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of affine estimators for fixed design regression. Relevant examples include
some commonly used statistical estimators such as least squares, ridge and
robust least squares estimators. Dalalyan and Salmon [DS12] have estab-
lished that, for this problem, exponentially weighted (EW) model selection
aggregation leads to sharp oracle inequalities in expectation, but similar
bounds in deviation were not previously known. While results [DRZ12]
indicate that the same aggregation scheme may not satisfy sharp oracle
inequalities with high probability, we prove that a weaker notion of ora-
cle inequality for EW that holds with high probability. Moreover, using a
generalization of the newly introduced Q-aggregation scheme we also prove
sharp oracle inequalities that hold with high probability. Finally, we apply
our results to universal aggregation and show that our proposed estimator
leads simultaneously to all the best known bounds for aggregation, includ-
ing ℓq-aggregation, q ∈ (0, 1), with high probability.
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1. Introduction

In the Gaussian Mean Model (GMM), we observe a Gaussian random vector
Y ∈ R

n such that Y ∼ N (µ, σ2In) where the mean µ ∈ R
n is unknown and the

variance parameter σ2 is known. For the purpose of discussion, we assume that
σ2 = 1 throughout this introduction but our main subsequent results explicitly
depend on σ2.

This apparently simple model introduced in a notorious paper [Ste56] by
Stein, was the starting point of a vast literature on shrinkage [Gru98] that
later evolved in the Gaussian sequence model. This literature is much too vast
to explore here but we refer the reader to the excellent manuscript by John-
stone [Joh11] for both motivation and partial literature review.

Independently of the variety of methods and results dedicated to the GMM,
Nemirovski [JN00,Nem00] introduced aggregation theory as a versatile tool for
adaptation in nonparametric estimation [Lec07,RT07,Yan04], but also more re-
cently in high dimensional regression [LB06,RT11, DS12]. In all these results,
exponential weights have played a key role (see [RT12] for a recent survey).
Specifically, we focus here on model selection aggregation where, given a family
of estimators µ̂1, . . . , µ̂M , the goal is to mimic the best of them. Originally, ag-
gregation was accompanied with a sample splitting scheme in which the sample
was split into two parts: the first one to construct various estimators and the
second to aggregate them. For example, this approach was practically imple-
mented in [RT07] for density estimation and in [Lec07] for classification. The
advantage of sample splitting is that it allows to freeze the first sample and
therefore treat the estimators to be aggregated as deterministic functions that
only satisfy mild boundedness assumption. This is the framework of pure ag-
gregation under which most of the developments have been made starting from
the seminal works on aggregation [JN00,Nem00,Tsy03]. Pure model selection
aggregation in the GMM can be described as follows. Given M ≥ 2 vectors
µ1, . . . , µM , the goal is to construct an estimator µ̂ called aggregate, using the
observation Y and such that

‖µ̂− µ‖2 − min
1≤j≤M

‖µj − µ‖2

is as small as possible, where ‖·‖ denotes the Euclidean distance on R
n. Bounds

on this quantity are called sharp oracle inequalities. While not directly connected
to Stein’s original result on admissibility [Ste56], it turns out that for aggregation
too, the most natural choice µ̂ = µ̂ where ̂ = argmin1≤j≤M ‖µj − Y ‖2 is
suboptimal. Nevertheless, this problem is by now well understood and various
optimal choices for µ̂ relying on model averaging rather than model selection
were proposed and proved to be optimal (see [RT12] and references therein). Two
approaches have been employed successfully. The first family of methods is based
on exponential weights [DT07,DT08]. Following original ideas of Catoni [Cat99]
and Yang [Yan99], it can be proved that for any prior probability distribution
π = (π1, . . . , πM ) on [M ] = {1, . . . ,M}, there exists an aggregate µ̂EW based on
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exponential weights that satisfies the following sharp oracle inequality:

E‖µ̂EW − µ‖2 ≤ min
1≤j≤M

{

‖µj − µ‖2 + C log
( 1

πj

)

}

, (1.1)

where here and in what follows C > 0 is a numerical constant that may change
from line to line. In particular, if π is chosen to be the uniform distribution, this
estimator attains the optimal rate C log(M) [RT11] that is independent of the
dimension n. Nevertheless, it was observed in [DRZ12] that the random quantity
‖µ̂EW−µ‖2 may have fluctuation of order

√
n around its expectation so that the

bound (1.1) may fail to accurately describe the risk of µ̂EW, especially for large
dimension n. To overcome this limitation, several methods have been proposed in
the literature [Aud08,LM09]. More recently, a new and flexible method called Q-
aggregation was proposed and studied in several settings [Rig12,DRZ12,LR14].
It enjoys the following property. For any prior π on [M ], it yields an aggregate
µ̂Q that satisfies not only a sharp oracle inequality in expectation of form (1.1)
but also one that holds with high probability:

‖µ̂Q − µ‖2 ≤ min
1≤j≤M

{

‖µj − µ‖2 + C log
( 1

δπj

)

}

, (1.2)

with probability 1− δ.

In this paper, we extend this work to the aggregation of not fixed vectors
µ1, . . . , µM but of affine estimators µ̂1, . . . , µ̂M that are of the form µ̂j = AjY+bj
for some deterministic matrix-vector pair (Aj , bj). Note that these estimators are
constructed using the same observations Y as the ones employed for aggregation.
In particular, no sample splitting scheme is needed.

A canonical example of affine estimators where Aj are projection matrices,
was first introduced in [LB06] and further studied in [RT11] under the light
of high-dimensional linear regression. In a remarkable paper, Dalalayan and
Salmon [DS12] recently extended these setups to a more general family of affine
estimators, under mild conditions on matrices Aj . Nevertheless, all these previ-
ous papers are limited to deriving sharp oracle inequalities in expectation of the
same type as (1.1). Moreover, the lower bounds of [DRZ12] indicate that the es-
timators based on exponential weights that are employed in [LB06,RT11,DS12]
are unlikely to satisfy sharp oracle inequalities with high probability. In this pa-
per, akin to [Rig12,DRZ12,LR14], we demonstrate that Q-aggregation succeeds
where exponential weights have failed by proving a sharp oracle inequality that
holds with high probability in Section 2.1. Yet, the situation regarding expo-
nential weights is not desperate as we show in Section 2.2 that it still leads to
a weaker notion of oracle inequalities.

The rest of this paper is organized as follows. In the next section, we give a
precise description of the problem of model selection aggregation of affine esti-
mators and give a solution to this problem using Q-aggregation. Specifically, in
Section 2.1, we show that for any prior probability distribution π = (π1, . . . , πM )
on [M ] = {1, . . . ,M}, there exists an aggregate µ̂Q based on Q-aggregation that
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satisfies a sharp oracle inequality of the form

‖µ̂Q − µ‖2 ≤ min
j∈[M ]

{

‖µ̂j − µ‖2 + C log
( 1

πj

)

+ 4σ2 Tr(Aj)
}

, (1.3)

that holds both in expectation and with high probability, where Tr(Aj) denotes
the trace of Aj . We continue by proving in Section 2.2 that for any ε > 0,
there exists a choice of the temperature parameter for which the better known
aggregate µ̂EW based on exponential weights satisfies a weak oracle inequality
that holds with high probability

‖µ̂EW − µ‖2 ≤ min
j∈[M ]

{

(1 + ε)‖µ̂j − µ‖2 + C

ε
log

( 1

πj

)

+ 8σ2 Tr(Aj)
}

. (1.4)

Such an inequality completes the sharp oracle inequality of [DS12] that holds
in expectation.

We give applications of these oracle inequalities to sparsity pattern aggre-
gation and universal aggregation in Section 3. In particular, we show that Q-
aggregation of projection estimators leads to the first sharp oracle inequalities
that hold with high probability for these two problems. By “high probability”,
we mean a statement that holds with probability at least 1 − δ, 0 < δ < 1/2.
Our results below exhibit explicit dependence on δ.

Notation: For any integer n, the set of integers {1, . . . , n} is denoted by [n].
We denote by Tr(A) and Rk(A) respectively the trace and the rank of a square
matrix A. We denote by ‖ · ‖ the Euclidean norm of Rn and by |J | the cardinality
of a finite set J . For any real numbers a1, . . . , an, diag(a1, . . . , an) denotes the
n×n diagonal matrix with a1, . . . , an, on the diagonal. The indicator function is
denoted by 1(·) and for any integer n,K ⊂ [n], 1K denotes the vector v ∈ {0, 1}n
with jth coordinate given by vj = 1 iff j ∈ K. For any matrix B, B† denotes the
Moore-Penrose pseudoinverse of B. The operator norm of a matrix is denoted
by ‖ · ‖op. The cone of n×n symmetric positive semidefinite matrices is denoted
by Sn. The flat simplex of RM is denoted by ΛM and is defined by

ΛM =
{

θ ∈ R
M : θj ≥ 0 ,

M
∑

j=1

θj = 1
}

The set ΛM can be identified to the set of probability measures on [M ] and for
any θ, π ∈ ΛM , we define the Kullback-Leibler divergence between these two
measures by

K(θ, π) =

M
∑

j=1

θj log
( θj
πj

)

,

with the usual convention that 0 log(0) = 0, 0 log(0/0) = 0 and θ log(θ/0) =
+∞, ∀ θ > 0. Finally, throughout the paper, we use the notation log(x) to
denote the function log(x) = (log x) ∨ 1.
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2. Aggregation of affine estimators

Recall that the Gaussian Mean Model (GMM) can be written as follows. One
observes Y ∈ R

n such that

Y = µ+ ξ , ξ ∼ N (0, σ2In) . (2.1)

Throughout this paper and in accordance with [DS12], we call an affine estimator
of µ any estimator µ̂ of the form

µ̂ = AY + b , (2.2)

where A ∈ Sn is a n×n matrix and b ∈ R
n is a n-dimensional vector. Note that

unlike [DS12], we impose that that A be symmetric. While such an assumption
can be relaxed, all examples presented in [DS12] involve symmetric matrices.
Both A and b are deterministic.

Given a family of affine estimators µ̂1, . . . , µ̂M , where µ̂j = AjY + bj and a
prior probability measure π = (π1, . . . , πM ) on these estimators, our goal is to
construct an aggregate µ̃ such that

‖µ̃− µ‖2 ≤ (1 + ε)‖µ̂j − µ‖2 + C
[

log
( 1

δπj

)

+ Tj
]

, (2.3)

with probability 1− δ for any j ∈ [M ], where Tj > 0 is as small as possible and
ε ≥ 0. As we will see, we can achieve ε = 0 using Q-aggregation but only prove
a weak oracle inequality with ε > 0 in Section 2.2 using exponential weights.

Inequalities of the form (2.3) with ε > 0 can be of interest as long as there
exists a candidate affine estimator µ̂j that is close to µ with high probability.
Several examples where it is the case are described in [DS12].

Our results below hold under the following general condition on the family
of matrices {Aj}j∈[M ].

Condition 1. There exists a finite V > 0 such that maxj∈[M ] ‖Aj‖op = V .

Note that Condition 1 excludes matrices Aj that lead to inadmissible es-
timators of the Gaussian mean µ [Coh66]. To illustrate the purpose of ag-
gregating affine estimators and the relevance of Condition 1, observe that a
large body of the literature on the GMM studies estimators of the form AY ,
where A = diag(a1, . . . , an) is a diagonal matrix with elements aj ∈ [0, 1] for all
j = 1, . . . , n. If µ is assumed to belong to some family of regularity classes such
as Sobolev ellipsoids, Besov classes, tail classes, it has been proved that such
estimators are minimax optimal (see [CT01, Tsy09, Joh11]). Commonly used
examples include ordered projection estimators, spline estimators and Pinsker
estimators (see [DS12] for a detailed description). These estimators are known
to be minimax optimal over Sobolev ellipsoids [Pin80,GN92,Tsy09]. Diagonal
filters trivially satisfy Condition 1 with V = 1.

We give details of a specific application to sparsity pattern aggregation and
its consequences on universal aggregation in Section 3.
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2.1. Sharp oracle inequalities using Q-aggregation

In this section, we state our main result: a sharp oracle inequality for an aggre-
gate of affine estimators based on Q-aggregation. Specifically, we consider the
problem of aggregating general affine estimators µ̂j = AjY +bj, j ∈ [M ] that sat-
isfy Condition 1. Note that unlike [DS12], we do not require that matricesAj , j ∈
[M ] commute and we make no assumption on the vectors bj , j = 1, . . . ,M .
Moreover, our results can be extended to an infinite family {(Aλ, bλ), λ ∈ L} as
in [DS12] but we prefer to present our result in the discrete case for the sake of
clarity.

For any θ ∈ R
M , let µθ denote the linear combination of some given affine

estimators µ̂1, . . . , µ̂M that is defined by

µθ =

M
∑

j=1

θj µ̂j .

Our goal is to find a vector θ̂ ∈ R
M such that the aggregate µθ̂ mimics the affine

estimator µ̂j that is the closest to the true mean µ.
In this paper, we consider a generalization of the Q-aggregation scheme of

static models that was developed in [Rig12, DRZ12]. To that end, fix a prior
probability distribution π ∈ ΛM and for any θ ∈ ΛM , define

Q(θ) = ν
M
∑

j=1

θj‖Y − µ̂j‖2 + (1− ν)‖Y − µθ‖2 +
M
∑

j=1

θjCj + λK(θ, π), (2.4)

where ν ∈ (0, 1) and λ > 0 are tuning parameters, and Cj is set to be

Cj = 4σ2 Tr(Aj) . (2.5)

Let now θ̂ be defined as
θ̂ ∈ argmin

θ∈ΛM

Q(θ) . (2.6)

The resulting estimator µθ̂ is called Q-aggregate estimator of µ. Theorem 1 is
our main result.

Theorem 1. Consider the GMM (2.1) and let µ̂j = AjY + bj, j ∈ [M ] be
affine estimators of µ together with a prior distribution π = (π1, . . . , πM ) on
these estimators and let V = maxj∈[M ] ‖Aj‖op. Let µ̂Q = µθ̂ be the Q-aggregate

estimator with θ̂ defined in (2.6) with tuning parameters ν ∈ (0, 1) and

λ ≥ 8σ2

min(ν, 1− ν, 2/(3V ))
.

Then for any δ > 0, any j ∈ [M ], with probability at least 1− δ, we have

‖µ̂Q − µ‖2 ≤ min
j∈[M ]

{

‖µ̂j − µ‖2 + Cj + 2λ log(
1

πjδ
)
}

. (2.7)
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Moreover, the same Q-aggregate estimator µ̂Q satisfies

E‖µ̂Q − µ‖2 ≤ min
j∈[M ]

{

E‖µ̂j − µ‖2 + Cj + λ log(
1

πj
)
}

. (2.8)

A few remarks are in order. Note that the oracle inequality of Theorem 1 is
sharp since the leading term ‖µ̂j − µ‖2 has multiplicative constant 1. A similar
oracle inequality was obtained in [DS12] bit our main theorem above presents
significant differences. First, and this is the main contribution of this paper, the
above oracle inequality holds with high probability whereas the ones in [DS12]
only hold in expectation. Nevertheless, our model is simpler than the one studied
in [DS12] who study heteroskedastic regression. Moreover, the bound in [DS12,
Theorem 2] is “scale-free” whereas ours depends critically on the size of the
matrices Aj via Cj and V . We believe that this dependence cannot be avoided
in high probability bounds as such quantities essentially control the deviations
of estimators. As we will see, the bounds of Theorem 1 are sufficient to perform
sparsity pattern aggregation and universal aggregation optimally.

2.2. Weak oracle inequality using exponential weights

The oracle inequalities (1.1) and (1.2) are sharp in contrast to weak oracle
inequalities where the right-hand side of (1.1) or (1.2) is replaced by

min
1≤j≤M

{(1 + ε)‖µj − µ‖2 + Cj +
C

ε
log

( 1

δπj

)

} ,

for some ε > 0 (see [LM12] for a discussion on the difference between sharp and
weak oracle inequalities). While they appear to be quite similar, some estimators
do satisfy weak oracle inequalities while they do not satisfy sharp ones. This is
the case of the aggregate with exponential weight that provably fails to satisfy
a sharp oracle inequality with high probability in a certain setups [DRZ12,
Proposition 2.1].

To prove weak oracle inequalities that hold with high probability, we modify
the aggregate studied in [DS12]. Recall that µ̂j = AjY + bj, j ∈ [M ] is a family
of affine estimators equipped with a prior probability distribution π ∈ ΛM and
that Cj is defined in (2.5). Let θ̂ ∈ ΛM be the vector of exponential weights
defined by

θ̂j ∝ πj exp
(

− ‖Y − µ̂j‖2 + Cj

λ

)

, j ∈ [M ] . (2.9)

The parameter λ > 0 is often referred to as temperature parameter. It is not
hard to show (see, e.g., [Cat04, p. 160]) that θ̂ is the solution of the following
optimization problem:

θ̂ ∈ argmin
θ∈ΛM

{

M
∑

j=1

θj‖Y − µ̂j‖2 +
M
∑

j=1

θjCj + λK(θ, π)
}

. (2.10)
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Observe that the above criterion corresponds to Q defined in (2.4) with ν = 1,
that is without the quadratic term in θ. We believe that this quadratic term is
key in obtaining sharp oracle inequalities that hold with high probability. We
already know from previous work [LB06, RT11, RT12, DS12] that this term is
not necessary to obtain sharp oracle inequalities that hold in expectation. As
illustrated below, it is also not required to get weak oracle inequalities, even
with high probability.

Denote by µ̂EW =
∑M

j=1 θ̂j µ̂j the aggregate with exponential weights θ̂j , j ∈
[M ] defined in (2.9).

Theorem 2. Let the conditions of Theorem 1 hold. Let µ̂EW = µθ̂ be the

aggregate with exponential weights θ̂ defined in (2.9) with tuning parameter
λ ≥ 4σ2(16 ∨ 3V ). Then for any δ > 0, with probability at least 1 − δ, we
have

‖µ− µ̂EW‖2 ≤ min
j∈[M ]

{

(

1 +
128σ2

3λ

)

‖µ− µ̂j‖2 + 2Cj + 3λ log
( 1

δπj

)

}

. (2.11)

Note that unlike Theorem 1, the right-hand side of the above oracle inequality
is multiplied by a factor 1 + ε > 1: it is a weak oracle inequality but it holds
with high probability and thus complements the results of [DS12] on aggregation
of affine estimators using exponential weights. Note that the inequality (A.8)
proved in Theorem 2 gives a slightly stronger bound than (2.11), especially
in terms of constants. Alquier and Lounci [AL11, Theorem 3.1] prove the first
oracle inequality with high probability using exponential weights. However, their
result does not balance the the approximation error and the complexity term
which leads to a weaker result than Theorem 3 below.

3. Sparsity pattern aggregation

In this section, we illustrate the power of the two oracle inequalities stated in the
previous section. Indeed, carefully selecting the affine estimators µ̂1, . . . , µ̂M , as
well as the the prior probability distribution π leads to various optimal results.
Some results for diagonal filters can be found in [DS12] and we focus here on
sparsity pattern aggregation.

Recall the results we have proved in the previous section. With probability
at least 1− δ, for λ large enough,

‖µθ̂ − µ‖2 ≤ min
j∈[M ]

{

(

1 +
t1
λ

)

‖µ̂j − µ‖2 + t2Cj + t3λ log(
1

πjδ
)
}

.

where (t1, t2, t3) = (0, 1, 2) if θ̂ is computed according to (2.6) and (t1, t2, t3) =

(128σ2/3, 2, 3) if θ̂ is computed according to (2.9).

In the sequel, we fix ν = 1/2 in Q-aggregation since this choice leads to the
sharpest bounds.
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3.1. Sparsity pattern aggregation

Let X1, . . . , Xp ∈ R
n be given vectors and assume that µ ∈ R

n can be well
approximated by a linear combination of Xj, j ∈ J∗ for some unknown sparsity
pattern J∗ ⊂ [p]. More precisely, we are interested in sparse linear regression,
where the goal is to find a sparse β ∈ R

p such that ‖Xβ − µ‖2 is small, where
X = [X1, . . . , Xp] is the n×p design matrix obtained by concatenating the Xj’s.
Akin to [BRT09,RT11], we do not assume that there exists a sparse β∗ such that
Xβ∗ = µ but rather that there may be a systematic error. Oracle inequalities
such as the ones described below in Theorems 3 and 4 capture the statistical
precision of fitting possibly misspecified sparse linear models in the GMM.

To achieve our goal, we follow the same idea as in [RT11,RT12] and employ
sparsity pattern aggregation. The idea can be summarized as follows. For each
sparsity pattern of β, compute the least squares estimator and then aggregate
these (projection) estimators. Specifically, for each sparsity pattern J ⊂ [p]
define XJ to be the n × |J | matrix obtained by concatenating Xj , j ∈ J and
let AJ = XJ (X

⊤
J XJ)

†
X

⊤
J denote the projection matrix onto the linear span

span(XJ ) of Xj , j ∈ J . If J∗ was known, a good candidate to estimate µ would
be the least squares estimator µ̂J∗ = AJ∗Y . Since J∗ is unknown, we propose
to aggregate the affine (actually linear) estimators µ̂J = AJY, J ⊂ [p]. This
approach is called sparsity pattern aggregation [RT11] and can be extended to
more general notions of sparsity such as group sparsity or fused sparsity [RT12].
It yields a family of affine estimators µ̂J = AJY such that CJ = 4σ2 Tr(AJ ) =
4σ2 Rk(XJ ) and V = maxJ ‖AJ‖op = 1.

Sparsity pattern aggregation has been shown to attain the best available
sharp oracle inequalities in expectation [RT11,RT12] and one of the main con-
tribution of this paper is to extend these results to results with high proba-
bility. Moreover, it leads to universal aggregation with high probability (see
Section 3.3).

The key to sparsity pattern aggregation is to employ a correct prior probabil-
ity distribution. Rigollet and Tsybakov [RT12], following [LB06,Gir08] suggest
to use

πJ ∝ e−|J|
(

p
|J|
) . (3.1)

In particular, it exponentially downweights patterns J according to their cardi-
nality.

For any β ∈ R
p \ {0}, let |β|0 denote the number of nonzero coefficients of β

and, by convention, let |0|0 = 1.

Theorem 3. Let µ̂J , J ⊂ [p] be the least squares estimator defined as above,
let π be the sparsity prior defined in (3.1) and fix δ > 0. Then the following
statements hold:

(i) For λ ≥ 12σ2, with probability at least 1 − δ, the Q-aggregate estimator
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µ̂Q satisfies

‖µ̂Q − µ‖2 ≤ min
β∈Rp

{

‖Xβ − µ‖2 + 6(λ+ σ2)|β|0 log
( 2ep

|β|0δ
)

}

. (3.2)

(ii) For λ ≥ 64σ2, with probability at least 1−δ, the aggregate with exponential
weights µ̂EW satisfies

‖µ̂EW −µ‖2 ≤ min
β∈Rp

{

(

1+
128σ2

3λ

)

‖Xβ−µ‖2+6(λ+2σ2)|β|0 log
( 2ep

|β|0δ
)

}

.

(3.3)

Corollary 1. Taking λ = 12σ2 and λ = 64σ2 for µ̂Q and µ̂EW respectively, with
probability at least 1− δ, we have:

‖µ̂Q − µ‖2 ≤ min
β∈Rp

{

‖Xβ − µ‖2 + 78σ2|β|0 log
( 2ep

|β|0δ
)}

, (3.4)

and

‖µ̂EW − µ‖2 ≤ min
β∈Rp

{5

3
‖Xβ − µ‖2 + 396σ2|β|0 log

( 2ep

|β|0δ
)}

. (3.5)

The novelty of this result is twofold. First, we use Q-aggregation to obtain
the first sharp sparsity oracle inequalities that hold with high probability under
no additional condition on the problem. Second, we prove a weak sparsity oracle
inequality for the aggregate based on exponential weights that holds with high
probability. While it is only a weak oracle inequality, it extends the results
of Rigollet and Tsybakov [RT11,RT12] that hold only in expectation and the
results of [AL11] that hold with high probability but under additional conditions.

3.2. ℓq-aggregation

Recently, Rigollet and Tsybakov [RT11] observed that any estimator that sat-
isfies an oracle inequality such as (2.8) also adapts to sparsity when measured
in terms of ℓ1 norm. Specifically, their result [RT11, Lemma A.2] implies that if
maxj ‖µj‖ ≤ √

n, then for any constant ν > 0, it holds

min
θ∈RM

{

‖µθ − µ‖2 + ν2|θ|0 log
(

1 +
eM

|θ|0
)

}

≤ min
θ∈B1(1)

‖µθ − µ‖2 + c̄ν

√

n log
(

1 +
eMν√
n

)

, (3.6)

where c̄ is an absolute constant. The above bound hinges on a Maurey argument,
which, as noticed by Wang et al. [WPGY11], can be extended from ℓ1 balls to
ℓq balls for q ∈ (0, 1]. It has been argued that ℓq-balls (0 < q ≤ 1) describe
vectors that are “almost sparse” [FPRU10,Joh11].
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For any q ∈ (0, 1], θ ∈ R
M , let |θ|q denote the ℓq-“norm” of RM of θ defined

by

|θ|q =
(

∑

j∈[M ]

|θj |q
)

1

q

.

Moreover, for a given radius R > 0 and any q ∈ [0, 1], define the ℓq-ball of radius
R by

Bq(R) =
{

θ ∈ R
M : |θ|q ≤ R

}

.

Not surprisingly, these almost sparse vectors can be well approximated by
sparse vectors as illustrated in the following lemma that generalized (3.6)

Lemma 1. Fix ν > 0, M ≥ 3 and let and µj , j ∈ [M ] such that maxj ‖µj‖2 ≤
B2. Then

min
θ∈RM

{

‖µθ−µ‖2+ν2|θ|0 log
(

1+
eM

|θ|0
)

}

≤ inf
0≤q≤1

min
θ∈RM

{

‖µθ−µ‖2+ϕq,M (θ; ν,B)
}

,

where

ϕq,M (θ; ν,B) = 9ν2−q|θ|qqBq
[

log
( eMνq

Bq|θ̄|qqδ
)]1− q

2 ∨ 3ν2 log
(eM

δ

)

. (3.7)

with the convention |θ|00 = |θ|0.
We postpone the proof to Appendix B where further results on the approx-

imation of vectors with small ℓq norm by sparse vectors, can be found. We are
now in a position to state the main result of this subsection. Its proof follows
directly from the above lemma by rounding

√
78 up to 9 and

√

5 · 396/3 to 16.

Theorem 4. Let µ̂J , J ⊂ [p] be defined as in subSection 3.1 with π being the
sparsity prior defined in (3.1). Moreover, assume that maxj ‖Xj‖2 ≤ B2 for
some B > 0 and assume that M ≥ 3. Then, the following statements hold with
probability at least 1− δ:

(i) The Q-aggregate estimator µ̂Q with λ = 12σ2 satisfies

‖µ̂Q − µ‖2 ≤ inf
0≤q≤1

min
β∈Rp

{

‖Xβ − µ‖2 + ϕq,p(β; 9σ,B)
}

. (3.8)

(ii) The aggregate with exponential weights µ̂EW with λ = 64σ2 satisfies

‖µ̂EW − µ‖2 ≤ 5

3
inf

0≤q≤1
min
β∈Rp

{

‖Xβ − µ‖2 + ϕq,p(β; 16σ,B)
}

, (3.9)

where, in both cases, ϕq,p is defined in (3.7) .

Both (3.8) and (3.9) can be compared to the prediction rates over ℓq balls that
were derived in [RWY11] where the setup is the following. First, it is assumed
that the true mean µ in (2.1) is of the form µ = Xβ∗ for some β∗ ∈ Bq(R), R > 0
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and that B = κ
√
n. In this case, it follows from Theorem 4 that with probability

at least 1− δ, we have for any µ̃ ∈ {µ̂Q, µ̂EW} that

max
β∗∈Bq(R)

1

n
‖µ̃− Xβ∗‖2 ≤ C1κ

2Rq
[σ2

κ2

log
(

ep
δ

(

σ
Rκ

√
n

)q
)

n

]1− q
2 ∨ C2σ

2 log
(ep

δ

)

,

for some numerical constants C1, C2. In their specific regime of parameters, our
rates are of the same order as [RWY11, Theorem 4] and are therefore optimal in
that range. However, we provide a better finite sample performance and explicit
dependence in the confidence parameter δ as well as explicit constants that
do not depend on q. In particular, our bounds are continuous functions of q
on the whole closed interval [0, 1]. More strikingly, unlike [RWY11] neither of
the estimators µ̂Q, µ̂EW depends on q or R and yet they optimally adapt to
these parameters. This remarkable phenomenon is even better illustrated in the
context of universal aggregation.

3.3. Universal aggregation

In his original description of aggregation, Nemirovski [Nem00] introduced three
types of aggregation to which three new types were added later [BTW07,Lou07,
WPGY11]. All of these aggregation problems can be described in the following
unified way. Given M ≥ 2 deterministic vectors µ1, . . . , µM ∈ R

n and a set
Θ ⊂ R

M , the goal is to construct an aggregate µ̃ such that

‖µ̃− µ‖2 ≤ inf
θ∈Θ

‖µθ − µ‖2 + CΥn,M (Θ), C > 0 (3.10)

with high probability and where the remainder term Υn,M (Θ) > 0 is as small as
possible. To each of the six types of aggregation, corresponds a unique Θ ⊂ R

M

and a smallest possible Υn,M (Θ) for which (3.10) holds. Such a Υn,M (Θ) is called
the optimal rate of aggregation (over Θ) [Tsy03]. The six types of aggregation
all correspond to choices of Θ that are intersections of balls Bq(R) for various
choices of q and R. They are summarized in Table 1. We add a new natural type
of aggregation that we call D-ℓq aggregation, where, by analogy to D-linear and
D-convex aggregation, we add to ℓq aggregation the constraint that θ must
be D-sparse. In particular, D-convex aggregation introduced in [Lou07] can be
identified to D-ℓ1 aggregation.

While most papers on the subject use different estimators for different ag-
gregation problems [Nem00, Tsy03, RT07, Rig12], Bunea et al. [BTW07] were
the first to suggest that one single estimator could solve several aggregation
problems all at once and used the bic estimator to obtain partial results in the
form of weak oracle inequalities. More recently, Rigollet and Tsybakov [RT11]
showed that the exponential screening estimator solved the first five types of ag-
gregation all at once, without the knowledge of Θ. Using similar arguments, we
now show that the Q-aggregate solves at once, all seven problems of aggregation
described in Table 1, not only in expectation, but also with high probability.
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Table 1

The seven types of aggregation and the corresponding choice of Θ. The range of parameters

is q ∈ (0, 1), D ∈ [M ], R > 0. The function ℓ̄ is defined as ℓ̄(x) = log(x) ∨ 1. All numerical

constants have been removed for clarity

Θ Optimal rate

Mod. Sel. B0(1) ∩ B1(1) σ2 ℓ̄(M
δ
)

Convex B1(1)
[

σB

√

ℓ̄(σM
δB

) ∨ σ2 ℓ̄(M
δ
)
]

∧ σ2Mℓ̄( 1
δ
)

Linear B0(M) = R
M σ2Mℓ̄( 1

δ
)

D-linear B0(D) σ2Dℓ̄( M
δD

)

D-convex B0(D) ∩ B1(1)
[

σB

√

ℓ̄(σM
δB

) ∨ σ2 ℓ̄(M
δ
)
]

∧ σ2Dℓ̄( M
δD

)

ℓq Bq(R)
[

σ2−q(RB)q
[

ℓ̄
(

M
δ

(

σ
RB

)q)]
2−q
2 ∨ σ2 ℓ̄(M

δ
)
]

∧ σ2Mℓ̄( 1
δ
)

D-ℓq B0(D) ∩ Bq(R)
[

σ2−q(RB)q
[

ℓ̄
(

M
δ

(

σ
RB

)q)]
2−q
2 ∨ σ2 ℓ̄(M

δ
)
]

∧ σ2Dℓ̄( M
δD

)

Theorem 5. Fix, M ≥ 3, n ≥ 1, D ∈ [M ], B ≥ 1, q ∈ (0, 1), R > 0 and
δ ∈ (0, 1). Moreover, fix µ1, . . . , µM ∈ R

n such that maxj ‖µj‖2 ≤ B2. Then,
for λ = 20σ2, the Q-aggregate estimator µ̂Q satisfies the following oracle in-
equalities simultaneously with probability at least 1 − δ. For any Θ ∈ {B0(1) ∩
B1(1),B1(1),R

M ,B0(D),B0(D) ∩ B1(1),Bq(R),B0(D) ∩ Bq(R)}, it holds

‖µ̂Q − µ‖2 ≤ min
θ∈Θ

‖µθ − µ‖2 + CΥn,M (Θ) , C > 0 . (3.11)

where Υn,M (Θ) is defined in Table 1.

Note that the rates in Table 1 are optimal in the sense of [Tsy03] for the
most interesting ranges of parameters. Indeed, they match the most general
lower bounds of [RT11,RWY11,WPGY11] apart from minor discrepancies that
can be erased by placing appropriate assumptions on the range of parameters
considered. It is not hard to see from our proofs where the ambiant dimension
M can be replaced by the dimension of the linear span of µ1, . . . µM should
appear in these bounds [RT11]. Since this is not the main focus of our paper,
we choose not to have this dependence explicit in our bounds but in view of the
similarity of our proof techniques and that of [RT11], it is clear that it can be
made explicit whenever appropriate by a simple modification of the prior π.

Appendix A: Proofs of the main theorems

The following lemma is key to both of our theorems. It allows us to control the
deviation of the empirical risk of any aggregate µθ̂ around its true risk.

Lemma A.1. Fix λ ≥ 12V σ2. Let µθ̂ =
∑

k∈[M ] θ̂kµ̂k, where θ̂ ∈ ΛM is any

measurable function of Y . Then, for any j ∈ [M ] we have the following inequality
with probability at least 1− δ,

2〈ξ, µθ̂ − µ̂j〉 − λK(θ̂, π)−
∑

k∈[M ]

θ̂kCk −
8σ2

λ

∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2 ≤ λ log
(1

δ

)

.



Aggregation of affine estimators 315

Moreover,

E

[

2〈ξ, µθ̂ − µ̂j〉 − λK(θ̂, π)−
∑

k∈[M ]

θ̂kCk −
8σ2

λ

∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2
]

≤ 0 .

Proof. Let ∆j = 2〈ξ, µθ̂ − µ̂j〉 − λK(θ̂, π)−∑

k∈[M ] θ̂kCk. Then we have

E

[

exp
(∆j

λ
− 8σ2

λ2

∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2
)]

= E

[

exp
(

∑

k∈[M ]

θ̂k
( 2

λ
〈ξ, µ̂k − µ̂j〉 − log

( θ̂k
πk

)

− Ck

λ
− 8σ2

λ2
‖µ̂k − µ̂j‖2

)

)]

≤ E

[

∑

k∈[M ]

θ̂k exp
( 2

λ
〈ξ, µ̂k − µ̂j〉 − log

( θ̂k
πk

)

− Ck

λ
− 8σ2

λ2
‖µ̂k − µ̂j‖2

)

)]

(Jensen’s inequality)

= E

[

∑

k∈[M ]

πk exp
( 2

λ
〈ξ, µ̂k − µ̂j〉 −

Ck

λ
− 8σ2

λ2
‖µ̂k − µ̂j‖2

)]

(A.1)

Observe now that the decomposition (2.1) implies that µ̂k − µ̂j = Bkξ + vk
where Bk = Ak −Aj and vk = Bkµ+ bk − bj . It yields

2

λ
〈ξ, µ̂k − µ̂j〉 −

8σ2

λ2
‖µ̂k − µ̂j‖2 =

ξ⊤
[ 2

λ
Bk −

8σ2

λ2
B⊤

k Bk

]

ξ + ξ⊤
[ 2

λ
In − 16σ2

λ2
B⊤

k

]

vk − 8σ2

λ2
‖vk‖2 , (A.2)

where In denotes the identity matrix of Rn. Next, using the symmetry of Bk

together with the Cauchy-Schwarz inequality, we get

E

[

exp
(

ξ⊤
[ 2

λ
Bk −

8σ2

λ2
B2

k

]

ξ + ξ⊤
[ 2

λ
In − 16σ2

λ2
Bk

]

vk

)]

≤
√

P1 · P2 ,

where,

P1 = E

[

exp
(

ξ⊤
[ 4

λ
Bk −

16σ2

λ2
B2

k

]

ξ
)]

,

and

P2 = E

[

exp
(

ξ⊤
[ 4

λ
In − 32σ2

λ2
Bk

]

vk

)]

.

To bound P1, observe that since Aj and B2
k both have nonnegative eigenvalues,

it holds

ξ⊤
[ 4

λ
Bk −

16σ2

λ2
B2

k

]

ξ ≤ 4

λ
ξ⊤Akξ =

4

λ
(Ukξ)

⊤Dk(Ukξ)

where Ak = U⊤
k DkUk is the singular value decomposition of Ak. In particular,

the matrix Uk is orthogonal so that Zk = Ukξ/σ ∼ N (0, In). Applying now
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Lemma C.1 yields

E

[

exp
(4σ2

λ
Z⊤
k DkZk

)

]

≤ exp
(4σ2

λ
Tr(Dk) +

16σ4 Tr(D2
k)

λ2 − 8λσ2‖Dk‖op
)

≤ exp
(4σ2

λ
Tr(Dk)

(

1 +
4σ2V

λ− 8σ2V

)

)

,

where in the second inequality, we used the following inequalities:

Tr(D2
k) ≤ Tr(Dk)‖Dk‖op , ‖Dk‖op ≤ V .

Taking now λ ≥ 12σ2V yields

1 +
4σ2V

λ− 8σ2V
≤ 2

so that
√
P1 ≤ exp(Ck/λ), where we recall that Ck = 4σ2 Tr(Ak) is defined

in (2.5).
We now bound P2. To that end, observe that it follows from standard prop-

erties of the moment generating function of ξ, (see, e.g., [Rig12, Lemma 6.1])
that

P2 ≤ exp
(8σ2

λ2

∥

∥

∥

(

In − 8σ2

λ
Bk

)

vk

∥

∥

∥

2)

Observe now that the eigenvalues of Bk belong to [−V, V ] the eigenvalues of

In − 8σ2

λ Bk are in [0, 2] as long as λ ≥ 8σ2V . In particular, for λ ≥ 12σ2V as
above, we get

√

P2 ≤ exp
(8σ2

λ2
‖vk‖2

)

The bounds on
√
P1 and

√
P2 together with (A.1) and (A.2) yield

E

[

exp
(∆j

λ
− 8σ2

λ2

∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2
)]

≤ 1

The two statements of the lemma follow easily from this bound on the mo-
ment generating function using the same arguments as in [Rig12, Theorem 3.1].
Specifically, the statement with high probability follows from a Chernoff bound
and the statement in expectation follows from the inequality t ≤ et − 1.

A.1. Proof of Theorem 1

For any θ ∈ ΛM , define

Ŝ(θ) = ν
∑

k∈[M ]

θk‖Y − µ̂k‖22 + (1 − ν)‖Y − µθ‖22 ,

S(θ) = ν
∑

k∈[M ]

θk‖µ− µ̂k‖22 + (1− ν)‖µ− µθ‖22 .
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and observe that

Ŝ(θ)− S(θ) = ‖Y ‖22 − ‖µ‖22 − 2〈ξ, µθ〉 .

It follows from the definition (2.4) of θ̂, that for any θ ∈ ΛM , it holds

Ŝ(θ̂) +
∑

k∈[M ]

θ̂kCk + λK(θ̂, π) ≤ Ŝ(θ) +
∑

k∈[M ]

θkCk + λK(θ, π) .

The above two displays yield that

S(θ̂)− S(θ) ≤
∑

k∈[M ]

(θk − θ̂k)Ck + 2〈ξ, µ̂Q − µθ〉+ λK(θ, π) − λK(θ̂, π) . (A.3)

Observe first that

S(θ̂)− S(θ) = (1− ν)
[

‖µ− µ̂Q‖2 − ‖µ− µθ‖2
]

+ ν
∑

k∈[M ]

(θ̂k − θk)‖µ− µ̂k‖2 .

Fix β ∈ (0, 1) and take θ = (1 − β)θ̂ + βej where ej denotes the jth vector of
the canonical basis of RM . It yields

‖µ− µ̂Q‖2 − ‖µ− µθ‖2 = β
[

‖µ− µ̂Q‖2 − ‖µ− µ̂j‖2
]

+ β(1− β)‖µ̂Q − µ̂j‖2 .

so that

1

β

[

S(θ̂)− S(θ)
]

=(1− ν)
[

‖µ− µ̂Q‖2 − ‖µ− µ̂j‖2
]

+ (1− ν)(1 − β)‖µ̂Q − µ̂j‖2

+ ν
∑

k∈[M ]

θ̂k‖µ− µ̂k‖2 − ν‖µ− µ̂j‖2 .

Together with the identity

∑

k∈[M ]

θ̂k‖m− µ̂k‖2 =
∑

k∈[M ]

θ̂k‖µ̂Q − µ̂k‖2 + ‖µ̂Q −m‖2 , (A.4)

applied for m = µ̂j and m = µ respectively, it yields

1

β

[

S(θ̂)− S(θ)
]

= ‖µ− µ̂Q‖2 − ‖µ− µ̂j‖2 + (1 − ν)(1− β)
∑

k∈[M ]

θ̂k‖µ̂j − µ̂k‖2

+
(

ν − (1− ν)(1 − β)
)

∑

k∈[M ]

θ̂k‖µ̂Q − µ̂k‖2 . (A.5)

Next, observe that,

2〈ξ, µ̂Q − µθ〉 = 2β〈ξ, µ̂Q − µ̂j〉 ,
∑

k∈[M ]

(θk − θ̂k)Ck = β
[

Cj −
∑

k∈[M ]

θ̂kCk

]

,
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and by convexity,

K(θ, π) ≤ (1 − β)K(θ̂, π) + β log
( 1

πj

)

.

Substituting the above expressions into (A.3), together with (A.5) yields that

‖µ− µ̂Q‖2−‖µ− µ̂j‖2

≤ ∆j + Cj + λ log
( 1

πj

)

− (1− ν)(1 − β)
∑

k∈[M ]

θ̂k‖µ̂j − µ̂k‖2

−
(

ν − (1− ν)(1 − β)
)

∑

k∈[M ]

θ̂k‖µ̂Q − µ̂k‖2

where
∆j = 2〈ξ, µ̂Q − µ̂j〉 − λK(θ̂, π)−

∑

k∈[M ]

θ̂kCk

as in the proof of Lemma A.1. Letting β → 0 yields

‖µ− µ̂Q‖2 − ‖µ− µ̂j‖2

≤ ∆j + Cj + λ log
( 1

πj

)

− (1− ν)
∑

k∈[M ]

θ̂k‖µ̂j − µ̂k‖2 + (1− 2ν)
∑

k∈[M ]

θ̂k‖µ̂Q − µ̂k‖2

≤ ∆j + Cj + λ log
( 1

πj

)

−min(ν, 1− ν)
∑

k∈[M ]

θ̂k‖µ̂j − µ̂k‖2 ,

where the second inequality comes from (A.4) with m = µ̂j when ν ≤ 1−ν (the
case ν ≥ 1− ν is trivial). It follows from Lemma A.1 that

∆j ≤
8σ2

λ

∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2 + λ log
( 1

δπj

)

with probability at least 1− δ simultaneously for all j when λ ≥ 12V σ2. Thus,

taking λ ≥ 8σ2

min(ν,1−ν,2/(3V )) , completes the proof of (2.7). The proof of (2.8)

follows by replacing the last display with the corresponding bound in expectation
from Lemma A.1.

A.2. Proof of Theorem 2

For any θ ∈ ΛM , define

Ŝ(θ) =
∑

k∈[M ]

θk‖Y − µ̂k‖2, S(θ) =
∑

k∈[M ]

θk‖µ− µ̂k‖2,
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and observe that

Ŝ(θ)− S(θ) = ‖Y ‖2 − ‖µ‖2 − 2〈ξ,
∑

k∈[M ]

θkµ̂k〉. (A.6)

It follows from the definition (2.9) of θ̂, that for any j ∈ [M ], it holds

Ŝ(θ̂) + λK(θ̂, π) ≤ Ŝ(ej) + λ log(
1

πj
) + Cj −

∑

k∈[M ]

θ̂kCk ,

where ej denotes the jth vector of the canonical basis of RM . Together with

(A.6) applied with θ = θ̂ and θ = ej respectively, and the identity
∑

k∈[M ]

θ̂k‖µ− µ̂k‖2 = ‖µ− µ̂EW‖2 +
∑

k∈[M ]

θ̂k‖µ̂k − µ̂EW‖2,

it yields that for any j ∈ [M ], we have

‖µ− µ̂EW‖2 ≤ ‖µ− µ̂j‖2 + λ log
( 1

πj

)

+Cj −
∑

k∈[M ]

θ̂k‖µ̂k − µ̂EW‖2 +∆j , (A.7)

where ∆j = 2〈ξ, µ̂EW − µ̂j〉 − λK(θ̂, π)−∑

k∈[M ] θ̂kCk.

For any λ ≥ 12V σ2, δ > 0, Lemma A.1 yields that

∆j ≤
8σ2

λ

∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2 + λ log
( 1

δπj

)

,

with probability at least 1− δπj . Together with (A.7) the identity
∑

k∈[M ]

θ̂k‖µ̂k − µ̂j‖2 =
∑

k∈[M ]

θ̂k‖µ̂k − µ̂EW‖2 + ‖µ̂EW − µ̂j‖2,

it yields

‖µ− µ̂EW‖2 ≤ ‖µ− µ̂j‖2 +
8σ2

λ
‖µ̂j − µEW‖2 + λ log

( 1

δπ2
j

)

+ Cj

+
(8σ2

λ
− 1

)

∑

k∈[M ]

θ̂k‖µ̂k − µ̂EW‖2 .

Recall that our assumptions imply that λ > 16σ2 so that

(

1− 16σ2

λ

)

‖µ− µ̂EW‖2 ≤ (1 +
16σ2

λ
)‖µ− µ̂j‖2 + λ log

( 1

δπ2
j

)

+ Cj . (A.8)

Next, observe that (1 − x)−1 = 1 + x(1 − x)−1 ≤ 1 + 4x/3 for x ∈ (0, 1/4) so,
for λ ≥ 64σ2, we get

‖µ− µ̂EW‖2 ≤
(

1 +
128σ2

3λ

)

‖µ− µ̂j‖2 +
8λ

3
log

( 1

δπj

)

+
4Cj

3
.

The proof is concluded by a union bound.
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A.3. Proof of Theorem 3

Let β̄ ∈ R
p realize the minimum in the right-hand side of (3.2) and let J̄ ⊂ [p]

denote the support of β̄. On the one hand, it follows from the Pythagorean
identity that

‖µ̂J̄ − µ‖2 = ‖AJ̄Y − µ‖2 = ‖AJ̄µ− µ‖2 + ‖AJ̄ξ‖2

Next, since ‖AJ̄ξ‖2 ∼ σ2χ2
Rk(XJ̄ )

, if follows from Lemma C.1 together with the

inequality 2
√
ab ≤ a+ b valid for a, b > 0 that with probability at least 1− δ/2,

we have

‖AJ̄ξ‖2 ≤ 2σ2 Rk(XJ̄ ) + 3σ2 log(2/δ) ≤ 2σ2|β̄|0 + 3σ2 log(2/δ) .

On the other hand, we get from Theorem 1 that with probability at least 1−δ/2,
it holds

‖µ̂Q − µ‖2 ≤ ‖µ̂J̄ − µ‖2 + CJ̄ + 2λ log
( 2

πJ̄δ

)

.

It can be shown [RT12] that

log(π−1
J̄

) ≤ 2|J̄ | log
( ep

|J̄ |
)

+
1

2
≤ 2|β̄|0 log

( ep

|β̄|0
)

+
1

2
.

and we also have that CJ̄ = 4σ2 Rk(XJ̄ ) ≤ 4σ2|β̄|0.
Putting everything together yields that with probability at least 1 − δ, it

holds

‖µ̂Q − µ‖2 ≤ ‖AJ̄µ− µ‖2 + 6σ2|β̄|0 + 4λ|β̄|0 log
( ep

|β̄|0
)

+ λ+ (3σ2 + 2λ) log(2/δ)

≤ ‖AJ̄µ− µ‖2 +
(

5λ+ 6σ2
)

|β̄|0 log
( 2ep

|β̄|0δ
)

.

To conclude the proof of (3.2), it suffices to observe that ‖AJ̄µ−µ‖2 ≤ ‖Xβ̄−µ‖2.
The proof of (3.3) follows along the same lines.

A.4. Proof of Theorem 5

Replacing β by θ and Xj by µj in the proof of Theorem 3 leads to

‖µ̂Q − µ‖2 ≤ min
θ∈RM

{

‖µθ − µ‖2 + 78σ2|θ|0 log
(2eM

|θ|0δ
)}

.

The above display combined with Lemma 1 yields that for any q ∈ (0, 1), R > 0,

‖µ̂Q − µ‖2 ≤ min
θ∈RM

{

‖µθ − µ‖2 + 78σ2|θ|0 log
(2eM

|θ|0δ
)

∧ ϕq,M (θ; 9σ,B)
}

,
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where the function ϕq,M is defined in (3.7). To complete the proof, if suffices that
for any Θ ∈ {B0(1) ∩ B1(1),B1(1),R

M ,B0(D),B0(D) ∩ B1(1),Bq(R),B0(D) ∩
Bq(R)}, there exists q ∈ (0, 1) and R > 0 such that

sup
θ∈Θ

{

66σ2|θ|0 log
(2eM

|θ|0δ
)

∧ ϕq,M (θ; 9σ,B)
}

≤ C∆n,M (Θ) .

In the rest of the proof, we treat each case separately. To that ends, write

ψ(θ) = 78σ2|θ|0 log
(2eM

|θ|0δ
)

∧ ϕq,M (θ; 9σ,B) .

Model Selection aggregation. If Θ = B0(1), observe that for any θ ∈ Θ,

ψ(θ) ≤ 78σ2|θ|0 log
(2eM

|θ|0δ
)

≤ 78σ2 log(
2eM

δ
) .

ℓq and convex aggregation. If Θ = Bq(R) (and in particular, Θ = B1(1)
for convex aggregation), observe that for any θ ∈ Θ,

ψ(θ) ≤ 78σ2M log(2e/δ) ∧ ϕq,M (θ; 9σ,B)

≤
[

17(9σ)2−qRqBq
[

log
(eM

δ

( 9σ

BR

)q
)]1− q

2 ∨ 198σ2 log
(eM

δ

)

]

∧ 78σ2M log
(2e

δ

)

.

Linear aggregation. If Θ = R
M , observe that for any θ ∈ Θ,

ψ(θ) ≤ 78σ2|θ|0 log
(2eM

|θ|0δ
)

≤ 78σ2M log
(2e

δ

)

.

D-linear aggregation. If Θ = B0(D), observe that for any θ ∈ Θ,

ψ(θ) ≤ 78σ2|θ|0 log
(2eM

|θ|0δ
)

≤ 78σ2D log
(2eM

Dδ

)

.

D-convex aggregation. If Θ = B0(D) ∩ B1(1), observe that for any θ ∈ Θ,

ψ(θ) ≤ 78σ2|θ|0 log
(2eM

|θ|0δ
)

∧ ϕ1,M (θ; 9σ,B)

≤
[

153σB
[

log
(9eMσ

δB

)]
1

2 ∨ 198σ2 log
(eM

δ

)

]

∧ 78σ2D log
(2eM

Dδ

)

.

D-ℓq and D-convex aggregation. If Θ = B0(D)∩Bq(R) (and in particular,
q = 1, R = 1 for convex aggregation), observe that for any θ ∈ Θ,

ψ(θ) ≤ 78σ2|θ|0 log
(2eM

|θ|0δ
)

∧ ϕq,M (θ; 9σ,B)

≤
[

17(9σ)2−qRqBq
[

log
(eM

δ

( 9σ

BR

)q
)]1− q

2 ∨ 198σ2 log
(eM

δ

)

]

∧ 78σ2D log
(2eM

Dδ

)

.
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Appendix B: A generalized Maurey argument

B.1. Decay of coefficients on ℓq-balls

For any q > 0, θ ∈ R
M , recall that |θ|q denotes the ℓq-norm of θ and is defined

by

|θ|q =
(

∑

j∈[M ]

|θj |q
)

1

q

.

It is known [Joh11] that if q < 1, such balls contain sparse signals, in the sense
that their coefficients decay at a certain polynomial rate. This is quantified by
the following lemma that yields a much sharper result than the one obtained
using weak ℓq-balls, especially for q close to 1.

Lemma B.1. Fix R > 0 and q ∈ (0, 1). For any θ ∈ Bq(R), let |θ(1)| ≥
. . . ≥ |θ(M)| denote a non-increasing rearrangement of the absolute values of the
coefficients of θ. Then for any integer m such that 1 ≤ m ≤M , it holds

M
∑

j=m+1

|θ(j)| ≤ |θ|qm1− 1

q .

Proof. Let {vj}j≥1 be an infinite sequence such that vj = |θ(j)| for j ∈ [M ]
and vj = 0 for j ≥ M + 1. Next for any k ≥ 0, let Bk denote the block of m
consecutive integers defined by Bk = {km+ 1, . . . , (k + 1)m} and observe that

M
∑

j=m+1

|θ(j)| =
∑

j≥m+1

vj =
∑

k≥1

∑

j∈Bk

vj =
∑

k≥1

∑

j∈Bk

(vqj )
1

q

≤
∑

k≥1

∑

j∈Bk

( 1

m

∑

i∈Bk−1

vqi

)
1

q

= m1− 1

q

∑

k≥1

(

∑

i∈Bk−1

vqi

)
1

q

≤ m1− 1

q

(

∑

k≥1

∑

i∈Bk−1

vqi

)
1

q

= |θ|qm1− 1

q ,

where in the last inequality, we use the fact that ap + bp ≤ (a + b)p for any
a, b > 0, p ≥ 1.

B.2. Proof of Lemma 1

We begin by an approximation bound a la Maurey on ℓq balls.
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Lemma B.2. Let µ1, . . . , µM ∈ R
M be such that maxj ‖µj‖2 ≤ B2. Then for

any µ ∈ R
M , any q, θ, and any positive integer m ≤M/2, there exists θm ∈ R

M

such that |θm|0 ≤ 2m and

‖µθm − µ‖2 ≤ ‖µθ − µ‖2 +B2|θ|2qm1− 2

q . (B.9)

Proof. Fix q ∈ (0, 1] and θ ∈ R
M . Denote by |θ(1)| ≥ . . . ≥ |θ(M)| ≥ 0 a non-

decreasing rearrangement of the absolute value of the coordinates of θ. Next,
decompose the vector θ into θ = α + β so that µθ = µα + µβ , where α and β
have disjoint support and α ∈ B0(m) is supported by the m indices with the
largest absolute coordinates of θ. Since θ ∈ Bq, it follows form Lemma B.1 that
the ℓ1-norm of β = θ − α satisfies

|β|1 =
M
∑

j=m+1

|θ(j)| ≤ |θ|qm1− 1

q =: r .

Therefore, β ∈ rB1. We now use Maurey’s empirical method [Pis81] to find a
m-sparse approximate of µβ . Define a random vector U ∈ R

M with values in
{0,±rµ1, . . . ,±rµM} by P [U = rsign(βi)µi] = |βi|/r and P [U = 0] = 1−|β|1/r.
Let U1, . . . , Um be i.i.d. copies of U and notice that E[U ] = µβ and ‖U‖ ≤
rmaxj ‖µj‖ ≤ rB. It yields,

E‖µ− µα − 1

m

m
∑

i=1

Ui‖2 = ‖µ− µθ‖2 +
E‖U − EU‖2

m
≤ ‖µ− µθ‖2 +

(rB)2

m
.

Therefore there exists some realization µθm of the random vector µα+
1
m

∑m
i=1 Ui

for which (B.9) holds and |θm|0 ≤ 2m.

We now return to the proof of Lemma 1. Define

A = min
θ∈RM

{

‖µθ − µ‖2 + ν2|θ|0 log
(2eM

|θ|0δ
)

}

.

Fix θ ∈ R
M and define m = ⌈x⌉ where

x =
Bq|θ|qq
νq

[log
( eMνq

Bq|θ|qqδ
)

]−
q

2 > 0,

First, if m > |θ|0/2, we use the simple bound

A ≤ ‖µθ − µ‖2 + ν2|θ|0 log
(2eM

|θ|0δ
)

≤ ‖µθ − µ‖2 + 2ν2m log
(eM

mδ

)

.

Next, if m ≤ |θ|0/2, it follows from Lemma B.2 that there exists θm such that
|θm|0 ≤ 2m and

A ≤ ‖µθm − µ‖2 + 2ν2m log
(eM

mδ

)

≤ ‖µθ − µ‖2 + 2ν2m log
(eM

mδ

)

+B2|θ|2qm1− 2

q .
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Therefore, whether m > |θ|0/2 or m ≤ |θ|0/2, it holds for any θ ∈ R
M ,

A ≤ ‖µθ − µ‖2 + 2ν2m log
(eM

mδ

)

+B2|θ|2qm1− 2

q . (B.10)

To control the right-hand side of (B.10), consider two cases for the value of x.
Case 1: If x < 1, we have m = 1 and we will show B2|θ|2q ≤ ν2 log(eM/δ).
Indeed, if B|θ|q ≤ ν, then this bound holds trivially and if B|θ|q ≥ ν, then
x ≥ (B|θ|q/ν)q[log(eM/δ)]−

q

2 . Together with x < 1, the last inequality implies
that B2|θ|2q ≤ ν2 log(eM/δ). Therefore, in Case 1, we have

A ≤ ‖µθ − µ‖2 + 3ν2(eM/δ).

Case 2:If x ≥ 1, then x ≤ m ≤ 2x. Together with the fact that log
(

t log(t)
)

≤
2 log(t), for any t > 0, it yields

2ν2m log
(eM

mδ

)

+B2|θ|2qm1− 2

q ≤ 4ν2x log
(eM

2xδ

)

+B2|θ|2qx1−
2

q

≤ 16ν2−qBq|θ|qq
[

log
( eMνq

Bq|θ|qqδ
)

]1− q

2

+ ν2−qBq|θ|qq
[

log
( eMνq

Bq|θ|qqδ
)

]1− q

2

≤ 17ν2−qBq|θ|qq
[

log
( eMνq

Bq|θ|qqδ
)

]1− q

2

.

Putting the two cases together with (B.10), we get that

A ≤ min
θ∈RM

{

‖µθ − µ‖2 + ϕq,M (θ; ν,B)
}

,

where

ϕq,M (θ; ν,B) = 3ν2 log
(eM

δ

)

∨ 17ν2−qBq|θ|qq
[

log
( eMνq

Bq|θ|qqδ
)

]1− q

2

.

Appendix C: Technical lemmas

C.1. Deviations of a χ2 distribution

Let us first recall Lemma 1 of [LM00] in a form that is adapted to our purpose.
We omit its proof.

Lemma C.1. Suppose (Z1, · · · , Zk) are i.i.d. standard Gaussian random vari-
ables. Let a1, · · · , ak be nonnegative numbers and define |a|∞ = maxi∈[k] ai,

|a|22 =
∑k

i=1 a
2
i . Let

S =

k
∑

i=1

ai(Z
2
i − 1).

Then for any u such that 0 < 2|a|∞u < 1, it holds

E [exp (uS)] ≤ exp
( |a|22u2
1− 2|a|∞u

)

.

and for any t > 0,
P(S > 2|a|2

√
t+ 2|a|∞t) ≤ e−t .
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