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Abstract: This paper describes an analysis of acceleration variability
among the juggling cycles. The Fisher Rao curve registration is used for
curve alignment. Five different choices of data objects are considered in this
paper. We show that one of these choices of data objects leads to a much
better clustering into two distinct types of juggling cycles than the other
choices.
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This paper studies acceleration variability among the juggling cycles from Ram-
say et al. (2014). These cycles are treated as being independent of each other.
Object Oriented Data Analysis turns out to be very useful terminology through-
out the discussion, where data objects are understood as the atoms of the statis-
tical analysis. This concept was first brought up by Wang and Marron (2007).
Section 1 introduces five potential choices of data objects. Section 2 shows that
one of these choices leads to a discovery of two distinct types of juggling cycles,
which are hard to detect using the other choices.

1. Data objects

An intuitive choice of data objects is the acceleration curves of each juggling
cycle. Figure 1 shows a color coded view of the data preprocessing done to obtain
these curves. The top panel shows the acceleration curve of one trial. Each cycle
is defined as the period between two neighboring highest peaks indicated by the
vertical dashed lines. This is a valid definition, since a careful examination of the
other juggling trials confirms that these peaks are always a prominent feature
across all cycles. The incomplete cycle fragments at both the beginning and the
end are ignored in the following analysis. The resulting acceleration curves of
each juggling cycle in this trial are shown in the bottom left panel, using the
same colors. Note that these curves are defined on different domains, that is, the
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Fig 1. Trial 1, used to illustrate data preprocessing. Top: Acceleration curve of one trial,
where cycles are divided by the vertical dashed lines, color coded by cycle number. Bottom
left: The acceleration curves of each cycle, obtained by cutting the above curve at the dashed
lines. The incomplete cycles at the two ends are ignored. Bottom right: The adjusted curves
defined on the same domain, obtained by linearly warping the domain of each curve in the
left to [0, 1].

duration of each cycle is different. We studied potential relationships between
cycle lengths and other aspects of these curves, but do not report details here,
because no interesting relationship was found. Next, the domain of each cycle is
linearly warped to [0, 1], and a cubic spline interpolation is used to define these
curves on a common grid. See the bottom right panel for the resulting curves.

The left panel in Figure 2 shows the adjusted acceleration curves of all 10
trials, which contain both horizontal (i.e. phase or tempo) variation and vertical

(or amplitude) variation. These two types of variation can be separated via
the Fisher Rao curve registration proposed by Srivastava et al. (2011), and
captured by the resulting domain warping functions and the aligned functions,
respectively, shown in the right two panels in Figure 2. Note that the left side of
the first bumps in the aligned functions shows much steeper increase than that
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Fig 2. Fisher Rao alignment of acceleration functions. Left: Unaligned (preprocessed) accel-
eration functions of all 113 cycles from 10 trials. Middle: Warping functions obtained from
Fisher Rao Alignment. Right: Aligned functions. The color indicates the order of cycles, as
in Figure 1.
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of the unaligned functions. This is because these cycles consist of two groups
with distinct acceleration features at this bump (see the top panels in Figure 4),
which is discussed later in Section 2.

This domain warping approach provides two types of data objects: warping
functions for studying the horizontal variability, and aligned functions for study-
ing the vertical variability. Meanwhile, the Square-Root Slope Function (SRSF)
representation (see Srivastava et al. (2011) for details), i.e. analyzing functions
under the Fisher Rao metric, entails considering another two potential choices
of data objects: the horizontal SRSFs, i.e. SRSFs of warping functions, and the

vertical SRSFs, i.e. SRSFs of aligned functions. See Lu (2013) and Lu and Mar-
ron (2013) for more discussion of these two types of data objects. In summary,
the following five different choices of data objects are considered:

(1) Aligned functions;
(2) Warping functions;
(3) Unaligned functions;
(4) Vertical SRSFs;
(5) Horizontal SRSFs.

2. Detection of two types of cycles

Functional Principal Component Analysis (FPCA) was performed on the data
objects (1)–(4), respectively. Note that the horizontal SRSFs lie on the surface of
a high dimensional sphere (Srivastava et al. (2011)). Two manifold approaches
were used separately, Principal Geodesic Analysis (PGA, Fletcher et al. (2004))
and Principal Nested Spheres (PNS, Lu and Marron (2013)), which are two
different extensions of FPCA for data lying on curved manifolds.

PGA approximates the spherical surface by a tangent hyperplane centered
at the Karcher mean. The data projections on this tangent hyperplane are then
analyzed using PCA. In this way, PGA finds the great spheres (i. e. principal
geodesics) passing through the mean that best fit the data. In contrast, the
PNS method uses a backward approach which starts with the high dimensional
sphere and finds the best fitting subsphere of one dimension lower at each step
(See Marron et al. (2010)). As a result, unlike PGA, PNS finds the best fitting
subspheres regardless of whether they are great spheres or not, with no Karcher
mean constraint. It has been shown in a number of cases that PNS can provide
more effective analysis of manifold data than many other analogous approaches.
See Pizer et al. (2013) for such an example in the study of 3D shapes.

The scores scatterplots of the first two components from each analysis are
shown in Figure 3. An interesting data pattern of two clear clusters of cycles
is captured by the first principal geodesic of the horizontal SRSFs, shown in
Panel (2, 2). These clusters are studied by brushing them with colors and sym-
bols. Clear comparison between choices of data objects comes from applying the
same colors and symbols in each panel. These score scatterplots show succes-
sive improvement in the detection of the two groups. This visual observation is
confirmed by the SWISS scores, i.e. Standardized WithIn class Sum of Squares



Object oriented data analysis of clustering in acceleration functions 1845

−20 0 20

−40

−20

0

20

40

Aligned functions

PC2 scores

P
C

1
 s

c
o
re

s

−0.2 0 0.2 0.4
−1

−0.5

0

0.5

1

1.5

Warping functions

PC2 scores

P
C

1
 s

c
o
re

s

−20 0 20 40

−20

0

20

40

60

Unaligned functions

PC2 scores

P
C

1
 s

c
o
re

s

−20 0 20

−20

0

20

40

Vertical SRSFs

PC2 scores

P
C

1
 s

c
o
re

s

−1 0 1 2 3

−2

−1

0

1

2

Horizontal SRSFs

PG2 scores

P
G

1
 s

c
o
re

s

−1 0 1

−6

−4

−2

0

2

4

Horizontal SRSFs

PNS2 scores

P
N

S
1
 s

c
o
re

s

Fig 3. Score scatterplots of the first two components obtained by performing FPCA on the
data objects (1)–(4), and PGA and PNS on (5), respectively. Panel (2, 2) indicates two clear
clusters, separated by the dashed line. These clusters are highlighted using colors and symbols,
which are also used in each other panel. This highlights successive improvement of clustering
of the two groups over different data objects.

(see Cabanski et al. (2010)), which are calculated as the ratio between the total
within class sum of squares and the total sum of squares. It reflects the pro-
portion of variation unexplained by clustering. Table 1 shows the corresponding
SWISS scores. Smaller values indicate better clustering. On the other hand,
DiProPerm (Direction Projection Permutation) t-tests based on the DWD di-
rections (See Wei et al. (2013) for details) were used to test the mean difference
between these two groups. The Z-scores of the statistics with respect to the null
population (with no group difference) were used to compare the results of these
DiProPerm tests. A higher Z-score indicates a bigger difference between two
groups. Considering both the clustering and the mean difference, the horizontal
SRSFs are shown to be a better choice of data objects for detection of these
two groups than the other four, with the lowest SWISS scores and the highest
DiProPerm Z-scores (either analyzed by PGA or PNS). All these five choices of
data objects lead to significant DiProPerm p-values in both tests.

Table 1

Comparison of different choices of data objects with respect to detecting the two groups of
cycles, based on the SWISS score and the DiProPerm t-test. Those data objects are in the
order of their SWISS scores. It is seen that the horizontal SRSFs lead to the lowest SWISS

scores (i.e. the best clustering of the two groups) and the highest DiProPerm Z-scores
(i.e. the most significant mean difference)

Data Objects Analysis SWISS DiProPerm Z-scores

(1) Aligned functions PCA 0.89 8.90
(2) Warping functions PCA 0.78 28.65
(3) Unaligned functions PCA 0.77 13.30
(4) Vertical SRSFs PCA 0.67 21.72
(5) Horizontal SRSFs PGA 0.52 53.42

PNS 0.37 34.50
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Fig 4. Top: Adjusted acceleration of the two clusters of cycles, respectively. Bottom: Side
view of the juggling trajectories of these two clusters of cycles. The color code is the same as
that in Figure 3.

It is seen from Panel (2, 2) and Panel (2, 3) that both PGA and PNS of the
horizontal SRSFs do a good job in separating the two groups. Table 1 shows
that the PNS leads to better data clustering (i.e. lower SWISS scores), while
the PGA leads to a more significant mean difference (i.e. higher DiProPerm Z-
scores). Further analysis shows that the first two components from PGA totally
explain 69.8% of data variability (the first component explains 52.7%), while the
first two PNS’s explain 82.2% of data variability (the first PNS explains 77.4%).
That is, the PNS approach is more efficient in capturing data variability and
gives better signal compression.

Although no obvious pattern can be found in the distribution of these two
types of juggling cycles in the 10 trials, a simple runs test shows that the order
of these groups is not random. The acceleration curves of these two types of
cycles have distinguishable shapes, shown in the top panels in Figure 4. The
main difference is whether the first acceleration bump (at about 0.25 on the
time axis) is prominent or not. It is challenging to align a mixture of these two
different types of curves simultaneously. In the Fisher Rao alignment shown in
Figure 2, the shape of the first bumps in the aligned functions (right) is hard
to interpret, compared with the unaligned functions (left). This suggests that
it may be better to align these two types of curves separately as proposed by
Sangalli et al. (2010). The bottom panels in Figure 4 display a side view of the
juggling trajectories of these two types of cycles, respectively. It is seen that the
juggler moved his hand back and forth wider in one group of cycles (left) than
in the other (right).

In conclusion, we show that among all the five choices of data objects the hor-
izontal SRSFs are the best to study these two different types of juggling cycles,
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and the PNS approach leads to the best data clustering. It is seen throughout
the paper that the terminology of object oriented data analysis is very helpful
in discussion.
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