

+
∫ t

0

[
Dun − 1

]
Bσ(s,Ys)dWs.

By taking the expectation of the supremum over t of the square norm of the difference of the two equalities above,
we get from Doob’s inequality that

E

[
sup

t∈[0,T ]
|Xt − Yt |2

]
≤ C

{
E

[
sup

t∈[0,T ]

∣∣un(t,Xt ) − un(t, Yt )
∣∣2

]

+E

[∫ T

0

∣∣[DunB
]
(s,Xs) − [

DunB
]
(s, Ys)

∣∣2‖σ‖2∞ ds

]

+E

[∫ T

0

(∥∥DunB
∥∥∞ + 1

)∣∣[σ(s,Ys) − σ(s,Xs)
]∣∣2 ds

]
+R(n,T )

}
,

where

R(n,T ) = T
(
E

[
sup

t∈[0,T ]

∣∣F (n)(t, Yt ) − F(t, Yt )
∣∣2

]
+E

[
sup

t∈[0,T ]

∣∣(Ln −L
)
un(t, Yt )

∣∣2
]

+E

[
sup

t∈[0,T ]

∣∣F (n)(t,Xt ) − F(t,Xt )
∣∣2

]
+E

[
sup

t∈[0,T ]

∣∣(Ln −L
)
un(t,Xt )

∣∣2
])

.

First, note that from (1.7), for both Yt and Xt , we have:

E

[
sup

t∈[0,T ]

∣∣Fn(t,Xt ) − F(t,Xt )
∣∣2

]
+E

[
sup

t∈[0,T ]

∣∣(Ln −L
)
un(t,Xt )

∣∣2
]

→ 0, as n → ∞,

so that R(n,T ) tends to 0 when n tends to +∞. Secondly, we know from Proposition 1.3, that there exists a positive
T such that for all T less than T and for all t in [0, T ], the functions un and D1un are Lipschitz continuous in space,
with a Lipschitz constant independent of n. Since DunB = (D1un,0Rd×Rd ), by letting n tends to +∞ and using the
two arguments above, we deduce that for all T less than T :

E

[
sup

t∈[0,T ]
|Xt − Yt |2

]
≤ C(T )

{
E

[
sup

t∈[0,T ]
|Xt − Yt |2

]
+E

[∫ T

0
|Xs − Ys |2 ds

]}
,
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where C(T ) tends to 0 when T tends to 0. Hence, one can now find another positive T ′, depending only on known
parameters in (H), such that strong uniqueness holds for all T less than T ′. By iterating this computation, the same
result holds on any finite intervals and so on [0,∞). �

2. The linear and Brownian heuristic

This section introduces the main issue when proving Proposition 1.3 in a simple case. It allows to understand our
strategy and the role of some of the assumptions in (H). Furthermore, this presents in a simple form the effects of the
degeneracy. By “simple”, we mean that the assumptions (HL) below hold true.

Assumptions (HL). We say that hypotheses (HL) hold if (H) and (HR) hold with: F1 ≡ 0Rd , σ ≡ Id, for all (t, x1, x2)

in [0, T ] × R
d × R

d ,F2(t, x1, x2) = F̄2(x2) + �tx1. This implies in particular that for all t in [0, T ], �t belongs to
the convex subset E of GLd(R).

Under (HL), the SDE (1.1) becomes:{
dX

1,t,x
s = dWs, X

1,t,x
t = x1,

dX
2,t,x
s = (F̄2(X

2,t,x
s ) + �sX

1,t,x
s )ds, X

2,t,x
t = x2,

(2.1)

for all t < s in [0, T ]2, x in R
2d and admits a unique strong solution X. We recall that the associated PDE is{

∂tui(t, x) +Lui(t, x) = φi(t, x), for (t, x) ∈ [0, T ] ×R
2d ,

ui(T , x) = 0, i = 1,2,
(2.2)

where L is the generator of (2.1).
Our strategy to study the solution of the PDE (2.2) rests upon parametrix. This method is based on the following

observation: in small time, the generator of the solution of an SDE with smooth and variable coefficients and the
generator of the solution of the same SDE with fixed (frozen at some point) coefficients are “closed”. The variable
generator is then seen as a perturbation of the frozen generator, which usually enjoys well known properties.

Here, we know the explicit form of the fundamental solution of the frozen generator (which is the transition density
of the solution of the frozen SDE). Especially, we can prove that this fundamental solution and its derivatives admit
Gaussian type bounds. Hence, thanks to the parametrix, we write the solution of the PDE (2.2) as a time–space integral
of some perturbed kernel against this fundamental solution and we can study it.

We emphasize that the choice of the freezing point for the coefficients plays a central role: the perturbation done in
the parametrix has to be of the order of the typical trajectories of the process associated to the frozen operator.

2.1. The frozen system

Kolmogorov’s example. To understand how the frozen system could be, we go back to the work of Kolmogorov
[11] where the author studied the prototype system (1.1). When d = 1, Kolmogorov showed that the solution of
dY 1

s = dWs,dY 2
s = αY 1

s ds (α �= 0), with initial condition (x1, x2) in R
2, admits a density. Notably, this density is

Gaussian and given by, for all s in (0, T ] and (y1, y2) in R
2

p(0, x1, x2; s, y1, y2) =
√

3

απs2
exp

(
−1

2

∣∣K−1/2
s (y1 − x1, y2 − x2 − sαx1)

∗∣∣2
)

, (2.3)

with the following covariance matrix

Ks :=
(

s (1/2)αs2

(1/2)αs2 (1/3)α2s3

)
. (2.4)

This example illustrates the behaviour of the system in small time: it is not diffusive. The first coordinate oscillates
with fluctuations of order 1/2, while the second one oscillates with fluctuations of order 3/2. As a direct consequence,
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the transport of the initial condition of the first coordinate has a key role in the second one. This observation is crucial
when freezing the coefficients.

The frozen system. As Kolmogorov’s example suggests, we have to keep track of the transport of the initial condition
when we freeze the coefficients. This allows us to reproduce a perturbation of the order of the typical trajectories of
the frozen process. Then, we freeze the system (2.1) along the forward transport θτ,s = (θ1

τ,s , θ
2
τ,s)

∗, s in [τ, T ] that
solves the ODE:

d

ds
θτ,s = (

0Rd , F̄2
(
θ2
τ,s(ξ)

) + �sθ
1
τ,s(ξ)

)∗
, θτ,τ (ξ) = ξ, (2.5)

for a given (τ, ξ) in [0, T ] × R
2d (we emphasize that in the regularized setting this ODE is well-posed). Hence, we

obtain the following frozen system{
dX̄

1,t,x
s = dWs, X̄

1,t,x
t = x1,

dX̄
2,t,x
s = (F̄2(θ

2
τ,s(ξ)) + �sX̄

1,t,x
s )ds, X̄

2,t,x
t = x2,

(2.6)

for all s in (t, T ]. This is our candidate to approximate (2.1).2 Obviously, in order to reproduce the typical trajectories
of the frozen process, the couple of variables (τ, ξ) in (2.5) will be chosen as the initial data (t, x) of the solution of
the SDE (2.6).

2.2. Existence and Gaussian bound of the density of the frozen system

In this case, the crucial point is the specific form of the covariance matrix �̄t,· of X̄t,x· defined in (2.6). For any s in
(t, T ], standard computations show that

�̄t,s =
(

(s − t)
∫ s

t

∫ r

t
�u dudr∫ s

t

∫ r

t
�u dudr

∫ s

t
(
∫ r

t
�u du)(

∫ r

t
�u du)∗ dr

)
. (2.7)

Therefore, the existence and the Gaussian estimates of the transition density of X̄
t,x
s stem from the control of the

spectrum of �̄t,s . Such an investigation has been already done by Delarue and Menozzi in [3]. The two following
Lemmas shortly describe some of their results that are useful for us. The proofs are not given. For further details, we
refer to Section 3, pp. 18–24 of their paper. They prove that

Lemma 2.1. Suppose that assumptions (HL) hold, then, a sufficient condition for the non-degeneracy of the variance
matrix �̄t,s , s in (t, T ] is given by

det[�r ] > 0 for a.e. r ∈ [t, s].
In that case, the solution of (2.6) admits a transition density q̄ given by, for all s in (t, T ] and y1, y2 in R

d :

q̄(t, x1, x2; s, y1, y2) = 1

(2π)d/2
det(�̄t,s)

−1/2 exp

(
−1

2

∣∣�̄−1/2
t,s

(
y1 − x1, y2 − m

2,τ,ξ
t,s (x)

)∗∣∣2
)

, (2.8)

where

m
2,τ,ξ
t,s (x) = x2 +

∫ s

t

�rx1 dr +
∫ s

t

F̄2
(
θ2
τ,r (ξ)

)
dr,

and where �̄t,s is the uniformly non-degenerate matrix given by (2.7).

From this expression, we can give the following Gaussian type estimate on the transition density of the solution
of the SDE (2.6) and on its derivatives (the Gaussian bounds on the derivatives are not proven in the aforementioned
work, but are proven in a more general case in the proof of Proposition 3.1 below):

2Note that if τ > s, we can extend the definition of θ and suppose that ∀(v > r) ∈ [0, T ]2,∀ξ ∈ R
2d , θv,r (ξ) = 0.
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Lemma 2.2. Suppose that assumptions (HL) hold, then, the transition kernel q̄ and its derivatives admit Gaussian-
type bounds: there exists a positive constant c depending only on known parameters in (H) such that for all ξ in
R

2d : ∣∣DNx1
x1

DNx2
x2

DNy1
y1

q̄(t, x1, x2; s, y1, y2)
∣∣

≤ (s − t)−[3Nx2 +Nx1+Ny1 ]/2 c

(s − t)2d
exp

(
−c

( |y1 − x1|2
s − t

+ |y2 − m
2,τ,ξ
t,s (x)|2

(s − t)3

))
, (2.9)

for all s in (t, T ], y1, y2 in R
d and any Nx1 ,Nx2,Ny1 less than 2.

We emphasize that the constant c that appears in the exponential in estimate (2.9) does not depend on �, as
suggested by Lemma 2.1. This uniform control is not obvious and is related to the “closed convex” assumption
(H3-b).

If the control is not uniform, Delarue and Menozzi show in [3] (see Example 3.5) that one can find a sequence of
matrix (�n

1 )n≥0 with positive constant determinant such that det[�n
0,1] converges towards 0 as n tends to the infinity.

The crucial point in their example is that the sequence of functions (t ∈ [0,1] �→ �n
t )n≥0 weakly converges towards 0.

Hence, to overcome this problem, the authors need some closure for the weak topology. The closed convex assumption
(H3-b) allows them to obtain compactness for the weak topology.

Note that for all s in [t, T ], the mean (x1,m
2,t,x
t,s (x)) of X̄

t,x
s satisfies the ODE (2.5) with initial data (τ, ξ) = (t, x).

Since this equation admits a unique solution under (HL), we deduce that for all s in [t, T ], the forward transport
function defined by (2.5) with the starting point x as initial condition is equal to the mean: θt,s(x) = m

t,x
t,s (x).

Finally, as we will show in the proof of Proposition 3.1 in Section 3, the transition density q̄ enjoys the following
symmetry property:

∀(t < s, x, y) ∈ [0, T ]2 ×R
d ×R

d , Dx2 q̄(t, x; s, y) = −Dy2 q̄(t, x; s, y). (2.10)

This plays a crucial role in the proof of the Lipschitz estimates of the solution u of the PDE (2.2) and of its derivative
D1u.

2.3. Representation of the solution by parametrix

Let L̄τ,ξ := (1/2)�x1 + [F̄2(θ
2
τ,t (ξ)) + �tx1] · Dx2 be the generator of the frozen process X̄. We can write the PDE

(2.2) as{
∂tui(t, x) + L̄τ,ξ ui(t, x) = φi(t, x) + (L̄τ,ξ −L)ui(t, x), for (t, x) ∈ [0, T ) ×R

2d ,
ui(T , x) = 0, i = 1,2.

Since q̄ is the fundamental solution of L̄τ,ξ we have, for all (t, x) in [0, T ]×R
2d , that the unique solution of this PDE

reads:

ui(t, x) =
∫ T

t

∫
R2d

{
φi(s, y) − [

F̄2(y2) − F̄2
(
θ2
τ,s(ξ)

)] · Dy2ui(s, y)
}
q̄(t, x; s, y)dy ds,

for i = 1,2 and for all (τ, ξ) in [0, T ] ×R
2d . We emphasize that u is the unique solution of (2.2) and does not depend

on the choice of the freezing point “(τ, ξ)”. For every (t, x) in [0, T ] × R
2d , we can then choose τ as the current

evaluation time and then write

ui(t, x) =
∫ T

t

∫
R2d

{
φi(s, y) − [

F̄2(y2) − F̄2
(
θ2
t,s(ξ)

)] · Dy2ui(s, y)
}
q̄(t, x; s, y)dy ds. (2.11)

From now on, for every given time t in [0, T ], we let τ = t .
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2.4. A priori estimates

In order to prove the bounds of Proposition 1.3, we need to obtain estimates of the supremum norm of the first and
second order derivatives of the ui , i = 1,2. Having in mind to invert the differentiation and integral operators, we see
any differentiation of ui as an integral of a certain function against the derivative of the degenerate Gaussian kernel q̄ .

As shown in Lemma 2.2, the differentiation of this kernel generates a time-singularity. Each differentiation of the
transition kernel w.r.t. the first component gives a time-singularity of order 1/2 while the differentiation w.r.t. the
second component gives a time-singularity of order 3/2.

The main issue consists in smoothing this singularity by using the regularity of the coefficients assumed in (H)
together with Gaussian decay in q̄ by letting the freezing point ξ be the starting point of the process.

Let us illustrate the computations with the worst case in Proposition 1.3, that is, the cross derivative D1D2ui (which
gives a time singularity of order 2, see Lemma 2.2). In order to invert the integral and the differentiation operators we
have to show that the derivative of the time integrand in (2.11) is suitably bounded. When it is evaluated at point ξ = x

we show in the sequel that this is indeed the case. Let (t, x) in [0, T ] ×R
2d , for i in {1,2}, we denote by Ii (s, x), s in

(t, T ], the time integrand in (2.11). By switching the differentiation and the (space) integral operator we have:

Dx1Dx2Ii (s, x)

=
∫
R2d

{
φi(s, y) − [

F̄2(y2) − F̄2
(
θ2
t,s(ξ)

)] · Dy2ui(s, y)
}
Dx1Dx2 q̄(t, x; s, y)dy. (2.12)

We deal with the right hand side of (2.12). Let us first deal with the first term in the time-integrand. For all s in
(t, T ] we have:∫

R2d

φi(s, y1, y2)Dx1Dx2 q̄(t, x1, x2; s, y1, y2)dy1 dy2

=
∫
R2d

(
φi(s, y1, y2) − φi

(
s, y1, θ

2
t,s(ξ)

))
Dx1Dx2 q̄(t, x1, x2; s, y1, y2)dy1 dy2

+
∫
R2d

φi

(
s, y1, θ

2
t,s(ξ)

)
Dx1Dx2 q̄(t, x1, x2; s, y1, y2)dy1 dy2,

where, thanks to the symmetry (2.10) and an integration by parts argument, the last term in the right hand side is equal
to 0. In the sequel, we refer to this argument as the centering argument. Combining this argument and the estimate of
Dx1Dx2 q̄ in Lemma 2.2, we have, for all s in (t, T ]:∣∣∣∣

∫
R2d

(
φi(s, y1, y2) − φi

(
s, y1, θ

2
t,s(ξ)

))
Dx1Dx2 q̄(t, x1, x2; s, y1, y2)dy1 dy2

∣∣∣∣
≤

∫
R2d

{
(s − t)−2

∣∣φi(s, y1, y2) − φi

(
s, y1, θ

2
t,s(ξ)

)∣∣
× c

(s − t)2d
exp

(
−c

( |y1 − x1|2
s − t

+ |y2 − m
2,t,ξ
t,s (x)|2

(s − t)3

))}
dy1 dy2,

where c depends only on known parameters in (H). By using the Hölder regularity of φi assumed in (H1) we have∣∣∣∣
∫
R2d

(s − t)−2
∣∣φi(s, y1, y2) − φi

(
s, y1, θ

2
t,s(ξ)

)∣∣q̄(t, x1, x2; s, y1, y2)dy1 dy2

∣∣∣∣
≤ C

∫
R2d

{
(s − t)−2

∣∣y2 − θ2
t,s(ξ)

∣∣β2
i

× c

(s − t)2d
exp

(
−c

( |y1 − x1|2
s − t

+ |y2 − m
2,t,ξ
t,s (x)|2

(s − t)3

))}
dy1 dy2. (2.13)
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Now, we use the Gaussian off-diagonal decay of q̄ to smooth the time-singularity: by letting ξ = x (and then θ2
t,s(x) =

m
2,t,x
t,s (x)), for all positive η, there exists a positive constant C̄ such that3

( |y2 − m
2,t,x
t,s (x)|

(s − t)3/2

)β2
i × exp

(
−η

( |y1 − x1|2
s − t

+ |y2 − m
2,t,x
t,s (x)|2

(s − t)3

))
≤ C̄,

where C̄ depends on η and β2
i only. Thus, by damaging the constant c in the exponential in (2.13), we obtain the

following estimate:∣∣∣∣
∫
R2d

(s − t)−2
∣∣φi(s, y1, y2) − φi

(
s, y1, θ

2
t,s(x)

)∣∣q̄(t, x1, x2; s, y1, y2)dy1 dy2

∣∣∣∣
≤ C′

∫
R2d

(s − t)−2+3β2
i /2 c

(s − t)2d
exp

(
−c′

( |y1 − x1|2
s − t

+ |y2 − m
2,t,x
t,s (x)|2

(s − t)3

))
dy1 dy2. (2.14)

Therefore, by choosing the value of β2
i strictly greater than 2/3, the singularity (s − t)−2+3β2

i /2 becomes integrable.
By applying the same procedure (without centering) with the term∫

R2d

{[
F̄2(y2) − F̄2

(
θ2
t,s(ξ)

)] · Dy2ui(s, y)
}
q̄(t, x; s, y)dy,

we can deduce that

‖D1D2ui‖∞ ≤ C′′(T −1+3β2
i /2 + T −1+3β2

2 /2‖D2ui‖∞
)
. (2.15)

The main problem here is that the supremum norm of D2ui appears in the bound, so that we also have to estimate
this quantity in term on known parameters in (H) to overcome the problem. It is well seen that the same arguments
lead to

‖D2ui‖∞ ≤ C′′′(T (−1+3β2
i )/2 + T (−1+3β2

2 )/2‖D2ui‖∞
)
.

By choosing T sufficiently small (e.g. such that C′′′T (−1+3β2
2 )/2 is less than 1/2) we obtain that

‖D2ui‖∞ ≤ 2C′′′T (−1+3β2
i )/2. (2.16)

We refer to this argument as the circular argument in the following. By plugging this bound in (2.15) and by applying
the same strategy with D1ui and D2

1ui , Proposition 1.3 under (HL) follows for T less than T := (1/(2C′′′))2/(−1+3β2
2 ).

From this discussion, one can also see the specific choice of the freezing curve as the one that matches the off-
diagonal decay of the exponential in q̄ when ξ = x.

3. Mathematical tools

In this section, we introduce the ingredients for the proof of Proposition 1.3.

3.1. The frozen system

Consider the frozen system:

dX̃1,t,x
s = F1

(
s, θτ,s(ξ)

)
ds + σ

(
s, θτ,s(ξ)

)
dWs,

(3.1)
dX̃2,t,x

s = [
F2

(
s, θτ,s(ξ)

) + D1F2
(
s, θτ,s(ξ)

)(
X̃1,t,x

s − θ1
τ,s(ξ)

)]
ds

3By using the inequality: ∀η > 0,∀q > 0,∃C̄ > 0 s.t. ∀σ > 0, σ qe−ησ ≤ C̄.
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for all s in (t, T ], any t in [0, T ], and for any initial condition x in R
2d at time t and any (τ, ξ) ∈ [0, T ] × R

2d ,
linearized around the transport (θτ,s(ξ))τ≤s≤T defined4 by

d

ds
θτ,s(ξ) = F

(
s, θτ,s(ξ)

)
, θτ,τ (ξ) = ξ. (3.2)

The following Proposition holds:

Proposition 3.1. Suppose that assumptions (HR) hold, then:

(i) There exists a unique (strong) solution of (3.1) with mean

(
m

τ,ξ
t,s

)
t≤s≤T

= (
m

1,τ,ξ
t,s ,m

2,τ,ξ
t,s

)
t≤s≤T

,

where

m
1,τ,ξ
t,s (x) = x1 +

∫ s

t

F1
(
r, θτ,r (ξ)

)
dr,

m
2,τ,ξ
t,s (x) = x2 +

∫ s

t

[
F2

(
r, θτ,r (ξ)

) + D1F2
(
r, θτ,r (ξ)

)(
x1 − θ1

τ,r (ξ)
)

(3.3)

+ D1F2
(
r, θτ,r (ξ)

)∫ r

t

F1
(
v, θτ,v(ξ)

)
dv

]
dr,

and uniformly non-degenerate covariance matrix (�̃t,s)t≤s≤T :

�̃t,s =
( ∫ s

t
σσ ∗(r, θτ,r (ξ))dr

∫ s

t
Rr,s(τ, ξ)σσ ∗(r, θτ,r (ξ))dr∫ s

t
σσ ∗(r, θτ,r (ξ))R∗

r,s(τ, ξ)dr
∫ s

t
Rt,r (τ, ξ)σσ ∗(r, θτ,r (ξ))R∗

t,r (τ, ξ)dr

)
, (3.4)

where:

Rt,r (τ, ξ) =
[∫ r

t

D1F2
(
v, θτ,v(ξ)

)
dv

]
, t ≤ r ≤ s ≤ T .

(ii) This solution is a Gaussian process with transition density:

q̃(t, x1, x2; s, y1, y2)

= 3d/2

(2π)d/2

(
det[�̃t,s]

)−1/2 exp

(
−1

2

∣∣�̃−1/2
t,s

(
y1 − m

1,τ,ξ
t,s (x), y2 − m

2,τ,ξ
t,s (x)

)∗∣∣2
)

, (3.5)

for all s in (t, T ].
(iii) This transition density q̃ is the fundamental solution of the PDE driven by L̃τ,ξ and given by:

L̃τ,ξ := 1

2
Tr

[
a
(
t, θτ,t (ξ)

)
D2

x1

] + [
F1

(
t, θτ,t (ξ)

)] · Dx1

+ [
F2

(
t, θτ,t (ξ)

) + D1F2
(
t, θτ,t (ξ)

)(
x1 − θ1

τ,t (ξ)
)] · Dx2 . (3.6)

(iv) There exist two positive constants c and C, depending only on known parameters in (H), such that

q̃(t, x1, x2; s, y1, y2) ≤ Cq̂c(t, x1, x2; s, y1, y2), (3.7)

4Note again that if τ > s, we can extend the definition of θ and suppose that ∀(v > r) ∈ [0, T ]2,∀ξ ∈ R
2d , θv,r (ξ) = 0.



272 P. E. Chaudru de Raynal

where

q̂c(t, x1, x2; s, y1, y2) = c

(s − t)2d
exp

(
−c

( |y1 − m
1,τ,ξ
t,s (x)|2

s − t
+ |y2 − m

2,τ,ξ
t,s (x)|2

(s − t)3

))
,

and ∣∣DNx1
x1

DNx2
x2

DNy1
y1

q̃(t, x1, x2; s, y1, y2)
∣∣ ≤ C(s − t)−[3Nx2 +Nx1+Ny1 ]/2q̂c(t, x1, x2; s, y1, y2), (3.8)

for all s in (t, T ] and any integers Nx1 ,Nx2 ,Ny1 less than 2.

Proof. (i) First of all, note that, under (HR), the ODE: [d/ds]θτ,s(ξ) = F(s, θτ,s(ξ)), θτ,τ (ξ) = ξ admits a unique
solution and that (3.1) admits a unique strong solution X̃. By rewriting (3.1) in integral form and by plugging the
obtained representation of X̃1 in X̃2, it is easily seen that the expressions of the mean (3.3) and the variance (3.4)
follow from the stochastic Fubini Theorem and standard computations. The uniform non-degeneracy of (�̃t,s)t<s≤T

arises from assumptions (H) and Proposition 3.1 in [3].
(ii)–(iii) These assertions result from standard computations.
(iv) For all s in (t, T ], we know from Proposition 3.1 in [3] that the matrix �̃t,s is symmetric and uniformly non-

degenerate. Besides, from Proposition 3.4 in [3] there exists a constant C depending only on known parameters in (H)
such that for all s in (t, T ], for all (x, y, ξ) in R

2d ×R
2d ×R

2d ,

−[
�̃−1

t,s

(
y1 − m

1,τ,ξ
t,s (x), y2 − m

2,τ,ξ
t,s (x)

)∗] · [(y1 − m
1,τ,ξ
t,s (x), y2 − m

2,ξ
t,s (x)

)∗]
≤ −C

[(
y1 − m

1,τ,ξ
t,s (x)

(s − t)1/2
,
y2 − m

2,τ,ξ
t,s (x)

(s − t)3/2

)∗]
·
[(

y1 − m
1,τ,ξ
t,s (x)

(s − t)1/2
,
y2 − m

2,τ,ξ
t,s (x)

(s − t)3/2

)∗]
.

For i, j = 1,2, let [�̃−1
t,s ]i,j denote the block of size d × d of the matrix �̃−1

t,s at the (i − 1)d + 1, (j − 1)d + 1 rank.
We can deduce from (3.4) that there exists a positive constant C depending only on known parameters in (H) such
that (we also refer the reader to Lemma 3.6 and to the proof of Lemma 5.5 in [3] for more details), for all s in (t, T ],
for all ζ in R

d :∣∣[�̃−1
t,s

]
1,1ζ

∣∣ ≤ C(s − t)−1|ζ |,∣∣[�̃−1
t,s

]
1,2ζ

∣∣ + ∣∣[�̃−1
t,s

]
2,1ζ

∣∣ ≤ C(s − t)−2|ζ |, (3.9)∣∣[�̃−1
t,s

]
2,2ζ

∣∣ ≤ C(s − t)−3|ζ |,

hence, �̃−1
t,· has the same structure as K−1·−t in (2.4).

Now, we compute the derivatives w.r.t. each component and estimate it with the help of (3.9). Let (t < s, x, y) in
[0, T ]2 ×R

2d ×R
2d , we have:∣∣Dx2 q̃(t, x1, x2; s, y1, y2)

∣∣
= ∣∣(−2

[
�̃−1

t,s

]
2,1

(
y1 − m

1,τ,ξ
t,s (x)

) − 2
[
�̃−1

t,s

]
2,2

(
y2 − m

2,τ,ξ
t,s (x)

))
q̃(t, x1, x2; s, y1, y2)

∣∣
≤ C(s − t)−3/2

(∣∣∣∣ (y1 − m
2,τ,ξ
t,s (x))

(s − t)1/2

∣∣∣∣ +
∣∣∣∣ (y2 − m

2,τ,ξ
t,s (x))

(s − t)3/2

∣∣∣∣
)

q̃(t, x1, x2; s, y1, y2)

≤ C′(s − t)−3/2q̂c(t, x1, x2; s, y1, y2).

Note that the symmetry Dx2 q̃(t, x1, x2; s, y1, y2) = −Dy2 q̃(t, x1, x2; s, y1, y2) holds. Now, we have∣∣Dy1 q̃(t, x1, x2; s, y1, y2)
∣∣

= ∣∣(2
[
�̃−1

t,s

]
1,1

(
y1 − m

1,τ,ξ
t,s (x)

) + 2
[
�̃−1

t,s

]
1,2

(
y2 − m

2,τ,ξ
t,s (x)

))
q̃(t, x1, x2; s, y1, y2)

∣∣
≤ C(s − t)−1/2q̂c(t, x1, x2; s, y1, y2).
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Unfortunately, the transport of the initial condition of the diffusive component in the degenerate component breaks
the symmetry and Dx1 q̃(t, x1, x2; s, y1, y2) �= −Dy1 q̃(t, x1, x2; s, y1, y2). Indeed

Dx1 q̃(t, x1, x2; s, y1, y2) = (−2
[
�̃−1

t,s

]
1,1

(
y1 − m

1,τ,ξ
t,s (x)

) − 2
[
�̃−1

t,s

]
1,2

(
y2 − m

2,τ,ξ
t,s (x)

)
− 2

[
�̃−1

t,s

]
1,2

[(
Rt,s(τ, ξ)

)(
y1 − m

1,τ,ξ
t,s (x)

)]
− 2

[
�̃−1

t,s

]
2,2

[(
Rt,s(τ, ξ)

)(
y2 − m

2,τ,ξ
t,s (x)

)])
q̃(t, x1, x2; s, y1, y2).

Since the term Rt,s(ξ) is of order (s − t) (this is the transport of the initial condition from time t to s), we deduce that

∣∣Dx1 q̃(t, x1, x2; s, y1, y2)
∣∣ ≤ C(s − t)−1/2

{∣∣∣∣ (y1 − m
2,τ,ξ
t,s (x))

(s − t)1/2

∣∣∣∣ +
∣∣∣∣ (y2 − m

2,τ,ξ
t,s (x))

(s − t)3/2

∣∣∣∣
+

∣∣∣∣ (y1 − m
2,τ,ξ
t,s (x))

(s − t)1/2

∣∣∣∣ +
∣∣∣∣ (y2 − m

2,τ,ξ
t,s (x))

(s − t)3/2

∣∣∣∣
}
q̃(t, x1, x2; s, y1, y2)

≤ C′(s − t)−1/2q̂c(t, x1, x2; s, y1, y2).

Finally,

D2
x1

q̃(t, x1, x2; s, y1, y2) = (−2
[
�̃−1

t,s

]
1,1Dx1m

1,τ,ξ
t,s (x) − 2

[
�̃−1

t,s

]
1,2Dx1m

2,τ,ξ
t,s (x)

− 2
[
�̃−1

t,s

]
1,2

[(
Rt,s(τ, ξ)

)
Dx1m

1,τ,ξ
t,s (x)

]
− 2

[
�̃−1

t,s

]
2,2

[(
Rt,s(τ, ξ)

)
Dx1m

2,τ,ξ
t,s (x)

])
q̃(t, x1, x2; s, y1, y2)

+ (−2
[
�̃−1

t,s

]
1,1

(
y1 − m

1,τ,ξ
t,s (x)

) − 2
[
�̃−1

t,s

]
1,2

(
y2 − m

2,τ,ξ
t,s (x)

)
− 2

[
�̃−1

t,s

]
1,2

[(
Rt,s(τ, ξ)

)(
y1 − m

1,τ,ξ
t,s (x)

)]
− 2

[
�̃−1

t,s

]
2,2

[(
Rt,s(τ, ξ)

)(
y2 − m

2,τ,ξ
t,s (x)

)])2
q̃(t, x1, x2; s, y1, y2).

Note that, from (3.3) we have Dx1m
τ,ξ
t,s (x) = (Id,Rt,s(τ, ξ))∗, so that,∣∣D2

x1
q̃(t, x1, x2; s, y1, y2)

∣∣ ≤ C(s − t)−1q̂c(t, x1, x2; s, y1, y2).

The other derivatives can be deduced from these computations and estimate (3.8) follows. �

Remark 2. From this proof, one can deduce that the symmetry Dx2 q̃ = −Dy2 q̃ holds. Therefore, by an integration by
parts argument, for all t in [0, T ], all s in [t, T ] and y1, x1, x2 in R

d ,∫
Rd

Dx2 q̃(t, x1, x2; s, y1, y2)dy2 = 0. (3.10)

This argument is very useful in the sequel.

3.2. Definitions and rules of calculus

We introduce some definitions and rules of computations that will be useful in the following section. Let us begin by
the following definition:

Definition 3.2. For all ζ in R
2d we denote by �(ζ) the perturbation operator around ζ acting on any function f from

[0, T ] ×R
2d as follows:

∀(s, y) ∈ [0, T ] ×R
2d , �(ζ )f (s, y) = f (s, y) − f (s, ζ ),
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and for j = 1,2, we denote by �j(ζ ) the perturbation operator around ζj acting on any function f from [0, T ]×R
2d

as follows:

∀(s, y) ∈ [0, T ] ×R
2d , �1(ζ )f (s, y1, y2) = f (s, y1, ζ2) − f (s, ζ1, ζ2),

and

∀(s, y) ∈ [0, T ] ×R
2d , �2(ζ )f (s, y1, y2) = f (s, y1, y2) − f (s, y1, ζ2).

Especially, the notation �j(ζ )yj stands for yj − ζj .

Given this definition we can give a generic centering argument, as introduced in Section 2.4 in the linear and
Brownian heuristic:

Claim 3.3. Let q̃ be the function defined by (3.5) in Proposition 3.1 and let f and g be two continuous functions
defined on [0, T ] ×R

2d . For all N1, N2 in N, for all t < s in [0, T ]2, x in R
2d and ζ in R

2d we have that:

(a)

DN1

x1
DN2

x2

∫
R2d

f (s, y)q̃(t, x; s, y)dy = DN1

x1
DN2

x2

∫
R2d

�(ζ )f (s, y)q̃(t, x; s, y)dy, if N1 + N2 > 0,

(b)

DN1

x1
DN2

x2

∫
R2d

f (s, y)q̃(t, x; s, y)dy = DN1

x1
DN2

x2

∫
R2d

�2(ζ )f (s, y)q̃(t, x; s, y)dy, if N2 > 0,

(c)

DN1

x1
DN2

x2

∫
R2d

�1(ζ )f (s, y)g(s, y)q̃(t, x; s, y)dy

= DN1

x1
DN2

x2

∫
R2d

(
�1(ζ )f (s, y)

)(
�2(ζ )g(s, y)

)
q̃(t, x; s, y)dy, if N2 > 0.

Proof. Let f and g be defined as in Claim 3.3 and let t < s in [0, T ]2, x in R
2d . We have, by Definition 3.2:

DN1

x1
DN2

x2

∫
R2d

f (s, y)q̃(t, x; s, y)dy = DN1

x1
DN2

x2

∫
R2d

�(ζ )f (s, y)q̃(t, x; s, y)dy

+ DN1

x1
DN2

x2

∫
R2d

f (s, ζ )q̃(t, x; s, y)dy,

for all ζ in R
2d . The last term in the right hand side is equal to 0 since it does not depend on x after integrating. This

concludes the proof of (a). Now, we prove (c). For all ζ in R
2d we have

DN1

x1
DN2

x2

∫
R2d

(
�1(ζ )f

)
(s, y1)g(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1 dy2

= DN1

x1
DN2

x2

∫
R2d

(
�1(ζ )f

)
(s, y1)

(
�2(ζ )g

)
(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1 dy2

+ DN1

x1
DN2

x2

∫
R2d

(
�1(ζ )f

)
(s, y1)g(s, y1, ζ2)q̃(t, x1, x2; s, y1, y2)dy1 dy2.

By using differentiation under the integral sign Theorem, (3.10) (since N2 is positive) together with an integration by
parts, the last term in the right hand side is equal to 0. Finally, assertion (b) follows from the same arguments. This
concludes the proof of the Claim. �
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3.3. Representation and differentiation of the solution of the PDE (1.9)

Lemma 3.4. Suppose that assumptions (HR) hold, then, for all x in R
2d and t in [0, T ] the solution u = (u1, u2)

∗ of
the PDE (1.9) can be written as

ui(t, x) = E

[∫ T

t

φi

(
s, X̃t,x

s

) − (
L− L̃t,ξ

)
ui

(
s, X̃t,x

s

)
ds

]
(3.11)

=
∫ T

t

∫
R2d

φi(s, y)q̃(t, x; s, y)dy ds

−
∫ T

t

∫
R2d

1

2
Tr

[
�

(
θt,s(ξ)

)
a(s, y)D2

y1
ui(s, y)

]
q̃(t, x; s, y)dy ds

−
∫ T

t

∫
R2d

{[
�

(
θt,s(ξ)

)
F1(s, y)

] · Dy1ui(s, y)
}
q̃(t, x; s, y)dy ds

−
∫ T

t

∫
R2d

{[
�

(
θt,s(ξ)

)
F2(s, y) − D1F2

(
s, θt,s(ξ)

)
�1(θt,s(ξ)

)
y1

] · Dy2ui(s, y)
}
q̃(t, x; s, y)dy ds

=:
4∑

j=1

∫ T

t

∫
R2d

Hj
i

(
s, y, θt,s(ξ)

)
q̃(t, x; s, y)dy ds (3.12)

=:
4∑

j=1

∫ T

t

Ij
i (s, x)ds (3.13)

for all ξ in R
2d . It is infinitely differentiable on [0, T ] ×R

2d .

Remark 3. We emphasize that the solution “u” does not depend on the choice of the freezing data “(τ, ξ )”. Above
we chose to set τ = t when the solution u is evaluated at time t . We keep this choice from now on.

Proof of Lemma 3.4. Thanks to Lemma 1.2 the PDE (1.9) is well posed and can be rewritten as

{
∂tui(t, x) + L̃τ,ξ ui(t, x) = −(L− L̃τ,ξ )ui(t, x) + φi(t, x), (t, x) ∈ [0, T ) ×R

2d ,
ui(T , x) = 0, i = 1,2,

(3.14)

for all (τ, ξ) in [0, T ] ×R
2d , so that (3.11) follows from Feynman–Kac representation. Equality (3.13) follows from

the definition of q̃ in Proposition 3.1. Next, given a positive ε, we have for all (t, x) in [0, T ] ×R
2d ,

ui(t, x) =
∫ T

t+ε

E
[
φi

(
s, X̃t,x

s

) − (
L− L̃τ,ξ

)
ui

(
s, X̃t,x

s

)]
ds

+
∫ t+ε

t

E
[
φi

(
s, X̃t,x

s

) − (
L− L̃τ,ξ

)
ui

(
s, X̃t,x

s

)]
ds.

Under (HR), the coefficients of L, L̃τ,ξ and the functions φi , ui are smooth (Lemma 1.2). From classical regularity
results on the solution of the SDE (2.6) (see e.g. [13]) we can deduce that the solution is infinitely differentiable
under (HR). �

We now derive a representation formula for the derivatives of Ij
i , i = 1,2, j = 1, . . . ,4, that involve a differen-

tiation w.r.t. the degenerate variable. This allows us to handle the singularity of the derivative of the kernel q̃ (see
assertion (iv) in Proposition 3.1) as done in Section 2.4 (centering argument).
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Lemma 3.5. Let t < T in R
+. For all i in {1,2}, all (s, x) in (t, T ]×R

2d and all integer n the terms Dn
x1

Dx2I
j
i (s, x),

j = 1, . . . ,4, can be written as:

Dn
x1

Dx2I1
i (s, x) = −

∫
R2d

�2(θt,s(ξ)
)
φi(s, y)Dn

x1
Dx2 q̃(t, x; s, y)dy (3.15)

and

Dn
x1

Dx2I2
i (s, x)

= −1

2

∫
R2d

{
Tr

[[
�2(θt,s(ξ)

)
a(s, y)

]
D2

y1
ui(s, y)

]

−
d∑

l=1

[
∂

∂y1l

al.(s, y)

]
· [�2(θt,s(ξ)

)
Dy1ui(s, y)

]}
Dn

x1
Dx2 q̃(t, x; s, y)dy

+ 1

2

d∑
l=1

∫
R2d

{[
�1(θt,s(ξ)

)
al.(s, y)

] · [�2(θt,s(ξ)
)
Dy1ui(s, y)

]}
Dn

x1
Dx2

(
∂

∂y1l

q̃(t, x; s, y)

)
dy, (3.16)

where “al.” denotes the lth line of the matrix a, and

Dn
x1

Dx2I3
i (s, x) = −

∫
R2d

{[
�2(θt,s(ξ)

)
F1(s, y)

] · Dy1ui(s, y)

+ [
�1(θt,s(ξ)

)
F1(s, y)

] · [�2(θt,s(ξ)
)
Dy1ui(s, y)

]}
Dn

x1
Dx2 q̃(t, x; s, y)dy, (3.17)

and finally:

Dn
x1

Dx2I4
i (s, x) = −

∫
R2d

{[
�1(θt,s(ξ)

)
F2(s, y) − D1F2

(
s, θt,s(ξ)

)
�1(θt,s(ξ)

)
y1

] · [�2(θt,s(ξ)
)
Dy2ui(s, y)

]
+ [

�2(θt,s(ξ)
)
F2(s, y)

] · Dy2ui(s, y)
}
Dn

x1
Dx2 q̃(t, x; s, y)dy. (3.18)

Proof. Representation (3.15) is a direct consequence of assertion (b) in Claim 3.3. Next, we deal with (3.16). By
using first the decomposition � = �1 + �2 and then by integrating by parts, we have

I2
i (s, x) = −1

2

∫
R2d

{
Tr

[[
�2(θt,s(ξ)

)
a(s, y)

]
D2

y1
ui(s, y)

]

−
d∑

l=1

[
∂

∂y1l

�1(θt,s(ξ)
)
al.(s, y)

]
· Dy1ui(s, y)

}
q̃(t, x; s, y)dy

+ 1

2

d∑
l=1

∫
R2d

{[
�1(θt,s(ξ)

)
al.(s, y)

] · Dy1ui(s, y)
} ∂

∂y1l

q̃(t, x; s, y)dy.

Note that, for all l in {1, . . . , d}, [∂/∂y1l]�1(θt,s(ξ))al.(s, y1, θ
2
t,s(ξ)) = [∂/∂y1l]al.(s, y1, θ

2
t,s(ξ)). We conclude by

differentiating and then by applying assertion (c) in Claim 3.3 with f = a and g = D1ui . This gives (3.16).
By using again first the decomposition � = �1 + �2, assertions (3.17) and (3.18) are immediate consequences of

assertion (c) in Claim 3.3. This concludes the proof of Lemma 3.5. �

We conclude this section with the following definition:

Definition 3.6 (The centered integrands). When differentiating at least once the terms Ij
i , j = 1, . . . ,4, w.r.t. the

degenerate variable “x2”, Lemma 3.5 allows us to identify the Hj
i , j = 1,3,4, defined in (3.12) with the integrand of
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(3.15), (3.17), and (3.18) respectively. In the same spirit we use in that case the notation H2
i to denote both the sum of

the two integrands appearing in the representation (3.16) of Dn
x1

Dx2I2
i and the integrand defined in (3.12).

When we identify the Hj
i , j = 1, . . . ,4, with the integrand of (3.15), (3.16), (3.17) and (3.18) respectively, we will

call them the centered integrands.

4. Proof of Proposition 1.3

4.1. From intermediate gradient estimates to Proposition 1.3

We here give the intermediate estimates that allow to prove Proposition 1.3. In the following, ui denotes the ith
component of the solution u = (u1, u2)

∗ of the linear system of PDE (1.9). The following arguments and Lemmas
hold for i = 1,2.

Since the representation (3.13) of each ui involves its derivatives, we prove Proposition 1.3 by using a circular
argument (see (2.16)). We recall that for any function from [0, T ]×R

d ×R
d we denote by D1 (resp. D2) the derivative

with respect to the first (resp. second) d-dimensional space component. We first show that

Lemma 4.1. Suppose that assumptions (HR) hold. There exist a positive T4.1, two positive numbers δ4.1 and δ̄4.1 and
a positive constant C, depending only on known parameters in (H), such that

(i) ‖D2
1ui‖∞ ≤ T δ4.1C(1 + ‖D2ui‖∞),

(ii) ‖D1ui‖∞ ≤ T δ̄4.1C(1 + ‖D2ui‖∞),

for all T less than T4.1. We recall that D1 denotes the derivative with respect to the first d-dimensional space compo-
nent.

Then, we estimate the gradients that involve the derivatives w.r.t. the degenerate variable “D2”. To this aim, we
differentiate the representation (3.13) and we estimate it. Thanks to Proposition 3.1, we know that this differentiation
generates the worst singularity in the time space integrals. As shown in Section 2.4, we can use the regularity of the
coefficients assumed in (H) in order to smooth this singularity. But in this more general case, we also have to use
the regularity of the solution itself. Notably, we need to estimate the Hölder regularity of D2ui . Hence, we prove the
following sort of Hölder estimate on D2ui :

Lemma 4.2. Suppose that assumptions (HR) hold and let

M(D2ui, T ) := sup
w1,w2 �=w′

2∈Rd ,t∈[0,T ]
|D2ui(t,w1,w2) − D2ui(t,w1,w

′
2)|

|w2 − w′
2|γ /3 + |w2 − w′

2|β
2
2 + |w2 − w′

2|β
2
1 + |w2 − w′

2|
, (4.1)

for some positive number γ . There exist a positive T4.2, a positive constant C and a positive number δ4.2, depending
only on known parameters in (H), such that for all positive γ strictly less than 3 inf{β2

1 , β2
2 } − 1,

M(D2ui, T ) ≤ CT δ4.2
(
1 + ‖D2ui‖∞ + ‖D1D2ui‖∞

)
,

for all T less than T4.2.

This allows us to obtain the following estimates

Lemma 4.3. Suppose that assumptions (HR) hold and let n in {0,1}. There exist a positive T4.3(n), a positive number
δ4.3(n) and a positive constant C(n), depending only on known parameters in (H) and n, such that:∥∥Dn

1D2ui

∥∥∞ ≤ C(n)T δ4.3(n),

for all T less than T4.3(n).

Finally, we can deduce Proposition 1.3 from Lemmas 4.1 and 4.3. �
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4.2. Intermediate gradient estimates: Proofs

4.2.1. Proof of Lemma 4.1
We first show assertion (i). Let (t, x) belong to [0, T ] ×R

2d , from the representation (3.13) in Lemma 3.4 we have:

D2
x1

ui(t, x) =
4∑

j=1

D2
x1

∫ T

t

Ij
i (s, x)ds. (4.2)

As done in the Section 2.4 we have to obtain a suitable bound on the D2
1I

j
i in order to estimate D2

1ui . Thanks to
assertion (a) in Claim 3.3 applied on the integrand of D2

x1
I1

i we have for all s in [t, T ]:
4∑

j=1

D2
x1
Ij

i (s, x) =
∫
R2d

�
(
θt,s(ξ)

)
φi(s, y)

[
D2

x1
q̃(t, x; s, y)

]
dy

− 1

2

∫
R2d

Tr
[
�

(
θt,s(ξ)

)
a(s, y)D2

y1
ui(s, y)

][
D2

x1
q̃(t, x; s, y)

]
dy

−
∫
R2d

{[
�

(
θt,s(ξ)

)
F1(s, y)

] · Dy1ui(s, y)
}[

D2
x1

q̃(t, x; s, y)
]

dy

−
∫
R2d

{[
�

(
θt,s(ξ)

)
F2(s, y) − D1F2

(
s, θ1

t,s(ξ), θ2
t,s (ξ)

)
�1(θt,s(ξ)

)
y1

] · [Dy2ui(s, y)
]}

× [
D2

x1
q̃(t, x; s, y)

]
dy. (4.3)

Note that by using the fact that � = �1 + �2, a Taylor expansion of order 0 with integrable remainder of the
mapping θ1

t,s(ξ) �→ F2(·, θ1
t,s (ξ), ·) around y1 in R

d and (H3-a), we have that:

∀(s, y2) ∈ (t, T ] ×R
d ,

∣∣[�(
θt,s(ξ)

)
F2(s, y) − D1F2

(
s, θt,s(ξ)

)(
�1(θt,s(ξ)

)
y1

)] · Dy2ui(s, y)
∣∣

≤ C‖D2ui‖∞
(∣∣�2(θt,s(ξ)

)
y2

∣∣β2
2 + ∣∣�1(θt,s(ξ)

)
y1

∣∣1+α1)
. (4.4)

From Proposition 3.1, we know that for all s in (t, T ] and y in R
2d , |D2

x1
q̃(t, x; s, y)| ≤ C′(s− t)−1q̂c(t, x; s, y). By

plugging this estimate in (4.3), together with the regularity of the coefficients assumed in (H) and (4.4), we obtain that∣∣∣∣∣
4∑

j=1

D2
x1
Ij

i (s, x)

∣∣∣∣∣ ≤ C′′(s − t)−1
∫
R2d

{
2∑

j=1

{
(s − t)(j−1/2)β

j
i

∣∣∣∣�j(θt,s(ξ))yj

(s − t)(j−1/2)

∣∣∣∣
β

j
i

+ ∥∥D2
1ui

∥∥∞(s − t)(j−1/2)

∣∣∣∣�j(θt,s(ξ))yj

(s − t)(j−1/2)

∣∣∣∣
+ ‖D1ui‖∞(s − t)(j−1/2)β

j
1

∣∣∣∣�j(θt,s(ξ))yj

(s − t)(j−1/2)

∣∣∣∣
β

j
1
}

+ ‖D2ui‖∞
[
(s − t)3β2

2 /2
∣∣∣∣�2(θt,s(ξ))y2

(s − t)3/2

∣∣∣∣
β2

2 + (s − t)(1+α1)/2
∣∣∣∣�1(θt,s(ξ))y1

(s − t)1/2

∣∣∣∣
1+α1]}

× q̂c(t, x; s, y)dy.

Set ξ = x, we now use the Gaussian off-diagonal decay in q̂c (see the computations in Section 2.4 for more details):

∀κ > 0,∃C, c > 0 s.t. ∀(s, y) ∈ (t, T ] ×R
2d : ∣∣�l

(
θt,s(x)

)
yl

∣∣κ q̂c(t, x; s, y)

≤ C(s − t)(l−1/2)κ q̂c(t, x; s, y) (4.5)
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for l = 1,2 and where C and c depend only on known parameters in (H) and on κ . Hence, by integrating w.r.t. the
space variable we have:∣∣∣∣∣

4∑
j=1

D2
x1
Ij

i (s, x)

∣∣∣∣∣
≤ C′′′

{
2∑

j=1

{
(s − t)−1+(j−1/2)β

j
i + (

(s − t)−1/2 + (s − t)1/2)∥∥D2
1ui

∥∥∞ + (s − t)(j−1/2)β
j
2 −1‖D1ui‖∞

}

+ (
(s − t)−1+3β2

1 /2 + (s − t)(α
1−1)/2)‖D2ui‖∞

}
.

So that we can inverse the differentiation and integral operators in (4.2) and then deduce that

∥∥D2
1ui

∥∥∞ ≤ C′′′{(T 3β2
2 /2 + T (1+α1)/2)‖D2ui‖∞ + (

T β1
1 /2 + T 3β2

1 /2)‖D1ui‖∞

+ (
T 1/2 + T 3/2)∥∥D2

1ui

∥∥∞ + T β1
i /2 + T 3β2

i /2}.
Then, by setting T (i)

4.1 = sup{T > 0, such that C′′′(T 1/2 + T 3/2) ≤ 1/2} we deduce the assertion (i) for all T less than

T (i)
4.1 from a circular argument (see (2.16)). The proof of the second statement (ii) can be done by the same arguments.

This concludes the proof of Lemma 4.1. �

4.2.2. Proof of Lemma 4.3
Let (t, x) belongs to [0, T ] × R

2d . We have from representation (3.13) in Lemma 3.4 that, for all n in {0,1} and all
positive ε

Dn
x1

Dx2ui(t, x) =
4∑

j=1

Dn
x1

Dx2

∫ T

t

Ij
i (s, x)ds. (4.6)

Again, we look for a suitable bound on the Dn
x1

Dx2I
j
i in order to estimate Dn

x1
Dx2ui . Thanks to representation (3.12),

we know that the derivatives Dn
x1

Dx2I
j
i can be written as the integral of some function against the derivative of the

degenerate Gaussian kernel q̃ . Since from Proposition 3.1 we have that for all s in (t, T ] and y in R
2d

∣∣Dn
x1

Dx2 q̃(t, x; s, y)
∣∣ ≤ C(s − t)−(3+n)/2q̂c(t, x; s, y), (4.7)

we use the regularity of the coefficients together with the regularity of the solution ui and its derivatives to smooth the
time singularity appearing in (4.7), as done in the previous subsection and in Section 2.4.

Hence, we first give a bound on each centered integrand Hj
i of Dn

x1
Dx2I

j
i , j = 1, . . . ,4, given by Definition 3.6.

For all s in (t, T ], y in R
2d we have, from the regularity of the coefficients assumed in (H), that:

∣∣H1
i

(
s, y, θt,s(ξ)

)∣∣ ≤ C
∣∣�2(θt,s(ξ)

)
y2

∣∣β2
i . (4.8)

Then, we recall that from Mean Value Theorem (MVT) we have∣∣�2(θt,s(ξ)
)
Dy1ui(s, y)

∣∣ ≤ ‖D1D2ui‖∞
∣∣�2(θt,s(ξ)

)
y2

∣∣, (4.9)

so that∣∣H2
i

(
s, y, θt,s(ξ)

)∣∣ ≤ C′{∥∥D2
1ui

∥∥∞
∣∣�2(θt,s(ξ)

)
y2

∣∣
+ ‖D1D2ui‖∞

(∣∣�2(θt,s(ξ)
)
y2

∣∣ + ∣∣�1(θt,s(ξ)
)
y1

∣∣∣∣�2(θt,s(ξ)
)
y2

∣∣)}. (4.10)
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By the same way, we get that

∣∣H3
i

(
s, y, θt,s(ξ)

)∣∣ ≤ C′′{‖D1ui‖∞
∣∣�2(θt,s(ξ)

)
y2

∣∣β2
1

+ ‖D1D2ui‖∞
∣∣�1(θt,s(ξ)

)
y1

∣∣β1
1
∣∣�2(θt,s(ξ)

)
y2

∣∣}. (4.11)

And finally, since we have from Lemma 4.2∣∣�2(θt,s(ξ)
)
Dy2ui(s, y)

∣∣
≤ M(D2ui, T )

(∣∣�2(θt,s(ξ)
)
y2

∣∣γ /3 + ∣∣�2(θt,s(ξ)
)
y2

∣∣β2
1 + ∣∣�2(θt,s(ξ)

)
y2

∣∣β2
2 + ∣∣�2(θt,s(ξ)

)
y2

∣∣), (4.12)

where M(D2ui, T ) is defined by (4.1) we have from the regularity of the coefficients assumed in (H) and (4.4) that∣∣H4
i

(
s, y, θt,s(ξ)

)∣∣
≤ C′′′‖D2ui‖∞

∣∣�2(θt,s(ξ)
)
y2

∣∣β2
2

+ M(D2ui, T )
∣∣�1(θt,s(ξ)

)
y1

∣∣1+α1

× (∣∣�2(θt,s(ξ)
)
y2

∣∣γ /3 + ∣∣�2(θt,s(ξ)
)
y2

∣∣β2
1 + ∣∣�2(θt,s(ξ)

)
y2

∣∣β2
2 + ∣∣�2(θt,s(ξ)

)
y2

∣∣). (4.13)

Finally, let us recall from Proposition 3.1 that for all (s, y) in (t, T ] ×R
2d ,∣∣∣∣Dn

x1
Dx2

∂

∂y1l

q̃(t, x; s, y)

∣∣∣∣ ≤ C′′′′(s − t)−(4+n)/2q̂c′(t, x; s, y), (4.14)

for all l in {1, . . . , d}.
Now, we can plug together some of the above estimates in the corresponding Dn

x1
Dx2I

j
i , j = 1, . . . ,4, defined in

Lemma 3.5. By using (4.7) with (4.8) (resp. (4.11) and (4.13)) in (3.15) (resp. (3.17) and (3.18)), estimates (4.7) and
(4.14) with (4.10) in (3.16), by letting next ξ = x and by using (4.5) in all these terms, we can deduce that for all s in
(t, T ] ∣∣∣∣∣

4∑
j=1

Dn
x1

Dx2I
j
i (s, x)

∣∣∣∣∣
≤ c′

∫
R2d

{
(s − t)(3(β2

i −1)−n)/2 + (s − t)−n/2(∥∥D2
1ui

∥∥∞ + ‖D1D2ui‖∞
)

+ ‖D1ui‖∞(s − t)(3(β2
1 −1)−n)/2 + ‖D1D2ui‖∞(s − t)(β

1
1 −n)/2

+ M(D2ui, T )(s − t)−1+(α1−n)/2((s − t)γ /2 + (s − t)β
2
1 /2 + (s − t)β

2
2 /2 + (s − t)

)
+ ‖D2ui‖∞(s − t)(3(β2

2 −1)−n)/2}q̂c′′(t, x; s, y)dy. (4.15)

Then, we have from Lemma 4.2 that for all T less than T4.2:

∀γ s.t. 0 < γ < 3 inf
{
β2

1 , β2
2

} − 1, M(D2ui, T ) ≤ c′′′T4.2
(
1 + ‖D2ui‖∞ + ‖D1D2ui‖∞

)
. (4.16)

So that we can inverse the differentiation and integral operators in (4.6). Hence, by plugging (4.16) in (4.15) and by
choosing n equal to 0, after integrating in time, we deduce from a circular argument (as described in (2.16)) that there
exist two positive numbers T ′

4.3(0), δ4.3(0) and a positive constant C̄, depending only on known parameters in (H),
such that

‖D2ui‖∞ ≤ C̄T δ4.3(0)
(
1 + ‖D1D2ui‖∞

)
, (4.17)
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for all T less than T ′
4.3(0). Next, by letting n be equal to 1 in (4.15) (recall that Lemma 4.2 hold for all 0 < γ <

3 inf{β2
1 , β2

2 }−1 and that 3 inf{β2
1 , β2

2 } > 1 so that all the time-singularity are integrable), by using the same arguments
as in the case n = 0 together with (4.17), we can show that there exist two positive numbers T4.3(1), δ4.3(1) and a
positive constant C̄′, depending only on known parameters in (H), such that

‖D1D2ui‖∞ ≤ C̄′T δ4.3(1),

for all T less than T4.3(1). This conclude the proof for n = 1. The case n = 0 follows from plugging this estimate in
(4.17). �

Remark 4. Note that the estimate on supremum norm of D2ui (i.e. when n = 0) could be obtain without Lemma 4.2,
by bounding the left hand side of (4.12) by the supremum norm of D2ui .

4.2.3. Proof of Lemma 4.2
From (3.13) in Lemma 3.4, Lemma 4.3 and Remark 4, for all (t, x1) in [0, T ] ×R

d and x2 �= z2 in R
d we have:∣∣D2ui(t, x1, x2) − D2ui(t, x1, z2)

∣∣
≤

∣∣∣∣∣
4∑

j=1

∫ T

t

Dx2I
j
i (s, x1, x2) − Dz2I

j
i (s, x1, z2)ds

∣∣∣∣∣. (4.18)

We recall that the Ij
i , j = 1, . . . ,4, depend on the freezing point ξ = (ξ1, ξ2)

∗ of the process which started from
(x1, x2) and (x1, z2) at time t . Here, we choose the same freezing point “ξ” for the two processes (with different
initial conditions).

Then, we split the time interval w.r.t. the characteristic scale of the second component of the system (3.1) in
order to study the perturbation on each interval. Hence, we set S = {s ∈ (t, T ] s.t. |x2 − z2| < (s − t)3/2} and Sc =
{s ∈ (t, T ] s.t. |x2 − z2| ≥ (s − t)3/2}. We have for all s in (t, T ]:∣∣∣∣∣

4∑
j=1

Dx2I
j
i (s, x1, x2) − Dz2I

j
i (s, x1, z2)

∣∣∣∣∣
=

4∑
j=1

1S

∫
R2d

{
Hj

i

(
s, y1, y2, θ

1
t,s(ξ), θ2

t,s (ξ)
)

× (
Dx2 q̃(t, x1, x2; s, y1, y2) − Dz2 q̃(t, x1, z2; s, y1, y2)

)}
dy1 dy2

+
4∑

j=1

1Sc

∫
R2d

{
Hj

i

(
s, y1, y2, θ

1
t,s(ξ), θ2

t,s (ξ)
)

×(
Dx2 q̃(t, x1, x2; s, y1, y2) − Dz2 q̃(t, x1, z2; s, y1, y2)

)}
dy1 dy2

:= Ps(S) +Ps

(
Sc

)
, (4.19)

where the Hj
i , j = 1, . . . ,4, are given by (3.12). We now bound the first and the second sum in the right hand side of

the last equality above.
Estimation of Ps(S) on (t, T ]. As a first step, we bound the first sum in the right hand side of (4.19). At the end of

this part, it is proven that:

Claim 4.4. For all s in S , y1, y2 in R
d , the following inequality holds:∣∣Dx2 q̃(t, x1, x2; s, y1, y2) − Dz2 q̃(t, x1, z2; s, y1, y2)

∣∣
≤ C(s − t)−(3+γ )/2q̂c(t, x1, x2; s, y1, y2)|x2 − z2|γ /3, (4.20)
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where c and C depend only on known parameters in (H) and where 0 < γ < 3. Moreover∣∣∣∣ ∂

∂y1l

Dx2 q̃(t, x1, x2; s, y1, y2) − ∂

∂y1l

Dz2 q̃(t, x1, z2; s, y1, y2)

∣∣∣∣
≤ C′(s − t)−(3+γ+1)/2q̂c′(t, x1, x2; s, y1, y2)|x2 − z2|γ /3, (4.21)

for any l = 1, . . . , d , where c′ and C′ depend only on known parameters in (H) and where 0 < γ < 3.

On the other hand, Lemma 3.5 allows to choose the Hj
i , j = 1, . . . ,4, appearing in Pε(S) as the centered integrands

(see Definition 3.6). So that this term is similar to the term studied in the proof of Lemma 4.3. In fact, the only
difference with the terms in the proof of Lemma 4.3 (when n = 0) is that the integration is now against the perturbed
differentiated kernel defined by the left hand side of (4.20) or (4.21):5 in comparison with (4.7) and (4.14), we “loose”
a γ /2 in the time-singularity in the estimation.

Hence, we can use the same arguments as the ones of Lemma 4.3 to bound Ps(S): by using estimates (4.8), (4.10),
(4.11), (4.13) together with (4.20) or (4.21) in s(S) and next by letting ξ = x together with (4.5) we deduce that

∣∣Ps(S)
∣∣ ≤ C′(s − t)−γ /2{(s − t)−3(1−β2

i )/2 + ∥∥D2
1ui

∥∥∞ + ‖D1D2ui‖∞

+ ‖D1ui‖∞(s − t)−3(1−β2
1 )/2 + ‖D1D2ui‖∞(s − t)β

1
1 /2

+ ‖D2ui‖∞(s − t)−3(1−β2
2 )/2

+ M(D2ui, T )(s − t)−1+α1/2((s − t)γ /2 + (s − t)3β2
1 /2 + (s − t)3β2

2 /2 + (s − t)3/2)}|x2 − z2|γ /3,

for all γ < 3 inf(β2
1 , β2

2 ) − 1. By integrating in space and by using Lemma 4.1, we obtain that there exists a positive
number δ1

4.2, depending only on known parameters in (H), such that:

∫ T

t

∣∣Ps(S)
∣∣ds ≤ C′′T δ1

4.2
(
M(D2ui, T ) + ‖D2ui‖∞ + ‖D1D2ui‖∞ + 1

)
× (|x2 − z2|γ /3 + |x2 − z2|β2

2 + |x2 − z2|β2
1 + |x2 − z2|

)
, (4.22)

for all γ < 3 inf(β2
1 , β2

2 ) − 1.
Estimation of Pε(Sc). As a second step, we bound the sum Ps(Sc) on (t, T ] in (4.19). Note that

Ps

(
Sc

) =
4∑

j=1

1Sc

∫
R2d

Hj
i

(
s, y1, y2, θ

1
t,s(ξ), θ2

t,s (ξ)
)
Dx2 q̃(t, x1, x2; s, y1, y2)dy1 dy2 (4.23)

−
4∑

j=1

1Sc

∫
R2d

Hj
i

(
s, y1, y2, θ

1
t,s(ξ), θ2

t,s (ξ)
)
Dz2 q̃(t, x1, z2; s, y1, y2)dy1 dy2 (4.24)

and that for all s in Sc we have:

1 ≤ (s − t)−γ /2|x2 − z2|γ /3. (4.25)

On the one hand we bound the right hand side of (4.23). Again, thanks to Lemma 3.5, we can identify the Hj
i ,

j = 1, . . . ,4, appearing in this term as the centered integrands (see Definition 3.6). And again, by proceeding exactly
as in the proof of Lemma 4.3 when n = 0 (the restriction of the time integration on the set Sc is not a problem to do

5And that the time integration is done on the set S .
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so), we obtain that this term is bounded by the right hand side of (4.15). By using (4.25), we deduce that∣∣∣∣∣
4∑

j=1

1Sc

∫
R2d

Hj
i

(
s, y1, y2, θ

1
t,s(ξ), θ2

t,s(ξ)
)
Dx2 q̃(t, x1, x2; s, y1, y2)dy1 dy2

∣∣∣∣∣
≤ C(s − t)−γ /2{(s − t)−3(1−β2

1 )/2 + ∥∥D2
1ui

∥∥∞ + ‖D1D2ui‖∞

+ ‖D1ui‖∞(s − t)−3(1−β2
1 )/2 + ‖D1D2ui‖∞(s − t)−β1

1 /2

+ ‖D2ui‖∞(s − t)3(β2
2 −1)/2

+ M(D2ui, T )(s − t)−1+α1/2((s − t)γ /2 + (s − t)3β2
1 /2 + (s − t)3β2

2 /2 + (s − t)3/2)}|x2 − z2|γ /3. (4.26)

On the other hand, we have to deal with the term (4.24). The crucial point here is that the frozen transition density
is evaluated at point z2 but frozen along the transport of x2 (since we already chose ξ = x). This is because we took the
same freezing point for the two solutions with different initial conditions. Hence, we have to re-center carefully each
integrand Hj

i , j = 1, . . . ,4, in order to use the Gaussian off-diagonal decay in q̃ for smoothing the time singularity.

Indeed, in this case, for all s in [t, T ] and y2 in R
d , this off-diagonal decay is |y2 − m

2,ξ
t,s (x1, z2)|.

Hence, as we did in Lemma 3.5, we have to re-center the integrands around (m
2,ξ
t,s (x1, ξ̃2))t<s≤T , for some ξ̃2 in

R
2d with the help of Claim 3.3 and then choose ξ̃2 = z2. For notational convenience we write z2 instead of ξ̃2 as from

now. Let

1Sc

∫
R2d

Hj
i

(
s, y1, y2, θ

1
t,s(ξ), θ2

t,s(ξ)
)
Dz2 q̃(t, x1, z2; s, y1, y2)dy1 dy2

:= Ĩj
i (s, x1, z2)1Sc , (4.27)

for j = 1, . . . ,4. Below, we re-center each integrand of Ĩj
i (s, x1, z2)1Sc , j = 1, . . . ,4, and we estimate it.

Bound of Ĩ1
i (c, x1, z2)1Sc . We deduce from assertion (b) in Claim 3.3 and (4.25) that:

∣∣Ĩ1
i (s, x1, z2)1Sc

∣∣ ≤ (s − t)−γ /2
∫
R2d

�2(θt,s(z2)
)
φi(s, y1, y2)Dz2 q̃(t, x1, z2; s, y1, y2)dy1 dy2|x2 − z2|γ /3.

Then, by using estimate on Dx2 q̃ from Proposition 3.1, regularity of φi under (H) a

∣∣Ĩ1
i (s, x1, z2)1Sc

∣∣ ≤ C1Sc (s − t)−3(1−β2
i +γ /3)/2|x2 − z2|γ /3, (4.28)

for all positive γ strictly less than 3β2
i − 1.

Bound of Ĩ2
i (s; t, x1, z2)1Sc . We first split this term as:

Ĩ2
i (s, x1, z2)1Sc

= −1

2
1Sc

∫
R2d

Tr
[(

�2(mt,ξ
t,s (x1, z2)

)
a(s, y)

)
D2

y1
ui(s, y)

]
Dz2 q̃(t, x1, z2; s, y)dy

− 1

2
1Sc

∫
R2d

Tr
[(

a
(
s, y1,m

2,t,ξ
t,s (x1, z2)

) − a
(
s, θt,s(ξ)

))
D2

y1
ui(s, y)

]
Dz2 q̃(t, x1, z2; s, y)dy.

By applying assertion (b) in Claim 3.3 on the first term in the right hand side, by integrating by parts (see the proof of
Lemma 3.5) the second term in the right hand side and then by applying assertion (c) in Claim 3.3 we get:

Ĩ2
i (s, x1, z2)1Sc

= −1

2

∫ T

t+ε

1Sc

∫
R2d

{
Tr

[(
�2(mt,ξ

t,s (x1, z2)
)
a(s, y1, y2)

)
D2

y1
ui(s, y1, y2)

]
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−
d∑

l=1

([
∂

∂y1l

al.

(
s, y1,m

t,ξ
t,s (x1, z2)

)]

· [�2(mt,ξ
t,s (x1, z2)

)
Dy1ui(s, y1, y2)

])}
× [

Dz2 q̃(t, x1, z2; s, y1, y2)
]

dy1 dy2 ds

+ 1

2

d∑
l=1

∫ T

t+ε

1Sc

∫
R2d

{[
al.

(
s, y1,m

2,t,ξ
t,s (x1, z2)

) − al.

(
s, θ1

t,s(ξ), θ2
t,s (ξ)

)]

· [�2(mt,ξ
t,s (x1, z2)

)
Dy1ui(s, y1, y2)

] ×
[

∂

∂y1l

Dz2 q̃(t, x1, z2; s, y1, y2)

]}
dy1 dy2 ds.

Therefore, from the estimates on the derivatives of q̃ from Proposition 3.1, by using MVT (4.9) and the regularity of
a from (H) together with estimate (4.5) and by integrating next in space we obtain that

∣∣Ĩ2
i (s, x1, z2)1Sc

∣∣
≤ C′1Sc

{(∥∥D2
1ui

∥∥∞(s − t)−γ /2 + ‖D1D2ui‖∞(s − t)−γ /2)|x2 − z2|γ /3

+ ‖D1D2ui‖∞(s − t)−1/2
∣∣m2,t,ξ

t,s (x1, z2) − θ2
t,s(ξ)

∣∣}, (4.29)

by using next the estimate (4.25) in the first term on the right hand side. This holds for all γ < 2.
Bound of Ĩ3

i (s, x1, z2)1Sc . By using the definition of �2 and then assertion (c) in Claim 3.3, this term can be
centered as follows

Ĩ3
i (s, x1, z2)1Sc = −1Sc

∫
R2d

{[
�2(mt,ξ

t,s (x1, z2)
)
F1(s, y1, y2)

] · [Dy1ui(s, y1, y2)
]

+ [
F1

(
s, y1,m

2,t,ξ
t,s (x1, z2)

) − F1
(
s, θ1

t,s (ξ), θ2
t,s(ξ)

)]
· [�2(m2,t,ξ

t,s (x1, z2)
)
Dy1ui(s, y1, y2)

]}
Dz2 q̃(t, x1, z2; s, y1, y2)dy1 dy2.

Now, thanks to the regularity of F1 assumed in (H), if we apply the estimate on the derivative of q̃ from Proposition 3.1,
MVT (4.9) and estimate (4.25), we obtain that

∣∣Ĩ3
i (s, x1, z2)1Sc

∣∣
≤ C′′1Sc

{(‖D1ui‖∞(s − t)−3(1−β2
1 +γ /3)/2 + ‖D1D2ui‖∞(s − t)(β

1
1 −γ )/2)|x2 − z2|γ /3

+ ‖D1D2ui‖∞
∣∣m2,t,ξ

t,s (x1, z2) − θ2
t,s(ξ)

∣∣β2
1
}

(4.30)

for all γ < 3β2
1 − 1.

Bound of Ĩ4
i (s, x1, z2)1Sc . From representation (3.13), by using the definition of �2 and then by centering the term

D2ui thanks to assertion (c) in Claim 3.3 we can write

Ĩ4
i (s, x1, z2)1Sc

= −1Sc

∫
R2d

{[
�2(mt,ξ

t,s (x1, z2)
)
F2(s, y1, y2)

] · [Dy2ui(s, y1, y2)
]

+ [
F2

(
s, y1,m

2,t,ξ
t,s (x1, z2)

) − F2
(
s, θ1

t,s (ξ), θ2
t,s(ξ)

) − D1F2
(
s, θ1

t,s (ξ), θ2
t,s(ξ)

)
�1(θt,s(ξ)

)
y1

]
· [�2(m2,t,ξ

t,s (x1, z2)
)
Dy2ui(s, y1, y2)

]}
Dz2 q̃(t, x1, z2; s, y1, y2)dy1 dy2.
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By using the regularity of the coefficients from (H), (4.4) and estimate on D2q̃ from Proposition 3.1 and (4.25) we
have: ∣∣Ĩ4

i (s, x1, z2)1Sc

∣∣
≤ C′′′1Sc

{‖D2ui‖∞(s − t)−3(1−β2
2 +γ /3)/2|x2 − z2|γ /3 + M(D2ui, T )

[∣∣m2,t,ξ
t,s (x1, z2) − θ2

t,s(ξ)
∣∣

+ (s − t)−1+α1/2(|x2 − z2|γ /3 + |x2 − z2|β2
1 + |x2 − z2|β2

2 + |x2 − z2|
)]}

, (4.31)

for all γ < 3β2
1/2 − 1.

Now, note that from the definition (3.3) of m,

∀s ∈ [t, T ], m
2,t,x
t,s (x1, z2) − θ2

t,s(x) = z2 − x2.

Hence, by letting ξ = x in (4.28), (4.29), (4.30) and (4.31) and combining the resulting estimates with (4.26), we
deduce that there exist a positive constant C′′′′ and a positive number δ2

4.2, depending only on known parameters in
(H), such that:∫ T

t

∣∣Ps

(
Sc

)∣∣ds ≤ C′′′′T δ2
4.2

(
M(D2ui, T ) + ‖D2ui‖∞ + ‖D1D2ui‖∞ + 1

)
× (|x2 − z2|γ /3 + |x2 − z2|β2

2 + |x2 − z2|β2
1 + |x2 − z2|

)
, (4.32)

for all γ < 3 inf(β2
1 , β2

2 ) − 1.
“Hölder estimate” on D2ui . Finally, by plugging estimates (4.22) and (4.32) in (4.18), we deduce that there exist

a positive constant C and a positive number δ4.2, depending only on known parameters in (H), such that:∣∣D2ui(t, x1, x2) − D2ui(t, x1, z2)
∣∣ ≤ CT δ4.2

(‖D2ui‖∞ + ‖D1D2ui‖∞ + M(D2ui, T ) + 1
)

× (|x2 − z2|γ /3 + |x2 − z2|β2
2 + |x2 − z2|β2

1 + |x2 − z2|
)
.

A circular argument concludes the proof of Lemma 4.2. �

Proof of Claim 4.4. Let (t < s, x, y) in [0, T ]2 ×R
2d ×R

2d , by using MVT and the Gaussian estimate of D2
2 q̃ from

Proposition 3.1 we have:∣∣(D2q̃)(t, x1, x2; s, y1, y2) − (D2q̃)(t, x1, z2; s, y1, y2)
∣∣

≤ sup
ρ∈(0,1)

∣∣(D2
2 q̃

)(
t, x1, x2 + ρ(x2 − z2); s, y1, y2

)∣∣|x2 − z2|

≤ C′(s − t)−3 sup
ρ∈(0,1)

q̂c̄

(
t, x1, x2 + ρ(x2 − z2); s, y1, y2

)|x2 − z2|, (4.33)

where c̄ is a positive constant depending only on known parameters in (H). Note that on S :

sup
ρ∈(0,1)

q̂c̄

(
t, x1, x2 + ρ(x2 − z2); s, y1, y2

) ≤ C′′q̂c(t, x1, x2; s, y1, y2). (4.34)

Combining (4.33) and (4.34), we obtain:∣∣(D2q̃)(t, x1, x2; s, y1, y2) − (D2q̃)(t, x1, z2; s, y1, y2)
∣∣

≤ C′′′(s − t)−3q̂c(t, x1, x2; s, y1, y2)|x2 − z2|.
Rewrite |x2 − z2| = |x2 − z2|1−γ /3|x2 − z2|γ /3. Since |x2 − z2| < (s − t)3/2 we have |x2 − z2| < (s − t)3/2−γ /2 ×
|x2 − z2|γ /3 and (4.20) follows.

The second assertion follows from the same arguments. �
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