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Abstract: This paper considers the problems of computing and estimating
the asymptotic variance matrix of the least squares (LS) and/or the quasi-
maximum likelihood (QML) estimators of vector autoregressive moving-
average (VARMA) models under the assumption that the errors are un-
correlated but not necessarily independent. We firstly give expressions for
the derivatives of the VARMA residuals in terms of the parameters of the
models. Secondly we give an explicit expression of the asymptotic variance
matrix of the QML/LS estimator, in terms of the VAR and MA polyno-
mials, and of the second and fourth-order structure of the noise. We then
deduce a consistent estimator of this asymptotic variance matrix. Modified
versions of the Wald, Lagrange Multiplier and Likelihood Ratio tests are
proposed for testing linear restrictions on the parameters. The theoretical
results are illustrated by means Monte Carlo experiments.
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de Franche-Comté.
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1. Introduction

The class of vector autoregressive moving-average (VARMA) models and the
sub-class of vector autoregressive (VAR) models are used in time series analysis
and econometrics to describe not only the properties of the individual time series
but also the possible cross-relationships between the time series (see [36, 41]).
This paper is devoted to the problems of computing and estimating the asymp-
totic variance matrix of the least squares (LS) and/or the quasi-maximum
likelihood (QML) estimators of VARMA models under the assumption that
the errors are uncorrelated but not necessarily independent. These models are
called weak VARMA in contrast to the standard VARMA models, also called
strong VARMAmodels, in which the error terms are supposed to be independent
and identically distributed (iid). This independence assumption is often consid-
ered too restrictive by practitioners. It precludes conditional heteroscedasticity
and/or other forms of nonlinearity (see [25] for a review on weak univariate
ARMA models).

A process (Xt)t∈Z is said to be nonlinear when the innovation process in the
Wold decomposition (see e.g. [12], for the univariate case, and Reinsel [41] in the
multivariate framework) is uncorrelated but not necessarily independent, and is
said to be linear in the opposite case (i.e. when the innovation process in the
Wold decomposition is iid). Relaxing the independence assumption considerably
extends the range of applications of the VARMA models, and allows to cover
linear representations of general nonlinear processes. Indeed such nonlinearities
may arise for instance when the error process follows an autoregressive condi-
tional heteroscedasticity (ARCH) introduced by Engle [18] and extended to the
generalized ARCH (GARCH) by [5], all-pass (see [3]) or other models display-
ing a second order dependence (see [1]). Other situations where the errors are
dependent can be found in [25], see also [42]. Leading examples of multivariate
linear processes are the VARMA and VAR models with iid error terms. Nonlin-
ear models are becoming more and more employed because numerous real time
series exhibit nonlinear dynamics, for instance conditional heteroscedasticity,
which can not be generated by autoregressive moving-average (ARMA) models
with iid error terms.1

1 To cite few examples of nonlinear processes, let us mention the self-exciting thresh-
old autoregressive (SETAR), the smooth transition autoregressive (STAR), the exponential
autoregressive (EXPAR), the bilinear, the random coefficient autoregressive (RCA), the func-
tional autoregressive (FAR) (see [19, 44] for references on these nonlinear time series models).
All these nonlinear models have been initially proposed for univariate time series, but have
multivariate extensions.
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Work on asymptotic results usually focuses on univariate models (see [25]
for a review of this topic). For multivariate models, important advances have
been obtained by Dufour and Pelletier [16] who study the asymptotic proper-
ties of a generalization of the regression-based estimation method proposed by
Hannan and Rissanen [29] under weak assumptions on the innovation process,
Francq and Räıssi [20] who study portmanteau tests for weak VAR models,
Boubacar Mäınassara and Francq [9] study the estimation of weak VARMA
models, Boubacar Mäınassara [6, 7] who studies portmanteau tests and the
problem of order selection of weak VARMA models, Katayama [33] who also
proposes a new portmanteau test statistic for weak VARMA models. In [9], it
is shown that the asymptotic variance matrix of the usual estimators has the
“sandwich” form Ω := J−1IJ−1, where the two Fisher information matrices J
and I depend respectively on second and fourth-order moments of the errors
and on the true parameter (denoted, hereafter, θ0). This proposed asymptotic
variance reduces to standard form Ω = 2J−1 in the linear case.

In the framework of (Gaussian) linear processes, the problem of computing
the Fisher information matrices and their inverses has been widely studied. Var-
ious expressions of these matrices have been given by Whittle [46, 47], Siddiqui
[43], Durbin [17] and Box and Jenkins [11]. McLeod [39], Klein and Mélard
[34, 35] and Godolphin and Bane [27] have given algorithms for their compu-
tation. For few particular cases of weak ARMA models, the matrices I and J
have been computed by Boubacar Mäınassara, Carbon and Francq [8], Francq
and Zakoian [24, 26] and Francq, Roy and Zakoian [22]. The main goal of the
present paper is to complete the available results concerning the statistical anal-
ysis of weak VARMA models, by proposing another estimator of Ω, which allows
to separate the effects due to the VARMA parameters from those due to the
nonlinear structure of the noise.

The paper is organized as follows. Section 2 presents the models that we
consider here, and presents the results on the QML/LS estimator asymptotic
distribution obtained by Boubacar Mäınassara and Francq [9]. In Section 3
we give expressions for the derivatives of the VARMA residuals in terms of
parameters of the models. Section 4 is devoted to find an explicit expression of
the asymptotic variance of the QML/LS estimator, in terms of the VAR and
MA polynomials, and of the second and fourth-order structure of the noise.
In Section 5 we deduce a consistent estimator of this asymptotic variance. We
describe, in Section 6, how to obtain numerical evaluations of tolerance for the
information matrices J and I up to some tolerance. In Section 7 it is shown
how the standard Wald, LM (Lagrange Multiplier) and LR (Likelihood Ratio)
tests must be adapted in the weak VARMA case in order to test for general
linearity constraints. This section is also of interest in the univariate framework
because, to our knowledge, these tests have not been studied for weak ARMA
models. Numerical experiments are presented in Section 8. The proofs of the
main results are collected in the appendix. We denote by A⊗B the Kronecker
product of two matrices A and B, and by vec(A) the vector obtained by stacking
the columns of A. The reader is refereed to Magnus and Neudecker [37] for the
properties of these operators. Let 0r be the null vector of Rr, and let Ir be the
r × r identity matrix.
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2. Model and assumptions

Consider a d-dimensional stationary process (Xt) satisfying a structural
VARMA(p, q) representation of the form

A00Xt −
p
∑

i=1

A0iXt−i = B00ǫt −
q
∑

i=1

B0iǫt−i, ∀t ∈ Z = {0,±1, . . .}, (2.1)

where ǫt is a white noise, namely a stationary sequence of centered and uncorre-
lated random variables with a non singular variance Σ0. The structural forms are
mainly used in econometrics to introduce instantaneous relationships between
economic variables. Of course, constraints are necessary for the identifiability of
these representations. Let [A00 . . . A0pB00 . . . B0q] be the d× (p+ q+2)d matrix
of all the coefficients, without any constraint. The matrix Σ0 is considered as
a nuisance parameter. The parameter of interest, θ0, belongs to the parameter
space Θ ⊂ Rk0 , where k0 is the number of unknown parameters, which is typ-
ically much smaller that (p + q + 2)d2. The matrices A00, . . . A0p, B00, . . . B0q

involved in (2.1) are specified by θ0. More precisely, we write A0i = Ai(θ0) and
B0j = Bj(θ0) for i = 0, . . . , p and j = 0, . . . , q, and Σ0 = Σ(θ0). We need the
following assumptions used by Boubacar Mäınassara and Francq [9] to ensure
the consistency and the asymptotic normality of the quasi-maximum likelihood
estimator (QMLE).

A1: The applications θ 7→ Ai(θ) i = 0, . . . , p, θ 7→ Bj(θ) j = 0, . . . , q and
θ 7→ Σ(θ) admit continuous third order derivatives for all θ ∈ Θ.

For simplicity we now write Ai, Bj and Σ instead of Ai(θ), Bj(θ) and Σ(θ). Let
Aθ(z) = A0 −

∑p
i=1 Aiz

i and Bθ(z) = B0 −
∑q

i=1 Biz
i.

A2: For all θ ∈ Θ, we have detAθ(z) detBθ(z) 6= 0 for all |z| ≤ 1.

A3: We have θ0 ∈ Θ, where Θ is compact.

A4: The process (ǫt) is stationary and ergodic.

A5: For all θ ∈ Θ such that θ 6= θ0, either the transfer functions

A−1
0 B0B

−1
θ (z)Aθ(z) 6= A−1

00 B00B
−1
θ0

(z)Aθ0(z)

for some z ∈ C, or

A−1
0 B0ΣB

′
0A

−1′

0 6= A−1
00 B00Σ0B

′
00A

−1′

00 .

A6: We have θ0 ∈
◦

Θ, where
◦

Θ denotes the interior of Θ.

We now introduce, as in [23] the strong mixing coefficients of a stationary process
Z = (Zt) denoted by

αZ(h) = sup
A∈σ(Zu,u≤t),B∈σ(Xu,u≥t+h)

|P (A ∩B)− P (A)P (B)| ,

measuring the temporal dependence of the process Z. Denoting by ‖Z‖ the
Euclidean norm of Z.
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A7: We have E‖ǫt‖4+2ν < ∞ and
∑∞

k=0{αǫ(k)}
ν

2+ν < ∞ for some ν > 0.

The reader is referred to [9] for a discussion of these assumptions. Note that
(ǫt) can be replaced by (Xt) in A4, because Xt = A−1

θ0
(L)Bθ0(L)ǫt and ǫt =

B−1
θ0

(L)Aθ0(L)Xt, where L stands for the backward operator. From A1 the
matrices A0 and B0 are invertible. Introducing the innovation process et =
A−1

00 B00ǫt, the structural representation Aθ0(L)Xt = Bθ0(L)ǫt can be rewritten
as the reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i.

We thus recursively define ẽt(θ) for t = 1, . . . , n by

ẽt(θ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(θ),

with initial values ẽ0(θ) = · · · = ẽ1−q(θ) = X0 = · · · = X1−p = 0. The gaussian
quasi-likelihood is given by

L̃n(θ,Σe) =

n∏

t=1

1

(2π)d/2
√
detΣe

exp

{

−1

2
ẽ′t(θ)Σ

−1
e ẽt(θ)

}

, Σe = A−1
0 B0ΣB

′
0A

−1′

0 .

A QMLE of θ and Σe are a measurable solution (θ̂n, Σ̂e) of

(θ̂n, Σ̂e) = arg max
θ∈Θ,Σe

L̃n(θ,Σe).

We use the matrix Mθ0 of the coefficients of the reduced form (8.1), to that
made by Boubacar Mäınassara and Francq [9], where

Mθ0 = [A−1
00 A01 : · · · : A−1

00 A0p : A−1
00 B01B

−1
00 A00 : · · · : A−1

00 B0qB
−1
00 A00].

Now, we need a local identifiability assumption which completes the global iden-
tifiability assumption A5 (but none is implied by the other) and specifies how

this matrix depends on the parameter θ0. Let
�

Mθ0 be the matrix ∂vec(Mθ)/∂θ
′

evaluated at θ0.

A8: The matrix
�

Mθ0 is of full rank k0.

Under Assumptions A1–A8, Boubacar Mäınassara and Francq [9] have showed

the consistency (θ̂n → θ0 a.s. as n → ∞) and the asymptotic normality of the
QMLE: √

n
(

θ̂n − θ0

)
L→ N (0,Ω := J−1IJ−1), (2.2)

where J = J(θ0,Σe0) and I = I(θ0,Σe0), with

J(θ,Σe) = lim
n→∞

2

n

∂2

∂θ∂θ′
log L̃n(θ,Σe) a.s.

and

I(θ,Σe) = lim
n→∞

Var

{
2√
n

∂

∂θ
log L̃n(θ,Σe)

}

. (2.3)
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3. Expression for the derivatives of the VARMA residuals

For a univariate ARMA model, McLeod [38] has defined the noise derivatives
by writing

∂et
∂φi

= υt−i, i = 1, . . . , p and
∂et
∂ϕj

= ut−j, j = 1, . . . , q,

where φi and ϕj are respectively the univariate AR and MA parameters. Let
φθ(L) = 1 −∑p

i=1 φiL
i and ϕθ(L) = 1 −∑q

i=1 ϕiL
i. We denote by φ∗

h and ϕ∗
h

the coefficients defined by

φ−1
θ (z) =

∞∑

h=0

φ∗
hz

h, ϕ−1
θ (z) =

∞∑

h=0

ϕ∗
hz

h, |z| ≤ 1 for h ≥ 0.

When p and q are not both equal to 0, let θ = (θ1, . . . , θp, θp+1, . . . , θp+q)
′. Then,

it is easily seen that the univariate noise derivatives can be represented as

∂et(θ)

∂θ
= (υt−1(θ), . . . , υt−p(θ), ut−1(θ), . . . , ut−q(θ))

′,

where

υt(θ) = −φ−1
θ (L)et(θ) = −

∞∑

h=0

φ∗
het−h(θ), ut(θ) = ϕ−1

θ (L)et(θ) =

∞∑

h=0

ϕ∗
het−h(θ)

and
et(θ) = ϕ−1

θ (L)φθ(L)Xt.

The subject of this section is to generalize these expansions to the multivari-
ate ARMA case. The reduced VARMA representation can be rewritten as the
compact form

Aθ(L)Xt = Bθ(L)et(θ),

where Aθ(L) = Id − ∑p
i=1 AiL

i and Bθ(L) = Id −∑q
i=1 BiL

i, with Ai =
A−1

0 Ai and Bi = A−1
0 BiB

−1
0 A0. For ℓ = 1, . . . , p and ℓ′ = 1, . . . , q, let Aℓ =

(aij,ℓ), Bℓ′ = (bij,ℓ′), aℓ = vec[Aℓ] and bℓ′ = vec[Bℓ′ ]. We denote respec-
tively by

a := (a′1, . . . , a
′
p)

′ and b := (b′
1, . . . ,b

′
q)

′,

the coefficients of the multivariate AR and MA parts. Thus we can rewrite
θ = (a′,b′)′, where a ∈ Rk1 depends on A0, . . . , Ap, and where b ∈ Rk2 depends
on B0, . . . , Bq, with k1 + k2 = k0. For i, j = 1, . . . , d, let Mij(L) and Nij(L) the
(d× d)−matrix operators defined by

Mij(L) = B−1
θ (L)EijA

−1
θ (L)Bθ(L) and Nij(L) = B−1

θ (L)Eij ,

where Eij is the d×d matrix with 1 at position (i, j) and 0 elsewhere. We denote
by A∗

ij,h and B∗
ij,h the (d× d) matrices defined by

Mij(z) =

∞∑

h=0

A∗
ij,hz

h, Nij(z) =

∞∑

h=0

B∗
ij,hz

h, |z| ≤ 1
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for h ≥ 0. Take A∗
ij,h = B∗

ij,h = 0 when h < 0. Let the d× d3(p+ q) matrix

λh(θ) =
[
−A∗

h−1 : · · · : −A∗
h−p : B∗

h−1 : · · · : B∗
h−q

]
, (3.1)

where

A∗
h =

[
A∗

11,h : A∗
21,h : · · · : A∗

dd,h

]
and B∗

h =
[
B∗

11,h : B∗
21,h : · · · : B∗

dd,h

]

are d× d3 matrices.
The matrix λh(θ) is well defined because the coefficients of the series expan-

sions of A−1
θ and B−1

θ decrease exponentially fast to zero.
We are now able to state the following proposition, which is a generalization

of a result given in [38].

Proposition 3.1. Under the assumptions A1–A8, we have

∂et(θ)

∂θ′
= [Vt−1(θ) : · · · : Vt−p(θ) : Ut−1(θ) : · · · : Ut−q(θ)] ,

where

Vt(θ) = −
∞∑

h=0

A∗
h (Id2 ⊗ et−h(θ)) and Ut(θ) =

∞∑

h=0

B∗
h (Id2 ⊗ et−h(θ))

with the d× d3 matrices

A∗
h =

[
A∗

11,h : A∗
21,h : · · · : A∗

dd,h

]
and B∗

h =
[
B∗

11,h : B∗
21,h : · · · : B∗

dd,h

]
.

Moreover, at θ = θ0 we have

∂et
∂θ′

=
∑

i≥1

λi

(
Id2(p+q) ⊗ et−i

)
,

with the λi’s are defined by (3.1).

4. Explicit expression of I and J

The subject of this section is to give expressions for the information matrices I
and J involved in the asymptotic variance Ω of the QMLE. In these expressions,
we isolate what is a function of the VARMA parameter θ0 from what is a function
of the distribution of the weak noise et.

McLeod [38] gave a nice expression for J , for the univariate ARMA model, as
the variance of a VAR model involving only the ARMA parameter θ0 (see (8.8.3)
in [12]). Francq, Roy and Zaköıan [22] obtained an expression of I involving the
ARMA parameter θ0 and the fourth-order moments of the weak noise (ǫt) (with
their notations, J = Λ′

∞Λ∞ and I = Λ′
∞Γ∞,∞Λ∞ where Λ∞ depends on θ0

and Γ∞,∞ depends on moments of (ǫt)). For certain statistical applications,
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recently, Boubacar Mäınassara, Carbon and Francq [8] give similar expressions
for I(θ) and J(θ) when θ 6= θ0. Let us define the matrix

M := E

{(
Id2(p+q) ⊗ e′t

)⊗2
}

involving the second-order moments of (et). We are now able to state the follow-
ing proposition, which provides a form for J = J(θ0,Σe0), in which the terms
depending on θ0 (through the matrices λi) are distinguished from the terms
depending on the second-order moments of (et) (through the matrix M) and
the terms of the noise variance of the multivariate innovation process (through
the matrix Σe0).

Proposition 4.1. Under Assumptions A1–A8, we have

vecJ = 2
∑

i≥1

M{λ′
i ⊗ λ′

i} vecΣ−1
e0 ,

where the λi’s are defined by (3.1).

We now search similar tractable expressions for I. In view of (2.3), we have

I = lim
n→∞

Var

(

1√
n

n∑

t=1

Υt

)

=

+∞∑

h=−∞

Cov(Υt,Υt−h), (4.1)

where

Υt =
∂

∂θ

{
log detΣe0 + e′t(θ)Σ

−1
e0 et(θ)

}

θ=θ0
. (4.2)

Note that, the existence of the sum of the right-hand side of (4.1) is a conse-
quence of A7 and of Davydov’s inequality [13] (see e.g. Lemma 11 in [9]). Let
the matrices

Mij,h := E
({

e′t−h ⊗
(
Id2(p+q) ⊗ e′t−j−h

)}
⊗
{
e′t ⊗

(
Id2(p+q) ⊗ e′t−i

)})
.

The terms depending on the VARMA parameter are the matrices λi defined in
(3.1) and let the matrices

Γ(i, j) =

+∞∑

h=−∞

Mij,h

involving the fourth-order moments of the innovations et. The terms depending
on the noise variance of the multivariate innovation process are in Σe0. We now
state an analog of Proposition 4.1 for I = I(θ0,Σe0).

Proposition 4.2. Under Assumptions A1–A8, we have

vec I = 4

+∞∑

i,j=1

Γ(i, j)
({

Id ⊗ λ′
j

}
⊗ {Id ⊗ λ′

i}
)
vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

,

where the λi’s are defined by (3.1).
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Remark 4.1. Consider the univariate case d = 1. We obtain

vec J = 2
∑

i≥1

{λi ⊗ λi}′ and vec I =
4

σ4

+∞∑

i,j=1

γ(i, j) {λj ⊗ λi}′ ,

where γ(i, j) =
∑+∞

h=−∞ E(etet−iet−het−j−h) and λ′
i ∈ R

p+q are defined by (3.1).

Remark 4.2. Francq, Roy and Zaköıan [22] considered the univariate case
d = 1. In their paper, they used the LS estimator and they obtained

E

(
∂2et(θ0)

∂θ∂θ′

)

= 2
∑

i≥1

σ2λiλ
′
i and Var

{

2et(θ0)
∂et(θ0)

∂θ

}

= 4
∑

i,j≥1

γ(i, j)λiλ
′
j

where σ2 is the variance of the univariate process et and the vectors λi =
(−φ∗

i−1, . . . ,−φ∗
i−p, ϕ

∗
i−1, . . . , ϕ

∗
i−q)

′ ∈ Rp+q, with the convention φ∗
i = ϕ∗

i =

0 when i < 0. Let ℓ̃n(θ,Σe) = −2n−1 log L̃n(θ,Σe). In [9], it is shown that
ℓn(θ,Σe) = ℓ̃n(θ,Σe) + o(1) a.s., where

ℓn(θ,Σe) =
1

n

n∑

t=1

{
d log(2π) + log detΣe + e′t(θ)Σ

−1
e et(θ)

}
.

Using the vec operator and the elementary relation vec(aa′) = a⊗a′, their result
writes

vecJ = vec

{

E

(
∂2ℓn(θ0,Σe0)

∂θ∂θ′

)}

=
1

σ2
vec

{

E

(
∂2

∂θ∂θ′
e2t (θ0)

)}

= 2
∑

i≥1

λi ⊗ λi

and vec I = vec

{

Var

(
∂ℓn(θ0,Σe0)

∂θ

)}

=
1

σ4
vec

{

Var

(

2et
∂et(θ0)

∂θ

)}

=
4

σ4

∑

i,j≥1

γ(i, j)λi ⊗ λj ,

which are the expressions given in Remark 4.1.

The following example illustrates that how the matrices I and J are depend
on the terms θ0 and terms involving the distribution of the innovations ǫt.

Example 1. Consider for instance a weak, univariate, ARMA(1, 1) of the form

Xt = aXt−1 − bǫt−1 + ǫt,

with variance σ2. Then, with our notations, we have θ = (a, b)′, θ0 = (a0, b0)
′,

A∗
i = ai, B∗

i = bi, λi = (−A∗
i−1,B

∗
i−1) = (−ai−1, bi−1), E(ǫ2t ) = σ2

0 ,

Γ(i, j) =
+∞∑

h=−∞

E (ǫtǫt−iǫt−hǫt−j−h) I4 = γ(i, j)I4
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and
λj ⊗ λi =

(
aj+i−2,−aj−1bi−1,−aj−1bi−1, bj+i−2

)
.

Thus, we have

vecJ = 2
∑

i≥1

(

a
2(i−1)
0 ,−(a0b0)

i−1,−(a0b0)
i−1, b

2(i−1)
0

)′

and

vec I =
4

σ4
0

+∞∑

i,j=1

γ(i, j)
(

aj+i−2
0 ,−aj−1

0 bi−1
0 ,−aj−1

0 bi−1
0 , bj+i−2

0

)′

,

where σ0 is the true value of σ. We then deduce that

J = 2

[
1

1−a2
0

−1
1−a0b0

−1
1−a0b0

1
1−b2

0

]

and I =
4

σ4
0

+∞∑

i,j=1

γ(i, j)

[

aj+i−2
0 −aj−1

0 bi−1
0

−aj−1
0 bi−1

0 bj+i−2
0

]

.

Thus, in the standard strong ARMA case, i.e. when A4 is replaced by the
assumption that (ǫt) is iid, it is easily seen that γ(i, j) = [E(ǫ2t )]

2 = σ4
0 when

i = j and 0 if i 6= j, so that I = 2J . In the general case we have I 6= 2J .

5. Estimating the asymptotic variance matrix

In section 4, we obtained explicit expressions for I and J . We now turn to the
estimation of these matrices. Let êt = ẽt(θ̂n) be the QMLE residuals when p > 0
or q > 0, and let êt = et = Xt when p = q = 0. When p+ q 6= 0, we have êt = 0
for t ≤ 0 and t > n and

êt = Xt −
p
∑

i=1

A−1
0 (θ̂n)Ai(θ̂n)X̂t−i +

q
∑

i=1

A−1
0 (θ̂n)Bi(θ̂n)B

−1
0 (θ̂n)A0(θ̂n)êt−i,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1. Let Σ̂e0 =
n−1

∑n
t=1 êtê

′
t be an estimator of Σe0. The matrix M involved in the expression

of J can easily be estimated by its empirical counterpart

M̂n :=
1

n

n∑

t=1

{(
Id2(p+q) ⊗ ê′t

)⊗2
}

.

In view of Proposition 4.1, we define an estimator Ĵn of J by

vec Ĵn =
∑

i≥1

M̂n

{

λ̂′
i ⊗ λ̂′

i

}

vec Σ̂−1
e0 .

We are now able to state the following theorem, which shows the strong consis-
tency of Ĵn.

Theorem 5.1. Under Assumptions A1–A8, we have

Ĵn → J a.s. as n → ∞.
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In the standard strong VARMA case Ω̂ = 2Ĵ−1 is a strongly consistent
estimator of Ω. In the general weak VARMA case this estimator is not consistent
when I 6= 2J . So we now need a consistent estimator of I. The estimation
of the long-run variance I is more complicated. In the literature, two types
of estimators are generally employed: HAC estimators (see [2, 40] for general
references, and [26] for an application to testing strong linearity in weak ARMA
models) and spectral density estimators (see [4] and also den [14] for a general
reference; see also [9] for an application to a weak VARMA model). Let

Mn ij,h :=
1

n

n−|h|
∑

t=1

({
e′t−h ⊗

(
Id2(p+q) ⊗ e′t−j−h

)}
⊗
{
e′t ⊗

(
Id2(p+q) ⊗ e′t−i

)})
.

To estimate Γ(i, j) consider a sequence of real numbers (bn)n∈N∗ such that

bn → 0 and nb
10+4ν

ν

n → ∞ as n → ∞, (5.1)

and a weight function f : R → R which is bounded, with compact support
[−a, a] and continuous at the origin with f(0) = 1. Note that under the above
assumptions, we have

bn
∑

|h|<n

|f(hbn)| = O(1). (5.2)

Consider the matrix

Γ̂n(i, j) :=

+Tn∑

h=−Tn

f(hbn)M̂n ij,h and Tn =

[
a

bn

]

,

where [x] denotes the integer part of x and where

M̂n ij,h :=
1

n

n−|h|
∑

t=1

({
ê′t−h ⊗

(
Id2(p+q) ⊗ ê′t−j−h

)}
⊗
{
ê′t ⊗

(
Id2(p+q) ⊗ ê′t−i

)})
.

In view of Proposition 4.2, we define an estimator În of I by

vec În = 4

+∞∑

i,j=1

Γ̂n(i, j)
({

Id ⊗ λ̂′
i

}

⊗
{

Id ⊗ λ̂′
j

})

vec

(

vec Σ̂−1
e0

{

vec Σ̂−1
e0

}′
)

.

We are now able to state the following theorem, which shows the weak consis-
tency of an empirical estimator of În.

Theorem 5.2. Under Assumptions A1–A8, we have

În → I in probability as n → ∞.

Therefore Theorems 5.1 and 5.2 show that

Ω̂n := Ĵ−1
n ÎnĴ

−1
n

is a weakly estimator of the asymptotic covariance matrix Ω = J−1IJ−1, which
allows to separate the effects due to the VARMA parameters from those due to
the nonlinear structure of the noise.
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6. Approximation of the information matrices by finite sums

In practice the infinite sums involved in J and I are truncated. This section
concentrates on the choice of the truncation parameter for J and I. Matrix J
is truncated by the matrix JM and defined by

vecJM = 2

M∑

i=1

M{λ′
i ⊗ λ′

i} vecΣ−1
e0 .

The following proposition defines a value of M such that JM be equal to J
up to an arbitrarily small tolerance number ε. Let the matrix norm defined by
‖A‖ =

∑

i,j |A(i, j)| with obvious notations.

Proposition 6.1. Let ρ be the inverse of the largest modulus of the zeroes of
the polynomials detAθ(z) and detBθ(z) and let

K1 = d6(p+ q)3
(−2d(p+ q)

log ρ

)d(p+q)

ρ −0.5−d(p+q)/ log ρ.

For all ε > 0, we can therefore choose an integer

M ≥ Mǫ :=

log

(√

ε/2πΓ(1−√
ρ)/K1

)

log ρ

such that ‖ vecJ − vec JM‖ ≤ ε, where Γ = ‖M‖ and π = ‖ vecΣ−1
e0 ‖.

Similarly to J , the matrix I is truncated by the matrix IM of M2 terms,
defined by

vec IM = 4
M∑

i,j=1

Γ(i, j)
({

Id ⊗ λ′
j

}
⊗ {Id ⊗ λ′

i}
)
vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

.

We now state an analog of Proposition 6.1 for I.

Proposition 6.2. Let

Γ = max
i,j≥0

‖Γ(i, j)‖ , π1 =
∥
∥
∥vec

(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)∥
∥
∥ .

For all ε > 0, we can therefore choose an integer

M ≥ Mǫ :=

log

(√

ε/4π1d2Γ(1 −
√
ρ)/K1

)

log ρ

such that ‖ vec I − vec IM‖ ≤ ε.



Estimating asymptotic variance of weak VARMA models 2713

7. Testing linear restrictions on the parameter

It may be of interest to test s0 linear constraints on the elements of θ0 (in par-
ticular A0p = 0 or B0q = 0). We thus consider a null hypothesis of the form

H0 : R0θ0 = r0

where R0 is a known s0×k0 matrix of rank s0 and r0 is a known s0-dimensional
vector. The Wald, LM and LR principles are employed frequently for testing
H0. The LM test is also called the score or Rao-score test. We now examine if
these principles remain valid in the non standard framework of weak VARMA
models.

Let Ω̂ = Ĵ−1Î Ĵ−1, where Ĵ and Î are consistent estimator of J and I, as
defined in Section 5. Under Assumptions A1–A8, and the assumption that I is
invertible, the Wald statistic

Wn = n(R0θ̂n − r0)
′(R0Ω̂R

′
0)

−1(R0θ̂n − r0)

asymptotically follows a χ2
s0 distribution under H0. Therefore, the standard

formulation of the Wald test remains valid. More precisely, at the asymptotic
level α, the Wald test consists in rejecting H0 when Wn > χ2

s0(1 − α). It is

however important to note that a consistent estimator of the form Ω̂ = Ĵ−1Î Ĵ−1

is required. The estimator Ω̂ = 2Ĵ−1, which is routinely used in the time series
softwares, is only valid in the strong VARMA case.

We now turn to the LM test. Let θ̂cn be the restricted QMLE of the parameter
under H0. Define the Lagrangean

L(θ, λ) = ℓ̃n(θ)− λ′(R0θ − r0),

where λ denotes a s0-dimensional vector of Lagrange multipliers. The first-order
conditions yield

∂ℓ̃n
∂θ

(θ̂cn) = R′
0λ̂, R0θ̂

c
n = r0.

It will be convenient to write a
c
= b to signify a = b + c. A Taylor expansion

gives under H0

0 =
√
n
∂ℓ̃n(θ̂n)

∂θ

oP (1)
=

√
n
∂ℓ̃n(θ̂

c
n)

∂θ
− J

√
n
(

θ̂n − θ̂cn

)

.

We deduce that

√
n(R0θ̂n − r0) = R0

√
n(θ̂n − θ̂cn)

oP (1)
= R0J

−1√n
∂ℓ̃n(θ̂

c
n)

∂θ
= R0J

−1R′
0

√
nλ̂.

Thus under H0 and the previous assumptions,

√
nλ̂

L→ N
{
0, (R0J

−1R′
0)

−1R0ΩR
′
0(R0J

−1R′
0)

−1
}
, (7.1)
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so that the LM statistic is defined by

LMn = nλ̂′
{

(R0Ĵ
−1R′

0)
−1R0Ω̂R

′
0(R0Ĵ

−1R′
0)

−1
}−1

λ̂

= n
∂ℓ̃n
∂θ′

(θ̂cn)Ĵ
−1R′

0

(

R0Ω̂R
′
0

)−1

R0Ĵ
−1 ∂ℓ̃n

∂θ
(θ̂cn).

Note that in the strong VARMA case, Ω̂ = 2Ĵ−1 and the LM statistic takes
the more conventional form LM∗

n = (n/2)λ̂′R0Ĵ
−1R′

0λ̂. In the general case,
strong and weak as well, the convergence (7.1) implies that the asymptotic
distribution of the LMn statistic is χ2

s0 under H0. The null is therefore rejected
when LMn > χ2

s0(1 − α). Of course the conventional LM test with rejection
region LM∗

n > χ2
s0(1−α) is not asymptotically valid for general weak VARMA

models. Standard Taylor expansions show that

√
n(θ̂n − θ̂cn)

oP (1)
= −√

nJ−1R′
0λ̂,

and that the LR statistic satisfies

LRn := 2
{

log L̃n(θ̂n)− log L̃n(θ̂
c
n)
}

oP (1)
=

n

2
(θ̂n − θ̂cn)

′J(θ̂n − θ̂cn)

oP (1)
=

n

2
λ̂′R0Ĵ

−1R′
0λ̂

oP (1)
= LM∗

n.

Using the previous computations and standard results on quadratic forms of
normal vectors (see e.g. Lemma 17.1 in [45]), we find that the LRn statistic
is asymptotically distributed as

∑s0
i=1 λiZ

2
i where the Zi’s are iid N (0, 1) and

λ1, . . . , λs0 are the eigenvalues of

ΣLR = J−1/2SLRJ−1/2, SLR =
1

2
R′

0(R0J
−1R′

0)
−1R0ΩR

′
0(R0J

−1R′
0)

−1R0.

Note that when Ω = 2J−1, the matrix ΣLR = J−1/2R′
0(R0J

−1R′
0)

−1R0J
−1/2

is a projection matrix. Its eigenvalues are therefore equal to 0 and 1, and the
number of eigenvalues equal to 1 is Tr J−1/2R′

0(R0J
−1R′

0)
−1R0J

−1/2 = Tr Is0 =
s0. Therefore we retrieve the well-known result that LRn ∼ χ2

s0 under H0

in the strong VARMA case. In the weak VARMA case, the asymptotic null
distribution of LRn is complicated. It is possible to evaluate the distribution of
a quadratic form of a Gaussian vector by means of the Imhof algorithm (see [31]).
An alternative is to use the transformed statistic

LR−
n :=

n

2
(θ̂n − θ̂cn)

′Ĵ Ŝ−
LR

Ĵ(θ̂n − θ̂cn) (7.2)

which follows a χ2
s0 under H0, when Ĵ and Ŝ−

LR
are weakly consistent estimators

of J and of a generalized inverse of SLR. The estimator Ŝ−
LR

can be obtained

from the singular value decomposition of any weakly consistent estimator ŜLR of
SLR. More precisely, defining the diagonal matrix Λ̂ = diag(λ̂1, . . . , λ̂k0

) where

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k0
denote the eigenvalues of the symmetric matrix ŜLR, and
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denoting by P̂ an orthonormal matrix such that ŜLR = P̂ Λ̂P̂ ′, one can set

Ŝ−
LR

= P̂ Λ̂−P̂ ′, Λ̂− = diag
(

λ̂−1
1 , . . . , λ̂−1

s0 , 0, . . . , 0
)

.

The matrix Ŝ−
LR

then converges weakly to a matrix S−
LR

satisfying SLRS−
LR

SLR =
SLR, because SLR has full rank s0.

The obvious problem with this modified version of the LR statistic is that
ΣLR is not invertible in the general situation where s0 < k0, which invalidates
the asymptotic χ2

s0 distribution and also entails numerical problems in the com-
putation of (7.2).

8. Numerical illustrations

In this section, by means of Monte Carlo experiments, we illustrate the finite
sample behavior of our estimators of the information matrices I and J (here-
after denoted respectively Ic and Jc, where the subscript on I and J denoting
computed) involved in the asymptotic matrix variance Ω, for strong and weak
VARMA models. We used, the three kernels described in Table 1 below in the
calculation of the estimator of the matrix Ic. Let,

Ĵ =
2

n

n∑

t=1

{
∂

∂θ
ẽ′t(θ̂n)

}

Σ̂−1
e

{
∂

∂θ′
ẽt(θ̂n)

}

.

We compare our estimator, of Ω, with the standard and the spectral density
estimators Ω̂SP := Ĵ−1ÎSP Ĵ−1 (ÎSP is defined in Theorem 3 of [9]) considered
by Boubacar Mäınassara and Francq [9].

8.1. Simulating models

The structural VARMA(p, q) representation (2.1) can be rewritten in a stan-
dard reduced VARMA(p, q) form if the matrices A00 and B00 are non singular.
Indeed, premultiplying (2.1) by A−1

00 and introducing the innovation process

et = A−1
00 B00ǫt, with non singular variance Σe0 = A−1

00 B00Σ0B
′
00A

−1′

00 , we ob-
tain the reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i. (8.1)

The structural form (2.1) allows to handle seasonal models, instantaneous
economic relationships, VARMA in the so-called echelon form representation,
and many other constrained VARMA representations (see [36], chap. 12). The
reduced form (8.1) is more practical from a statistical viewpoint, because it
gives the forecasts of each component of (Xt) according to the past values of
the set of the components.

The above discussion shows that VARMA representations are not unique,
that is, a given process (Xt) can be written in reduced form or in structural
form by premultiplying by any non singular (d× d) matrix. Of course, in order
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to ensure the uniqueness of a VARMA representation, constraints are necessary
for the identifiability of the (p+q+2)d2 elements of the matrices involved in the
VARMA equation (2.1). In contrast, the echelon form guarantees uniqueness of
the VARMA representation (see also [36]). The echelon form is the most widely
identified VARMA representation employed in the literature. The identifiability
of VARMA processes has been studied in particular by Hannan [28] who gave
several procedures ensuring identifiability.

To generate the strong and the weak VARMA models, we consider the fol-
lowing bivariate VARMA(1,1) model in echelon form considered in Lütkepohl
([36], chap. 12, eq. 12.1.19)

(
X1,t

X2,t

)

=

(
0 0
0 a1(2, 2)

)(
X1,t−1

X2,t−1

)

+

(
ǫ1,t
ǫ2,t

)

−
(

0 0
b1(2, 1) b1(2, 2)

)(
ǫ1,t−1

ǫ2,t−1

)

, (8.2)

where θ0 = (a1(2, 2), b1(2, 1), b1(2, 2)) = (0.95, 2, 0) and ǫt = (ǫ1,t, ǫ2,t)
′ follows

a strong or weak white noise.

8.2. Implementation of the estimating of Ic and Jc

Let X1, . . . , Xn, be observations of the bivariate VARMA(1, 1) process (8.2).
With ours notations, the VARMA representation (8.2) can be rewritten as the
compact form

Aθ(L)Xt = Bθ(L)ǫt(θ),

where Aθ(L) = I2 −AL and Bθ(L) = I2 −BL, with

I2 =

(
1 0
0 1

)

, A =

(
0 0
0 a1(2, 2)

)

and B =

(
0 0

b1(2, 1) b1(2, 2)

)

.

For simplicity, we now write a1, b1 and b2 instead of a1(2, 2), b1(2, 1) and b1(2, 2).
For estimating the asymptotic matrix variance Ω, introduced in this paper, we
implement the information matrices Ic and Jc involved in Ω, using the following
steps:

1. Compute the estimates Â, B̂ by QMLE.
2. Compute the QMLE residuals êt = ẽt(θ̂n) when p > 0 or q > 0, and let

êt = et = Xt when p = q = 0. When p+ q 6= 0, we have êt = 0 for t ≤ 0
and t > n and

êt = Xt −A(θ̂n)X̂t−1 +B(θ̂n)êt−1,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
3. Compute the polynomials inverses
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A−1
θ (L) =

∞∑

i=0

AiLi = I2 +

∞∑

i=1

(
0 0
0 ai1

)

and

B−1
θ (L) =

∞∑

i=0

BiLi = I2 +
∞∑

i=1

(
0 0

b1b
i−1
2 bi2

)

.

4. Compute the (2× 2)−matrix operators, introduced in this paper, defined
by

M22(L) = B−1
θ (L)E22A

−1
θ (L)Bθ(L)

=

(
0 0
0 1

)

+

(
0 0

−b1 a1

)

L+

∞∑

i=2

[(
0 0

−b1a
i−1
1 bi2 − b2a

i−1
1

)

+

i−1∑

k=1

(
0 0

b1b
k
2a

i−k−1
1 bk2

(
ai−k
1 − b2a

i−k−1
1

)

)]

Li and

N2j(L) = B−1
θ (L)E2j , for j = 1, 2

N21(L) =

∞∑

i=0

(
0 0
bi2 0

)

Li and N22(L) =

∞∑

i=0

(
0 0
0 bi2

)

Li

where E2j is the 2 × 2 matrix with 1 at position (2, j) and 0 elsewhere.
We are now able to compute the matrices λi(θ)’s given in (3.1).

5. We then compute the 2× 6 matrix

λh(θ) =
[
−A∗

h−1 : B∗
h−1

]
,

with
A∗

h =
[
A∗

22,h

]
and B∗

h =
[
B∗

21,h : B∗
22,h

]

and where the 2×2 matricesA∗
22,h, B

∗
21,h and B∗

22,h are respectively given,
in the precedent step, by

M22(z) =
∞∑

h=0

A∗
22,hz

h, N21(z) =
∞∑

h=0

B∗
21,hz

h,

N22(z) =

∞∑

h=0

B∗
22,hz

h, |z| ≤ 1

for h ≥ 0. Take A∗
22,h = B∗

21,h = B∗
22,h = 0 when h < 0. Thus the matrices

λi(θ)’s can be estimated by plugging, using

λ̂h := λh(θ̂n) =
[

−Â∗
h−1 : B̂∗

h−1

]

.

6. Compute the 9 × 1 matrix: vec Ĵn =
∑M

i=1 M̂n{λ̂′
i ⊗ λ̂′

i} vec Σ̂−1
e0 , where

Σ̂e0 = n−1
∑n

t=1 êtê
′
t is (an estimator of Σe0) the empirical variance of

ê1, . . . , ên and where M̂n = n−1
∑n

t=1{(I3 ⊗ ê′t)
⊗2}.
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Table 1

Kernels used in the calculation of the matrices Γ̂n(i, j)

Truncated uniform or Rectangular (REC): f(x) =

{

1, if |x| ≤ 1
0, otherwise

Bartlett (BAR): f(x) =

{

1− |x|, if |x| ≤ 1
0, otherwise

Parzen (PAR): f(x) =







1− 6x2 + 6|x|3, if |x| ≤ 1/2
2(1 − |x|)3, if 1/2 ≤ |x| ≤ 1

0, otherwise

7. Define the 9× 144 matrices estimators

Γ̂n(i, j) =

+Tn∑

h=−Tn

f(hbn)M̂n ij,h and Tn = [a/bn] ,

where [x] denotes the integer part of x and where

M̂n ij,h :=
1

n

n−|h|
∑

t=1

({
ê′t−h ⊗

(
I3 ⊗ ê′t−j−h

)}
⊗
{
ê′t ⊗

(
I3 ⊗ ê′t−i

)})
.

The real numbers (bn)n∈N∗ satisfy (5.1) and a weight function f : R → R

is supposed bounded, with compact support [−a, a] and continuous at the
origin with f(0) = 1. With regard to the choice of (bn), a few heuristic
remarks can be made (see, for instance, [10, 15, 26, 30]). When h is small
relative to n, a weight f(hbn) close to one is required. Therefore, it is
supposed that (bn) decreases to zero as n tends to ∞ (see condition (5.1)).
On the contrary, when h is large relative to n, one wants a weight f(hbn)
close to zero. Therefore, it is supposed that (bn) does not decrease to zero
too quickly. We used, in this paper, the three kernels described in Table 1
in the calculation of the matrices estimators Γ̂n(i, j). For each kernel, we
have taken bn equal to 1/ ln(n) which corresponds to the truncation point
Tn = [ln(n)].

8. Compute the 9× 1 matrix:

vec În = 4
M∑

i,j=1

Γ̂n(i, j)
({

I3 ⊗ λ̂′
i

}
⊗
{
I3 ⊗ λ̂′

j

})

vec
(

vec Σ̂−1
e0

{
vec Σ̂−1

e0

}′
)

.

8.3. Empirical size

The numerical illustrations of this section are made with the free statistical
software R (see http://cran.r-project.org/). We simulated N independent
trajectories of different sizes n of Model (8.2), first with the strong Gaussian
noise (8.3), second with the two weak noises (8.4) and (8.5).

http://cran.r-project.org/
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8.3.1. Strong VARMA model case

We first consider the strong VARMA case. To generate this model, we assume
that in (8.2) the innovation process (ǫt) is defined by

(
ǫ1,t
ǫ2,t

)

∼ IIDN (0, I2). (8.3)

We simulated N independent trajectories of size n = 1, 000 of Model (8.2) with
the strong gaussian noise (8.3). For each of these N replications we estimated the
coefficients (a1(2, 2), b1(2, 1), b1(2, 2)), using the Gaussian maximum likelihood
estimation method, and we compared estimates of the asymptotic variance Ω,
of the QMLE, of standard and modified (sandwich) estimators of Ω.

8.3.2. Weak VARMA model case

The GARCH(p, q) models constitute important examples of weak white noises in
the univariate case. These models have numerous extensions to the multivariate
framework. Jeantheau [32] has proposed a simple extension of the multivariate
GARCH(p, q) with conditional constant correlation. For simplicity, we consider
the bivariate ARCH(1) model. In which, the process (ǫt) verifies the following
relation ǫt = Htηt where {ηt = (η1,t, η2,t)

′}t is an iid centered process with
Var{ηi,t} = 1, for i = 1, 2 and Ht is a diagonal matrix whose elements hii,t

verify
(

h2
11,t

h2
22,t

)

=

(
c1
c2

)

+

(
a11 0
a21 a22

)(
ǫ21,t−1

ǫ22,t−1

)

.

The elements of the matrix A, as well as the vector (c1, c2)
′, are supposed to be

positive. In addition, suppose that the stationarity conditions hold. Then, we
have

(
ǫ1,t
ǫ2,t

)

=

(
h11,t 0
0 h22,t

)(
η1,t
η2,t

)

. (8.4)

We now repeat the same experiment on two weak VARMA(1, 1) models. We
first assume that in (8.2) the innovation process (ǫt) is an ARCH(1) model
defined in equation (8.4) with c1 = 0.3, c2 = 0.2, a11 = 0.45, a21 = 0.4 and
a22 = 0.25. In second set of experiments, we assume that in (8.2) the innovation
process (ǫt) is defined by
(

ǫ1,t
ǫ2,t

)

=

(
η1,t(|η1,t−1|+ 1)−1

η2,t(|η2,t−1|+ 1)−1

)

, with

(
η1,t
η2,t

)

∼ IIDN (0, I2). (8.5)

This noise is a direct extension of a weak noise defined by Romano and Thombs
[42] in the univariate case.

For the estimation of the coefficients, we used the quasi-maximum likelihood
estimation method and we compared estimates of the asymptotic variance Ω, of
the QMLE, of standard and modified (sandwich) estimators of Ω.
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Fig 1. Comparison of standard and modified estimates of the asymptotic variance Ω of the
QMLE, on the simulated model (8.2)–(8.3). The diamond symbols represent the mean, over
the N = 100 replications, of the standardized squared errors n{â1(2, 2) − 0.95}2 = 0.01492

for Ω(1, 1), n{b̂1(2, 1)− 2}2 = 1.1097 for Ω(2, 2) and n{b̂1(2, 2)}2 = 1.1743 for Ω(3, 3).

8.3.3. Comments

Figures 1, 2 and 3 compare the standard and the sandwich estimators of the
QMLE asymptotic variance Ω. In these Figures, (a), (b), (c), (d), (e) and (f)
correspond respectively to the box-plots of the estimation of Ωs = 2J−1, Ωsc =
2J−1

c , ΩSP = J−1ISPJ−1, ΩBAR = J−1
c IBARJ−1

c , ΩREC = J−1
c IRECJ−1

c and
ΩPAR = J−1

c IPARJ−1
c .

In the strong VARMA case we know that the two estimators, standard and
sandwich, are consistent. In view of the three top panels of Figure 1, it seems
that the sandwich estimators is less accurate in the strong case. This is not
surprising because the sandwich estimators are more robust, in the sense that
these estimators continue to be consistent in the weak VARMA case, contrary to
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Fig 2. Comparison of standard and modified estimates of the asymptotic variance Ω of the
QMLE, on the simulated model (8.2)–(8.4). The diamond symbols represent the mean, over
the N = 100 replications, of the standardized squared errors n{â1(2, 2)− 0.95}2 = 0.0227 for

Ω(1, 1), n{b̂1(2, 1)− 2}2 = 1.4865 for Ω(2, 2) and n{b̂1(2, 2)}2 = 1.7172 for Ω(3, 3).

the standard estimator (see Figures 2 and 3). It is clear that in the weak Model

(8.2)–(8.4) case nVar{b̂1(2, 1)−b1(2, 1)}2 and nVar{b̂1(2, 2)−b1(2, 2)}2 are better
estimated by the sandwich estimators than by the standard ones (see Figure 2).
We draw the same conclusion for the second weak Model (8.2)–(8.5) case for

nVar{b̂1(2, 2)−b1(2, 2)}2 (see Figure 3). We draw the conclusion that, the failure
of the standard estimators of Ω in the weak VARMA framework may have
important consequences in terms of identification (see [7]) or hypothesis testing.

Table 2 displays the empirical sizes of the standard Wald, LM and LR
tests, and that of the modified versions proposed in Section 7. We use the
CompQuadForm R package to evaluate the p-values using the Imohf al-
gorithm, 1961). For the nominal level α = 5%, the empirical size over the
N = 1, 000 independent replications should vary between the significant lim-
its 3.6% and 6.4% with probability 95%. For the nominal level α = 1%, the
significant limits are 0.3% and 1.7%, and for the nominal level α = 10%, they
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Fig 3. Comparison of standard and modified estimates of the asymptotic variance Ω of the
QMLE, on the simulated model (8.2)–(8.5). The diamond symbols represent the mean, over
the N = 100 replications, of the standardized squared errors n{â1(2, 2)− 0.95}2 = 0.0127 for

Ω(1, 1), n{b̂1(2, 1)− 2}2 = 0.9673 for Ω(2, 2) and n{b̂1(2, 2)}2 = 0.5802 for Ω(3, 3).

are 8.1% and 11.9%. When the relative rejection frequencies are outside the
significant limits, they are displayed in bold type in Table 2. For the strong
VARMA Model I, all the relative rejection frequencies are inside the significant
limits. As expected, for the weak VARMA Models II and III cases, the relative
rejection frequencies of the standard tests are definitely outside the significant
limits. Thus the error of first kind is well controlled by all the tests in the strong
case, but only by modified versions of the tests in the weak case. Table 3 shows
that the powers of all the tests are very similar in the strong VARMA Model IV.
The same is also true for the modified tests in the weak VARMA Models V and
VI cases. The empirical powers of the standard tests are hardly interpretable
for these weak VARMA Models V and VI cases, because we have already seen
in Table 2 that the standard versions of the tests do not well control the error
of first kind in the weak VARMA framework.
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Table 2

Empirical size of standard and modified tests: relative frequencies (in %) of rejection of
H0 : b1(2, 2) = 0. The number of replications is N = 1000

Model Length n Level Standard Test Modified Test

Wald LM LR Wald LM LR− LR

α = 1% 1.3 0.8 1.0 1.6 1.0 1.6 1.6

I n = 500 α = 5% 5.0 4.3 4.8 6.1 4.9 6.1 6.1

α = 10% 11.3 10.2 11.0 12.1 11.0 12.2 12.2

α = 1% 1.5 1.1 1.2 1.3 1.0 1.4 1.3

I n = 2, 000 α = 5% 5.2 4.9 4.5 5.5 5.2 5.5 5.5

α = 10% 9.9 9.7 9.7 10.3 9.8 10.3 10.3

α = 1% 1.3 1.0 1.2 1.3 1.2 1.3 1.3

I n = 5, 000 α = 5% 4.4 4.4 4.4 4.4 4.1 4.3 4.4

α = 10% 8.7 8.5 8.7 8.5 8.6 8.5 8.5

α = 1% 4.3 3.7 4.0 2.7 1.7 2.7 1.6

II n = 500 α = 5% 11.2 11.3 11.0 7.0 6.0 7.0 6.1

α = 10% 21.1 19.3 20.2 12.0 11.2 11.8 12.2

α = 1% 6.3 5.8 6.0 1.5 1.3 1.5 1.3

II n = 2, 000 α = 5% 15.5 15.1 15.2 7.2 6.3 7.2 5.5

α = 10% 23.8 23.7 24.1 12.7 11.6 12.7 10.3

α = 1% 6.4 6.1 6.5 1.0 1.2 1.0 1.3

II n = 5, 000 α = 5% 14.6 14.1 14.6 5.3 5.1 5.3 4.4

α = 10% 21.0 21.4 21.0 10.6 10.4 10.6 8.5

α = 1% 0.1 0.0 0.0 2.2 1.4 2.2 1.6

III n = 500 α = 5% 1.2 0.9 0.8 7.3 5.9 7.3 6.1

α = 10% 3.1 2.3 2.7 12.0 11.5 12.0 12.2

α = 1% 0.0 0.0 0.0 1.7 1.3 1.7 1.3

III n = 2, 000 α = 5% 0.7 0.5 0.5 6.7 6.8 6.7 5.5

α = 10% 2.7 2.4 2.7 11.2 10.9 11.1 10.3

α = 1% 0.0 0.0 0.0 0.8 0.4 0.8 1.3

III n = 5, 000 α = 5% 0.1 0.2 0.1 5.3 4.7 5.2 4.4

α = 10% 1.4 1.3 1.3 10.2 9.9 10.1 8.5

I: Strong VARMA(1,1) model (8.2)–(8.3) with θ0 = (0.95, 2, 0)

II: Weak VARMA(1,1) model (8.2)–(8.4) with θ0 = (0.95, 2, 0)

III: Weak VARMA(1,1) model (8.2)–(8.5) with θ0 = (0.95, 2, 0)

From these simulation experiments, we demonstrated that the validity of the
different steps of the traditional methodology of Box and Jenkins, identifica-
tion, estimation and validation, depends on the noise properties. This standard
methodology needs however to be adapted to take into account the possible lack
of independence of the errors terms. Under nonindependent errors, it appears
that the standard tests are generally unreliable while the proposed tests offer sat-
isfactory levels in most cases. Moreover, the error of first kind is well controlled
by the modified versions of the tests. We draw the conclusion that the modified
versions are preferable to the standard ones. Therefore the modified tests of
the present article can be considered as complementary to the above-mentioned
available results concerning the statistical analysis of weak VARMA models.
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Table 3

Empirical power of standard and modified tests: relative frequencies (in %) of rejection of
H0 : b1(2, 2) = 0. The number of replications is N = 1000

Model Length n Level Standard Test Modified Test

Wald LM LR Wald LM LR− LR

α = 1% 7.8 6.3 6.7 8.7 7.7 8.6 9.0

IV n = 500 α = 5% 18.7 17.2 18.3 20.2 18.8 20.2 20.3

α = 10% 28.9 26.8 27.8 30.2 27.9 30.3 30.3

α = 1% 33.7 33.6 33.8 34.4 33.7 34.2 34.1

IV n = 2, 000 α = 5% 59.7 60.0 59.8 58.7 59.4 58.8 58.7

α = 10% 72.0 71.5 71.8 71.6 71.1 71.7 71.6

α = 1% 81.5 81.0 81.6 81.4 81.4 81.3 81.4

IV n = 5, 000 α = 5% 94.2 94.2 94.3 94.0 94.3 94.0 94.0

α = 10% 97.4 97.3 97.3 97.0 96.8 97.0 97.0

α = 1% 11.0 9.7 10.4 5.3 4.3 5.1 9.0

V n = 500 α = 5% 24.2 22.8 23.4 15.4 14.1 15.5 20.3

α = 10% 35.4 33.0 33.4 24.3 23.1 24.3 30.3

α = 1% 39.8 37.6 39.1 21.4 20.9 21.2 34.1

V n = 2, 000 α = 5% 56.6 55.8 56.6 42.2 40.8 42.2 58.7

α = 10% 65.7 64.6 64.9 51.9 51.6 51.7 71.6

α = 1% 78.3 77.8 77.9 55.2 54.1 55.1 81.4

V n = 5, 000 α = 5% 88.3 88.2 88.2 76.9 76.9 76.8 94.0

α = 10% 92.3 92.2 92.2 85.2 85.6 85.2 97.0

α = 1% 2.6 1.1 1.9 15.6 14.2 15.5 9.0

VI n = 500 α = 5% 10.5 8.5 9.5 33.7 32.4 33.6 20.3

α = 10% 19.2 17.3 18.7 45.3 44.9 45.3 30.3

α = 1% 30.9 29.5 30.6 76.2 74.9 76.0 34.1

VI n = 2, 000 α = 5% 66.4 65.5 66.2 90.3 90.1 90.3 58.7

α = 10% 81.4 80.0 81.2 93.6 93.5 93.6 71.6

α = 1% 90.4 90.5 90.6 99.5 99.2 99.5 81.4

VI n = 5, 000 α = 5% 98.5 98.3 98.5 100.0 100.0 100.0 94.0

α = 10% 99.7 99.7 99.7 100.0 100.0 100.0 97.0

IV: Strong VARMA(1,1) model (8.2)–(8.3) with θ0 = (0.95, 2, 0.05)

V: Weak VARMA(1,1) model (8.2)–(8.4) with θ0 = (0.95, 2, 0.05)

VI: Weak VARMA(1,1) model (8.2)–(8.5) with θ0 = (0.95, 2, 0.05)

Appendix: Technical proofs

Proof of Proposition 3.1. Because θ′ = (a′,b′), Lemmas A.1 and A.2 below
show that

∂et(θ)

∂θ′
= [Vt−1(θ) : · · · : Vt−p(θ) : Ut−1(θ) : · · · : Ut−q(θ)]

=

∞∑

h=0

[
−A∗

h−1 (Id2 ⊗ et−h(θ)) : · · · : −A∗
h−p (Id2 ⊗ et−h(θ)) :

B∗
h−1 (Id2 ⊗ et−h(θ)) : · · · : B∗

h−q (Id2 ⊗ et−h(θ))
]
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=

∞∑

h=0

[
−A∗

h−1 : · · · : −A∗
h−p : B∗

h−1 : · · · : B∗
h−q

]
[

Id2p ⊗ et−h(θ)
Id2q ⊗ et−h(θ)

]

=

∞∑

h=1

λh(θ)
(
Id2(p+q) ⊗ et−h(θ)

)
.

Hence, at θ = θ0 we have

∂et
∂θ′

=
∑

i≥1

λi

(
Id2(p+q) ⊗ et−i

)
.

It thus remains to prove the following two Lemmas.

Lemma A.1. We have

∂et(θ)

∂a′
= −

∞∑

h=0

A∗
θ,h

(
Id2p ⊗ et−h(θ)

)
,

where A∗
θ,h = [A∗

h−1 : A∗
h−2 : · · · : A∗

h−p] is a d× d3p matrix.

Proof of Lemma A.1. Differentiating the two terms of the following equality

Aθ(L)Xt = Bθ(L)et(θ),

with respect to the AR coefficients, we obtain

∂et(θ)

∂aij,ℓ
= −B−1

θ (L)EijXt−ℓ = −B−1
θ (L)EijA

−1
θ (L)Bθ(L)et−ℓ(θ)

= −Mij(L)et−ℓ(θ), ℓ = 1, . . . , p,

where Eij = ∂Aℓ/∂aij,ℓ is the d × d matrix with 1 at position (i, j) and 0
elsewhere and

et(θ) = B−1
θ (L)Aθ(L)Xt.

Then we have

∂et(θ)

∂aij,ℓ
= −

∞∑

h=0

A∗
ij,het−ℓ−h(θ). (A.1)

Hence, for any aℓ writing the multivariate noise derivatives

∂et(θ)

∂a′ℓ
= − [M11(L)et−ℓ(θ) : M21(L)et−ℓ(θ) : · · · : Mdd(L)et−ℓ(θ)]

︸ ︷︷ ︸

d×d2

= − [M11(L) : M21(L) : · · · : Mdd(L)] (Id2 ⊗ et−ℓ(θ))

= −M(L) (Id2 ⊗ et−ℓ(θ)) = −M(L)et−ℓ(θ) = Vt−ℓ(θ),

where M(L) = [M11(L) : M21(L) : · · · : Mdd(L)], et−ℓ(θ) = Id2 ⊗ et−ℓ(θ) and
Vt−ℓ(θ) are respectively the d × d3, d3 × d2 and d × d2 matrices. Hence, we
have

∂et(θ)

∂a′ℓ
= −

∞∑

h=0

A∗
het−ℓ−h(θ) = −

∞∑

k−ℓ=0

A∗
k−ℓet−k(θ) = −

∞∑

k=ℓ

A∗
k−ℓet−k(θ)
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= −
∞∑

k=0

A∗
k−ℓet−k(θ) = Vt−ℓ(θ),

with A∗
k−ℓ = 0 when k < ℓ. With these notations, we obtain

∂et(θ)

∂a′
= −

∞∑

k=0

[
A∗

k−1et−k(θ) : A
∗
k−2et−k(θ) : · · · : A∗

k−pet−k(θ)
]

︸ ︷︷ ︸

d×d2p

= −
∞∑

k=0

[
A∗

k−1 : A∗
k−2 : · · · : A∗

k−p

]
(Ip ⊗ et−k(θ))

= −
∞∑

k=0

A∗
θ,k

(
Id2p ⊗ et−k(θ)

)
,

where A∗
θ,k = [A∗

k−1 : A∗
k−2 : · · · : A∗

k−p] is the d× d3q matrix. The conclusion
follows.

Lemma A.2. We have

∂et(θ)

∂b′
=

∞∑

h=0

B∗
θ,h

(
Id2q ⊗ et−h(θ)

)
,

where B∗
θ,h = [B∗

h−1 : B∗
h−2 : · · · : B∗

h−q] is a d× d3q matrix.

Proof of Lemma A.2. The proof is similar to that given in Lemma A.1. However,
we will give the derivatives which are different to that in the previous Lemma.
Differentiating the two terms of the following equality

Aθ(L)Xt = Bθ(L)et(θ),

with respect to the MA coefficients, we obtain

∂et(θ)

∂bij,ℓ′
= B−1

θ (L)EijB
−1
θ (L)Aθ(L)Xt−ℓ′(θ) = B−1

θ (L)Eijet−ℓ′(θ)

= Nij(L)et−ℓ′(θ), ℓ′ = 1, . . . , q,

where Eij = ∂Bℓ′/∂bij,ℓ′ is the d × d matrix with 1 at position (i, j) and 0
elsewhere. We then have

∂et(θ)

∂bij,ℓ′
=

∞∑

h=0

B∗
ij,het−ℓ′−h(θ). (A.2)

Similarly to Lemma A.2, we have

∂et(θ)

∂b′
ℓ′

= [N11(L)et−ℓ′(θ) : N21(L)et−ℓ′(θ) : · · · : Ndd(L)et−ℓ′(θ)]
︸ ︷︷ ︸

d×d2

= N(L) (Id2 ⊗ et−ℓ′(θ)) = N(L)et−ℓ′(θ) = Ut−ℓ′(θ),
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where N(L) = [N11(L) : N21(L) : · · · : Ndd(L)] and Ut−ℓ′ are respectively the
d× d3 and d× d2 matrices. Then, we have

∂et(θ)

∂b′
ℓ′

=

∞∑

h=0

B∗
het−ℓ′−h(θ) =

∞∑

k=0

B∗
k−ℓ′et−k(θ) = Ut−ℓ′(θ),

where B∗
k−ℓ′ = 0 when k < ℓ′. With these notations, we obtain

∂et(θ)

∂b′
=

∞∑

k=0

[
B∗

k−1et−k(θ) : B
∗
k−2et−k(θ) : · · · : B∗

k−qet−k(θ)
]

︸ ︷︷ ︸

d×d2q

=
∞∑

k=0

B∗
θ,k

(
Id2q ⊗ et−k(θ)

)
,

where B∗
θ,k = [B∗

k−1 : B∗
k−2 : · · · : B∗

k−q] is the d × d3q matrix. The conclusion
follows.

Proof of Proposition 4.1. Let

ℓ̃n(θ,Σe) = − 2

n
log L̃n(θ,Σe)

=
1

n

n∑

t=1

{
d log(2π) + log detΣe + ẽ′t(θ)Σ

−1
e ẽt(θ)

}
.

In [9], it is shown that ℓn(θ,Σe) = ℓ̃n(θ,Σe) + o(1) a.s., where

ℓn(θ,Σe) =
1

n

n∑

t=1

{
d log(2π) + log detΣe + e′t(θ)Σ

−1
e et(θ)

}
.

It is also shown uniformly in θ ∈ Θ that

∂ℓn(θ,Σe)

∂θ
=

∂ℓ̃n(θ,Σe)

∂θ
+ o(1) a.s.

The same equality holds for the second-order derivatives of ℓ̃n. We thus have

J = lim
n→∞

Jn, where Jn =
∂2ℓn(θ0,Σe0)

∂θ∂θ′
.

Using well-known results on matrix derivatives, we have

∂ℓn(θ0,Σe0)

∂θ
=

2

n

n∑

t=1

{
∂

∂θ
e′t(θ0)

}

Σ−1
e0 et(θ0), (A.3)

where
∂

∂θ′
et(θ0) =

(
∂

∂θ1
et(θ0), . . . ,

∂

∂θk0

et(θ0)

)

.
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In view of (A.3), we have

Jn =
2

n

n∑

t=1

(
∂e′t(θ0)

∂θ
Σ−1

e0

∂et(θ0)

∂θ′
+

∂2e′t(θ0)

∂θ∂θ′
Σ−1

e0 et(θ0)

)

→ 2E

{
∂2e′t(θ0)

∂θ∂θ′

}

Σ−1
e0 et + 2E

{
∂

∂θ
e′t(θ0)

}

Σ−1
e0

{
∂

∂θ′
et(θ0)

}

, a.s.

by the ergodic theorem. Using the orthogonality between et and any linear
combination of the past values of et, we have 2E{∂2e′t(θ0)/∂θ∂θ

′}Σ−1
e0 et = 0.

We then have

J = 2E

{
∂

∂θ
e′t(θ0)Σ

−1
e0

∂

∂θ′
et(θ0)

}

.

Using vec(ABC) = (C′⊗A) vec(B) with C = Id2(p+q) and in view of Proposition
3.1, we obtain

vecJ = 2E

{
∂e′t(θ0)

∂θ
⊗ ∂e′t(θ0)

∂θ

}

vecΣ−1
e0

= 2
∑

i≥1

E
{(

Id2(p+q) ⊗ e′t−i

)
λ′
i

}
⊗
{(

Id2(p+q) ⊗ e′t−i

)
λ′
i

}
vecΣ−1

e0 .

Using also AC ⊗BD = (A⊗B)(C ⊗D), we have

vec J = 2
∑

i≥1

E
{(

Id2(p+q) ⊗ e′t
)
⊗
(
Id2(p+q) ⊗ e′t

)}
{λ′

i ⊗ λ′
i} vecΣ−1

e0

= 2
∑

i≥1

E

{(
Id2(p+q) ⊗ e′t

)⊗2
}

λ
′⊗2
i vecΣ−1

e0 = 2
∑

i≥1

Mλ
′⊗2
i vecΣ−1

e0 .

The conclusion is complete.

Proof of Proposition 4.2. In view of (4.2), let

Υt =
∂

∂θ
Lt(θ0,Σe0) =

(
∂

∂θ1
Lt(θ,Σe0), . . . ,

∂

∂θk0

Lt(θ,Σe0)

)′

θ=θ0

where
Lt(θ,Σe0) = log det Σe0 + e′t(θ)Σ

−1
e0 et(θ).

We have

Υt = 2
∂e′t(θ0)

∂θ
Σ−1

e0 et(θ0) = 2

{

e′t(θ0)⊗
∂e′t(θ0)

∂θ

}

vecΣ−1
e0 .

In view of (4.1), we have

I =
+∞∑

h=−∞

Cov

(

2

{
∂

∂θ
e′t(θ0)

}

Σ−1
e0 et, 2

{
∂

∂θ
e′t−h(θ0)

}

Σ−1
e0 et−h

)
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=

+∞∑

h=−∞

Cov

(

2

{

e′t ⊗
∂e′t
∂θ

}

vecΣ−1
e0 , 2

{

e′t−h ⊗ ∂e′t−h

∂θ

}

vecΣ−1
e0

)

= 4

+∞∑

h=−∞

E

({

e′t ⊗
∂e′t
∂θ

}

vecΣ−1
e0

{
vecΣ−1

e0

}′
{

e′t−h ⊗ ∂e′t−h

∂θ

}′
)

.

Using the elementary relation vec(ABC) = (C′ ⊗A) vecB, we have

vec I = 4

+∞∑

h=−∞

E

({

e′t−h ⊗ ∂e′t−h

∂θ

}

⊗
{

e′t ⊗
∂e′t
∂θ

})

vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

.

By Proposition 3.1, we obtain

vec I = 4

+∞∑

h=−∞

+∞∑

i,j=1

E
({

e′t−h ⊗
(
Id2(p+q) ⊗ e′t−j−h

)
λ′
j

}

⊗
{
e′t ⊗

(
Id2(p+q) ⊗ e′t−i

)
λ′
i

})
vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

.

Using AC ⊗BD = (A⊗B)(C ⊗D), we have

vec I = 4

+∞∑

h=−∞

+∞∑

i,j=1

E
({

e′t−h ⊗
(
Id2(p+q) ⊗ e′t−j−h

)}{
Id ⊗ λ′

j

}

⊗
{
e′t ⊗

(
Id2(p+q) ⊗ e′t−i

)}
{Id ⊗ λ′

i}
)
vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

.

Using also AC ⊗BD = (A⊗B)(C ⊗D), we have

vec I = 4

+∞∑

h=−∞

+∞∑

i,j=1

E
({

e′t−h ⊗
(
Id2(p+q) ⊗ e′t−j−h

)}
⊗
{
e′t ⊗

(
Id2(p+q) ⊗ e′t−i

)})

({
Id ⊗ λ′

j

}
⊗ {Id ⊗ λ′

i}
)
vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

= 4

+∞∑

i,j=1

Γ(i, j)
({

Id ⊗ λ′
j

}
⊗ {Id ⊗ λ′

i}
)
vec
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

,

where

Γ(i, j) =

+∞∑

h=−∞

E
({

e′t−h ⊗
(
Id2(p+q) ⊗ e′t−j−h

)}
⊗
{
e′t ⊗

(
Id2(p+q) ⊗ e′t−i

)})
.

The conclusion is complete.

Proof of Remark 4.1. For d = 1, we have

M := E

{(
I(p+q) × et

)⊗2
}

= σ2I(p+q)2 ,
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where σ2 is the variance of the univariate process. We also have

Γ(i, j) =

+∞∑

h=−∞

E
({

et−het−j−hI(p+q)

}
⊗
{
etet−iI(p+q)

})

=
+∞∑

h=−∞

E (etet−iet−het−j−h) I(p+q)2 = γ(i, j)I(p+q)2 . (A.4)

In view of Proposition 4.1, we have

vecJ = 2
∑

i≥1

M{λ′
i ⊗ λ′

i}σ−2.

Replacing M by σ2I(p+q)2 in vec J , we have

vecJ = 2
∑

i≥1

{λi ⊗ λi}′ .

Using (A.4) and in view of Proposition 4.2, we have

vec I =
4

σ4

+∞∑

i,j=1

Γ(i, j)
{
λ′
j ⊗ λ′

i

}
=

4

σ4

+∞∑

i,j=1

γ(i, j) {λj ⊗ λi}′ .

The conclusion is complete.

Proof of Theorem 5.1. For any multiplicative norm, we have

∥
∥
∥vecJ − vec Ĵn

∥
∥
∥ ≤ 2

∑

i≥1

{∥
∥
∥M−M̂n

∥
∥
∥

∥
∥
∥λ

′⊗2
i

∥
∥
∥

∥
∥vec

(
Σ−1

e0

)∥
∥

+
∥
∥
∥M̂n

∥
∥
∥

∥
∥
∥λ

′⊗2
i − λ̂

′⊗2
i

∥
∥
∥

∥
∥vecΣ−1

e0

∥
∥

+
∥
∥
∥M̂n

∥
∥
∥

∥
∥
∥λ̂

′⊗2
i

∥
∥
∥

∥
∥
∥vec

(

Σ̂−1
e0 − Σ−1

e0

)∥
∥
∥

}

.

The proof will thus follow from Lemmas A.3, A.4 and A.6 below.

Lemma A.3. Under Assumptions A1–A8, we have

∥
∥
∥vec

{

λ̂i − λi(θ0)
}∥
∥
∥ ≤ Kρi × oa.s.(1) a.s. as n → ∞,

where ρ is a constant belonging to [0, 1[ , and K > 0.

Proof of Lemma A.3. Boubacar Mäınassara and Francq [9] have showed the

strong consistency of θ̂n (θ̂n → θ0 a.s. as n → ∞), which entails

∥
∥
∥θ̂n − θ0

∥
∥
∥ = oa.s(1). (A.5)
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We have A∗
ij,h = O(ρh) and B∗

ij,h = O(ρh) uniformly in θ ∈ Θ for some ρ ∈
[0, 1[ . In view of (3.1), we thus have supθ∈Θ ‖λh(θ)‖ ≤ Kρh. Similarly for any
m ∈ {1, . . . , k0}, we have

sup
θ∈Θ

∥
∥
∥
∥

∂λh(θ)

∂θm

∥
∥
∥
∥
≤ Kρh. (A.6)

Using a Taylor expansion of vec λ̂i about θ0, we obtain

vec λ̂i = vecλi +
∂ vecλi(θ

∗
n)

∂θ′
(θ̂n − θ0),

where θ∗n is between θ̂n and θ0. For any multiplicative norm, we have

∥
∥
∥vec(λ̂i − λi)

∥
∥
∥ ≤

∥
∥
∥
∥

∂ vecλi(θ
∗
n)

∂θ′

∥
∥
∥
∥

∥
∥
∥θ̂n − θ0

∥
∥
∥ .

In view of (A.5) and (A.6), the proof is complete.

Lemma A.4. Under Assumptions A1–A8, we have

M̂n → M a.s. as n → ∞.

Proof of Lemma A.4. We have

et(θ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0et−i(θ) ∀t ∈ Z. (A.7)

For any θ ∈ Θ, let

Mn(θ) :=
1

n

n∑

t=1

{(
Id2(p+q) ⊗ e′t(θ)

)⊗2
}

and M(θ) := E

{(
Id2(p+q) ⊗ e′t(θ)

)⊗2
}

.

Now the ergodic theorem shows that almost surely

Mn(θ) → M(θ).

In view of (A.7), using A2 and the compactness of Θ, we have

et(θ) = Xt +

∞∑

i=1

Ci(θ)Xt−i, sup
θ∈Θ

‖Ci(θ)‖ ≤ Kρi.

We thus have
E sup

θ∈Θ
‖et(θ)‖2 < ∞, (A.8)

by AssumptionA7. Now, we will consider the norm defined by: ‖Z‖2 =
√

E‖Z‖2,
where Z is a d1 random vector. In view of Proposition 3.1, (A.8) and
supθ∈Θ ‖λh(θ)‖ ≤ Kρh, we have

∥
∥
∥
∥
sup
θ∈Θ

∂et(θ)

∂θ′

∥
∥
∥
∥
2

≤
∑

i≥1

sup
θ∈Θ

‖λi(θ)‖ ×
∥
∥
∥
∥
sup
θ∈Θ

{
Id2(p+q) ⊗ et(θ)

}
∥
∥
∥
∥
2

< ∞. (A.9)
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Let et = (e1t, . . . , edt)
′. The non zero components of the vector vecMn(θ) are

of the form n−1
∑n

t=1 eit(θ)ejt(θ), for (i, j) ∈ {1, . . . , d}2. We deduce that the
elements of the matrix ∂ vecMn(θ)/∂θ

′ are linear combinations of

2

n

n∑

t=1

eit(θ)
∂ejt(θ)

∂θ
.

By the Cauchy-Schwartz inequality we have

∥
∥
∥
∥
∥

2

n

n∑

t=1

sup
θ∈Θ

{

eit(θ)
∂ejt(θ)

∂θ

}
∥
∥
∥
∥
∥
≤

√
√
√
√

2

n

n∑

t=1

sup
θ∈Θ

{e2it(θ)} ×
2

n

n∑

t=1

∥
∥
∥
∥
sup
θ∈Θ

∂ejt(θ)

∂θ

∥
∥
∥
∥

2

≤ 2

√
√
√
√

1

n

n∑

t=1

sup
θ∈Θ

‖et(θ)‖2 ×
1

n

n∑

t=1

∥
∥
∥
∥
sup
θ∈Θ

∂et(θ)

∂θ′

∥
∥
∥
∥

2

.

The ergodic theorem shows that almost surely

lim
n→∞

2

n

n∑

t=1

∥
∥
∥
∥
sup
θ∈Θ

{

eit(θ)
∂ejt(θ)

∂θ

}∥
∥
∥
∥
≤ 2

√

E sup
θ∈Θ

‖et(θ)‖2 × E

∥
∥
∥
∥
sup
θ∈Θ

∂et(θ)

∂θ′

∥
∥
∥
∥

2

.

Now using (A.8) and (A.9), the right-hand side of the inequality is bounded.
We then deduce that

sup
θ∈Θ

∥
∥
∥
∥

∂ vecMn(θ)

∂θ′

∥
∥
∥
∥
= Oa.s(1). (A.10)

A Taylor expansion of vecM̂n about θ0 gives

vecM̂n = vecMn +
∂ vecMn(θ

∗
n)

∂θ′
(θ̂n − θ0),

where θ∗n is between θ̂n and θ0. Using the strong consistency of θ̂n and (A.10),
it is easily seen that

vecM̂n = vecMn(θ̂n) → vecM(θ0) = vecM, a.s.

The conclusion is complete.

Lemma A.5. Under Assumptions A1–A8, we have

Σ̂e0 → Σe0 a.s., as n → ∞.

Proof of Lemma A.5. We have Σ̂e0 = Σn(θ̂n) with Σn(θ) = n−1
∑n

t=1 et(θ)e
′
t(θ).

By the ergodic theorem

Σn(θ) → Σe(θ) := Eet(θ)e
′
t(θ), a.s.
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Using the elementary relation vec(aa′) = a ⊗ a, where a is a vector, we have

vec Σ̂e0 = n−1
∑n

t=1 et(θ̂n)⊗ et(θ̂n) and vecΣn(θ0) = n−1
∑n

t=1 et(θ0) ⊗ et(θ0).

Using a Taylor expansion of vec Σ̂e0 around θ0 and (2.2), we obtain

vec Σ̂e0 = vecΣn(θ0) +
1

n

n∑

t=1

{

et ⊗
∂et
∂θ′

+
∂et
∂θ′

⊗ et

}

(θ̂n − θ0) +OP

(
1

n

)

.

Using the strong consistency of θ̂n,

E sup
θ∈Θ

‖et(θ)‖2 < ∞ and

∥
∥
∥
∥
sup
θ∈Θ

∂et(θ)

∂θ′

∥
∥
∥
∥
2

< ∞,

it is easily seen that

vec Σ̂e0 → vecΣe(θ0) = vecΣe0, a.s.

The conclusion is complete.

Lemma A.6. Under Assumptions A1–A8, we have

Σ̂−1
e0 → Σ−1

e0 a.s. asn → ∞.

Proof of Lemma A.6. For any multiplicative norm, we have

∥
∥
∥Σ̂−1

e0 − Σ−1
e0

∥
∥
∥ =

∥
∥
∥−Σ̂−1

e0

(

Σ̂e0 − Σe0

)

Σ−1
e0

∥
∥
∥ ≤

∥
∥
∥Σ̂−1

e0

∥
∥
∥

∥
∥
∥Σ̂e0 − Σe0

∥
∥
∥

∥
∥Σ−1

e0

∥
∥ .

In view of Lemma A.5 and ‖Σ−1
e0 ‖ < ∞ (because the matrix Σe0 is nonsingular),

we have
∥
∥
∥Σ̂−1

e0 − Σ−1
e0

∥
∥
∥→ 0 a.s.

The conclusion is complete.

Proof of Theorem 5.2. Let the matrices

Λ̂ij =
({

Id ⊗ λ̂′
i

}

⊗
{

Id ⊗ λ̂′
j

})

, Λij =
(
{Id ⊗ λ′

i} ⊗
{
Id ⊗ λ′

j

})
,

∆̂e0 =

(

vec Σ̂−1
e0

{

vec Σ̂−1
e0

}′
)

and ∆e0 =
(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)

.

For any multiplicative norm, we have

∥
∥
∥vec I − vec În

∥
∥
∥ ≤ 4

∑

i,j≥1

{∥
∥
∥Γ(i, j)− Γ̂n(i, j)

∥
∥
∥ ‖Λij‖ ‖vec∆e0‖

+
∥
∥
∥Γ̂n(i, j)

∥
∥
∥

∥
∥
∥Λij − Λ̂ij

∥
∥
∥ ‖vec∆e0‖

+
∥
∥
∥Γ̂n(i, j)

∥
∥
∥

∥
∥
∥Λ̂ij

∥
∥
∥

∥
∥
∥vec

(

∆e0 − ∆̂e0

)∥
∥
∥

}

.
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Lemma A.3 and ‖λi‖ = O(ρi) entail

∥
∥
∥vec Λ̂ij − vecΛij

∥
∥
∥ ≤

∥
∥
∥vec

{

Id ⊗ (λ̂i − λi)⊗ (Id ⊗ λ̂j)
}∥
∥
∥

+
∥
∥
∥vec

{

(Id ⊗ λi)⊗
(

Id ⊗ (λ̂j − λj)
)}∥
∥
∥

≤ Kρi+j × oa.s(1).

We also have ‖Λij‖ = O(ρi+j). In view of Lemma A.6 and ‖Σ−1
e0 ‖ < ∞, we have

∥
∥
∥∆̂e0 −∆e0

∥
∥
∥ ≤

∥
∥
∥vec

(

Σ̂−1
e0 − Σ−1

e0

)∥
∥
∥

∥
∥
∥
∥

{

vec Σ̂−1
e0

}′
∥
∥
∥
∥

+
∥
∥vecΣ−1

e0

∥
∥

∥
∥
∥
∥

{

vec
(

Σ̂−1
e0 − Σ−1

e0

)}′
∥
∥
∥
∥
→ 0 a.s.

We consider the white noise “empirical” autocovariances

Γe(h) =
1

n

n∑

t=h+1

ete
′
t−h, for 0 ≤ h < n.

For k, k′,m,m′ = 1, . . . ,∞, let

Γ(k, k′) =

∞∑

h=−∞

E
(
{et−k ⊗ et} {et−h−k′ ⊗ et−h}′

)
.

In the univariate case Francq, Roy and Zaköıan [21] have showed (see the proofs
of their Lemmas A.1 and A.3) that supℓ,ℓ′>0 |Γ(ℓ, ℓ′)| < ∞. This can be directly
extended in the multivariate case. The non zero elements of Γ(i, j) are of the
form

∞∑

h=−∞

E (ei1tei2t−iei3t−hei4t−h−j) , for (i1, i2, i3, i4) ∈ {1, . . . , d}4.

We thus have

sup
i,j≥1

∣
∣
∣
∣
∣

∞∑

h=−∞

E (ei1tei2t−iei3t−hei4t−h−j)

∣
∣
∣
∣
∣
≤ sup

i,j≥1
‖Γ(i, j)‖ < ∞. (A.11)

We then deduce that supi,j≥1 ‖Γ(i, j)‖ = O(1). The proof will thus follow from

Lemma A.7 below, in which we show the consistency of Γ̂n(i, j) uniformly in i
and j.

Lemma A.7. Under Assumptions A1–A8, we have

sup
i,j

∥
∥
∥Γ̂n(i, j)− Γ(i, j)

∥
∥
∥→ 0 in probability as n → ∞.
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Proof of Lemma A.7. For any θ ∈ Θ, let

Mn ij,h(θ) :=
1

n

n−|h|
∑

t=1

({
e′t−h(θ)⊗

(
Id2(p+q) ⊗ e′t−j−h(θ)

)}

⊗
{
e′t(θ)⊗

(
Id2(p+q) ⊗ e′t−i(θ)

)})
.

By the ergodic theorem, we have

Mn ij,h(θ) → Mij,h(θ) := E
({

e′t−h(θ)⊗
(
Id2(p+q) ⊗ e′t−j−h(θ)

)}

⊗
{
e′t(θ)⊗

(
Id2(p+q) ⊗ e′t−i(θ)

)})
a.s.

A Taylor expansion of vecM̂n ij,h around θ0 and (2.2) give

vecM̂n ij,h = vecMn ij,h +

{
∂ vecMn ij,h

∂θ′

}

θ0

(θ̂n − θ0) +OP

(
1

n

)

.

In view of (A.11), we then deduce that

lim
n→∞

sup
i,j≥1

sup
|h|<n

∥
∥
∥
∥

∂vecMn ij,h

∂θ′

∥
∥
∥
∥
< ∞, a.s. (A.12)

By the ergodic theorem, (2.2) and (A.12), for any multiplicative norm, we have

sup
i,j≥1

sup
|h|<n

∥
∥
∥vec

(

M̂n ij,h −Mij,h

)∥
∥
∥ ≤ lim

n→∞
sup
i,j≥1

sup
|h|<n

∥
∥
∥
∥

∂ vecMn ij,h

∂θ′

∥
∥
∥
∥

∥
∥
∥θ̂n − θ0

∥
∥
∥

+OP

(
1

n

)

= OP

(
1√
n

)

. (A.13)

We have

Γ̂n(i, j)− Γ(i, j) =

+Tn∑

h=−Tn

f(hbn)
(

M̂n ij,h −Mij,h

)

+

+Tn∑

h=−Tn

{f(hbn)− 1}Mij,h −
∑

|h|>Tn

Mij,h.

By the triangular inequality, for any multiplicative norm, we have

sup
i,j≥1

∥
∥
∥Γ̂n(i, j)− Γ(i, j)

∥
∥
∥ ≤ g1 + g2 + g3,

where

g1 = sup
i,j≥1

sup
|h|<n

∥
∥
∥M̂n ij,h −Mij,h

∥
∥
∥

∑

|h|≤Tn

|f(hbn)| ,

g2 =
∑

|h|≤Tn

|f(hbn)− 1| ‖Mij,h‖ and g3 =
∑

|h|>Tn

‖Mij,h‖ .
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The non zero elements of Mij,h are of the form E(ei1tei2t−iei3t−hei4t−h−j),
with (i1, i2, i3, i4) ∈ {1, . . . , d}4. Now, using the covariance inequality obtained
by Davydov [13], it is easy to show that

|E (ei1tei2t−iei3t−hei4t−h−j)| = |Cov (ei1tei2t−i, ei3t−hei4t−h−j)|
≤ Kαν/(2+ν)

ǫ (h) .

We then deduce that
‖Mij,h‖ ≤ Kαν/(2+ν)

ǫ (h) . (A.14)

In view of A7, we thus have g3 → 0 as n → ∞. Let m be a fixed integer and
we write g2 ≤ s1 + s2, where

s1 =
∑

|h|≤m

|f(hbn)− 1| ‖Mij,h‖ and s2 =
∑

m<|h|≤Tn

|f(hbn)− 1| ‖Mij,h‖ .

For |h| ≤ m, we have hbn → 0 as n → ∞ and f(hbn) → 1, it follows that s1 → 0.
If we choose m sufficiently large, s2 becomes small, using (A.14) and the fact
that f(·) is bounded. It follows that g2 → 0. In view of (5.2) and (A.13), we
have

g1 ≤ 1

bn
sup
i,j≥1

sup
|h|<n

∥
∥
∥M̂n ij,h −Mij,h

∥
∥
∥O(1) = OP

(
1

bn
√
n

)

= op(1),

since nb2n → ∞, in view of (5.1). The conclusion is complete.

Proof of Proposition 6.1. For i, j ∈ {1, . . . , d}, let Ã∗
ij,h = A∗

ij,h for 0 ≤ h ≤ M

and Ã∗
ij,h = 0d×d for h > M . Similarly, we defined B̃∗

ij,h and λ̃h. We have

vecJ − vec JM = 2
∞∑

h=1

{

M
(

λ′
h ⊗ λ′

h − λ̃′
h ⊗ λ̃′

h

)

vecΣ−1
e0

+M
(

λ̃′
h ⊗ λ̃′

h

)

vecΣ−1
e0

}

.

Recall that the polynomials

Aθ(z) = Id −
p
∑

i=1

Aiz
i and Bθ(z) = Id −

q
∑

i=1

Biz
i,

with Ai = A−1
0 Ai and Bi = A−1

0 BiB
−1
0 A0.

By A2, the zeroes of Aθ(z) and Bθ(z) are of modulus strictly greater than
one:

detAθ(z) detBθ(z) = 0 ⇒ |z| > 1.

Thus,

A−1
θ (z) =

∞∑

h=0

Ahz
h and B−1

θ (z) =

∞∑

h=0

Bhz
h.
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Consequently each the d2 elements (rational function of |z|) of A−1
θ (z) and

B−1
θ (z) are in the form

1
∏k

i=1(1− ρiz)
=

∞∑

h=0

dhz
h with |dh| ≤ (h+ 1)k−1ρh,

for all |z| ≤ 1 and if
max

i=1,...,k
|ρi| ≤ ρ < 1,

where ρ is the inverse of the largest modulus of the zeroes of the polynomials
detAθ(z) and detBθ(z).

We thus have

max {‖Ah‖ , ‖Bh‖} ≤ d2(p+ q)(h+ 1)k0ρh ≤ K0ρ
h/2 and ‖λh‖ ≤ K1ρ

h/2

(A.15)
with

k0 = d(p+q), K0 = d2(p+q)

(−2k0
log ρ

)k0

ρ −0.5−k0/ log ρ and K1 = d4(p+q)2K0.

We then obtain

∥
∥vecJ − vecJM

∥
∥ ≤ 2

∞∑

h=M+1

‖M‖‖λ′
h ⊗ λ′

h‖
∥
∥vecΣ−1

e0

∥
∥

≤ 2πΓ
∞∑

h=M+1

‖λ′
h‖

2 ≤ 2πΓ

(
K1

1− ρ1/2

)2

ρM+1

and the result follows.

Proof of Proposition 6.2. The proof is similar to that given in Proposition 6.1.
However, we will give the expression which are different to that in the previous
Proposition. Let

Γ = max
i,j≥0

‖Γ(i, j)‖ , π1 =
∥
∥
∥vec

(

vecΣ−1
e0

{
vecΣ−1

e0

}′
)∥
∥
∥ .

Using (A.15), we then obtain

∥
∥vec I − vec IM

∥
∥ ≤ 4π1

∞∑

i,j=M+1

‖Γ(i, j)‖
∥
∥
{
Id ⊗ λ′

j

}
⊗ {Id ⊗ λ′

i}
∥
∥

≤ 4π1d
2Γ

∞∑

i,j=M+1

‖λ′
i‖
∥
∥λ′

j

∥
∥ ≤ 4π1d

2Γ

(
K1

1− ρ1/2

)2

ρM+1

and the result follows.
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Canada.

[17] Durbin, J. (1959). Efficient estimation of parameters in moving average
models. Biometrika 46, 306–316. MR0114283

[18] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with
estimates of the variance of the United Kingdom inflation. Econometrica
50, 987–1007. MR0666121

[19] Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and
Parametric Methods. Springer Verlag, New York. MR1964455
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[24] Francq, C. and Zaköıan, J.-M. (2000). Covariance matrix estimation of
mixing weak ARMA models. Journal of Statistical Planning and Inference
83, 369–394. MR1748016
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