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Abstract. This issue of Statistical Science draws its inspiration from the
work of James M. Robins. Jon Wellner, the Editor at the time, asked the two
of us to edit a special issue that would highlight the research topics studied
by Robins and the breadth and depth of Robins’ contributions. Between the
two of us, we have collaborated closely with Jamie for nearly 40 years. We
agreed to edit this issue because we recognized that we were among the few
in a position to relate the trajectory of his research career to date.1

Many readers may be unfamiliar with Robins’ sin-
gular career trajectory and in particular how his early
practical experience motivated many of the inferential
problems with which he was subsequently involved.
Robins majored in mathematics at Harvard College,
but then, in the spirit of the times, left college to pursue
more activist social and political goals. Several years
later, Robins enrolled in Medical School at Washing-
ton University in St. Louis, graduating in 1976. His
M.D. degree remains his only degree, other than his
high school diploma.

After graduating, he interned in medicine at Harlem
Hospital in New York. After completing the internship,
Robins spent a year working as a primary care physi-
cian in a community clinic in the Roxbury neighbor-
hood of Boston. During that year, he helped organize
a vertical Service Employees International Union affil-
iate that included all salaried personnel, from mainte-
nance to physicians, working at the health center. In re-
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1Here, we restrict attention to Robins’ contributions to the re-
search literature. Robins has also contributed by training and men-
toring leading researchers in causal inference: among others, Eliz-
abeth Halloran, Miguel Hernán, Eric Tchetgen Tchetgen and Tyler
VanderWeele worked with him as graduate students. Both of the
editors of this Special Issue were greatly influenced by Robins’ as
a graduate student and post-doc and have been fortunate to have
subsequently collaborated with him over many years.

taliation, he was dismissed by the director of the clinic
and found that he was somewhat unwelcome at the
other Boston community clinics. Unable to find a job
and with his unemployment insurance running out, he
surprisingly was able to obtain a prestigious residency
in Internal Medicine at Yale University, a testament, he
says with some irony, to the enduring strength of one’s
Ivy League connections.

At Yale, Robins and his college friend Mark Cullen,
now head of General Medicine at Stanford Medical
School, founded an occupational health clinic, with the
goal of working with trade unions in promoting occu-
pational health and safety. When testifying in work-
ers’ compensation cases, Robins was regularly asked
whether it was “more probable than not that a worker’s
death or illness was caused by exposure to chemicals
in the workplace.” Robins’ lifelong interest in causal
inference began with his need to provide an answer.
As the relevant scientific papers consisted of epidemi-
ologic studies and biostatistical analyses, Robins en-
rolled in biostatistics and epidemiology classes at Yale.
He was dismayed to learn that the one question he
needed to answer was the one question excluded from
formal discussion in the mainstream biostatistical lit-
erature.2 At the time, most biostatisticians insisted that
evidence for causation could only be obtained through

2Robins and Greenland (1989a, 1989b) provided a formal def-
inition of the probability of causation and a definitive answer to
the question in the following sense. They proved that the probabil-
ity of causation was not identified from epidemiologic data even in
the absence of confounding, but that sharp upper and lower bounds
could be obtained. Specifically, under the assumption that a work-
place exposure was never beneficial, the probability P(t) that a
workers death occurring t years after exposure was due to that
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randomized controlled trials; since, for ethical reasons,
potentially harmful chemicals could not be randomly
assigned, it followed that statistics could play little role
in disentangling causation from spurious correlation.

1. CONFOUNDING

In his classes, Robins was struck by the gap present
between the informal, yet insightful, language of epi-
demiologists such as Miettinen and Cook (1981) ex-
pressed in terms of “confounding, comparability, and
bias,” and the technical language of mathematical
statistics in which these terms either did not have
analogs or had other meanings. Robins’ first major
paper “The foundations of confounding in Epidemi-
ology” written in 1982, though only published in 1987,
was an attempt to bridge this gap. As one example,
he offered a precise mathematical definition for the in-
formal epidemiologic concept of a “confounding vari-
able” that has apparently stood the test of time (see
VanderWeele and Shpitser, 2013). As a second ex-
ample, Efron and Hinkley (1978) had formally con-
sidered inference accurate to order n−3/2 in variance
conditional on exact or approximate ancillary statis-
tics. Robins showed, surprisingly, that long before their
paper, epidemiologists had been intuitively and infor-
mally referring to an estimator as “unbiased” just when
it was asymptotically unbiased conditional on either
exact or approximate ancillary statistics; furthermore,
they intuitively required that the associated conditional
Wald confidence interval be accurate to O(n−3/2) in
variance. As a third example, he solved the problem
of constructing the tightest Wald-type intervals guar-
anteed to have conservative coverage for the average
causal effect among the n study subjects participating
in a completely randomized experiment with a binary
response variable; he showed that this interval can be
strictly narrower than the usual binomial interval even
under the Neyman null hypothesis of no average causal
effect. To do so, he constructed an estimator of the vari-
ance of the empirical difference in treatment means
that improved on a variance estimator earlier proposed
by Neyman (1923). Aronow, Green and Lee (2014)
have recently generalized this result in several direc-
tions including to nonbinary responses.

exposure was sharply upper bounded by 1 and lower bounded by
max[0, {f1(t) − f0(t)}/f1(t)], where f1(t) and f0(t) are, respec-
tively, the marginal densities in the exposed and unexposed cohorts
of the random variable T encoding time to death.

2. TIME-DEPENDENT CONFOUNDING AND THE
g-FORMULA

It was also in 1982 that Robins turned his attention
to the subject that would become his grail: causal infer-
ence from complex longitudinal data with time-varying
treatments, that eventually culminated in his revolu-
tionary papers Robins (1986, 1987b). His interest in
this topic was sparked by (i) a paper of Gilbert (1982)3

on the healthy worker survivor effect in occupational
epidemiology, wherein the author raised a number of
questions Robins answered in these papers and (ii) his
medical experience of trying to optimally adjust a pa-
tient’s treatments in response to the evolution of the
patient’s clinical and laboratory data.

2.1 Overview

Robins career from this point on became a “quest” to
solve this problem, and thereby provide methods that
would address central epidemiological questions, for
example, is a given long-term exposure harmful or a
treatment beneficial? If beneficial, what interventions,
that is, treatment strategies, are optimal or near opti-
mal?

In the process, Robins created a “bestiary” of causal
models and analytic methods.4 There are the basic
“phyla” consisting of the g-formula, marginal struc-
tural models and structural nested models. These phyla
then contain “species,” for example, structural nested
failure time models, structural nested distribution mod-
els, structural nested (multiplicative additive and logis-
tic) mean models and yet further “subspecies”: direct-
effect structural nested models and optimal-regime
structural nested models.

Each subsequent model in this taxa was developed
to help answer particular causal questions in specific
contexts that the “older siblings” were not quite up
to. Thus, for example, Robins’ creation of structural
nested and marginal structural models was driven by
the so-called null paradox, which could lead to falsely
finding a treatment effect where none existed, and was
a serious nonrobustness of the estimated g-formula, his
then current methodology. Similarly, his research on
higher-order influence function estimators was moti-
vated by a concern that, in the presence of confound-
ing by continuous, high dimensional confounders, even

3The author, Ethel Gilbert, is the mother of Peter Gilbert who is
a contributor to this special issue; see (Richardson et al., 2014).

4In the epidemiologic literature, this bestiary is sometimes re-
ferred to as the collection of “g-methods.”
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doubly robust methods might fail to adequately control
for confounding bias.

This variety also reflects Robins’ belief that the best
analytic approach varies with the causal question to be
answered, and, even more importantly, that confidence
in one’s substantive findings only comes when multi-
ple, nearly orthogonal, modeling strategies lead to the
same conclusion.

2.2 Causally Interpreted Structured Tree Graphs

Suppose one wishes to estimate from longitudinal
data the causal effect of time-varying treatment or
exposure, say cigarette smoking, on a failure time
outcome such as all-cause mortality. In this setting,
a time-dependent confounder is a time-varying covari-
ate (e.g., presence of emphysema) that is a predictor
of both future exposure and of failure. In 1982, the
standard analytic approach was to model the condi-
tional probability (i.e., the hazard) of failure time t

as a function of past exposure history using a time-
dependent Cox proportional hazards model. Robins
formally showed that, even when confounding by un-
measured factors and model specification are absent,
this approach may result in estimates of effect that
may fail to have a causal interpretation, regardless of
whether or not one also adjusts for the measured time-
dependent confounders in the analysis. In fact, if previ-
ous exposure also predicts the subsequent evolution of
the time-dependent confounders (e.g., since smoking
is a cause of emphysema, it predicts this disease) then
the standard approach can find an artifactual exposure
effect even under the sharp null hypothesis of no net,
direct or indirect effect of exposure on the failure time
of any subject.

Prior to Robins (1986), although informal discus-
sions of net, direct and indirect (i.e., mediated) effects
of time varying exposures were to be found in the dis-
cussion sections of most epidemiologic papers, no for-
mal mathematical definitions existed. To address this,
Robins (1986) introduced a new counterfactual model,
the finest fully randomized causally interpreted struc-
tured tree graph (FFRCISTG)5 model that extended
the point treatment counterfactual model of Neyman
(1923) and Rubin (1974, 1978a)6 to longitudinal stud-
ies with time-varying treatments, direct and indirect ef-
fects and feedback of one cause on another. Due to his

5A complete list of acronyms used is given before the Refer-
ences.

6See Freedman (2006) and Sekhon (2008) for historical reviews
of the counterfactual point treatment model.

lack of formal statistical training, the notation and for-
malisms in Robins (1986) differ from those found in
the mainstream literature; as a consequence the paper
can be a difficult read.7 Richardson and Robins (2013,
Appendix C) present the FFRCISTG model using a
more familiar notation.8

We illustrate the basic ideas using a simplified ex-
ample. Suppose that we obtain data from an obser-
vational or randomized study in which n patients are
treated at two times. Let A1 and A2 denote the treat-
ments. Let L be a measurement taken just prior to the
second treatment and let Y be a final outcome, higher
values of which are desirable. To simplify matters, for
now we will suppose that all of the treatments and re-
sponses are binary. As a concrete example, consider
a study of HIV infected subjects with (A1,L,A2, Y ),
respectively, being binary indicators of anti-retroviral
treatment at time 1, high CD4 count just before time 2,
anti-retroviral therapy at time 2, and survival at time 3
(where for simplicity we assume no deaths prior to as-
signment of A2). There are 24 = 16 possible observed
data sequences for (A1,L,A2, Y ); these may be de-
picted as an event tree as in Figure 1.9 Robins (1986)
referred to such event trees as “structured tree graphs.”

7Robins published an informal, accessible, summary of his main
results in the epidemiologic literature (Robins, 1987a). However, it
was not until 1992 (and many rejections) that his work on causal in-
ference with time-varying treatments appeared in a major statistical
journal.

8The perhaps more familiar Non-Parametric Structural Equation
Model with Independent Errors (NPSEM-IE) considered by Pearl
may be viewed as submodel of Robins’ FFRCISTG.

A Non-Parametric Structural Equation Model (NPSEM) as-
sumes that all variables (V ) can be intervened on. In contrast, the
FFRCISTG model does not require one to assume this. However,
if all variables in V can be intervened on, then the FFRCISTG
specifies a set of one-step ahead counterfactuals, Vm(vm−1) which
may equivalently be written as structural equations Vm(vm−1) =
fm(vm−1, εm) for functions fm and (vector-valued) random errors
εm. Thus, leaving aside notational differences, structural equations
and one-step ahead counterfactuals are equivalent. All other coun-
terfactuals, as well as factual variables, are then obtained by recur-
sive substitution.

However, the NPSEM-IE model of Pearl (2000) further assumes
the errors εm are jointly independent. In contrast, though an FFR-
CISTG model is also an NPSEM, the errors (associated with in-
compatible counterfactual worlds) may be dependent—though any
such dependence could not be detected in a RCT. Hence, Pearl’s
model is a strict submodel of an FFRCISTG model.

9In practice, there will almost always exist baseline covariates
measured prior to A1. In that case, the analysis in the text is to be
understood as being with a given joint stratum of a set of baseline
covariates sufficient to adjust for confounding due to baseline fac-
tors.
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FIG. 1. Causal tree graph depicting a simple scenario with treat-
ments at two times A1, A2, a response L measured prior to A2,
and a final response Y . Blue circles indicate evolution of the pro-
cess determined by Nature; red dots indicate potential treatment
choices.

We wish to assess the effect of the two treatments
(a1, a2) on Y . In more detail, for a given subject
we suppose the existence of four potential outcomes
Y(a1, a2) for a1, a2 ∈ {0,1} which are the outcome
a patient would have if (possibly counter-to-fact)
they were to receive the treatments a1 and a2. Then
E[Y(a1, a2)] is the mean outcome (e.g., the survival
probability) if everyone in the population were to re-
ceive the specified level of the two treatments. The
particular instance of this regime under which every-
one is treated at both times, so a1 = a2 = 1, is depicted
in Figure 4(a). We are interested in estimation of these
four means since the regime (a1, a2) that maximizes
E[Y(a1, a2)] is the regime a new patient exchangeable
with the n study subjects should follow.

There are two extreme scenarios: If in an observa-
tional study, the treatments are assigned, for example,
by doctors, based on additional unmeasured predictors
U of Y then E[Y(a1, a2)] is not identified since those
receiving (a1, a2) within the study are not representa-
tive of the population as a whole.

At the other extreme, if the data comes from a com-
pletely randomized clinical trial (RCT) in which treat-
ment is assigned independently at each time by the flip
of coin, then it is simple to see that the counterfactual
Y(a1, a2) is independent of the treatments (A1,A2)

and that the average potential outcomes are identified
since those receiving (a1, a2) in the study are a simple
random sample of the whole population. Thus,

Y(a1, a2) ⊥⊥ {A1,A2},(1)

E
[
Y(a1, a2)

] = E[Y | A1 = a1,A2 = a2],(2)

where the right-hand side of (2) is a function of the
observed data distribution. In a completely randomized
experiment, association is causation: the associational
quantity on the right-hand side of (2) equals the causal
quantity on the left-hand side.

Robins, however, considered an intermediate trial
design in which both treatments are randomized, but
the probability of receiving A2 is dependent on both
the treatment received initially (A1) and the observed
response (L); a scenario now termed a sequential ran-
domized trial. Robins viewed his analysis as also ap-
plicable to observational data as follows. In an obser-
vational study, the role of an epidemiologist is to use
subject matter knowledge to try to collect in L suf-
ficient data to eliminate confounding by unmeasured
factors, and thus to have the study mimic a sequential
RCT. If successful, the only difference between an ac-
tual sequential randomized trial and an observational
study is that in the former the randomization probabil-
ities Pr(A2 = 1 | L,A1) are known by design while in
the latter they must be estimated from the data.10

Robins viewed the sequential randomized trial as a
collection of five trials in total: the original trial at
t = 1, plus a set of four randomized trials at t = 2
nested within the original trial.11 Let the counterfactual
L(a1) be the outcome L when A1 is set to a1. Since
the counterfactuals Y(a1, a2) and L(a1) do not depend
on the actual treatment received, they can be viewed,
like a subject’s genetic make-up, as a fixed (possibly
unobserved) characteristic of a subject and therefore
independent of the randomly assigned treatment con-
ditional on pre-randomization covariates. That is, for
each (a1, a2) and l:{

Y(a1, a2),L(a1)
} ⊥⊥ A1,(3)

Y(a1, a2) ⊥⊥ A2 | A1 = a1, L = l.(4)

These independences suffice to identify the joint
density fY(a1,a2),L(a1)(y, l) of (Y (a1, a2),L(a1)) from

10Of course, one can never be certain that the epidemiologists
were successful which is the reason RCTs are generally considered
the gold standard for establishing causal effects.

11That is, the trials starting at t = 2 are on study populations de-
fined by specific (A1,L)-histories.
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the distribution of the factual variables by the “g-
computation algorithm formula” (or simply g-formula)
density

f ∗
a1,a2

(y, l) ≡ f (y | a1, l, a2)f (l | a1)(5)

provided the conditional probabilities on the right-hand
side are well-defined (Robins, 1986, page 1423). Note
that f ∗

a1,a2
(y, l) is obtained from the joint density of

the factuals by removing the treatment terms f (a2 |
a1, l, a2)f (a1). This is in-line with the intuition that
A1 and A2 cease to be random since, under the regime,
they are set by intervention to constants a1 and a2.
The g-formula was later referred to as the “manipulated
density” by Spirtes, Glymour and Scheines (1993) and
the “truncated factorization” by Pearl (2000).

Robins (1987b) showed that under the weaker con-
dition that replaces (3) and (4) with

Y(a1, a2) ⊥⊥ A1 and
(6)

Y(a1, a2) ⊥⊥ A2 | A1 = a1, L = l,

the marginal density of Y(a1, a2) is still identified by

f ∗
a1,a2

(y) = ∑
l

f (y | a1, l, a2)f (l | a1),(7)

the marginal under f ∗
a1,a2

(y, l).12 Robins called (6)
randomization w.r.t. Y .13 Furthermore, he provided
substantive examples of observational studies in which
only the weaker assumption would be expected to hold.
It is much easier to describe these studies using rep-
resentations of causal systems using Directed Acyclic
Graphs and Single World Intervention Graphs, neither
of which existed when (Robins, 1987b) was written.

2.3 Causal DAGs and Single World Intervention
Graphs (SWIGs)

Causal DAGs were first introduced in the seminal
work of Spirtes, Glymour and Scheines (1993); the the-
ory was subsequently developed and extended by Pearl
(1995a, 2000) among others.

A causal DAG with random variables V1, . . . , VM as
nodes is a graph in which (1) the lack of an arrow from
node Vj to Vm can be interpreted as the absence of a
direct causal effect of Vj on Vm (relative to the other
variables on the graph), (2) all common causes, even if

12The g-formula density for Y is a generalization of standardiza-
tion of effect measures to time varying treatments. See Keiding and
Clayton (2014) for a historical review of standardization.

13Note that the distribution of L(a1) is no longer identified under
this weaker assumption.

unmeasured, of any pair of variables on the graph are
themselves on the graph, and (3) the Causal Markov
Assumption (CMA) holds. The CMA links the causal
structure represented by the Directed Acyclic Graph
(DAG) to the statistical data obtained in a study. It
states that the distribution of the factual variables factor
according to the DAG. A distribution factors according
to the DAG if nondescendants of a given variable Vj

are independent of Vj conditional on paj , the parents
of Vj . The CMA is mathematically equivalent to the
statement that the density f (v1, . . . , vM) of the vari-
ables on the causal DAG G satisfies the Markov factor-
ization

f (v1, . . . , vM) =
M∏

j=1

f (vj | paj ).(8)

A graphical criterion, called d-separation (Pearl, 1988),
characterizes all the marginal and conditional inde-
pendences that hold in every distribution obeying the
Markov factorization (8).

Causal DAGs may also be used to represent the joint
distribution of the observed data under the counter-
factual FFRCISTG model of Robins (1986). This fol-
lows because an FFRCISTG model over the variables
{V1, . . . , VM} induces a distribution that factors as (8).
Figure 2(a) shows a causal Directed Acyclic Graph
(DAG) corresponding to the sequentially randomized
experiment described above: vertex H represents an
unmeasured common cause (e.g., immune function) of
CD4 count L and survival Y . Randomization of treat-
ment implies A1 has no parents and A2 has only the
observed variables A1 and L as parents.

Single-World Intervention Graphs (SWIGs), intro-
duced in (Richardson and Robins, 2013), provide a
simple way to derive the counterfactual independence
relations implied by an FFRCISTG model. SWIGs
were designed to unify the graphical and potential out-
come approaches to causality. The nodes on a SWIG
are the counterfactual random variables associated
with a specific hypothetical intervention on the treat-
ment variables. The SWIG in Figure 2(b) is derived
from the causal DAG in Figure 2(a) corresponding to
a sequentially randomized experiment. The SWIG rep-
resents the counterfactual world in which A1 and A2

have been set to (a1, a2), respectively. Richardson and
Robins (2013) show that under the (naturally associ-
ated) FFRCISTG model the distribution of the coun-
terfactual variables on the SWIG factors according to
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FIG. 2. (a) A causal DAG G describing a sequentially randomized trial; (b) the SWIG G(a1, a2) resulting from intervening on A1 and A2.

the graph. Applying Pearl’s d-separation criterion to
the SWIG we obtain the independences (3) and (4).14

Robins (1987b) in one of the aforementioned sub-
stantive examples described an observational study of
the effect of formaldehyde exposure on the mortal-
ity of rubber workers which can represented by the
causal graph in Figure 3(a). (This graph cannot rep-
resent a sequential RCT because the treatment vari-
able A1 and the response L have an unmeasured com-
mon cause.) Follow-up begins at time of hire; time 1
on the graph. The vertices H1, A1, H2, L2, A2, Y are
indicators of sensitivity to eye irritants, formaldehyde
exposure at time 1, lung cancer, current employment,
formaldehyde exposure at time 2 and survival. Data
on eye-sensitivity and lung cancer were not collected.
Formaldehyde is a known eye-irritant. The presence of
an arrow from H1 to A1 but not from H1 to A2 reflects

14More precisely, we obtain the SWIG independence Y (a1, a2) ⊥⊥
A2(a1) | A1,L(a1), that implies (4) by the consistency assumption
after instantiating A1 at a1. Note when checking d-separation on
a SWIG all paths containing red “fixed” nonrandom vertices, such
as a1, are treated as always being blocked (regardless of the condi-
tioning set).

the fact that subjects who believe their eyes to be sensi-
tive to formaldehyde are given the discretion to choose
a job without formaldehyde exposure at time of hire
but not later. The arrow from H1 to L reflects the fact
that eye sensitivity causes some subjects to leave em-
ployment. The arrows from H2 to L2 and Y reflects
the fact that lung cancer causes both death and loss of
employment. The fact that H1 and H2 are independent
reflects the fact that eye sensitivity is unrelated to the
risk of lung cancer.

From the SWIG in Figure 3(b), we can see that (6)
holds so we have randomization with respect to Y but
L(a1) is not independent of A1. It follows that the g-
formula f ∗

a1,a2
(y) equals the density of Y(a1, a2) even

though (i) the distribution of L(a1) is not identified
and (ii) neither of the individual terms f (l | a1) and
f (y | a1, l, a2) occurring in the g-formula has a causal
interpretation.15

15Above we have assumed the variables A1, L, A2, Y occurring in
the g-formula are temporally ordered. Interestingly, Robins (1986,
Section 11) showed identification by the g-formula can require a
nontemporal ordering. In his analysis of the Healthy Worker Sur-

FIG. 3. Formaldehyde study: H1, indicator of sensitivity to eye irritants; A1, formaldehyde exposure at time 1; H2, lung cancer; L, current
employment; A2, formaldehyde exposure at time 2; Y , survival. H1 and H2 are unmeasured. (a) A causal DAG G in which initial treatment is
confounded, while the second treatment is sequentially randomized; (b) the SWIG G(a1, a2). L is known to have no direct effect on Y except
indirectly via the effect on A2; H1 influences A1 but not A2. See text for further explanation.
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FIG. 4. Tree graphs depicting specific treatment regimes: (a) a1 = a2 = 1; (b) the dynamic regime a1 = 1, a2 = (1 − l). The red paths
indicate all possible observed data sequences under these regimes.

Subsequently, Tian and Pearl (2002a) developed a
graphical algorithm for nonparametric identification
that is “complete” in the sense that if the algorithm fails
to derive an identifying formula, then the causal quan-
tity is not identified (Shpitser and Pearl, 2006; Huang
and Valtorta, 2006). This algorithm strictly extends the
set of causal identification results obtained by Robins
for static regimes.

2.4 Dynamic Regimes

The “g” in “g-formula” and elsewhere in Robins’
work refers to generalized treatment regimes g. The
set G of all such regimes includes dynamic regimes in
which a subject’s treatment at time 2 depends on the
response L to the treatment at time 1. An example of
a dynamic regime is the regime in which all subjects
receive anti-retroviral treatment at time 1, but continue
to receive treatment at time 2 only if their CD4 count
at time 2 is low, indicating that they have not yet re-
sponded to anti-retroviral treatment. In our study with
no baseline covariates and A1 and A2 binary, a dy-
namic regime g can be written as g = (a1, g2(l)) where

vivor Effect, data were available on temporally ordered variables
(A1,L1,A2,L2, Y ) where the Lt are indicators of survival until
time year t , At is the indicator of exposure to a lung carcinogen
and, there exists substantive background knowledge that carcino-
gen exposure at t cannot cause death within a year. Under these
assumptions, Robins proved that equation (6) was false if one re-
spected temporal order and chose L to be L1, but was true if one
chose L = L2. Thus, E[Y (a1, a2)] was identified by the g-formula
f ∗
a1,a2

(y) only for L = L2. See (Richardson and Robins, 2013,
page 54) for further details.

the function g2(l) specifies the treatment to be given at
time 2. The dynamic regime above has (a1 = 1, g2(l) =
1 − l) and is highlighted in Figure 4. If L is binary,
then G consists of 8 regimes comprised of the 4 ear-
lier static regimes (a1, a2) and 4 dynamic regimes.
The g-formula density associated with a regime g =
(a1, g2(l)) is

f ∗
g (y, l) ≡ f (l | a1)f

(
y | A1 = a1,L = l,A2 = g2(l)

)
.

Letting Y(g) be a subject’s counterfactual outcome un-
der regime g, Robins (1987b) proves that if both of the
following hold:

Y(g) ⊥⊥ A1,
(9)

Y(g) ⊥⊥ A2 | A1 = a1, L = l

then fY(g)(y) is identified by the g-formula density for
Y :

f ∗
g (y) = ∑

l

f ∗
g (y, l)

= ∑
l

f
(
y | A1 = a1,L = l,A2 = g2(l)

)
· f (l | a1).

Robins (1987b) refers to (9) as the assumption that
regime g is randomized with respect to Y . Given a
causal DAG, Dynamic SWIGs (dSWIGS) can be used
to check whether (9) holds. Tian (2008) gives a com-
plete graphical algorithm for identification of the effect
of dynamic regimes based on DAGs.
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Independences (3) and (4) imply that (9) is true
for all g ∈ G. For a drug treatment, for which, say,
higher outcome values are better, the optimal regime
gopt maximizing E[Y(g)] over g ∈ G is almost always
a dynamic regime, as treatment must be discontinued
when toxicity, a component of L, develops.

Robins (1989, 1986, page 1423) used the g-notation
f (y | g) as a shorthand for fY(g)(y) in order to empha-
size that this was the density of Y had intervention g

been applied to the population. In the special case of
static regimes (a1, a2), he wrote f (y | g = (a1, a2)).16

2.5 Statistical Limitations of the Estimated
g-Formulae

Consider a sequentially randomized experiment. In
this context, randomization probabilities f (a1) and
f (a2 | a1, l) are known by design; however, the den-
sities f (y | a1, a2, l) and f (l | a1) are not known and,
therefore, they must be replaced by estimates f̂ (y |
a1, a2, l2) and f̂ (l | a1) in the g-formula. If the sam-
ple size is moderate and l is high dimensional, these
estimates must come from fitting dimension-reducing
models. Model misspecification will then lead to bi-
ased estimators of the mean of Y(a1, a2). Robins
(1986) and Robins and Wasserman (1997) described
a serious nonrobustness of the g-formula: the so-called
“null paradox”: In biomedical trials, it is frequently of
interest to consider the possibility that the sharp causal
null hypothesis of no effect of either A1 or A2 on Y

holds. Under this null, the causal DAG generating the
data is as in Figure 2 except without the arrows from
A1, A2 and L into Y .17 Then, under this null, although
f ∗

a1,a2
(y) = ∑

l f (y | a1, l, a2)f (l | a1) does not de-
pend on (a1, a2), nonetheless both f (y | a1, l, a2) and
f (l | a1) will, in general, depend on a1 (as may be seen
via d-connection).18 In general, if L has discrete com-
ponents, it is not possible for standard nonsaturated
parametric models (e.g., logistic regression models)
for both f (y | a1, a2, l2) and f (l2 | a1) to be correctly
specified, and thus depend on a1 and yet for f ∗

a1,a2
(y)

not to depend on a1.19 As a consequence, inference
based on the estimated g-formula must result in the
sharp null hypothesis being falsely rejected with prob-
ability going to 1, as the trial size increases, even when
it is true.

16Pearl (1995a) introduced an identical notation except that he
substituted the word “do” for “g =,” thus writing f (y | do(a1, a2)).

17If the L → Y edge is present, then A1 still has an effect on Y .
18The dependence of f (y | a1, l, a2) on a1 does not represent cau-

sation but rather selection bias due to conditioning on the common
effect L of H1 and A1.

19But see Cox and Wermuth (1999) for another approach.

2.6 Structural Nested Models20

To overcome the null paradox, Robins (1989) and
Robins et al. (1992) introduced the semiparametric
structural nested distribution model (SNDMs) for con-
tinuous outcomes Y and structural nested failure time
models (SNFTMs) for time to event outcomes. See
Robins (1997a, 1997b) for additional details.

Robins (1986, Section 6) defined the g-null hypoth-
esis as

H0 : the distribution of Y(g)
(10)

is the same for all g ∈ G.

This hypothesis is implied by the sharp null hypothesis
of no effect of A1 or A2 on any subject’s Y . If (9) holds
for all g ∈ G, then the g-null hypothesis is equivalent
to any one of the following assertions:

(i) f ∗
g (y) equals the factual density f (y) for all g ∈

G;
(ii) Y ⊥⊥ A1 and Y ⊥⊥ A2 | L,A1;

(iii) f ∗
a1,a2

(y) does not depend on (a1, a2) and Y ⊥⊥
A2 | L,A1;

see Robins (1986, Section 6). In addition, any one
of these assertions exhausts all restrictions on the ob-
served data distribution implied by the sharp null hy-
pothesis.

Robins’ goal was to construct a causal model in-
dexed by a parameter ψ∗ such that in a sequentially
randomized trial (i) ψ∗ = 0 if and only if the g-null
hypothesis (10) was true and (ii) if known, one could
use the randomization probabilities to both construct
an unbiased estimating function for ψ∗ and to con-
struct tests of ψ∗ = 0 that were guaranteed (asymptoti-
cally) to reject under the null at the nominal level. The
SNDMs and SNFTMs accomplish this goal for con-
tinuous and failure time outcomes Y . Robins (1989)
and Robins (1994) also constructed additive and mul-
tiplicative structural nested mean models (SNMMs)
which satisfied the above properties except with the
g-null hypothesis replaced by the g-null mean hypoth-
esis:

H0 :E
[
Y(g)

] = E[Y ] for all g ∈ G.(11)

As an example, we consider an additive structural
nested mean model. Define

γ (a1, l, a2)

= E
[
Y(a1, a2) − Y(a1,0) | L = l,A1 = a1,

A2 = a2
]

20These models are discussed by Vansteelandt and Joffe (2014) in
this issue.
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and

γ (a1) = E
[
Y(a1,0) − Y(0,0) | A1 = a1

]
.

Note γ (a1, l, a2) is the effect of the last blip of treat-
ment a2 at time 2 among subjects with observed his-
tory (a1, l, a2), while γ (a1) is the effect of the last blip
of treatment a1 at time 1 among subjects with history
a1. An additive SNMM specifies parametric models
γ (a1, l, a2;ψ2) and γ (a1;ψ1) for these blip functions
with γ (a1;0) = γ (a1, l, a2;0) = 0. Under the indepen-
dence assumptions (9), H2(ψ2)d(L,A1){A2 − E[A2 |
L,A1]} and H1(ψ){A1 − E[A1]} are unbiased esti-
mating functions for the true ψ∗, where H2(ψ2) =
Y −γ (A1,L,A2;ψ2), H1(ψ) = H2(ψ2)−γ (A1;ψ1),
and d(L,A1) is a user-supplied function of the same
dimension as ψ2. Under the g-null mean hypothesis
(11), the SNMM is guaranteed to be correctly spec-
ified with ψ∗ = 0. Thus, these estimating functions
when evaluated at ψ∗ = 0, can be used in the con-
struction of an asymptotically α-level test of the g-
null mean hypothesis when f (a1) and f (a2 | a1, l) are
known (or are consistently estimated).21 When L is
a high-dimensional vector, the parametric blip models
may well be misspecified when g-null mean hypothe-
sis is false. However, because the functions γ (a1, l, a2)

and γ (a1) are nonparametrically identified under as-
sumptions (9), one can construct consistent tests of
the correctness of the blip models γ (a1, l, a2;ψ2) and
γ (a1;ψ1). Furthermore, one can also estimate the blip
functions using cross-validation (Robins, 2004) and/or
flexible machine learning methods in lieu of a prespec-
ified parametric model (van der Laan and Rose, 2011).
A recent modification of a multiplicative SNMM, the
structural nested cumulative failure time model, de-
signed for censored time to event outcomes has compu-
tational advantages compared to a SNFTM, because, in
contrast to a SNFTM, parameters are estimated using
an unbiased estimating function that is differentiable in
the model parameters; see Picciotto et al. (2012).

Robins (2004) also introduced optimal-regime
SNNMs drawing on the seminal work of Murphy
(2003) on semiparametric methods for the estima-
tion of optimal treatment strategies. Optimal-regime
SNNM estimation, called A-learning in computer sci-
ence, can be viewed as a semiparametric implemen-
tation of dynamic programming (Bellman, 1957).22

21In the literature, semiparametric estimation of the parameters
of a SNM based on such estimating functions is referred to as
“g-estimation.”

22Interestingly, Robins (1989, page 127 and App. 1), unaware of
Bellman’s work, reinvented the method of dynamic programming

Optimal-regime SNMMs differ from standard SNMMs
only in that γ (a1) is redefined to be

γ (a1) = E
[
Y

(
a1, g2,opt

(
a1,L(a1)

))
− Y

(
0, g2,opt

(
0,L(0)

)) | A1 = a1
]
,

where g2,opt(a1, l) = arg maxa2 γ (a1, l, a2) is the op-
timal treatment at time 2 given past history (a1, l).
The overall optimal treatment strategy gopt is then
(a1,opt, g2,opt(a1, l)) where a1,opt = arg maxa1 γ (a1).
More on the estimation of optimal treatment regimes
can be found in Schulte et al. (2014) in this volume.

2.7 Instrumental Variables and Bounds for the
Average Treatment Effect

Robins (1989, 1993) also noted that structural nested
models can be used to estimate treatment effects when
assumptions (9) do not hold but data are available on a
time dependent instrumental variable. As an example,
patients sometimes fail to fill their prescriptions and
thus do not comply with their prescribed treatment. In
that case, we can take Aj = (A

p
j ,Ad

j ) for each time j ,

where A
p
j denotes the treatment prescribed and Ad

j de-
notes the dose of treatment actually received at time j .
Robins defined A

p
j to be an instrumental variable if

(9) still holds after replacing Aj by A
p
j and for all sub-

jects Y(a1, a2) depends on aj = (a
p
j , ad

j ) only through

the actual dose ad
j . Robins noted that unlike the case

of full compliance (i.e., A
p
j = Ad

j with probability 1)

discussed earlier, the treatment effect functions γ are
not nonparametrically identified. Consequently, identi-
fication can only be achieved by correctly specifying
(sufficiently restrictive) parametric models for γ .

If we are unwilling to rely on such parametric as-
sumptions, then the observed data distribution only im-
plies bounds for the γ ’s. In particular, in the setting of
a point treatment randomized trial with noncompliance
and the instrument A

p
1 being the assigned treatment,

Robins (1989) obtained bounds on the average causal
effect E[Y(ad = 1) − Y(ad = 0)] of the received treat-
ment Ad . To the best of our knowledge, this paper was
the first to derive bounds for nonidentified causal ef-
fects defined through potential outcomes.23 The study
of such bounds has become an active area of research.
Other early papers include Manski (1990) and Balke

but remarked that, due to the difficulty of the estimation problem,
it would only be of theoretical interest for finding the optimal dy-
namic regimes from longitudinal epidemiological data.

23See also Robins and Greenland (1989a, 1989b).
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and Pearl (1994).24 See Richardson et al. (2014) in this
volume for a survey of recent research on bounds.

2.8 Limitations of Structural Nested Models

Robins (2000) noted that there exist causal ques-
tions for which SNMs are not altogether satisfactory.
As an example, for Y binary, Robins (2000) proposed
a structural nested logistic model in order to ensure es-
timates of the counterfactual mean of Y were between
zero and one. However, he noted that knowledge of the
randomization probabilities did not allow one to con-
struct unbiased estimating function for its parameter
ψ∗. More importantly, SNMs do not directly model
the final object of public health interest—the distri-
bution or mean of the outcome Y as function of the
regimes g—as these distributions are generally func-
tions not only of the parameters of the SNM but also
of the conditional law of the time dependent covari-
ates L given the past history. In addition, SNMs con-
stitute a rather large conceptual leap from standard as-
sociational regression models familiar to most statisti-
cians. Robins (1998, 2000) introduced a new class of
causal models, marginal structural models, that over-
came these particular difficulties. Robins also pointed
out that MSMs have their own shortcomings, which we
discuss below. Robins (2000) concluded that the best
causal model to use will vary with the causal question
of interest.

2.9 Dependent Censoring and Inverse Probability
Weighting

Marginal Structural Models grew out of Robins’
work on censoring and inverse probability of censor-
ing weighted (IPCW) estimators. Robins work on de-
pendent censoring was motivated by the familiar clin-
ical observation that patients who did not return to the
clinic and were thus censored differed from other pa-
tients on important risk factors, for example measures
of cardio-pulmonary reserve. In the 1970s and 1980s,
the analysis of right censored data was a major area of
statistical research, driven by the introduction of the
proportional hazards model (Cox, 1972; Kalbfleisch
and Prentice, 1980) and by martingale methods for
their analysis (Aalen, 1978; Andersen et al., 1993;

24Balke and Pearl (1994) showed that Robins’ bounds were not
sharp in the presence of “defiers” (i.e., subjects who would never
take the treatment assigned) and derived sharp bounds in that case.

Fleming and Harrington, 1991). This research, how-
ever, was focused on independent censoring. An im-
portant insight in Robins (1986) was the recognition
that by reframing the problem of censoring as a causal
inference problem as we will now explain, it was
possible to adjust for dependent censoring with the
g-formula.

Rubin (1978a) had pointed out previously that coun-
terfactual causal inference could be viewed as a miss-
ing data problem. Robins (1986, page 1491) recog-
nized that the converse was indeed also true: a missing
data problem could be viewed as a problem in counter-
factual causal inference.25 Robins conceptualized right
censoring as just another time dependent “treatment”
At and one’s inferential goal as the estimation of the
outcome Y under the static regime g “never censored.”
Inference based on the g-formula was then licensed
provided that censoring was explainable in the sense
that (6) holds. This approach to dependent censoring
subsumed independent censoring as the latter is a spe-
cial case of the former.

Robins, however, recognized once again that infer-
ence based on the estimated g-formula could be non-
robust. To overcome this difficulty, Robins and Rot-
nitzky (1992) introduced IPCW tests and estimators
whose properties are easiest to explain in the context of
a two-armed RCT of a single treatment (A1). The stan-
dard Intention-to-Treat (ITT) analysis for comparing
the survival distributions in the two arms is a log-rank
test. However, data are often collected on covariates,
both pre- and post-randomization, that are predictive of
the outcome as well as (possibly) of censoring. An ITT
analysis that tries to adjust for dependent-censoring by
IPCW uses estimates of the arm-specific hazards of
censoring as functions of past covariate history. The
proposed IPCW tests have the following two advan-
tages compared to the log rank test. First, if censoring
is dependent but explainable by the covariates, the log-
rank test is not asymptotically valid. In contrast, IPCW
tests asymptotically reject at their nominal level pro-
vided the arm-specific hazard estimators are consistent.
Second, when censoring is independent, although both
the IPCW tests and the log-rank test asymptotically re-
ject at their nominal level, the IPCW tests, by mak-
ing use of covariates, can be more powerful than the
log-rank test even against proportional-hazards alter-
natives. Even under independent censoring tests based

25A viewpoint recently explored by Mohan, Pearl and Tian
(2013).
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on the estimated g-formula are not guaranteed to be
asymptotically α-level, and hence are not robust.

To illustrate, we consider here an RCT with A1 being
the randomization indicator, L a post-randomization
covariate, A2 the indicator of censoring and Y the in-
dicator of survival. For simplicity, we assume that any
censoring occurs at time 2 and that there are no fail-
ures prior to time 2. The IPCW estimator β̂ of the ITT
effect β∗ = E[Y | A = 1] − E[Y | A = 0] is defined as
the solution to

Pn

[
I (A2 = 0)U(β)/P̂r(A2 = 0 | L,A1)

] = 0,(12)

where U(β) = (Y − βA1)(A1 − 1/2), throughout Pn

denotes the empirical mean operator and P̂r(A2 = 0 |
L,A1) is an estimator of the arm-specific conditional
probability of being uncensored. When first introduced
in 1992, IPCW estimators, even when taking the form
of simple Horvitz–Thompson estimators, were met
with both surprise and suspicion as they violated the
then widely held belief that one should never adjust for
a post-randomization variable affected by treatment in
a RCT.

2.10 Marginal Structural Models

Robins (1993, Remark A1.3, pages 257–258) noted
that, for any treatment regime g, if randomization
w.r.t. Y , that is, (9), holds, Pr{Y(g) > y} can be es-
timated by IPCW if one defines a person’s censoring
time as the first time he/she fails to take the treatment
specified by the regime. In this setting, he referred
to IPCW as inverse probability of treatment weighted
(IPTW). In actual longitudinal data in which either
(i) treatment Ak is measured at many times k or (ii) the
Ak are discrete with many levels or continuous, one of-
ten finds that few study subjects follow any particular
regime. In response, Robins (1998, 2000) introduced
MSMs. These models address the aforementioned dif-
ficulty by borrowing information across regimes. Ad-
ditionally, MSMs represent another response to the
g-null paradox complementary to Structural Nested
Models.

To illustrate, suppose that in our example of Sec-
tion 2, A1 and A2 now have many levels. An instance
of an MSM for the counterfactual means E[Y(a1, a2)]
is a model that specifies that

�−1{
E

[
Y(a1, a2)

]} = β∗
0 + γ

(
a1, a2;β∗

1
)
,

where �−1 is a given link function such as the logit,
log, or identity link and γ (a1, a2;β1) is a known func-
tion satisfying γ (a1, a2;0) = 0. In this model, β1 = 0
encodes the static-regime mean null hypothesis that

H0 :E
[
Y(a1, a2)

]
is the same for all (a1, a2).(13)

Robins (1998) proposed IPTW estimators (β̂0, β̂1) of
(β∗

0 , β∗
1 ). When the treatment probabilities are known,

these estimators are defined as the solution to

Pn

[
Wv(A1,A2)

(
Y − �

{
β0 + γ (A1,A2;β1)

})]
(14)

= 0

for a user supplied vector function v(A1,A2) of the di-
mension of (β∗

0 , β∗
1 ) where

W = 1/
{
f (A1)f (A2 | A1,L)

}
.

Informally, the product f (A1)f (A2 | A1,L) is the
“probability that a subject had the treatment history he
did indeed have.”26 When the treatment probabilities
are unknown, they are replaced by estimators.

Intuitively, the reason why the estimating function
of (14) has mean zero at (β∗

0 , β∗
1 ) is as follows: Sup-

pose the data had been generated from a sequen-
tially randomized trial represented by DAG in Fig-
ure 2. We may create a pseudo-population by making
1/{f (A1)f (A2 | A1,L)} copies of each study subject.
It can be shown that in the resulting pseudo-population
A2 ⊥⊥ {L,A1}, and thus is represented by the DAG in
Figure 2, except with both arrows into A2 removed.
In the pseudo-population, treatment is completely ran-
domized (i.e., there is no confounding by either mea-
sured or unmeasured variables), and hence causation
is association. Further, the mean of Y(a1, a2) takes
the same value in the pseudo-population as in the ac-
tual population. Thus if, for example, γ (a1, a2;β1) =
β1,1a1 + β1,2a2 and �−1 is the identity link, we can
estimate (β∗

0 , β∗
1 ) by OLS in the pseudo-population.

However, OLS in the pseudo-population is precisely
weighted least squares in the actual study population
with weights 1/{f (A1)f (A2 | A1,L)}.27

Robins (2000, Section 4.3) also noted that the
weights W can be replaced by the so-called stabilized
weights SW = {f (A1)f (A2 | A1)}/{f (A1)f (A2 |

26IPTW estimators and IPCW estimators are essentially equiv-
alent. For instance, in the censoring example of Section 2.9, on
the event A2 = 0 of being uncensored, the IPCW denominator
p̂r(A2 = 0 | L,A1) equals f (A2 | A1,L), the IPTW denominator.

27More formally, recall that under (6), E[Y (a1, a2)] = �{β∗
0 +

γ (a1, a2;β∗
1 )} is equal to the g-formula

∫
yf ∗

a1,a2
(y) dy. Now,

given the joint density of the data f (A1,L,A2, Y ), define

f̃ (A1,L,A2, Y ) = f (Y | A1,L,A2)f̃2(A2)f (L | A1)f̃1(A1),

where f̃1(A1)f̃2(A2) are user-supplied densities chosen so that f̃

is absolutely continuous with respect to f . Since the g-formula
depends on the joint density of the data only through f (Y |
A1,L,A2) and f (L | A1), then it is identical under f̃ and under
f . Furthermore, for each a1, a2 the g-formula under f̃ is just equal
to Ẽ[Y | A1 = a1,A2 = a2] since, under f̃ , A2 is independent of
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A1,L)}, and described settings where, for efficiency
reasons, using SW is preferable to using W .

MSMs are not restricted to models for the depen-
dence of the mean of Y(a1, a2) on (a1, a2). Indeed,
one can consider MSMs for the dependence of any
functional of the law of Y(a1, a2) on (a1, a2), such
as a quantile or the hazard function if Y is a time-to-
event variable. If the study is fully randomized, that is,
(1) holds, then an MSM model for a given functional of
the law of Y(a1, a2) is tantamount to an associational
model for the same functional of the law of Y condi-
tional on A1 = a1 and A2 = a2. Thus, under (1), the
MSM model can be estimated using standard methods
for estimating the corresponding associational model.
If the study is only sequentially randomized, that is,
(6) holds but (1) does not, then the model can still be
estimated by the same standard methods but weighting
each subject by W or SW .

Robins (2000) discussed disadvantages of MSMs
compared to SNMs. Here, we summarize some of the
main drawbacks. Suppose (9) holds for all g ∈G. If the
g-null hypothesis (10) is false but the static regime null
hypothesis that the law of Y(a1, a2) is the same for all
(a1, a2) is true, then by (iii) of Section 2.6, f (y | A1 =
a1,A2 = a2,L = l) will depend on a2 for some stra-
tum (a1, l) thus implying a causal effect of A2 in that
stratum; estimation of an SNM model would, but esti-
mation of an MSM model would not, detect this effect.
A second drawback is that estimation of MSM models,
suffers from marked instability and finite-sample bias
in the presence of weights W that are highly variable
and skewed. This is not generally an issue in SNM es-
timation. A third limitation of MSMs is that when (6)
fails but an instrumental variable is available, one can
still consistently estimate the parameters of a SNM but
not of an MSM.28

An advantage of MSMs over SNMs that was not
discussed in Section 2.8 is the following. MSMs can
be constructed that are indexed by easily interpretable
parameters that quantify the overall effects of a sub-
set of all possible dynamic regimes (Hernán et al.,

{L,A1}. Consequently, for any q(A1,A2)

0 = Ẽ
[
q(A1,A2)

(
Y − �

{
β∗

0 + γ
(
A1,A2;β∗

1
)})]

= E
[
q(A1,A2)

{
f̃ (A1)f̃ (A2)/

{
f (A1)f (A2 | A1,L)

}}
· (

Y − �
{
β∗

0 + γ
(
A1,A2;β∗

1
)})]

,

where the second equality follows from the Radon–Nikodym
theorem. The result then follows by taking q(A1,A2) =
v(A1,A2)/{f̃ (A1)f̃ (A2)}.

28Note that, as observed earlier, in this case identification is
achieved through parametric assumptions made by the SNM.

2006; van der Laan and Petersen, 2007; Orellana, Rot-
nitzky and Robins, 2010a, 2010b). As an example con-
sider a longitudinal study of HIV infected patients with
baseline CD4 counts exceeding 600 in which we wish
to determine the optimal CD4 count at which to be-
gin anti-retroviral treatment. Let gx denote the dy-
namic regime that specifies treatment is to be initi-
ated the first time a subject’s CD4 count falls below
x, x ∈ {1,2, . . . ,600}. Let Y(gx) be the associated
counterfactual response and suppose few study sub-
jects follow any given regime. If we assume E[Y(gx)]
varies smoothly with x, we can specify and fit (by
IPTW) a dynamic regime MSM model E[Y(gx)] =
β∗

0 + β∗T
1 h(x) where, say, h(x) is a vector of appro-

priate spline functions.

3. DIRECT EFFECTS

Robins’ analysis of sequential regimes leads imme-
diately to the consideration of direct effects. Thus, per-
haps not surprisingly, all three of the distinct direct ef-
fect concepts that are now an integral part of the causal
literature are all to be found in his early papers. Intu-
itively, all the notions of direct effect consider whether
“the outcome (Y ) would have been different had cause
(A1) been different, but the level of (A2) remained
unchanged.” The notions differ regarding the precise
meaning of A2 “remained unchanged.”

3.1 Controlled Direct Effects

In a setting in which there are temporally ordered
treatments A1 and A2, it is natural to wonder whether
the first treatment has any effect on the final outcome
were everyone to receive the second treatment. For-
mally, we wish to compare the potential outcomes
Y(a1 = 1, a2 = 1) and Y(a1 = 0, a2 = 1). Robins
(1986, Section 8) considered such contrasts, that are
now referred to as controlled direct effects. More gen-
erally, the average controlled direct effect of A1 on Y

when A2 is set to a2 is defined to be

CDE(a2) ≡ E
[
Y(a1 = 1, a2) − Y(a1 = 0, a2)

]
,(15)

where Y(a1 = 1, a2) − Y(a1 = 0, a2) is the individual
level direct effect. Thus, if A2 takes k-levels then there
are k such contrasts.

Under the causal graph shown in Figure 5(a), in con-
trast to Figures 2 and 3, the effect of A2 on Y is uncon-
founded, by either measured or unmeasured variables,
association is causation and thus, under the associated
FFRCISTG model:

CDE(a2) = E[Y | A1 = 1,A2 = a2]
− E[Y | A1 = 0,A2 = a2].
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FIG. 5. (a) A causal DAG G with no (measured or unmeasured) confounding of A2 on Y ; (b) the SWIG G(a1, a2) resulting from intervening
on A1 and A2.

The CDE can be identified even in the presence of
time-dependent confounding. For example, in the con-
text of the FFRCISTG associated with either of the
causal DAGs shown in Figures 2 and 3, the CDE(a2)

will be identified via the difference in the expecta-
tions of Y under the g-formula densities f ∗

a1=1,a2
(y)

and f ∗
a1=0,a2

(y).29

The CDE requires that the potential outcomes Y(a1,

a2) be well-defined for all values of a1 and a2. This
is because the CDE treats both A2 and A1 as causes,
and interprets “A2 remained unchanged” to mean “had
there been an intervention on A2 fixing it to a2.”

This clearly requires that the analyst be able to de-
scribe a well-defined intervention on the mediating
variable A2.

There are many contexts in which there is no clear
well-defined intervention on A2 and thus it is not mean-
ingful to refer to Y(a1, a2). The CDE is not applicable
in such contexts.

3.2 Principal Stratum Direct Effects (PSDE)

Robins (1986) considered causal contrasts in the sit-
uation described in Section 2.9 in which death from
a disease of interest, for example, a heart attack, may
be censored by death from other diseases. To describe
these contrasts, we suppose A1 is a treatment of inter-
est, Y = 1 is the indicator of death from the disease of
interest (in a short interval subsequent to a given fixed
time t) and A2 = 0 is the “at risk indicator” denoting
the absence of death either from other diseases or the
disease of interest prior to time t .

Earlier Kalbfleisch and Prentice (1980) had argued
that if A2 = 1, so that the subject does not survive
to time t , then the question of whether the subject
would have died of heart disease subsequent to t had
death before t been prevented is meaningless. In the
language of counterfactuals, they were saying (i) that
if A1 = a1 and A2 ≡ A2(a1) = 1, the counterfactual

29See (7).

Y(a1, a2 = 0) is not well-defined and (ii) the counter-
factual Y(a1, a2 = 1) is never well-defined.

Robins (1986, Section 12.2) observed that if one ac-
cepts this then the only direct effect contrast that is
well-defined is Y(a1 = 1, a2 = 0) − Y(a1 = 0, a2 =
0) and that is well-defined only for those subjects
who would survive to t regardless of whether they re-
ceived a1 = 0 or a1 = 1. In other words, even though
Y(a1, a2) may not be well-defined for all subjects and
all a1, a2, the contrast:

E
[
Y(a1 = 0, a2) − Y(a1 = 1, a2) |

(16)
A2(a1 = 1) = A2(a1 = 0) = a2

]
is still well-defined when a2 = 0. As noted by Robins,
this could provide a solution to the problem of defining
the causal effect of the treatment A1 on the outcome Y

in the context of censoring by death due to other dis-
eases.

Rubin (1998) and Frangakis and Rubin (1999, 2002)
later used this same contrast to solve precisely the same
problem of “censoring by death.”30

In the terminology of Frangakis and Rubin (2002)
for a subject with A2(a1 = 1) = A2(a1 = 0) = a2, the
individual principal stratum direct effect is defined to
be:31

Y(a1 = 1, a2) − Y(a1 = 0, a2)

(here, A1 is assumed to be binary). The average PSDE
in principal stratum a2 is then defined to be

PSDE(a2) ≡ E
[
Y(a1 = 1, a2) − Y(a1 = 0, a2) |
A2(a1 = 1) = A2(a1 = 0) = a2

]
(17)

= E
[
Y(a1 = 1) − Y(a1 = 0) |
A2(a1 = 1) = A2(a1 = 0) = a2

]
,

30The analysis of Rubin (2004) was also based on this contrast,
with A2 no longer a failure time indicator so that the contrast (16)
could be considered as well-defined for any value of a2 for which
the conditioning event had positive probability.

31For subjects for whom A2(a1 = 1) �= A2(a1 = 0), no principal
stratum direct effect (PSDE) is defined.
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where the second equality here follows, since Y(a1,

A2(a1)) = Y(a1).32 In contrast to the CDE, the PSDE
has the advantage that it may be defined, via (17), with-
out reference to potential outcomes involving interven-
tion on a2. Whereas the CDE views A2 as a treat-
ment, the PSDE treats A2 as a response. Equivalently,
this contrast interprets “had A2 remained unchanged”
to mean “we restrict attention to those people whose
value of A2 would still have been a2, even under an
intervention that set A1 to a different value.”

Although the PSDE is an interesting parameter in
many settings (Gilbert, Bosch and Hudgens, 2003), it
has drawbacks beyond the obvious (but perhaps less
important) ones that neither the parameter itself nor the
subgroup conditioned on are nonparametrically identi-
fied. In fact, having just defined the PSDE parameter,
Robins (1986) criticized it for its lack of transitivity
when there is a non-null direct effect of A1 and A1 has
more than two levels; that is, for a given a2, the PSDEs
comparing a1 = 0 with a1 = 1 and a1 = 1 with a1 = 2
may both be positive but the PSDE comparing a1 = 0
with a1 = 2 may be negative. Robins, Rotnitzky and
Vansteelandt (2007) noted that the PSDE is undefined
when A1 has an effect on every subject’s A2, a situation
that can easily occur if A2 is continuous. In that event,
a natural strategy would be to, say, dichotomize A2.
However, Robins, Rotnitzky and Vansteelandt (2007)
showed that the PSDE in principal stratum a∗

2 of the
dichotomized variable may fail to retain any meaning-
ful substantive interpretation.

3.3 Pure Direct Effects (PDE)33

Once it has been established that a treatment A1 has
a causal effect on a response Y , it is natural to ask
what “fraction” of a the total effect may be attributed
to a given causal pathway. As an example, consider a
RCT in nonhypertensive smokers of the effect of an
anti-smoking intervention (A1) on the outcome my-
ocardial infarction (MI) at 2 years (Y ). For simplicity,
assume everyone in the intervention arm and no one in
the placebo arm quit cigarettes, that all subjects were
tested for new-onset hypertension A2 at the end of the
first year, and no subject suffered an MI in the first year.
Hence, A1, A2 and Y occur in that order. Suppose the
trial showed smoking cessation had a beneficial effect
on both hypertension and MI. It is natural to consider

32This follows from consistency.
33Pearl (2001) adopted the definition given by Robins and Green-

land (1992) but changed nomenclature. He refers to the pure direct
effect as a “natural” direct effect.

the query: “What fraction of the total effect of smoking
cessation A1 on MI Y is through a pathway that does
not involve hypertension A2?”

Robins and Greenland (1992) formalized this ques-
tion via the following counterfactual contrast, which
they termed the “pure direct effect”:

Y
{
a1 = 1,A2(a1 = 0)

} − Y
{
a1 = 0,A2(a1 = 0)

}
.

The second term here is simply Y(a1 = 0).34 The
contrast is thus the difference between two quantities:
first, the outcome Y that would result if we set a1 to 1,
while “holding fixed” a2 at the value A2(a1 = 0) that
it would have taken had a1 been 0; second, the out-
come Y that would result from simply setting a1 to 0
[and thus having A2 again take the value A2(a1 = 0)].
Thus, the Pure Direct Effect interprets had “A2 re-
mained unchanged” to mean “had (somehow) A2 taken
the value that it would have taken had we fixed A1
to 0.” The contrast thus represents the effect of A1 on Y

had the effect of A1 on hypertension A2 been blocked.
As for the CDE, to be well-defined, potential outcomes
Y(a1, a2) must be well-defined. As a summary mea-
sure of the direct effect of (a binary variable) A1 on
Y , the PDE has the advantage (relative to the CDE and
PSDE) that it is a single number.

The average pure direct effect is defined as35

PDE = E
[
Y

{
a1 = 1,A2(a1 = 0)

}]
− E

[
Y

(
a1 = 0,A2(a1 = 0)

)]
.

Thus, the ratio of the PDE to the total effect E[Y {a1 =
1}] − E[Y {a1 = 0}] is the fraction of the total that is
through a pathway that does not involve hypertension
(A2).

Unlike the PSDE, the PDE is an average over the
full population. However, unlike the CDE, the PDE is
not nonparametrically identified under the FFRCISTG
model associated with the simple DAG shown in Fig-
ure 5(a). Robins and Richardson (2011, App. C) com-
puted bounds for the PDE under the FFRCISTG asso-
ciated with this DAG.

Pearl (2001) obtains identification of the PDE under
the DAG in Figure 5(a) by imposing stronger counter-
factual independence assumptions, via a Nonparamet-
ric Structural Equation Model with Independent Errors

34This follows by consistency.
35Robins and Greenland (1992) also defined the total indirect ef-

fect (TIE) of A1 on Y through A2 to be

E
[
Y

{
a1 = 1,A2(a1 = 1)

}] − E
[
Y

{
a1 = 1,A2(a1 = 0)

}]
.

It follows that the total effect E[Y {a1 = 1}] − E[Y {a1 = 0}] can
then be decomposed as the sum of the PDE and the TIE.
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(NPSEM-IE).36 Under these assumptions, Pearl (2001)
obtains the following identifying formula:∑

a2

{
E[Y | A1 = 1,A2 = a2]

− E[Y | A1 = 0,A2 = a2]}(20)

· P(A2 = a2 | A1 = 0),

which he calls the “Mediation Formula.”
Robins and Richardson (2011) noted that the addi-

tional assumptions made by the NPSEM-IE are not
testable, even in principle, via a randomized exper-
iment. Consequently, this formula represents a de-
parture from the principle, originating with Neyman
(1923), that causation be reducible to experimental in-
terventions, often expressed in the slogan “no causa-
tion without manipulation.”37

 Robins and Richardson
(2011) achieve a rapprochement between these oppos-
ing positions by showing that the formula (20) is equal
to the g-formula associated with an intervention on two
treatment variables not appearing on the graph (but
having deterministic relations with A1) under the as-
sumption that one of the variables has no direct effect
on A2 and the other has no direct effect on Y . Hence,
under this assumption and in the absence of confound-
ing, the effect of this intervention on Y is point identi-
fied by (20).38

36In more detail, the FFRCISTG associated with Figures 5(a) and
(b) assumes for all a1, a2,

Y (a1, a2),A2(a1) ⊥⊥ A1, Y (a1, a2) ⊥⊥ A2(a1) | A1,(18)

which may be read directly from the SWIG shown in Fig-
ure 5(b); recall that red nodes are always blocked when applying
d-separation. In contrast, Pearl’s NPSEM-IE also implies the inde-
pendence

Y (a1, a2) ⊥⊥ A2
(
a∗

1
) | A1,(19)

when a1 �= a∗
1 . Independence (19), which is needed in order for

the PDE to be identified, is a “cross-world” independence since
Y (a1, a2) and A2(a∗

1 ) could never (even in principle) both be ob-
served in any randomized experiment.

37A point freely acknowledged by Pearl (2012) who argues that
causation should be viewed as more primitive than intervention.

38This point identification is not a “free lunch”: Robins and
Richardson (2011) show that it is these additional assumptions that
have reduced the FFRCISTG bounds for the PDE to a point. This
is a consequence of the fact that these assumptions induce a model
for the original variables {A1,A2(a1), Y (a1, a2)} that is a strict
submodel of the original FFRCISTG model.

Hence to justify applying the mediation formula by this route
one must first be able to specify in detail the additional treatment
variables and the associated intervention so as to make the relevant
potential outcomes well-defined. In addition, one must be able to

Although there was a literature on direct effects in
linear structural equation models (see, e.g., Blalock,
1971) that preceded Robins (1986) and Robins and
Greenland (1992), the distinction between the CDE
and PDE did not arise since in linear models these no-
tions are equivalent.39

3.4 The Direct Effect Null

Robins (1986, Section 8) considered the null hypoth-
esis that Y(a1, a2) does not depend on a1 for all a2,
which we term the sharp null-hypothesis of no direct
effect of A1 on Y (relative to A2) or more simply as the
“sharp direct effect null.”

In the context of our running example with data
(A1,L,A2, Y ), under (6) the sharp direct effect null
implies the following constraint on the observed data
distribution:

f ∗
a1,a2

(y) is not a function of a1 for all a2.(21)

Robins (1986, Sections 8 and 9) noted that this con-
straint (21) is not a conditional independence. This
is in contrast to the g-null hypothesis which we have
seen is equivalent to the independencies in (ii) of Sec-
tion 2.6 [when equation (9) holds for all g ∈ G].40

He concluded that, in contrast to the g-null hypothe-
sis, the constraint (21), and thus the sharp direct ef-
fect null, cannot be tested using case control data with
unknown case and control sampling fractions.41 This
constraint (21) was later independently discovered by
Verma and Pearl (1990) and for this reason is called the
“Verma constraint” in the Computer Science literature.

Robins (1999b) noted that, though (21) is not a con-
ditional independence in the observed data distribu-
tion, it does correspond to a conditional independence,

argue on substantive grounds for the plausibility of the required no
direct effect assumptions and deterministic relations.

It should also be noted that even under Pearl’s NPSEM-IE
model the PDE is not identified in causal graphs, such as those in
Figures 2 and 3 that contain a variable (whether observed or unob-
served) that is present both on a directed pathway from A1 to A2
and on a pathway from A1 to Y .

39Note that in a linear structural equation model the PSDE is not
defined unless A1 has no effect on A2.

40Results in Pearl (1995b) imply that under the sharp direct effect
null the FFRCISTGs associated with the DAGs shown in Figures 2
and 3 also imply inequality restrictions similar to Bell’s inequality
in Quantum Mechanics. See Gill (2014) for discussion of statistical
issues arising from experimental tests of Bell’s inequality.

41To our knowledge, it is the first such causal null hypothesis con-
sidered in Epidemiology for which this is the case.
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FIG. 6. (a) A DAG representing the sequentially randomized experiment shown in Figure 2 but where there is no direct effect of A1 on
Y relative to A2; (b) a DAG representing the pseudo-population obtained by re-weighting the distribution with weights proportional to
1/f (A2 | L,A1).

but in a weighted distribution with weights propor-
tional to 1/f (A2 | A1,L).42 This can be understood
from the informal discussion following equation (14)
in the previous section: there it was noted that given
the FFRCISTG corresponding to the DAG in Figure 2,
reweighting by 1/f (A2 | A1,L) corresponds to remov-
ing both edges into A2. Hence, if the edges A1 → Y

and L → Y are not present, so that the sharp direct ef-
fect null holds, as in Figure 6(a), then the reweighted
population is described by the DAG in Figure 6(b).
It then follows from the d-separation relations on this
DAG that Y ⊥⊥ A1 | A2 in the reweighted distribution.

This fact can also be seen as follows. If, in our run-
ning example from Section 2.2, A1, A2, Y are all bi-
nary, the sharp direct effect null implies that β∗

1 = β∗
3 =

0 in the saturated MSM with

�−1{
E

[
Y(a1, a2)

]} = β∗
0 + β∗

1 a1 + β∗
2 a2 + β∗

3 a1a2.

Since β∗
1 and β∗

3 are the associational parameters of
the weighted distribution, their being zero implies
the conditional independence Y ⊥⊥ A1 | A2 under this
weighted distribution.

In more complex longitudinal settings, with the num-
ber of treatment times k exceeding 2, all the param-
eters multiplying terms containing a particular treat-
ment variable in a MSM may be zero, yet there may
still be evidence in the data that the sharp direct effect
null for that variable is false. This is directly analogous
to the limitation of MSMs relative to SNMs with re-
gard to the sharp null hypothesis (10) of no effect of
any treatment that we noted at the end of Section 2.10.
To overcome this problem, Robins (1999b) introduced
direct effect structural nested models. In these models,
which involve treatment at k time points, if all param-
eters multiplying a given aj take the value 0, then we

42This observation motivated the development of graphical
“nested” Markov models that encode constraints such as (21) in ad-
dition to ordinary conditional independence relations; see the dis-
cussion of “Causal Discovery” in Section 7 below.

can conclude that the distribution of the observables do
not refute the natural extension of (21) to k times. The
latter is implied by the sharp direct effect null that aj

has no direct effect on Y holding aj+1, . . . , ak fixed.

4. THE FOUNDATIONS OF STATISTICS AND
BAYESIAN INFERENCE

Robins and Ritov (1997) and Robins and Wasser-
man (2000) recognized that the lack of robustness of
estimators based on the g-formula in a sequential ran-
domized trial with known randomization probabilities
had implications for the foundations of statistics and
for Bayesian inference. To make their argument trans-
parent, we will assume in our running example (from
Section 2.2) that the density of L is known and that
A1 = 1 with probability 1 (hence we drop A1 from the
notation). We will further assume the observed data are
n i.i.d. copies of a random vector (L,A2, Y ) with A2
and Y binary and L a d × 1 continuous vector with
support on the unit cube (0,1)d . We consider a model
for the law of (L,A2, Y ) that assumes that the den-
sity f ∗(l) of L is known, that the treatment probability
π∗(l) ≡ Pr(A2 = 1 | L = l) lies in the interval (c,1−c)

for some known c > 0 and that b∗(l, a2) ≡ E[Y | L =
l,A2 = a2] is continuous in l. Under this model, the
likelihood function is

L(b,π) = L1(b)L2(π),(22)

where

L1(b) =
n∏

i=1

f ∗(Li)b(Li,A2,i)
Y

(23)
· {

1 − b(Li,A2,i)
}1−Y

,

L2(π) =
n∏

i=1

π2(Li)
A2,i

{
1 − π2(Li)

}1−A2,i ,(24)

and (b,π) ∈ B × �. Here B is the set of continuous
functions from (0,1)d × {0,1} to (0,1) and � is the
set of functions from (0,1)d to (c,1 − c).
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We assume the goal is inference about μ(b) where
μ(b) = ∫

b(l,1)f ∗(l) dl. Under randomization, that is
(3) and (4), μ(b∗) is the counterfactual mean of Y

when treatment is given at both times.
When π∗ is unknown, Robins and Ritov (1997)

showed that no estimator of μ(b∗) exists that is uni-
formly consistent over all B × �. They also showed
that even if π∗ is known, any estimator that does
not use knowledge of π∗ cannot be uniformly consis-
tent over B × {π∗} for all π∗. However, there do ex-
ist estimators that depend on π∗ that are uniformly√

n-consistent for μ(b∗) over B × {π∗} for all π∗.
The Horvitz–Thompson estimator Pn{A2Y/π∗(L)} is
a simple example.

Robins and Ritov (1997) concluded that, in this
example, any method of estimation that obeys the
likelihood principle such as maximum likelihood or
Bayesian estimation with independent priors on b

and π , must fail to be uniformly consistent. This is
because any procedure that obeys the likelihood prin-
ciple must result in the same inference for μ(b∗) re-
gardless of π∗, even when π∗ becomes known. Robins
and Wasserman (2000) noted that this example illus-
trates that the likelihood principle and frequentist per-
formance can be in severe conflict in that any procedure
with good frequentist properties must violate the like-
lihood principle.43

 Ritov et al. (2014) in this volume
extends this discussion in many directions.

5. SEMIPARAMETRIC EFFICIENCY AND DOUBLE
ROBUSTNESS IN MISSING DATA AND CAUSAL

INFERENCE MODELS

Robins and Rotnitzky (1992) recognized that the in-
ferential problem of estimation of the mean E[Y(g)]
(when identified by the g-formula) of a response Y un-
der a regime g is a special case of the general prob-
lem of estimating the parameters of an arbitrary semi-
parametric model in the presence of data that had been
coarsened at random (Heitjan and Rubin, 1991).44

43In response Robins (2004, Section 5.2) offered a Bayes–
frequentist compromise that combines honest subjective Bayesian
decision making under uncertainty with good frequentist behavior
even when, as above, the model is so large and the likelihood func-
tion so complex that standard (uncompromised) Bayes procedures
have poor frequentist performance. The key to the compromise is
that the Bayesian decision maker is only allowed to observe a spec-
ified vector function of X [depending on the known π∗(X)] but not
X itself.

44Given complete data X, an always observed coarsening vari-
able R, and a known coarsening function x(r) = c(r, x), coarsen-

This viewpoint led them to recognize that the IPCW
and IPTW estimators described earlier were not fully
efficient. To obtain efficient estimators, Robins and
Rotnitzky (1992) and Robins, Rotnitzky and Zhao
(1994) used the theory of semiparametric efficiency
bounds (Bickel et al., 1993; van der Vaart, 1991) to de-
rive representations for the efficient score, the efficient
influence function, the semiparametric variance bound,
and the influence function of any asymptotically linear
estimator in this general problem. The books by Tsiatis
(2006) and by van der Laan and Robins (2003) provide
thorough treatments. The generality of these results al-
lowed Robins and his principal collaborators Mark van
der Laan and Andrea Rotnitzky to solve many open
problems in the analysis of semiparametric models. For
example, they used the efficient score representation
theorem to derive locally efficient semiparametric es-
timators in many models of importance in biostatis-
tics. Some examples include conditional mean models
with missing regressors and/or responses (Robins, Rot-
nitzky and Zhao, 1994; Rotnitzky and Robins, 1995),
bivariate survival (Quale, van der Laan and Robins,
2006) and multivariate survival models with explain-
able dependent censoring (van der Laan, Hubbard and
Robins, 2002).45

ing at random (CAR) is said to hold if Pr(R = r | X) depends only
on X(r), the observed data part of X. Robins and Rotnitzky (1992),
Gill, van der Laan and Robins (1997) and Cator (2004) showed
that in certain models assuming CAR places no restrictions on the
distribution of the observed data. For such models, we can pretend
CAR holds when our goal is estimation of functionals of the ob-
served data distribution. This trick often helps to derive efficient
estimators of the functional. In this section, we assume that the dis-
tribution of the observables is compatible with CAR, and further,
that in the estimation problems that we consider, CAR may be as-
sumed to hold without loss of generality.

In fact, this is the case in the context of our running
causal inference example from Section 2.2. Specifically, let
X = {Y (a1, a2),L(a1);aj ∈ {0,1}, j = 1,2}, R = (A1,A2), and
X(a1,a2) = {Y (a1, a2),L(a1)}. Consider a model MX for X that
specifies (i) {Y (1, a2),L(1);a2 ∈ {0,1}} ⊥⊥ {Y (0, a2),L(0);a2 ∈
{0,1}} and (ii) Y (a1,1) ⊥⊥ Y (a1,0) | L(a1) for a1 ∈ {0,1}. Re-
sults in Gill and Robins (2001, Section 6) and Robins (2000, Sec-
tions 2.1 and 4.2) show that (a) model MX places no further re-
strictions on the distribution of the observed data (A1,A2,L,Y ) =
(A1,A2,L(A1), Y (A1,A2)), (b) given model MX , the additional
independences X ⊥⊥ A1 and X ⊥⊥ A2 | A1,L together also place
no further restrictions on the distribution of the observed data
(A1,A2,L,Y ) and are equivalent to assuming CAR. Further, the
independences in (b) imply (9) so that fY(g)(y) is identified by the
g-formula f ∗

g (y).
45More recently, in the context of a RCT, Tsiatis et al. (2008) and

Moore and van der Laan (2009), following the strategy of Robins
and Rotnitzky (1992), studied variants of the locally efficient tests
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In coarsened at random data models, whether miss-
ing data or causal inference models, locally effi-
cient semiparametric estimators are also doubly robust
(Scharfstein, Rotnitzky and Robins, 1999, pages 1141–
1144) and (Robins and Rotnitzky, 2001). See the book
(van der Laan and Robins, 2003) for details and for
many examples of doubly robust estimators. Doubly
robust estimators had been discovered earlier in spe-
cial cases. In fact, Firth and Bennett (1998) note that
the so-called model-assisted regression estimator of a
finite population mean of Cassel, Särndal and Wret-
man (1976) is design consistent which is tantamount to
being doubly robust. See Robins and Rotnitzky (2001)
for other precursors.

In the context of our running example, from Sec-
tion 2.2, suppose (6) holds. An estimator μ̂dr of μ =
E[Y(a1, a2)] = f ∗

a1,a2
(1) for, say a1 = a2 = 1, is said

to be doubly robust (DR) if it is consistent when either
(i) a model for π(L) ≡ Pr(A2 = 1 | A1 = 1,L) or (ii) a
model for b(L) ≡ E[Y | A1 = 1,L,A2 = 1] is correct.
When L is high dimensional and, as in an observa-
tional study, π(·) is unknown, double robustness is a
desirable property because model misspecification is
generally unavoidable, even when we use flexible, high
dimensional, semiparametric models in (i) and (ii). In
fact, DR estimators have advantages even when, as is
usually the case, the models in (i) and (ii) are both in-
correct. This happens because the bias of the DR es-
timator μ̂dr is of second order, and thus generally less
than the bias of a non-DR estimator (such as a standard
IPTW estimator). By second order, we mean that the
bias of μ̂dr depends on the product of the error made
in the estimation of Pr(A2 = 1 | A1 = 1,L) times the
error made in the estimation of E[Y | A1 = 1,L,A2 =
1].

Scharfstein, Rotnitzky and Robins (1999) noted that
the locally efficient estimator of Robins, Rotnitzky and
Zhao (1994)

μ̃dr = {
Pn[A1]}−1

· Pn

[
A1

{
A2

π̂(L)
Y −

{
A2

π̂(L)
− 1

}
b̂(L)

}]

is doubly robust where π̂(L) and b̂(L) are estimators
of π(L) and b(L). Unfortunately, in finite samples this
estimator may fail to lie in the parameter space for μ,
that is, the interval [0,1] if Y is binary. In response,
Scharfstein, Rotnitzky and Robins (1999) proposed a

and estimators of Scharfstein, Rotnitzky and Robins (1999) to in-
crease efficiency and power by utilizing data on covariates.

plug-in DR estimator, the doubly robust regression es-
timator

μ̂dr,reg = {
Pn[A1]}−1

Pn

{
A1b̂(L)

}
,

where now b̂(L) = expit{m(L; η̂) + θ̂/π̂(L)} and
(η̂, θ̂ ) are obtained by fitting by maximum likeli-
hood the logistic regression model Pr(Y = 1 | A1 = 1,

L,A2 = 1) = expit{m(L;η) + θ/π̂(L)} to subjects
with A1 = 1, A2 = 1. Here, m(L;η) is a user-specified
function of L and of the Euclidean parameter η.

Robins (1999a) and Bang and Robins (2005) ob-
tained plug-in DR regression estimators in longitudinal
missing data and causal inference models by reexpress-
ing the g-formula as a sequence of iterated conditional
expectations.

van der Laan and Rubin (2006) proposed a clever
general method for obtaining plug-in DR estimators
called targeted maximum likelihood. In our setting, the
method yields an estimator μ̂dr,TMLE that differs from
μ̂dr,reg only in that b̂(L) is now given by expit{m̂(L) +
θ̂greedy/π̂(L)} where θ̂greedy is again obtained by maxi-
mum likelihood but with a fixed offset m̂(L). This off-
set is an estimator of Pr(Y = 1 | A1 = 1,L,A2 = 1)

that might be obtained using flexible machine learning
methods. Similar comments apply to models consid-
ered by Bang and Robins (2005). Since 2006 there has
been an explosion of research that has produced doubly
robust estimators with much improved large sample ef-
ficiency and finite sample performance; Rotnitzky and
Vansteelandt (2014) give a review.

We note that CAR models are not the only mod-
els that admit doubly robust estimators. For example,
Scharfstein, Rotnitzky and Robins (1999) exhibited
doubly robust estimators in models with nonignorable
missingness. Robins and Rotnitzky (2001) derived suf-
ficient conditions, satisfied by many non-CAR models,
that imply the existence of doubly robust estimators.
Recently, doubly robust estimators have been obtained
in a wide variety of models. See Dudik et al. (2014) in
this volume for an interesting example.

6. HIGHER ORDER INFLUENCE FUNCTIONS

It may happen that the second-order bias of a doubly-
robust estimator μ̂dr decreases slower to 0 with n than
n−1/2, and thus the bias exceeds the standard error of
the estimator. In that case, confidence intervals for μ

based on μ̂dr fail to cover at their nominal rate even in
large samples. Furthermore, in such a case, in terms
of mean squared error, μ̂dr does not optimally trade
off bias and variance. In an attempt to address these
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problems, Robins et al. (2008) developed a theory of
point and interval estimation based on higher order in-
fluence functions and use this theory to construct es-
timators of μ that improve on μ̂dr. Higher order influ-
ence functions are higher order U-statistics. The theory
of Robins et al. (2008) extends to higher order the first
order semiparametric inference theory of Bickel et al.
(1993) and van der Vaart (1991). In this issue, van der
Vaart (2014) gives a masterful review of this theory.
Here, we present an interesting result found in Robins
et al. (2008) that can be understood in isolation from
the general theory and conclude with an open estima-
tion problem.

Robins et al. (2008) consider the question of whether,
for estimation of a conditional variance, random re-
gressors provide for faster rates of convergence than
do fixed regressors, and, if so, how? They consider a
setting in which n i.i.d. copies of (Y,X) are observed
with X a d-dimensional random vector, with bounded
density f (·) absolutely continuous w.r.t. the uniform
measure on the unit cube (0,1)d . The regression func-
tion b(·) = E[Y | X = ·] is assumed to lie in a given
Hölder ball with Hölder exponent β < 1.46 The goal
is to estimate E[Var{Y | X}] under the homoscedas-
tic semiparametric model Var[Y | X] = σ 2. Under this
model, the authors construct a simple estimator σ̂ 2 that
converges at rate n−(4β/d)/(1+4β/d), when β/d < 1/4.

Wang et al. (2008) and Cai, Levine and Wang (2009)
earlier proved that if Xi, i = 1, . . . , n, are nonrandom
but equally spaced in (0,1)d , the minimax rate of con-
vergence for the estimation of σ 2 is n−2β/d (when
β/d < 1/4) which is slower than n−(4β/d)/(1+4β/d).
Thus, randomness in X allows for improved conver-
gence rates even though no smoothness assumptions
are made regarding f (·).

To explain how this happens, we describe the esti-
mator of Robins et al. (2008). The unit cube in R

d is
divided into k = k(n) = nγ , γ > 1 identical subcubes
each with edge length k−1/d . A simple probability cal-
culation shows that the number of subcubes containing
at least two observations is Op(n2/k). One may esti-
mate σ 2 in each such subcube by (Yi − Yj )

2/2.47 An
estimator σ̂ 2 of σ 2 may then be constructed by simply

46A function b(·) lies in the Hölder ball H(β,C) with Hölder
exponent β > 0 and radius C > 0, if and only if b(·) is bounded in
supremum norm by C and all partial derivatives of b(x) up to order
	β
 exist, and all partial derivatives of order 	β
 are Lipschitz with
exponent (β − 	β
) and constant C.

47If a subcube contains more than two observations, two are se-
lected randomly, without replacement.

averaging the subcube-specific estimates (Yi − Yj )
2/2

over all the sub-cubes with at least two observations.
The rate of convergence of the estimator is maximized
at n−(4β/d)/(1+4β/d) by taking k = n2/(1+4β/d).48

Robins et al. (2008) conclude that the random de-
sign estimator has better bias control, and hence con-
verges faster than the optimal equal-spaced fixed X es-
timator, because the random design estimator exploits
the Op(n2/n2/(1+4β/d)) random fluctuations for which
the X’s corresponding to two different observations are
only a distance of O({n2/(1+4β/d)}−1/d) apart.

An Open Problem49

Consider again the above setting with random X.
Suppose that β/d remains less than 1/4 but now β > 1.
Does there still exist an estimator of σ 2 that converges
at n−(4β/d)/(1+4β/d)? Analogy with other nonparamet-
ric estimation problems would suggest the answer is
“yes,” but the question remains unsolved.50

7. OTHER WORK

The available space precludes a complete treatment
of all of the topics that Robins has worked on. We pro-
vide a brief description of selected additional topics
and a guide to the literature.

Analyzing Observational Studies as Nested
Randomized Trials

Hernán et al. (2008) and Hernán, Robins and Gar-
cía Rodríguez (2005) conceptualize and analyze ob-
servational studies of a time varying treatment as a
nested sequence of individual RCTs trials run by na-
ture. Their analysis is closely related to g-estimation
of SNM (discussed in Section 2.6). The critical differ-
ence is that in these papers Robins and Hernán do not
specify a SNM to coherently link the trial-specific ef-

48Observe that E[(Yi − Yj )2/2 | Xi,Xj ] = σ 2 + {b(Xi) −
b(Xj )}2/2, |b(Xi) − b(Xj )| = O(‖Xi − Xj‖β) as β < 1, and

‖Xi − Xj‖ = d1/2O(k−1/d ) when Xi and Xj are in the same

subcube. It follows that the estimator has variance of order k/n2

and bias of order O(k−2β/d). Variance and the squared bias are
equated by solving k/n2 = k−4β/d which gives k = n2/(1+4β/d).

49Robins has been trying to find an answer to this question without
success for a number of years. He suggested that it is now time for
some crowd-sourcing.

50The estimator given above does not attain this rate when β > 1
because it fails to exploit the fact that b(·) is differentiable. In the in-
terest of simplicity, we have posed this as a problem in variance es-
timation. However, Robins et al. (2008) show that the estimation of
the variance is mathematically isomorphic to the estimation of θ in
the semi-parametric regression model E[Y | A,X] = θA + h(X),
where A is a binary treatment. In the absence of confounding, θ

encodes the causal effect of the treatment.
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fect estimates. This has benefits in that it makes the
analysis easier and also more familiar to users without
training in SNMs. The downside is that, in principle,
this lack of coherence can result in different analysts
recommending, as optimal, contradictory interventions
(Robins, Hernán and Rotnitzky 2007).

Adjustment for “Reverse Causation”

Consider an epidemiological study of a time-
dependent treatment (say cigarette smoking) on time
to a disease of interest, say clinical lung cancer. In
this setting, uncontrolled confounding by undetected
preclinical lung cancer (often referred to as “reverse
causation") is a serious problem. Robins (2008) de-
velops analytic methods that may still provide an un-
confounded effect estimate, provided that (i) all sub-
jects with preclinical disease severe enough to affect
treatment (i.e., smoking behavior) at a given time t

will have their disease clinically diagnosed within the
next x, say 2 years and (ii) based on subject matter
knowledge an upper bound, for example, 3 years, on x

is known.

Causal Discovery

Spirtes, Glymour and Scheines (1993) and Pearl
and Verma (1991) proposed statistical methods that
allowed one to draw causal conclusions from asso-
ciational data. These methods assume an underlying
causal DAG (or equivalently an FFRCISTG). If the
DAG is incomplete, then such a model imposes con-
ditional independence relations on the associated joint
distribution (via d-separation). Spirtes, Glymour and
Scheines (1993) and Pearl and Verma (1991) made
the additional assumption that all conditional indepen-
dence relations that hold in the distribution of the ob-
servables are implied by the underlying causal graph,
an assumption termed “stability” by Pearl and Verma
(1991), and “faithfulness” by Spirtes, Glymour and
Scheines (1993). Under this assumption, the underly-
ing DAG may be identified up to a (“Markov”) equiva-
lence class. Spirtes, Glymour and Scheines (1993) pro-
posed two algorithms that recover such a class, enti-
tled “PC” and “FCI.” While the former presupposes
that there are no unobserved common causes, the latter
explicitly allows for this possibility.

Robins and Wasserman (1999) and Robins et al.
(2003) pointed out that although these procedures were
consistent they were not uniformly consistent. More re-
cent papers (Kalisch and Bühlmann, 2007; Colombo
et al., 2012) recover uniform consistency for these al-
gorithms by imposing additional assumptions. Spirtes

and Zhang (2014) in this volume extend this work by
developing a variant of the PC Algorithm which is uni-
formly consistent under weaker assumptions.

Shpitser et al. (2012, 2014), building on Tian and
Pearl (2002b) and Robins (1999b) develop a theory
of nested Markov models that relate the structure of
a causal DAG to conditional independence relations
that arise after re-weighting; see Section 3.4. This
theory, in combination with the theory of graphical
Markov models based on Acyclic Directed Mixed
Graphs (Richardson and Spirtes, 2002; Richardson,
2003; Wermuth, 2011; Evans and Richardson, 2014;
Sadeghi and Lauritzen, 2014), will facilitate the con-
struction of more powerful51 causal discovery algo-
rithms that could (potentially) reveal much more in-
formation regarding the structure of a DAG contain-
ing hidden variables than algorithms (such as FCI) that
solely use conditional independence.

Extrapolation and Transportability of Treatment
Effects

Quality longitudinal data is often only available in
high resource settings. An important question is when
and how can such data be used to inform the choice
of treatment strategy in low resource settings. To help
answer this question, Robins, Orellana and Rotnitzky
(2008) studied the extrapolation of optimal dynamic
treatment strategies between two HIV infected pa-
tient populations. The authors considered the treatment
strategies gx , of the same form as those defined in Sec-
tion 2.10, namely, “start anti-retroviral therapy the first
time at which the measured CD4 count falls below x.”
Given a utility measure Y , their goal is to find the
regime gxopt that maximizes E[Y(gx)] in the second
low-resource population when good longitudinal data
are available only in the first high-resource population.
Due to differences in resources, the frequency of CD4
testing in the first population is much greater than in
the second and, furthermore, for logistical and/or fi-
nancial reasons, the testing frequencies cannot be al-
tered. In this setting, the authors derived conditions un-
der which data from the first population is sufficient to
identify gxopt and construct IPTW estimators of gxopt

under those conditions. A key finding is that owing
to the differential rates of testing, a necessary condi-
tion for identification is that CD4 testing has no direct
causal effect on Y not through anti-retroviral therapy.
In this issue, Pearl and Bareinboim (2014) study the re-
lated question of transportability between populations
using graphical tools.

51But still not uniformly consistent!
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Interference, Interactions and Quantum Mechanics

Within a counterfactual causal model, Cox (1958)
defined there to be interference between treatments
if the response of some subject depends not only on
their treatment but on that of others as well. On the
other hand, VanderWeele and Robins (2009) defined
two binary treatments (a1, a2) to be causally inter-
acting to cause a binary response Y if for some unit
Y(1,1) �= Y(1,0) = Y(0,1); VanderWeele (2010a)
defined the interaction to be epistatic if Y(1,1) �=
Y(1,0) = Y(0,1) = Y(0,0). VanderWeele with his
collaborators has developed a very general theory of
empirical tests for causal interaction of different types
(VanderWeele and Robins, 2009; VanderWeele, 2010a,
2010b; VanderWeele and Richardson, 2012).

Robins, VanderWeele and Gill (2012) showed, per-
haps surprisingly, that this theory could be used to give
a simple but novel proof of an important result in quan-
tum mechanics known as Bell’s theorem. The proof
was based on two insights: The first was that the con-
sequent of Bell’s theorem could, by using the Neyman
causal model, be recast as the statement that there is
interference between a certain pair of treatments. The
second was to recognize that empirical tests for causal
interaction can be reinterpreted as tests for certain
forms of interference between treatments, including
the form needed to prove Bell’s theorem. VanderWeele
et al. (2012) used this latter insight to show that ex-
isting empirical tests for causal interactions could be
used to test for interference and spillover effects in vac-
cine trials and in many other settings in which interfer-
ence and spillover effects may be present. The papers
Ogburn and VanderWeele (2014) and VanderWeele,
Tchetgen Tchetgen and Halloran (2014) in this issue
contain further results on interference and spillover ef-
fects.

Multiple Imputation

Wang and Robins (1998) and Robins and Wang
(2000) studied the statistical properties of the multi-
ple imputation approach to missing data (Rubin, 1987).
They derived a variance estimator that is consistent for
the asymptotic variance of a multiple imputation es-
timator even under misspecification and incompatibil-
ity of the imputation and the (complete data) analysis
model. They also characterized the large sample bias
of the variance estimator proposed by Rubin (1978b).

Posterior Predictive Checks

Robins, van der Vaart and Ventura (2000) studied the
asymptotic null distributions of the posterior predictive

p-value of Rubin (1984) and Guttman (1967) and of
the conditional predictive and partial posterior predic-
tive p-values of Bayarri and Berger (2000). They found
the latter two p-values to have an asymptotic uniform
distribution; in contrast they found that the posterior
predictive p-value could be very conservative, thereby
diminishing its power to detect a misspecified model.
In response, Robins et al. derived an adjusted version
of the posterior predictive p-value that was asymptoti-
cally uniform.

Sensitivity Analysis

Understanding that epidemiologists will almost
never succeed in collecting data on all covariates
needed to fully prevent confounding by unmeasured
factors and/or nonignorable missing data, Robins with
collaborators Daniel Scharfstein and Andrea Rotnitzky
developed methods for conducting sensitivity anal-
yses. See, for example, Scharfstein, Rotnitzky and
Robins (1999), Robins, Rotnitzky and Scharfstein
(2000) and Robins (2002, pages 319–321). In this is-
sue, Richardson et al. (2014) describe methods for sen-
sitivity analysis and present several applied examples.

Public Health Impact

Finally, we have not discussed the large impact of
the methods that Robins introduced on the substantive
analysis of longitudinal data in epidemiology and other
fields. Many researchers have been involved in trans-
forming Robins’ work on time-varying treatments into
increasingly reliable, robust analytic tools and in ap-
plying these tools to help answer questions of public
health importance.

LIST OF ACRONYMS USED

CAR: Section 5 coarsened at random.
CD4: Section 2.2 (medical) cell line depleted by HIV.
CDE: Section 3.1 controlled direct effect.

CMA: Section 2.3 causal Markov assumption.
DAG: Section 2.3 directed acyclic graph.

DR: Section 5 doubly robust.
dSWIG: Section 2.4 dynamic single-world intervention

graph.
FFRCISTG: Section 2.2 finest fully randomized causally

interpreted structured tree graph.
HIV: Section 2.2 (medical) human immunodeficiency

virus.
IPCW: Section 2.9 inverse probability of censoring

weighted.
IPTW: Section 2.10 inverse probability of treatment

weighted.
ITT: Section 2.9 intention to treat.
MI: Section 3.3 (medical) myocardial infarction.

MSM: Section 2.10 marginal structural model.
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NPSEM: Section 2.2 nonparametric structural equation
model.

NPSEM-IE: Section 2.2 nonparametric structural equation
model with independent errors.

PDE: Section 3.3 pure direct effects.
PSDE: Section 3.2 principal stratum direct effects.

RCT: Section 2.2 randomized clinical trial.
SNM: Section 2.6 structural nested model.

SNDM: Section 2.6 structural nested distribution model.
SNFTM: Section 2.6 structural nested failure time model.
SNMM: Section 2.6 structural nested mean model.

SWIG: Section 2.3 single-world intervention graph.
TIE: Section 3.3 total indirect effect.
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