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Abstract. In this paper, we first introduce a new thinning operator and derive
some of its properties. Then, by using the thinning operator we define a new
stationary time series with discrete Laplace marginal distributions with either
positive or negative lag-one autocorrelation. We show that this time series is
distributed as the difference of two independent NGINAR(1) time series and,
using this fact, we discuss some of its properties. The Yule–Walker estimators
for the unknown parameters are derived and their asymptotic properties are
discussed.

1 Introduction

In many real-life situations, there are time series which represent data obtained
from significantly correlated systems and which may consist of integer values in-
cluding both, positive and negative numbers. These data may be the differences of
two non-negative integer-valued counting processes. For example, the researcher
may be interested in comparing the counting results of the same criminal activities
in two town districts, simultaneously. Regarding this, the interactions among the
population elements, which may result in newly generated random events (crimes,
in this case), could be handled by implementation of a geometrically distributed
counting sequence, as it was done in Ristić and Nastić (2012). On the other hand,
possible negative values of the observed process may be obtained by using, in cer-
tain way, the difference of two thinning operators and producing, as one of the
results of this paper, a new thinning operator which is similarly constructed as in
Freeland (2010). Besides this one, there may be many other possible applications
of this kind of model. One of them may be the modeling a series of steps up and
down, corresponding respectively to the positive and negative values of an arbi-
trary non-negative integer-valued counting process.

Integer-valued time series model with signed thinning operator have been con-
sidered by many authors. Kim and Park (2008) defined the signed binomial thin-
ning operator α� as

α � X = sgn(α) sgn(X)

|X|∑
j=1

Wj(α),
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where {Wj(α)} represents a sequence of independent and identically Bernoulli
distributed random variables with parameter |α|, α ∈ [−1,1], and sgn(x) is the
sign function. Then they used the introduced signed binomial thinning operator to
introduce the signed integer-valued autoregressive model of the order p as

Xt =
p∑

i=1

αi � Xt−i + εt , t ∈ Z, (1.1)

where {εt } is a sequence of independent and identically distributed random vari-
ables with mean με and variance σ 2

ε , αi ∈ [−1,1] for i = 1,2, . . . , p, the random
variables εt are uncorrelated with random variable Xt−i for i ≥ 1, and the counting
series incorporated in αi� are mutually independent. Zhang et al. (2010) general-
ized the signed binomial thinning operator of Kim and Park (2008) and introduced
the generalized signed operator in the following way

α � X = sgn(α) sgn(X)

|X|∑
j=1

W
(i)
j (α),

where {W(i)
j (α)} represents a sequence of independent and identically general-

ized power series distributed random variables with mean |αi | and variance βi ,
αi ∈ [−1,1], and sgn(x) is the sign function. The signed integer-valued autoregres-
sive model with this generalized signed thinning operator was defined similarly as
model given in (1.1). A random coefficient version of the signed integer-valued
autoregressive model can be found in Wang and Zhang (2010). Some other results
about the signed integer-valued autoregressive model can be found in Kachour and
Truquet (2011), Chesneau and Kachour (2012) and Truquet and Yao (2012).

Anyway, using an integer-valued AR model based on a new thinning operator
in the corresponding data analysis might be a considerably challenging task. One
such model will be introduced in Section 2 of this article. In Section 3, we will
present its properties. Estimation methods of the unknown model parameters and
usage of the obtained procedures on simulated time series will be considered in
Section 4.

2 Construction of the model

In this section, we will construct a stationary integer-valued autoregressive process
with discrete Laplace distribution and with either positive or negative lag-one au-
tocorrelation. Before introducing the process, we begin with the definition of the
discrete Laplace distribution introduced by Inusah and Kozubowski (2006). We
say that a random variable X has the discrete Laplace distribution with parameter
p ∈ (0,1), if its probability mass function is given by

P(X = x) = 1 − p

1 + p
p|x|, x ∈ Z. (2.1)
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Let us denote this distribution as DL(p). Inusah and Kozubowski (2006) have
shown that a random variable X with the DL(p) distribution can be represented
as the difference of two independent geometric distributed random variables with
parameter p, supported on the set {0,1,2, . . .}. In our paper, instead of considering
the random variable X with the DL(p) distribution, we will consider the random
variable X with the DL(μ/(1 + μ)) distribution, where μ > 0 will be the mean of
the geometric distribution. Then (2.1) can be represented as

P(X = x) = 1

1 + 2μ

(
μ

1 + μ

)|x|
, x ∈ Z,μ > 0. (2.2)

Let us first introduce the result of Kozubowski and Inusah (2006) about the skew
discrete Laplace distribution. This result will be used to obtain the distribution of
the innovation sequence of our process.

Theorem 2.1. Let X and Y be two independent random variables with Geom(μ/

(1 + μ)) and Geom(ν/(1 + ν)) distributions, μ > 0, ν > 0, respectively. Then the
random variable Z = X − Y has probability mass function given by

P(Z = z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + ν + μ

(
μ

1 + μ

)z

, z ≥ 0,

1

1 + ν + μ

(
ν

1 + ν

)−z

, z < 0.

(2.3)

We will say that a random variable with probability mass function given by (2.3)
has the skew discrete Laplace distribution with two parameters μ > 0 and ν > 0
and we will denote it as SDL(μ/(1 + μ), ν/(1 + ν)).

The characteristic function of a random variable with SDL(μ/(1 + μ), ν/(1 +
ν)) distribution can be easily obtained and it is given by ϕZ(t) ≡ E(eitZ) =
(1 + μ − μeit )−1(1 + ν − νe−it )−1, t ∈ R. Then, the expectation and variance of
the random variable Z with the skew discrete Laplace distribution with the param-
eters μ > 0 and ν > 0 are E(Z) = μ − ν and Var(Z) = μ(1 + μ) + ν(1 + ν),
respectively.

2.1 Construction of the new thinning operator �
Let us first define a new thinning operator denoted by �. We will use a similar
approach to Freeland (2010) with exception that we consider the negative bino-
mial thinning operator α∗. The negative binomial thinning operator α∗ was intro-
duced by Ristić et al. (2009) as α ∗ X = ∑X

i=1 Wi , where {Wi} is a sequence of
independent and identically distributed random variables with Geom(α/(1 + α)),
α ∈ [0,1), and Wi and X are independent for all i ≥ 1. Let Zn−1 be a random
variable with discrete Laplace distribution DL(μ/(1 + μ)), μ > 0, given by (2.2).
Let Xn−1 and Yn−1 be two independent random variables with Geom(μ/(1 + μ))
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distributions. Then Zn−1
d= Xn−1 − Yn−1 according to Theorem 2.1. We define a

new thinning operator � as

(α � Zn−1)|Zn−1
d= (α ∗ Xn−1 − α ∗ Yn−1)|(Xn−1 − Yn−1), (2.4)

where the counting series in α ∗ Xn−1 and α ∗ Yn−1 are mutually independent
random variables with Geom(α/(1 + α)) distributions. Another thinning opera-
tor with the skew discrete Laplace distribution is introduced in Barreto-Souza and
Bourguignon (2013). In this manuscript, the authors introduced the thinning oper-

ator � as α � Zn−1
d= α ∗ Xn−1 − α ∗ Yn−1, where {Xn,n ≥ 0} and {Yn,n ≥ 0}

are two independent NGINAR(1) processes with geometric marginal distributions
and with means μ1 > 0 and μ2 > 0, respectively.

As the first result, we derive the conditional probability of the random variable
α � Zn−1 for given Zn−1, that is, we derive the probabilities gα(j, k) ≡ P(α �
Zn−1 = j |Zn−1 = k) for j, k ∈ Z. Let us consider the case j ≥ 0 and k ≥ 0. To
simplify the expression, let pα(j, k, l) ≡ P(α ∗ Xn−1 − α ∗ Yn−1 = j |Xn−1 = l +
k,Yn−1 = l). Then from the definition of the new thinning operator (2.4) and since
the random variables Xn−1, Yn−1 and Zn−1 have Geom(μ/(1+μ)), Geom(μ/(1+
μ)) and DL(μ/(1 + μ)) distributions, respectively, we have that

gα(j, k) = 1 + 2μ

(1 + μ)2

∞∑
l=0

pα(j, k, l)

(
μ

1 + μ

)2l

. (2.5)

By using the fact that the random variables α ∗ Xn−1|{Xn−1 = k + l} and α ∗
Yn−1|{Yn−1 = l} have NB(k + l, α/(1 + α)) and NB(l, α/(1 + α)) distributions,
respectively, we obtain that

pα(j, k, l) = αj

(1 + α)k+2l+j

(
j + k + l − 1

j

)

× 2F1

(
l, j + k + l; j + 1;

(
α

1 + α

)2)
, (2.6)

where 2F1(a, b; c; z) is the Gauss hypergeometric function defined as

2F1(a, b; c; z) =
∞∑

m=0

(a)m(b)m

(c)m

zm

m! , |z| < 1,

and (q)m is the Pochhammer symbol. Now, replacing (2.6) in (2.5), we obtain that

gα(j, k) = (1 + 2μ)αj

(1 + μ)2(1 + α)k+j

∞∑
l=0

(
μ

(1 + α)(1 + μ)

)2l
(
j + k + l − 1

j

)

× 2F1

(
l, j + k + l; j + 1;

(
α

1 + α

)2)
.
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Similarly, we can show that if j ≥ 0 and k < 0, then

gα(j, k) = (1 + 2μ)αj

(1 + μ)2(1 + α)−k+j

∞∑
l=0

(
μ

(1 + α)(1 + μ)

)2l
(
j + l − 1

j

)

× 2F1

(
l + j, l − k; j + 1;

(
α

1 + α

)2)
.

Finally, by using the above routines we obtain that in the case j < 0 we have
that gα(j, k) = gα(−j,−k), for k ∈ Z.

Let us now consider the characteristic function of the random variable α�Zn−1.
This is given by the following theorem.

Theorem 2.2. The characteristic function of a random variable α �Zn−1 is given
by

ϕ(t) = (1 + α − αeit )(1 + α − αe−it )

[1 + α(1 + μ) − α(1 + μ)eit ][1 + α(1 + μ) − α(1 + μ)e−it ] . (2.7)

The equation (2.7) also represents the characteristic function of the random
variable α ∗ Xn−1 − α ∗ Yn−1, where Xn−1 and Yn−1 are two independent and
identically distributed random variables with Geom(μ/(1 + μ)) distributions and
α∗ is the negative binomial thinning operator. Thus, we have the following result.

Corollary 2.1.

(a) α � Zn−1
d= α ∗ Xn−1 − α ∗ Yn−1;

(b) E(α � Zn−1) = 0;
(c) Var(α � Zn−1) = 2αμ(1 + 2α + αμ);

(d) 0 � Zn−1
d= 0;

(e) 1 � Zn−1
d�= Zn−1.

Conditional properties of the random variable α �Zn−1 for given Zn−1 follows
from the following theorem.

Theorem 2.3. The conditional expectation and conditional variance of the ran-
dom variable α � Zn−1 for given Zn−1 are respectively, given as

E(α � Zn−1|Zn−1) = αZn−1,
(2.8)

Var(α � Zn−1|Zn−1) = α(1 + α)|Zn−1| + 2α(1 + α)μ2

1 + 2μ
.

The following theorem gives another representation of the random variable α �
Zn−1 by the negative binomial thinning operator α∗.
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Theorem 2.4. Let Z, X and Y be random variables with DL(μ/(1 + μ)),
Geom(μ/(1 + μ)) and Geom(μ/(1 + μ)) distributions, respectively. Let {Dj ,
j ≥ 1} be a sequence of independent random variables with DL(α/(1 + α)) dis-
tributions and suppose that the random variables Z, X, Y , Dj , and the random
variables involved in α∗ are independent. Then

α � Z
d= sgn(Z)

(
α ∗ |Z|) +

min(X,Y )∑
j=1

Dj, (2.9)

where
∑min(X,Y )

j=1 Dj = 0 when min(X,Y ) = 0 and sgn(·) is the sign function.

It is interesting to note that the right-hand side of the equation (2.9) can be
interpreted as sum of two thinning operators. The first term in this equation repre-
sents the signed thinning operator introduced in Latour and Truquet (2008) whose
counting sequence has geometric distribution. The second term represents a thin-
ning operator whose counting sequence has discrete Laplace distribution and it is
applied on a random variable min(X,Y ) which represents a random variable with
geometric distribution with mean (μ/(1 + μ))2.

2.2 Construction of the model

Now, let us first introduce a stationary integer-valued autoregressive time series
with the discrete Laplace DL(μ/(1 + μ)) marginal distributions and with positive
autocorrelations. We define the stationary integer-valued autoregressive time series
{Zn,n ≥ 0} as

Zn = α � Zn−1 + en, n ≥ 1, (2.10)

where {en, n ≥ 1} is a sequence of independent and identically distributed (i.i.d.)
integer valued random variables such that Cov(en,Zn−l) = 0 for all l ≥ 1, the
thinning operator α� is the defined as in (2.4), and the counting series in α �
Zn−1 are independent random variables independent of Zn and em for all n and m.
We will denote this model as DLINAR(1) time series (Discrete Laplace INteger-
valued AutoRegressive time series of the first order).

First, we discuss the distribution of the random variable en. Its distribution is
given by the following theorem. Note that the condition α ∈ (0,μ/(1 + μ)] from
this theorem provides that the distribution of the random variable en is valid.
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Theorem 2.5. If α ∈ (0,μ/(1 + μ)], then the distribution of the random variable
en is given as

en
d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DL
(

μ

1 + μ

)
, w.p.

(
μ − α − αμ

μ − α

)2
,

SDL
(

μ

1 + μ
,

α

1 + α

)
, w.p.

αμ(μ − α − αμ)

(μ − α)2 ,

SDL
(

α

1 + α
,

μ

1 + μ

)
, w.p.

αμ(μ − α − αμ)

(μ − α)2 ,

DL
(

α

1 + α

)
, w.p.

(
αμ

μ − α

)2

.

From the above theorem follows an interesting conclusion which proof is omit-
ted since it is trivial.

Corollary 2.2. If α ∈ (0,μ/(1 + μ)], then en
d= εn − ηn, where εn and ηn are two

independent and identically distributed random variables with distribution given
as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Geom

(
μ

1 + μ

)
, w.p.

μ − α − αμ

μ − α
,

Geom
(

α

1 + α

)
, w.p.

αμ

μ − α
.

Remark 2.1. From Theorem 2.4, it follows that it is possible to construct a
stationary time series model with discrete Laplace marginal distributions which
is generated by the negative binomial thinning operator. Namely, we can con-
sider a stationary time series model {Zn} with discrete Laplace marginal distri-
butions given by Zn = sgn(Zn−1)(α ∗ |Zn−1|) + ξn, n ≥ 1, where {ξn} is given by
ξn = ∑min(X,Y )

j=1 Dj + en, the random variables X, Y and Dj are given in Theo-
rem 2.4 and the random variable en is given in Theorem 2.5.

Now, following the technique used in Freeland (2010), we introduce a stationary
integer-valued autoregressive time series with discrete Laplace DL(μ/(1 + μ))

marginal distributions and with negative lag-one autocorrelation. We define the
stationary integer-valued autoregressive time series {Zn,n ≥ 0} as

Zn = α � (−Zn−1) + en, n ≥ 1, (2.11)

where Zn−1
d= Xn−1 − Yn−1, α ∈ (0,μ/(1 + μ)], {en, n ≥ 1} is a sequence of in-

dependent and identically distributed (i.i.d.) integer valued random variables such

that Cov(en,Zn−l) = 0 for all l ≥ 1 and en
d= (−1)n(εn − ηn), for all n ≥ 0,

the thinning operator α� is the defined as in (2.4), and the counting series in
α � (−Zn−1) are independent random variables independent of Zn and em for all
n and m.
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3 Properties of the model

In this section, we derive and discuss some properties of DLINAR(1) time se-
ries. It is interesting to note that many properties of the DLINAR(1) time series
can be obtained by considering the difference of two independent NGINAR(1)

time series {Xn} and {Yn}. Ristić et al. (2009) introduced NGINAR(1) time series
model {Xn} as Xn = α ∗ Xn−1 + εn, n ≥ 1, where {Xn} is a stationary autore-
gressive model with Geom(μ/(1 + μ)) marginals, μ > 0, {εn} is a sequence of
independent and identically distributed random variables with distribution given
in Corollary 2.2, Xn−l and εn are independent for all l ≥ 1, and α∗ is the neg-
ative binomial thinning operator. Note that the NGINAR(1) time series model is
valid for α ∈ (0,μ/(1 + μ)]. Thus, let α ∈ (0,μ/(1 + μ)] and let {Xn} and {Yn}
be two independent NGINAR(1) time series given as Xn = α ∗ Xn−1 + εn and
Yn = α ∗ Yn−1 + ηn, where {εn} and {ηn} are mutually independent sequences of
independent and identically distributed random variables, εn and Xn−l are inde-
pendent for all l > 1, and ηn and Yn−l are independent for all l > 1. The marginal
distributions of the two NGINAR(1) time series are Geom(μ/(1 + μ)) distribu-
tions. Thus, from Corollaries 2.1 and 2.2, we obtain that

Xn − Yn = (α ∗ Xn−1 − α ∗ Yn−1) + (εn − ηn)
d= α � Zn−1 + en = Zn, (3.1)

that is, we obtain that Zn
d= Xn − Yn, for all n ≥ 0.

The following result is valid for DLINAR(1) time series model given either by
(2.10) or (2.11).

Theorem 3.1. The DLINAR(1) time series {Zn} is a strict stationary and ergodic
Markov process.

Theorem 3.2. The k-step ahead conditional mean for DLINAR(1) time se-
ries model given by (2.10) is given as E(Zn|Zn−k) = αkZn−k . The k-step ahead
conditional mean for DLINAR(1) time series model given by (2.11) is given as
E(Zn|Zn−k) = (−α)kZn−k .

Now, we have the following result.

Theorem 3.3. DLINAR(1) time series {Zn} given by (2.10) is positively corre-
lated time series with Corr(Zn,Zn−k) = αk , k ≥ 0.

Let us consider now the DLINAR(1) time series {Zn} given by (2.11). Let
α ∈ (0,μ/(1+μ)] and let {Xn} and {Yn} be two independent NGINAR(1) time se-
ries given as Xn = α ∗Xn−1 + εn and Yn = α ∗Yn−1 +ηn, where {εn} and {ηn} are
mutually independent sequences of independent and identically distributed ran-
dom variables, εn and Xn−l are independent for all l > 1, and ηn and Yn−l are
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independent for all l > 1. The marginal distributions of the two NGINAR(1) time

series are Geom(μ/(1 + μ)) distributions. Let Zn−1
d= Xn−1 − Yn−1. Thus, from

Corollaries 2.1 and 2.2, we obtain that

Yn − Xn = (α ∗ Yn−1 − α ∗ Xn−1) + (ηn − εn)
d= α � (−Zn−1) + en = Zn,

that is, we obtain that Zn
d= Yn − Xn when Zn−1

d= Xn−1 − Yn−1. Now, we have
the following result.

Theorem 3.4. DLINAR(1) time series {Zn} given by (2.11) is correlated time
series with Corr(Zn,Zn−k) = (−α)k , k ≥ 0.

In the next theorem, we give the MA(∞) representation of the DLINAR(1)

time series model given by (2.10). Similar result can be obtain for the DLINAR(1)

time series model given by (2.11).

Theorem 3.5. The DLINAR(1) time series {Zn} can be represented in distribution
as MA(∞) time series

Zn
d=

∞∑
j=0

α �(j) en−j , (3.2)

where α �(j) en−j
def= α ∗(j) εn−j − α ∗(j) ηn−j , α ∗(0) εn = εn, α ∗(0) ηn = ηn,

α ∗(j) εn−j
def= α ∗ (α ∗(j−1) εn−j ) and α ∗(j) ηn−j

def= α ∗ (α ∗(j−1) ηn−j ), j ≥ 1.

4 Estimation of the unknown parameters

In this section, we consider the estimation of the unknown parameters of the
DLINAR(1) time series {Zn} given by (2.10). Similar results can be obtained for
the DLINAR(1) time series {Zn} given by (2.11). Similarly, as in Freeland (2010)
we have that E(Zn|Zn−1) = αZn−1 which implies that by the conditional least
squares method of estimation only the parameter α can be estimated. Because of
that we will consider the estimation of the unknown parameters α and μ by the
Yule–Walker method of estimation. Let us suppose that we have a random sample
(Z1,Z2, . . . ,ZN) of size N . From Theorem 3.3, we have that Corr(Zn,Zn−1) = α

and since E(Zn) = 0, for n ≥ 0, we obtain that the Yule–Walker estimator of the
unknown parameter α is given by

α̂YW =
(

N∑
n=2

ZnZn−1

)(
N∑

n=1

Z2
n

)−1

. (4.1)
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The second parameter μ can be estimated by using the fact that E(Z2
n) = 2μ(1 +

μ). Thus solving this equation, we obtain that the Yule–Walker estimator of the
parameter μ is given by

μ̂YW = −1

2
+ 1

2

√√√√1 + 2

N

N∑
n=1

Z2
n. (4.2)

Let us now discuss the asymptotic properties of the estimators (4.1) and (4.2).
First, we start with the asymptotic properties of the estimator α̂YW. We have the
following theorem.

Theorem 4.1. The Yule–Walker estimator α̂YW is a strongly consistent estimator
of the parameter α and

√
N − 1(α̂YW − α)

d→ N
(

0,
(1 + μ)(2μ(3 + 2α) + 2α2μ(1 − 2μ)) + α(1 + α)

2μ(1 + μ)(1 + 2μ)

)
,

as N → ∞.

Theorem 4.2. The Yule–Walker estimator μ̂YW of the parameter μ has asymptotic
normal distribution and is strongly consistent.

4.1 Simulation

To check the performance of the obtained Yule–Walker estimates, we simulate
10,000 series each with 500 elements for different true values of the parameters α

and μ. The series {Zn} are simulated by using the fact that our time series model is
distributed as the difference of two independent NGINAR(1) time series {Xn} and
{Yn}. Thus, we first simulate X1 and independently of it, we simulate Y1, each from
geometric distribution with parameter μ/(1 + μ) and derive Z1 = X1 − Y1. Then
for n = 2,3, . . . ,500 we derive Xn from Xn = α ∗ Xn−1 + εn and derive Yn from
Yn = α ∗ Yn−1 + ηn, where εn and ηn are simulated from the distribution given in
Corollary 2.2. Finally, for each n = 2,3, . . . ,500 we derive Zn = Xn −Yn. For the
parameter α, we use the true values 0.1, 0.3, 0.6 and 0.8, and for the parameter
μ we use the true values 0.5, 1, 2, 5 and 10. Due to the parameters restriction
α ∈ (0,μ/(1 + μ)], some pairs of true values of the parameters α and μ are not
considered, that is, α = 0.8 and μ = 1. For each pair of the considered true values
of the parameters α and μ, we concentrate on three different sample sizes 100,
200 and 500. By using the Yule–Walker method, we obtain the estimates for each
subsample. Since for small true values of the parameter α it is possible to obtain
negative estimates for it, we set, in this case α̂ = 0 since this estimate is near to
possible true value of parameter α. Also, for large true values of the parameter α
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it is possible to obtain estimates greater than μ/(1 + μ). In these cases, we set
α̂ = μ̂/(1 + μ̂). So, the estimated value for α will be:

α̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(
N∑

n=2

znzn−1

)(
N∑

n=1

z2
n

)−1

∈ (−∞,0],
(

N∑
n=2

znzn−1

)(
N∑

n=1

z2
n

)−1

,

(
N∑

n=2

znzn−1

)(
N∑

n=1

z2
n

)−1

∈ (0, μ̂/(1 + μ̂)],
μ̂/(1 + μ̂),(

N∑
n=2

znzn−1

)(
N∑

n=1

z2
n

)−1

∈ (
μ̂/(1 + μ̂),∞)

.

In Table 1, the sample means and standard deviations of the estimates are given
for each pair of the true values. Also, we provide numbers of how often α̂ is nega-
tive (L) and how often the restriction α ∈ (0,μ/(1 + μ)] is not valid (U). We can
conclude that we obtain estimates that converge to the true values of the parame-
ters with decreasing standard deviations. Also, we can conclude that the number
(L) of the negative estimates α̂ and the number (U) of the estimates α̂ greater than
μ/(1 + μ) decrease as the sample size increases.

5 Conclusion

In this paper, we introduced an integer-valued autoregressive process based on
a new thinning operator � and with the discrete Laplace marginal distribution
(DLINAR(1)). The thinning operator of the model was based on the negative bi-
nomial thinning of Ristić et al. (2009), which has been used in deriving some of
its properties. Since the construction of DLINAR(1) was inspired by the work
of Freeland (2010), some of its features have been obtained by similar approach.
However, while in Freeland (2010) the marginal Skellam distribution is defined
by means of Bessel functions, in our case the discrete Laplace distribution of the
process was obtained more easily by direct calculation. Besides the features of the
thinning operator, we presented the full characterization of the newly introduced
process including its existence, stationarity, ergodicity, correlation and regression
properties. Estimation of model parameters was carried out using the method of
moments which asymptotic characterization has been thoroughly done and also
numerically presented using subsamples of different sizes of 10,000 simulated data
series each of length 500.

Further research in this field might be performed in some new directions. First,
two NGINAR(1) models {Xn} and {Yn} with different parameters in marginal dis-
tributions can be considered, for example, Xn with Geom(μ/(1 + μ)) distribution
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Table 1 Some numerical results of the estimators for some true values of the parameters α and μ

N α = 0.1, μ = 0.5 α = 0.1, μ = 1 α = 0.1, μ = 2

100 0.1058(0.0861) 0.4971(0.0917) 0.1071(0.0861) 0.9941(0.1556) 0.1057(0.0842) 1.9864(0.2722)
L = 1660, U = 124 L = 1599, U = 1 L = 1574, U = 1

200 0.1010(0.0674) 0.4980(0.0649) 0.1015(0.0666) 0.9962(0.1099) 0.1010(0.0653) 1.9935(0.1938)
L = 886, U = 14 L = 838, U = 0 L = 809, U = 0

500 0.0996(0.0464) 0.4989(0.0410) 0.0997(0.0452) 0.9980(0.0705) 0.0995(0.0444) 1.9961(0.1231)
L = 164, U = 0 L = 145, U = 0 L = 155, U = 0

N α = 0.1, μ = 5 α = 0.1, μ = 10 α = 0.3, μ = 0.5

100 0.1054(0.0835) 4.9724(0.6153) 0.1067(0.0829) 9.9113(1.1664) 0.2628(0.0885) 0.4953(0.1064)
L = 1575, U = 0 L = 1523, U = 0 L = 55, U = 3386

200 0.1014(0.0646) 4.9902(0.4360) 0.1002(0.0639) 9.9446(0.8250) 0.2787(0.0662) 0.4978(0.0765)
L = 790, U = 0 L = 789, U = 0 L = 2, U = 3003

500 0.0994(0.0439) 4.9994(0.2764) 0.0989(0.0433) 9.9767(0.5255) 0.2908(0.0452) 0.4992(0.0491)
L = 136, U = 0 L = 141, U = 0 L = 0, U = 2284

N α = 0.3, μ = 1 α = 0.3, μ = 2 α = 0.3, μ = 5

100 0.2888(0.1039) 0.9908(0.1755) 0.2903(0.1004) 1.9805(0.3063) 0.2914(0.0967) 4.9572(0.6688)
L = 33, U = 160 L = 40, U = 0 L = 25, U = 0

200 0.2938(0.0755) 0.9957(0.1252) 0.2944(0.0721) 1.992(0.2161) 0.2961(0.0695) 4.9763(0.4764)
L = 0, U = 17 L = 0, U = 0 L = 3, U = 0

500 0.2977(0.0485) 0.9985(0.0801) 0.2979(0.0460) 1.9958(0.1359) 0.2983(0.0444) 4.9906(0.3045)
L = 0, U = 0 L = 0, U = 0 L = 0, U = 0
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Table 1—Continued

N α = 0.3, μ = 10 α = 0.6, μ = 2 α = 0.6, μ = 5

100 0.2922(0.0947) 9.944(1.2792) 0.5691(0.0921) 1.9623(0.4289) 0.5794(0.0884) 4.9287(0.916)
L = 18, U = 0 L = 0, U = 1261 L = 0, U = 0

200 0.2954(0.0678) 9.968(0.9178) 0.5851(0.0690) 1.9837(0.3094) 0.5881(0.0635) 4.9535(0.6613)
L = 0, U = 0 L = 0, U = 767 L = 0, U = 0

500 0.2980(0.0435) 9.9846(0.5813) 0.5941(0.0453) 1.9921(0.1991) 0.5951(0.0399) 4.9776(0.4197)
L = 0, U = 0 L = 0, U = 154 L = 0, U = 0

N α = 0.6, μ = 10 α = 0.8, μ = 5 α = 0.8, μ = 10

100 0.5812(0.0845) 9.8588(1.7045) 0.7612(0.0775) 4.8427(1.3668) 0.7706(0.0714) 9.716(2.5077)
L = 0, U = 0 L = 0, U = 1397 L = 0, U = 4

200 0.5902(0.0608) 9.9214(1.2326) 0.7793(0.0545) 4.9121(1.0115) 0.7844(0.0502) 9.8291(1.8366)
L = 0, U = 0 L = 0, U = 984 L = 0, U = 0

500 0.5963(0.0383) 9.9737(0.7798) 0.7914(0.0346) 4.9589(0.6541) 0.7930(0.0317) 9.9216(1.1843)
L = 0, U = 0 L = 0, U = 350 L = 0, U = 0
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and Yn with Geom(ν/(1+ν)) distribution. This assumption would make the model
much more realistic. Second, two NGINAR(1) models {Xn} and {Yn} can be gen-
erated by different equations, for example, Xn given by Xn = α ∗ Xn−1 + εn and
{Yn} given by Yn = β ∗ Yn−1 + ηn. Third, our derivation implies two independent
NGINAR(1) time series. A new model {Zn} can be considered by including not in-
dependent NGINAR(1) time series models, for example, by taking the difference
Zn = Xn − Yn of the bivariate process {(Xn,Yn)} defined by Ristić et al. (2012).
Finally, DLINAR(1) model can be generalized to higher order than 1 following
the technique used in Nastić et al. (2012).

Appendix: Proofs

Proof of Theorem 2.2. It is much easier to derive it by using the definition of the
operator (2.4). We have that

ϕα�Zn−1(t) =
∞∑

z=−∞
E

(
eit (α�Zn−1)|Zn−1 = z

)
P(Zn−1 = z)

=
−1∑

z=−∞

∞∑
y=0

E
(
eit (α∗Xn−1−α∗Yn−1)|Xn−1 = y,Yn−1 = y − z

)

× P(Xn−1 = y,Yn−1 = y − z) (A.1)

+
∞∑

z=0

∞∑
y=0

E
(
eit (α∗Xn−1−α∗Yn−1)|Xn−1 = y + z,Yn−1 = y

)

× P(Xn−1 = y + z,Yn−1 = y).

For given Xn−1 = y and Yn−1 = y − z, the random variables α ∗ Xn−1 and α ∗
Yn−1 are conditionally independent random variables with NB(y,α/(1 + α)) and
NB(y − z,α/(1 + α)) distributions, respectively. This implies that

E
(
eit (α∗Xn−1−α∗Yn−1)|Xn−1 = y,Yn−1 = y − z

)
(A.2)

= (
1 + α − αeit )−y(

1 + α − αe−it )−y+z
.

In a similar way, we obtain that

E
(
eit (α∗Xn−1−α∗Yn−1)|Xn−1 = y + z,Yn−1 = y

)
(A.3)

= (
1 + α − αeit )−y−z(1 + α − αe−it )−y

.

Finally, replacing (A.2) and (A.3) in (A.1) and after some calculations, we obtain
that the characteristic function of the random variable α�Zn−1 is given by (2.7). �
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Proof of Theorem 2.3. From Corollary 2.1, we obtain for k ≥ 0 is

E
(
(α � Zn−1)

k|Zn−1 = z
)

= E
(
(α ∗ Xn−1 − α ∗ Yn−1)

k|Xn−1 − Yn−1 = z
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2μ

(1 + μ)2

∞∑
y=0

(
μ

1 + μ

)2y

E
(
(α ∗ Xn−1 − α ∗ Yn−1)

k|
Xn−1 = y + z,Yn−1 = y

)
, z ≥ 0,

1 + 2μ

(1 + μ)2

∞∑
x=0

(
μ

1 + μ

)2x

E
(
(α ∗ Xn−1 − α ∗ Yn−1)

k|
Xn−1 = x,Yn−1 = x − z

)
, z < 0.

From the properties of the NGINAR(1) time series it follows that

E(α ∗ X − α ∗ Y |X = x,Y = y) = αx − αy,

E
(
(α ∗ X − α ∗ Y)2|X = x,Y = y

) = α(1 + α)(x + y) + α2(x − y)2.

Finally, applying these results we obtain the proof of the theorem. �

Proof of Theorem 2.4. We will derive the characteristic function of the random
variable sgn(Z)(α ∗ |Z|) + ∑min(X,Y )

j=1 Dj . Since the random variables sgn(Z)(α ∗
|Z|) and

∑min(X,Y )
j=1 Dj are independent, first we will derive the characteristic func-

tions of the random variables sgn(Z)(α ∗ |Z|) and
∑min(X,Y )

j=1 Dj and then multiply
them. From the definition of the random variable Z and the negative binomial
thinning operator α∗, we obtain that

E
(
eit sgn(Z)(α∗|Z|))

= 1

1 + 2μ

[ ∞∑
z=0

((
1

1 + α − αeit

)z

(A.4)

+
(

1

1 + α − αe−it

)z)(
μ

1 + μ

)z

− 1

]

= (1 + μ)2(1 + α − αeit )(1 + α − αe−it ) − μ2

(1 + 2μ)(1 + α(1 + μ) − α(1 + μ)eit )(1 + α(1 + μ) − α(1 + μ)e−it )
.

Let us now derive the characteristic function of the random variable
∑min(X,Y )

j=1 Dj .
We have that

E
(
e
it

∑min(X,Y )
j=1 Dj

)
= ∑

0≤y≤x<∞

(
1

1 + α − αeit

)y(
1

1 + α − αe−it

)y μx+y

(1 + μ)x+y+2 (A.5)
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+ ∑
0≤x<y<∞

(
1

1 + α − αeit

)x(
1

1 + α − αe−it

)x μx+y

(1 + μ)x+y+2

= (1 + 2μ)(1 + α − αeit )(1 + α − αe−it )

(1 + μ)2(1 + α − αeit )(1 + α − αe−it ) − μ2 .

Finally, multiplying (A.4) and (A.5), we obtain (2.7), which represents the charac-
teristic function of the random variable α � Z. �

Proof of Theorem 2.5. Let ϕe(t) represents the characteristic function of the ran-
dom variable en. From (2.10), we obtain that

ϕe(t) = ϕZn(t)

ϕα�Zn−1(t)

= (1 + α(1 + μ) − α(1 + μ)eit )(1 + α(1 + μ) − α(1 + μ)e−it )

(1 + μ − μeit )(1 + μ − μe−it )(1 + α − αeit )(1 + α − αe−it )

=
(

a

1 + μ − μeit
+ 1 − a

1 + α − αeit

)(
a

1 + μ − μe−it
+ 1 − a

1 + α − αe−it

)
,

where a = (μ − α − αμ)/(μ − α). Next we have that

ϕe(t) = a2

(1 + μ − μeit )(1 + μ − μe−it )
+ a(1 − a)

(1 + μ − μeit )(1 + α − αe−it )

+ a(1 − a)

(1 + α − αeit )(1 + μ − μe−it )
+ (1 − a)2

(1 + α − αeit )(1 + α − αe−it )
.

Finally, by using the facts that (1 + μ − μeit )−1(1 + μ − μe−it )−1, (1 + μ −
μeit )−1(1 + α − αe−it )−1, (1 + α − αeit )−1(1 + μ − μe−it )−1, and (1 + α −
αeit )−1(1 + α − αe−it )−1 are the characteristic functions of the random variables
DL(

μ
1+μ

), SDL(
μ

1+μ
, α

1+α
), SDL( α

1+α
,

μ
1+μ

), and DL( α
1+α

), respectively, we finish
the proof of the theorem. �

Proof of Theorem 3.1. Let us first prove that the DLINAR(1) time series is a

Markov process. From (2.9), we have that α � Zn−1
d= sgn(Zn−1)(α ∗ |Zn−1|) +

ξn, where {ξn} is a sequence of independent random variables distributed as the

random variable
∑min(X,Y )

j=1 Dj and independent of Zn−1 and the counting series in
α ∗ |Zn−1|. Then

P(Zn = zn|Zn−1 = zn−1, . . . ,Z0 = z0) =
∞∑

j=0

(|zn−1| + j − 1

j

)
αj

(1 + α)|zn−1|+j

× P
(
ξn + en = zn − j · sgn(zn−1)

)
.
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Since the last equation depend only on zn−1, we obtain that the DLINAR(1) time
series is a Markov process. Now, since the time series is a Markov process, it
follows for m ≥ 1 that

P(Zn+k = zn+k,1 ≤ k ≤ m) = P(Zn+1 = zn+1)

×
m∏

k=2

P(Zn+k = zn+k|Zn+k−1 = zn+k−1).

Thus, to prove the strict stationarity it is enough to show that P(Zn+k =
zn+k|Zn+k−1 = zn+k−1) = P(Zn = zn+k|Zn−1 = zn+k−1), for any k ≥ 1. This
easily follows from the fact that the random variables {ξn + en} are identically
distributed random variables. Finally, the ergodicity can be proved following the
proof for the ergodicity from Zheng et al. (2006) and the fact that the σ -algebra
generated by the random variables Zn, Zn−1, . . . is a subset of the σ -algebra gen-
erated by the independent random variables ξn, en, W(n), ξn−1, en−1, W(n−1), . . . ,
where W(n) contains all the counting series included in α ∗ |Zn−1|. �

Proof of Theorem 3.2. From (2.8) and the Markovian property of the model we
obtain that E(Zn|Zn−k) = αkZn−k . Proof of the second part of this theorem is
similar. �

Proof of Theorem 3.3. Since the series {Zn} is a strict stationary process with the
k−step ahead conditional mean is E(Zn|Zn−k) = αkZn−k and the variance of the
process is finite, Var(Zn) = 2μ(1 +μ), we can easily obtain Cov(Zn,Zn−k) in the
following way

Cov(Zn,Zn−k) = Cov(Zn−k,Zn) = Cov
(
Zn−k,E(Zn|Zn−k)

)
= Cov

(
Zn−k, α

kZn−k

) = αk Var(Zn−k) = 2αkμ(1 + μ).

So, the autocorrelation function is Corr(Zn,Zn−k) = αk . �

Proof of Theorem 3.5. From (3.1) and the definitions of α�(k) and α∗(k), we
have that

Zn
d= α ∗Xn−1 +εn −α ∗Yn−1 −ηn = α ∗(k) Xn−k −α ∗(k) Yn−k +

k−1∑
j=0

α�(j) en−j .

Let us derive the distribution of the random variable α ∗(k) Xn−k . It is easy to show
that its probability generating function is given by


α∗(k)Xn−k
(s) =

(
1 + α

k−1∑
j=0

αj (1 − s)

)(
1 + α

(
k−1∑
j=0

αj + μαk−1

)
(1 − s)

)−1

,
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which implies that the random variable α ∗(k) Xn−k has the following distribution

α ∗(k) Xn−k
d=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, w.p.

∑k−1
j=0 αj

∑k−1
j=0 αj + μαk−1

,

Geom

( ∑k
j=1 αj + μαk

1 + ∑k
j=1 αj + μαk

)
, w.p.

μαk−1∑k−1
j=0 αj + μαk−1

.

Thus, we have that E(α ∗(k) Xn−k) = αkμ → 0, and Var(α ∗(k) Xn−k) =
μαk(1−αk+1

1−α
+ μαk) → 0, as k → ∞. The same conclusion we obtain for the

random variable α ∗(k) Yn−k , which completes the proof. �

Proof of Theorem 4.1. Since the DLINAR(1) time series {Zn} is a strict station-
ary and ergodic time series, it follows, according to the Theorem 4.1 (Du and Li,
1991), that the estimator α̂YW is a strongly consistent estimator of the parameter α.
To derive the asymptotic distribution, we consider the statistic

√
N − 1(α̂YW −α).

We have that√
N − 1(α̂YW − α)

=
(

N − 1

N
· 1√

N − 1

N∑
n=2

Zn−1(Zn − αZn−1) −
√

N − 1

N
αZ2

N

)

×
(

1

N

N∑
n=1

Z2
n

)−1

.

From the ergodicity of the DLINAR(1) time series follows that 1
N

∑N
n=1 Z2

n

w.p. 1−→
2μ(1 + μ) as N → ∞. Also, we have that

√
N−1
N

αZ2
N = o(1), with probability 1,

when N −→ ∞.
Now, let us consider the time series {Zn−1(Zn − αZn−1)}. This is a stationary

ergodic martingale difference time series with

σ 2 ≡ E
(
Zn−1(Zn − αZn−1)

)2

= 2μ(1 + μ)((1 + μ)(2μ(3 + 2α) + 2α2μ(1 − 2μ)) + α(1 + α))

1 + 2μ
< ∞,

which implies that

(N − 1)−1/2
N∑

n=2

Zn−1(Zn − αZn−1)
d→ N

(
0, σ 2)

, N → ∞.

Finally, by applying the Slutsky theorem we obtain the proof of the theorem. �

Proof of Theorem 4.2. Consider the estimator γ̂Z(0) = 1
N

∑N
k=1 Z2

k as an esti-
mate of the variance γZ(0). According to the Theorem 1 (Silva and Silva, 2006),



An INAR model with discrete Laplace marginal distributions 125

estimator γ̂Z(0) is strongly consistent estimator of γZ(0) and has asymptotic nor-
mal distribution. Yule–Walker estimator of the parameter μ is the function of the
statistics γ̂Z(0), μ̂YW = −1

2 + 1
2

√
1 + 2γ̂Z(0). According to the Proposition 6.4.3

(Brockwell and Davis, 1987), we conclude that μ̂YW also has asymptotic normal
distribution. Strong consistency of μ̂YW follows from the strong consistency of
γ̂Z(0) and the continuity of the function f (x) = −1

2 + 1
2

√
1 + 2x, x ≥ 0, since

μ̂YW = f (γ̂Z(0)). �
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M. M. Ristić
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