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BRANCHING RANDOM WALKS AND MULTI-TYPE
CONTACT-PROCESSES ON THE PERCOLATION CLUSTER OF Z

d

BY DANIELA BERTACCHI AND FABIO ZUCCA

Università di Milano–Bicocca and Politecnico di Milano

In this paper we prove that, under the assumption of quasi-transitivity,
if a branching random walk on Z

d survives locally (at arbitrarily large times
there are individuals alive at the origin), then so does the same process when
restricted to the infinite percolation cluster C∞ of a supercritical Bernoulli
percolation. When no more than k individuals per site are allowed, we obtain
the k-type contact process, which can be derived from the branching random
walk by killing all particles that are born at a site where already k individ-
uals are present. We prove that local survival of the branching random walk
on Z

d also implies that for k sufficiently large the associated k-type contact
process survives on C∞. This implies that the strong critical parameters of
the branching random walk on Z

d and on C∞ coincide and that their com-
mon value is the limit of the sequence of strong critical parameters of the
associated k-type contact processes. These results are extended to a family of
restrained branching random walks, that is, branching random walks where
the success of the reproduction trials decreases with the size of the population
in the target site.

1. Introduction. The branching random walk is a process which serves as a
model for a population living in a spatially structured environment [the vertices
of a graph (X,E(X))]. Each individual lives in a vertex, breeds and dies at ran-
dom times and each offspring is placed (according to some rule) in one of the
neighboring vertices. Since for the branching random walk (BRW in short) there
is no bound on the number of individuals allowed per site, it is natural to consider
a modification of the process, namely the multitype contact process, where, for
some k ∈ N, no more than k particles per site are allowed (if k = 1 one gets the
usual contact process). The multitype contact processes are more realistic models.
Indeed, instead of thinking of the vertices of the graph as small portions of the
ecosystem where individuals may pile up indefinitely (like in the BRW), here each
vertex can host at most k individuals. This is, in particular, true for patchy habi-
tats (each vertex represents a patch of soil) or in host-symbionts interactions (each
vertex represents a host on top of which symbionts may live); see, for instance,
[3, 4, 6].
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The need for more realistic models also brings random environment into con-
sideration. BRWs in random environment has been studied by many authors; see,
for instance, [13, 15, 18, 24, 25, 28]. In many cases the random environment is a
random choice of the reproduction law of the process (in some cases there is no
death). In our case we put the randomness into the underlying graph. When choos-
ing (X,E(X)), Zd is perhaps the first choice that comes to mind, but other graphs
are reasonable options. In particular the BRW and the contact process have been
studied also on trees [20–22, 26, 29, 33] and on random graphs as Galton–Watson
trees [30]. Although Z

d has clear properties of regularity, which make it a nice
case to study, random graphs are believed to serve as a better model for real-life
structures and social networks. It is therefore of interest to investigate the behavior
of stochastic processes on random graphs, which possibly retain some regularity
properties which make them treatable. An example is the small world, which is the
space model in [17] and [5], where each vertex has the same number of neighbors.
The percolation cluster of Zd given by a supercritical Bernoulli percolation, which
we denote by C∞, has no such regularity, but has a “stochastic” regularity, and its
geometry, if viewed at a large scale, does not differ too much from Z

d (e.g., it is
true that, for large N , in many N -boxes of Zd ∩ C∞, there are open paths crossing
the box in each direction and these paths connect to crossing paths in neighboring
boxes; see [19], Chapter 7). Indeed C∞ shares many stochastic properties with Z

d :
the simple random walk is recurrent in d = 1,2, transient in d ≥ 3 and the tran-
sition probabilities have the same space–time asymptotics as those of Z

d (with
different constants, [1]); two walkers collide infinitely many often in d = 1,2 and
finitely many times in d ≥ 3 (see [2]); the voter model clusters in d = 1,2 and
coexists in d ≥ 3 (see [6]), just to mention a few facts.

The aim of this paper is to compare the critical parameters of the BRW and
of the multitype contact process on the infinite percolation cluster C∞ with the
corresponding ones on Z

d (from now on we tacitly assume that the infinite cluster
exists almost surely, i.e., that the underlying Bernoulli percolation is supercritical).
In order to define these parameters, let us give a formal definition of the processes
involved.

Let (X,E(X)) be a graph and μ :X × X → [0,+∞) adapted to the graph, that
is, μ(x, y) > 0 if and only if (x, y) ∈ E(X). We require that there exists K < +∞
such that ζ(x) := ∑

y∈X μ(x, y) ≤ K for all x ∈ X. Given λ > 0, the λ-branching
random walk (λ-BRW or, when λ is not relevant, BRW) is the continuous-time
Markov process {ηt }t≥0, with configuration space N

X , where each existing parti-
cle at x has an exponential lifespan of parameter 1 and, during its life, breeds at the
arrival times of a Poisson process of parameter λζ(x) and then chooses to send its
offspring to y with probability μ(x, y)/ζ(x). Thus we associate to μ a family of
BRWs, indexed by λ. With a slight abuse of notation, we will say that (X,μ) is a
BRW [μ(x, y) represents the rate at which existing particles at x breed in y]. The
BRW is called irreducible if and only if the underlying graph is connected. Clearly,
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any BRW on Z
d or C∞ is irreducible; we note that in their graph structure we pos-

sibly admit loops; that is, every vertex might be a neighbor of itself (thus allowing
reproduction from a vertex onto itself). If (Y,E(Y )) is a subgraph of (X,E(X)),
we denote by μ|Y (x, y) the map μ · 1E(Y ). The associated BRW (Y,μ|Y ), indexed
by λ, is called the restriction of (X,μ) to Y and, to avoid cumbersome notation,
we denote it by (Y,μ).

Two critical parameters are associated to the continuous-time BRW: the weak
(or global) survival critical parameter λw and the strong (or local) survival one λs .
They are defined as

λw(x0) := inf
{
λ > 0 :Pδx0 (∃t :ηt = 0) < 1

}
,

(1.1)
λs(x0) := inf

{
λ > 0 :Pδx0

(∃t̄ :ηt (x0) = 0,∀t ≥ t̄
)
< 1

}
,

where x0 is a fixed vertex, 0 is the configuration with no particles at all sites and
P

δx0 is the law of the process which starts with one individual in x0. Note that these
parameters do not depend on the initial state �δx0 , provided that � > 0. Moreover,
if the BRW is irreducible, then these values do not depend on the choice of x0
nor on the initial configuration, provided that this configuration is nonzero and
finite (i.e., it has a strictly positive, finite number of individuals). When there is
no dependence on x0, we simply write λs and λw . These parameters depend also
on (X,μ): when we need to stress this dependence, we write λw(x0,X,μ) and
λs(x0,X,μ) [or simply λw(X,μ) and λs(X,μ) in the irreducible case]. We refer
the reader to Section 2 for how to compute the explicit value of these parameters.

Given (X,μ) and a nonincreasing function c :R+ →R
+, the restrained branch-

ing random walk (briefly, RBRW) (X,μ, c) is the continuous-time Markov process
{ηt }t≥0, with configuration space N

X , where each existing particle at x has an ex-
ponential lifespan of parameter 1 and, during its life, breeds, as the BRW, at rate
c(0)ζ(x), then chooses to send its offspring to y with probability μ(x, y)/ζ(x),
and the reproduction is successful with probability c(η(y))/c(0). For the RBRW
the rate of successful reproductions from x to y, namely μ(x, y)c(η(y)) depends
on the configuration; for a formal introduction to RBRWs, see [7].

Restrained branching random walks have been introduced in [7] in order to
provide processes where the natural competition for resources in an environmen-
tal patch is taken into account (since c is nonincreasing, the more individuals are
present at a vertex, the more difficult it is for new individuals to be born there).
If we imagine that the vertex can host at most N individuals, a natural example
of c is represented by the logistic growth cN(i) = λ(1 − i/N)1[0,N](i). A more
general choice where the parameter N represents the strength of the competition
between individuals (the smaller N , the stronger the competition), is given by fix-
ing a nonincreasing c̃ and letting cN(·) := c̃(·/N). The usual BRWs and multitype
contact processes can be seen as particular cases of RBRWs: if c ≡ λ, the asso-
ciated RBRW is the λ-BRW; if c = λ1[0,k−1], we call the corresponding RBRW
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FIG. 1. Order relation between critical values (a → b means a ≥ b).

k-type contact process, and we denote it by {ηk
t }t≥0. The critical parameters of the

k-type contact process are denoted by λk
s and λk

w .
The order relations between all these critical values are shown in Figure 1; these

relations hold for every μ adapted to Z
d .

It has already been proven in [11] that if μ is quasi-transitive on X (a property of

regularity, see Definition 2.1), then λk
s (X,μ)

k→∞−→ λs(X,μ), and, if μ is translation

invariant on Z
d , then λk

w(Zd,μ)
k→∞−→ λw(Zd,μ). Analogous results for discrete-

time processes can be found in [34], and recently some progress has been made
for discrete-time BRWs on Cayley graphs of finitely generated groups; see [27].

When considering BRWs and multitype contact processes on C∞, two natural
questions arise. First, we wonder whether the critical parameters of the BRW on
C∞ can be deduced from the ones of the BRW on Z

d ; second, whether the pa-
rameters of the k-type contact process converge to the corresponding ones of the
BRW. Note that even if the BRW (Zd,μ) has good properties of regularity, like
quasi-transitivity, its restriction to C∞ has none of these properties, and the afore-
mentioned questions are not trivial.

Our main result answers both questions regarding λs : for quasi-transitive BRWs
on Z

d the strong critical parameter coincides with the one on C∞ (this result was
actually already in [11], Theorem 7.1, but here we provide a different proof which
can be extended to answer the second question). Moreover the sequence of the
strong critical parameters of k-type contact processes restricted to C∞ converge to
the one of the BRW on Z

d . We note that here we consider only continuous-time
processes, but analogous results hold for discrete-time BRWs as well.

THEOREM 1.1. Let (Zd,μ) be a quasi-transitive BRW and C∞ ⊆ Z
d be the

infinite cluster of a supercritical Bernoulli percolation. Then:

(1) λs(C∞,μ) = λs(Z
d,μ) a.s. with respect to the realization of C∞;

(2) limk→∞ λk
s (C∞,μ) = limk→∞ λk

s (Z
d,μ) = λs(Z

d,μ) a.s. with respect to
the realization of C∞.

We observe that the equality limk→∞ λk
s (Z

d,μ) = λs(Z
d,μ) has already been

proven in [11], Theorem 5.1. The result for the weak critical parameter can be ob-
tained when λw(Zd,μ) = λs(Z

d,μ), which is, for instance, true when μ is quasi-
transitive and symmetric; see Section 2.
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THEOREM 1.2. Let (Zd,μ) be a quasi-transitive BRW such that λw(Zd,μ) =
λs(Z

d,μ), and let C∞ ⊆ Z
d be the infinite cluster of a supercritical Bernoulli

percolation. Then, a.s. with respect to the realization of C∞, limk→∞ λk
w(C∞,μ) =

limk→∞ λk
w(Zd,μ) = λw(C∞,μ) = λw(Zd,μ).

The fact that whenever a quasi-transitive BRW on Z
d is locally supercritical

(i.e., λ > λs ), so are the k-type contact processes restricted to C∞, whenever k is
sufficiently large, also holds for families of RBRWs, where cN(·) := c(·/N), and
c is a given nonnegative function such that limz→0+ c(z) = c(0) > λs(Z

d,μ).

THEOREM 1.3. Let (Zd,μ) be a quasi-transitive BRW and C∞ ⊆ Z
d be

the infinite cluster of a supercritical Bernoulli percolation. Let c be a nonnega-
tive, nonincreasing function such that limz→0+ c(z) = c(0) > λs(Z

d,μ), and let
cN(·) := c(·/N). Consider the RBRWs (Zd,μ, cN) and (C∞,μ, cN): they both
survive locally whenever N is sufficiently large.

As an application, we have that [6], Theorem 1(2), can be refined; here is the
improved statement.

COROLLARY 1.4. Let μ(x, x) = α and μ(x, y) = β/2d for all x ∈ Z
d and y

such that |x − y| = 1, where α ≥ 0 and β > 0. Consider the RBRW (C∞,μ, cN)

where cN(i) = (1 − i/N)1[0,N](i). Then:

(1) For all N > 0, the process dies out if α + β ≤ 1.
(2) If α+β > 1, then the process survives locally, provided that N is sufficiently

large.

To compare with [6], Theorem 1, we recall that the extinction phase, that is,
Corollary 1.4(1), was already stated as [6], Theorem 1(1); to ensure survival when
α +β > 1 and N is large, [6], Theorem 1(2), requires that the parameter of the un-
derlying Bernoulli percolation is sufficiently close to 1. This request has now been
proven unnecessary, since it suffices that the Bernoulli percolation is supercritical.

2. Basic definitions and preliminaries. Explicit characterizations of the crit-
ical parameters are possible. For the strong critical parameter we have λs(x) =
1/ lim supn→∞ n

√
μ(n)(x, x) (see [10], Theorem 4.1, [12], Theorem 3.2(1)) where

μ(n)(x, y) are recursively defined by μ(n+1)(x, y) = ∑
w∈X μ(n)(x,w)μ(w,y) and

μ(0)(x, y) = δxy . As for λw(x), it is characterized in terms of solutions of cer-
tain equations in Banach spaces (see [10], Theorem 4.2); moreover, λw(x) ≥
1/ lim infn→∞ n

√∑
y∈X μ(n)(x, y) [10], Theorem 4.3, [12], Theorem 3.2(2). The

last inequality becomes an equality in a certain class of BRWs which contains
quasi-transitive BRWs (see [10], Proposition 4.5, [12], Theorem 3.2(3)) The defi-
nition of quasi-transitive BRW is the following.
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DEFINITION 2.1. (X,μ) is a quasi-transitive BRW (or μ is a quasi-transitive
BRW on X) if and only if there exists a finite set of vertices {x1, . . . , xr} such that
for every x ∈ X there exists a bijection f :X → X such that f (xj ) = x for some j

and μ is f -invariant, that is, μ(w, z) = μ(f (w),f (z)) for all w,z.

Note that if f is a bijection such that μ is f -invariant, then f is an automor-
phism of the graph (X,E(X)). In many cases λs coincides with λw . For quasi-
transitive and symmetric BRWs [i.e., μ(x, y) = μ(y, x) for all x, y], it is known
that λs = λw is equivalent to amenability ([12], Theorem 3.2, which is essentially
based on [10] and [33], Theorem 2.4). Amenability is a slow growth condition;
see [33], Section 1, for the definition of amenable graph and [12], Section 2, where
mxy stands for μ(x, y), for the definition of amenable BRW. It is easy to prove
that a quasi-transitive BRW is amenable if and only if the underlying graph is
amenable. Examples of amenable graphs are Z

d along with its subgraphs. There-
fore, every quasi-transitive and symmetric BRW on Z

d or C∞ has λs = λw .
Another sufficient condition is the following, where symmetry is replaced by

reversibility [i.e., the existence of measure ν on X such that ν(x)μ(x, y) =
ν(y)μ(y, x) for all x, y]. It is a slight generalization of [9], Proposition 2.1 and
easily extends to discrete-time BRWs.

THEOREM 2.2. Let (X,μ) be a continuous-time BRW, and let x0 ∈ X. Sup-
pose that there exists a measure ν on X and {cn}n∈N such that, for all n ∈ N{

ν(y)/ν(x0) ≤ cn, ∀y ∈ B(x0, n),
ν(x)μ(x, y) = ν(y)μ(y, x), ∀x, y ∈ X,

where B(x0, n) is the ball of center x0 and radius n. If n
√

cn → 1 and
n
√|B(x0, n)| → 1 as n → ∞, then λs(x0) = λw(x0).

PROOF. If we denote by [x0] the irreducible class of x0, then it is easy to show
that μ(n+1)(x0, x0) = ∑

w∈[x0] μ
(n)(x0,w)μ(w,x0). Note that ν(x)μ(n)(x, y) =

ν(y)μ(n)(y, x) for all x, y ∈ X, n ∈ N. In particular since ν(x0) > 0, then ν is
strictly positive on [x0], and [x0] is a final class. Thus, for all x, y ∈ [x0] we
have μ(x, y) > 0 if and only if μ(y, x) > 0. This means that the subgraph [x0] is
nonoriented; hence the natural distance is well defined and so is the ball B(x0, n).
Moreover, by the Cauchy–Schwarz inequality, the supermultiplicative property of
μ(n+1)(x0, x0) and Fekete’s lemma, for all n ∈ N \ {0},(

1/λs(x0)
)2n ≥ μ(2n)(x0, x0) = ∑

y∈[x0]
μ(n)(x0, y)μ(n)(y, x0)

= ∑
y∈B(x0,n)

(
μ(n)(x0, y)

)2 ν(x0)

ν(y)
≥ (

∑
y μ(n)(x0, y))2

cn|B(x0, n)| .
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Hence
1

λs(x0)
≤ 1

λw(x0)
≤ lim inf

n
n

√∑
y

μ(n)(x0, y)

= lim inf
n

2n

√
(
∑

y μ(n)(x0, y))2

cn|B(x0, n)| ≤ 1

λs(x0)
. �

The condition n
√|B(x,n)| → 1 is usually called subexponential growth. Ex-

amples of subexponentially growing graphs are euclidean lattices Z
d or d-

dimensional combs; see [8] for the definition. The assumptions of Theorem 2.2
are, for instance, satisfied, on subexponentially growing graphs, by irreducible
BRWs with a reversibility measure ν such that ν(x) ≤ C for all x ∈ X and for
some C > 0.

One of the tools in the proof of our results is the fact that if the BRW survives
locally on a graph X; it also survives locally on suitable large subsets Xn ⊂ X.
This follows from the spatial approximation theorems which have been proven in
a weaker form in [11], Theorem 3.1, for continuous-time BRWs and in a stronger
form in [34], Theorem 5.2, for discrete-time BRWs. The proofs rely on a lemma
on nonnegative matrices and their convergence parameters, which in its original
form can be found in [32], Theorem 6.8. We restate here both the lemma and
the approximation theorem. It is worth noting that the irreducibility assumptions
which were present in [11, 32, 34] are here dropped.

Given a nonnegative matrix M = (mxy)x,y∈X , let R(x, y) := 1/

lim supn→∞ n

√
m(n)(x, y) be the family, indexed by x and y, of the convergence

parameters [m(n)(x, y) are the entries of the nth power matrix Mn]. Note that,
as recalled earlier in this section, λs(x) coincides with the convergence parame-
ter R(x, x) of the matrix (μ(x, y))x,y∈X . Given a sequence of sets {Xn}n∈N let
lim infn→∞ Xn := ⋃

n

⋂
k≥n Xk .

LEMMA 2.3. Let {Xn}n∈N be a general sequence of subsets of X such that
lim infn→∞ Xn = X, and suppose that M = (mxy)x,y∈X is a nonnegative matrix.
Consider a sequence of nonnegative matrices Mn = (m(n)xy)x,y∈Xn such that
0 ≤ m(n)xy ≤ mxy for all x, y ∈ Xn, n ∈ N and limn→∞ m(n)xy = mxy for all
x, y ∈ X. Then for all x0 ∈ X we have nR(x0, x0) → R(x0, x0) [nR(x0, x0) being
a convergence parameter of the matrix Mn].

Clearly, if M is irreducible, then R(x, y) = R does not depend on x, y ∈ X, and
for all x0 ∈ X we have nR(x0, x0) → R. One can repeat the proof of [34], Theo-
rem 5.2, noting that, since R(x0, x0) depends only on the values of the irreducible
class of [x0] then nR(x0, x0) → R(x0, x0) without requiring the whole matrix M

to be irreducible. The following theorem is the application of Lemma 2.3 to the
spatial approximation of continuous-time BRWs [an analogous result holds for
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discrete-time BRWs (see [34], Theorem 5.2), where we can drop the irreducibility
assumption].

THEOREM 2.4. Let (X,μ) be a continuous-time BRW, and let us consider a
sequence of continuous-time BRWs {(Xn,μn)}n∈N such that lim infn→∞ Xn = X.
Let us suppose that μn(x, y) ≤ μ(x, y) for all x, y ∈ Xn, n ∈ N and μn(x, y) →
μ(x, y) as n → ∞ for all x, y ∈ X. Then, for all x0 ∈ X, λs(x0,Xn,μn) ≥
λs(x0,X,μ) and λs(x0,Xn,μn) → λs(x0,X,μ) as n → ∞.

3. Proofs and applications. Before proving our main results, we need to
prove some preparatory lemmas. The first lemma gives a useful expression for
the expected value of the progeny living at time t at vertex y of a particle which
was at x at time 0. Its proof, which can be found in [7], Section 3, is based on the
construction of the process by means of its generator as done in [23]. The key to
the proof is the fact that the expected value is the solution of a system of differen-
tial equations. Neither Bertacchi, Posta and Zucca [7] nor Liggett and Spitzer [23]
construct the process in our setting; nevertheless it is not difficult to adapt their
construction to our case; the interested reader can find the details in Remark 3.8.

LEMMA 3.1. For any λ-BRW on a graph X we have that

E
(
ηt (y)|η0 = δx

) = e−t
∞∑

n=0

μ(n)(x, y)
(λt)n

n! .

The expected number of descendants of generation n at y at time t (of a particle
at x at time 0) is

e−tμ(n)(x, y)
(λt)n

n! ,

and the expected number of descendants of generation n at γn at time t (of a
particle at γ0 at time 0) along the path γ = (γ0, . . . , γn) is

e−t
n−1∏
i=0

μ(γi, γi+1)
(λt)n

n!
(in this case only the particles of generation i + 1 at γi+1 which are children of
particles of generation i at γi are taken into account, for all i = 0, . . . , n − 1).

The following lemma shows that whenever a BRW on Z
d survives locally [i.e.,

λ > λs(Z
d,μ)], it also survives locally if restricted to boxes of sufficiently large

radius. We denote by B(m) = [−m,m]d ∩ Z
d the box centered at 0 and by x +

B(m) its translate centered at x.
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LEMMA 3.2. Let μ be a BRW on Z
d . Then for all λ > λs(Z

d,μ) and for all
x ∈ Z

d , there exists m(x) ∈ N such that for all m ≥ m(x), λ > λs(x + B(m),μ).
Moreover, if μ is quasi-transitive, then there exists m0 such that for all m ≥ m0,
λ > supx∈Zd λs(x + B(m),μ).

PROOF. Let X = Z
d , Xn := (x + B(n)) and μn := μ · 1Xn×Xn . By Theo-

rem 2.4 there exists m such that λ > λs(Xn,μn) for all n ≥ m.
If μ is quasi-transitive, there exists a finite set of vertices {x1, . . . , xr} as

in Definition 2.1. It is clear that λs(A,μ) = λs(f (A),μ) for all A ⊂ Z
d and

for every automorphism f such that μ is f -invariant. Given λ > λs(Z
d,μ),

for every i there exists mi such that λ > λs(xi + B(mi),μ). Take m ≥ m0 :=
maxi=1,...,r mi : by monotonicity λs(xi + B(mi),μ) ≥ λs(xi + B(m),μ) for all i.
Thus λ > maxi=1,...,r λs(xi + B(m),μ). Let x ∈ Z

d and f as in Definition 2.1
such that f (xj ) = x for some j . Then λs(x + B(m),μ) = λs(f (x + B(m)),μ) =
λs(xj + B(m),μ) and maxi=1,...,r λs(xi + B(m),μ) = supx∈Zd λs(x + B(m),μ).

�

The following lemma states that for any λ-BRW on a graph X, with λ > λs(x)

the expected value of the number of particles in a given site, grows exponentially
in time.

LEMMA 3.3. Let μ be a BRW on a graph X, x ∈ X and λ > λs(x). Let {ηt }t≥0
be the associated λ-BRW. Then there exists ε = ε(x,X), C = C(x,X) such that

E
(
ηt (x)|η0 = δx

) ≥ Ceεt ∀t ≥ 0.(3.1)

PROOF. We follow the idea in the proof of [11], Lemma 5.1. We prove (3.1)
for all t ≥ t1 for some t1; the assertion then follows by replacing C with
min(C,C1), where C1 = mint∈[0,t1] e−εt

E(ηt (x)|η0 = δx) which exists and it is
strictly positive by continuity [since t �→ E(ηt (x)|η0 = δx) is a solution of a dif-
ferential equation].

Since λ > λs(x), then λ
n

√
μ(n)(x, x) > 1 for some n. Therefore there exist n0 ≥

1 and ε1 > 0 such that μ(n0)(x, x) > (1+ε1
λ

)n0 . By the supermultiplicativity of the
sequence μ(n)(x, x), for all r ∈ N,

μ(n0r)(x, x) ≥
(

1 + ε1

λ

)n0r

.

Recalling Lemma 3.1, we get

E
(
ηt (x)|η0 = δx

) ≥ e−t
∑
r≥0

((1 + ε1)t)
n0r

(n0r)! .
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FIG. 2. The portion of Zd where we restrict the BRW.

Let λ̄ := 1 + ε1. We can write a lower bound for the summands in the previous
series:

(λ̄t)n0r

(n0r)! ≥ λ̄t − 1

(λ̄t)n0 − 1
·
{
(λ̄t)n0r

(n0r)! + (λ̄t)n0r+1

(n0r + 1)! + · · · + (λ̄t)n0(r+1)−1

(n0(r + 1) − 1)!
}
,

whence, for all t ≥ t1 and for some t1 > 0, the following holds:

E
(
ηt (x)|η0 = δx

) ≥ e−t · λ̄t − 1

(λ̄t)n0 − 1
· eλ̄t ≥ λ̄t − 1

(λ̄t)n0 − 1
· eε1t ≥ eε1t/2. �

The following lemma states that, for the BRW on Z
d , given two vertices x and y

(also at a large distance), the expected progeny at y of a particle at x, can be made
arbitrarily large, after a sufficiently large time, even if the process is restricted to
a large box centered at x plus a fixed path from x to y; see Figure 2. The idea of
the proof is that the BRW can stay inside the box until the expected number of
particles at x is large, and then move along the path toward y.

LEMMA 3.4. Let μ be a BRW on Z
d , x ∈ Z

d , λ > λs(Z
d,μ). Fix M,δ > 0,

and choose m such that λ > λs(x+B(m),μ). Then there exists T = T (x,m,M,δ)

such that

E
(
η̃t (y)|η̃0 = δx

) ≥ 1 + δ,(3.2)

for all t ≥ T , γ path of length l ≤ M with γ0 = x, γl = y, where {η̃t }t≥o is the BRW
restricted to (x + B(m)) ∪ γ . Moreover, if μ is quasi-transitive, we can choose m

and T independent of x such that (3.2) holds for all x ∈ Z
d .

PROOF. Fix t2 > 0. We use the Markov property of the BRW (and the super-
imposition with respect to the initial condition) and apply Lemma 3.1

E
(
η̃t1+t2(y)|η̃0 = δx

) ≥ E
(
η̃t1(x)|η̃0 = δx

) · e−t2

l−1∏
i=0

μ(γi, γi+1)
(λt2)

l

l!

≥ E
(
η̃t1(x)|η̃0 = δx

) · e−t2
(λt2α)l

l! ≥ E
(
η̃t1(x)|η̃0 = δx

) · ε̃,
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FIG. 3. From � individuals at x to � individuals at y and y′.

where 0 < α = α(x,M) = min{μ(γ ′
i , γ

′
i+1) : i = 0, . . . , l′ − 1, γ ′ path of length

l′ ≤ M,γ ′
0 = x} and 0 < ε̃ = ε̃(x, t2,m,M) = min{e−t2(λt2α)l/ l! : l ≤ M}. Since

η̃ restricted to x + B(m) survives locally, by Lemma 3.3,

E
(
η̃t1+t2(y)|η̃0 = δx

) ≥ Ceεt1 · ε̃ ≥ 1 + δ,

for all sufficiently large t1 depending on x, m, M and δ. Fix t1 and define
T (x,m,M,δ) := t1 + t2.

If μ is quasi-transitive, take {x1, . . . , xr} and mi as in the proof of Lemma 3.2.
Take m := maxi=1,...,r mi and T = maxi=1,...,r T (xi,m,M, δ), and the proof is
complete. �

In the next lemma we prove that given x, y and y′, if we start the process with
l particles at x, after a sufficiently large time, with arbitrarily large probability, we
will have l particles both at y and at y′, even if we restrict the process to a large
box centered at x plus a fixed path from x to y and a fixed path from x to y′; see
Figure 3. The proof relies on Lemma 3.4 and the central limit theorem.

LEMMA 3.5. Let μ be a BRW on Z
d , and let x, λ and m as in Lemma 3.4. Fix

M,ε > 0. Then choosing T = T (x,m,M,1) as in Lemma 3.4, for all t ≥ T there
exists �(ε, x,m,M, t) ∈ N and

P
(
η̃t (y) ≥ �, η̃t

(
y′) ≥ �|η̃0(x) = �

)
> 1 − ε,(3.3)

for all � ≥ �(ε, x, t), l, l′ ≤ M , γ , γ ′ paths of length l and l′ from x to y and to y′,
respectively, where η̃t is the BRW restricted to (x +B(m))∪γ ∪γ ′. Moreover, if μ

is quasi-transitive, we can choose m and T independent of x and �(ε,m,M) such
that (3.3) holds for all x ∈ Z

d when t = T .

PROOF. By monotonicity it suffices to prove the result with the event (η̃0 =
�δx) in place of (η̃0(x) = �).

Let X = (x +B(m))∪γ ∪γ ′. Let us denote by {ξt }t≥0 the BRW, restricted to X,
starting from ξ0 = δx . By Lemma 3.4, there exists T such that E(ξt (z)|ξ0 = δx) >

2 for all t ≥ T , z = y, y′. A realization of our process is η̃t = ∑�
j=1 ξt,j where

{ξt,j (y)}j∈N is an i.i.d. family of copies of {ξt }t≥0. Fix z ∈ {y, y′}. Since ξt,j is
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stochastically dominated by a continuous time branching process with birth rate
λ supw

∑
v μ(w,v) < +∞, it is clear that Var(ξt,j (z)) =: σ 2

t,z < +∞ (note that the
variance depends on x). Thus by the central limit theorem, if � is sufficiently large,

ε

4
≥

∣∣∣∣∣P
(

�∑
j=1

ξt,j (z) ≥ s

∣∣∣∣ξ0,j = δx,∀j = 1, . . . , �

)

− 1 + φ

(
s − �E(ξt (z)|ξ0 = δx)√

�σt,z

)∣∣∣∣∣
uniformly with respect to s ∈ R, where φ is the cumulative distribution function
of the standard normal. Whence there exists �(ε, x,m,M,z, t) such that, for all
� ≥ �(ε, x,m,M,z, t),

P
(
η̃t (z) ≥ �|η̃0 = �δx

) ≥ 1 − φ

(√
�

1 −E(η̃t (y)|η̃0 = δx)

σt,z

)
− ε

4
≥ 1 − ε

2
,

since
√

�(1−E(η̃t (z)|η̃0 = δx)/σt,z → −∞ as � → +∞. Take �(ε, x,m,M, t) :=
�(ε, x,m,M,y, t) ∨ �(ε, x,m,M,y′, t). Hence (3.3) follows.

If μ is quasi-transitive, take {xi}ri=1 and {mi}ri=1 as in the proof of Lemma 3.4.
It suffices to choose m := maxi=1,...,r mi and T = maxi=1,...,r T (xi,m,M). �

We say that a subset A of Zd is contained in C∞ if all the vertices are connected
to C∞ and all the edges (x, y), with x, y ∈ A, are open. The following is a lemma
on the geometry of C∞ which states that C∞ contains a biinfinite open path where
one can find large boxes at bounded distance from each other.

LEMMA 3.6. Let us consider a supercritical Bernoulli percolation on Z
d . For

every m ∈ N there exists M = M(m) > 0 such that, a.s. with respect to the per-
colation measure, the infinite percolation cluster C∞ contains a pairwise disjoint
family {Bj }+∞

j=−∞ with the following properties:

(1) there exists {xj }+∞
j=−∞, xj ∈ Z

d for all j , and Bj = xj + B(m) for all j ;

(2) there is a family of open paths {πj }+∞
j=−∞ such that xj

πj←→ xj+1, and
|πj | ≤ M for all j .

PROOF. For every N ∈ N \ {0}, we define the N -partition of Zd as the collec-
tion {2Nx + B(N) :x ∈ Z

d}.
We use [31], Proposition 4.1, which holds also for d = 2 according to [14],

Proposition 11. In order to achieve in [14], Proposition 11, the same generality
of [31], Proposition 4.1, one has to take into account also a general family of
events {V�}� (indexed on the boxes of the collection of the N -partitions as N ∈
N \ {0}) satisfying equation (4.4) of [31]. This can be easily done by noting that
the inequality (4.25) of [31] still holds in the case d = 2. From now on, when we
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refer to [31], Proposition 4.1, we mean this “enhanced” version which holds for
d ≥ 2.

We define V� := “there exists a seed x� + B(N1/2) ⊆ �” where by seed we
mean a box with no close edges in the percolation process (to avoid a cumbersome
notation, we omit the integer part symbol �·� in the side length). Note that V� is
measurable with respect to the σ -algebra of the percolation process restricted to �,
thus independent from the rest of the process. Given a box � of side length N , by
partitioning it into disjoint boxes of side length N1/2, we obtain the following
upper estimate �[(V c

�)] ≤ (1 − p)(N/N1/2)d = (1 − p)N
d/2 → 0 as n → ∞, where

� is the law of the Bernoulli percolation on Z
d with parameter p. This implies

that {V�}� satisfies equation (4.4) of [31].
We know from [31], Proposition 4.1, that, for any fixed supercritical Bernoulli

percolation on Z
d (“microscopic” percolation in this context), for every suffi-

ciently large N the renormalized percolation (“macroscopic” percolation from now
on) stochastically dominates a Bernoulli site percolation of arbitrarily large pa-
rameter. Let us describe briefly, how the macroscopic percolation is constructed
from the microscopic one. For every k = ±1, . . . ,±d we define the kth face
of the box B(N) as the set {y ∈ Z

d :y(|k|) = sgn(k)N}, that is, the face in the
kth direction. Roughly speaking, in the renormalized macroscopic process a box
� := 2Nx + B(N) (x ∈ Z

d ) of the N -partition is occupied if and only if:

(1) there exists a unique crossing cluster, that is, a set of open edges containing
open paths connecting any two opposite faces of the boxes,

(2) any open path γ such that diam(γ ) ≥ N1/2/10 is connected to the crossing
cluster,

(3) for every k = ±1, . . . ,±d , if Dk is a translation of the box B(N/4) centered
at the middle point of the kth face of the box 2Nx +B(N), then there exists a path
connecting the k face and the −k face of Dk ,

(4) V� holds.

If � and �′ := 2Nx′ + B(N) are occupied, where x′(i) − x(i) = δi,k (i.e., �′ is
adjacent to � in the kth direction), then the crossing clusters of these two boxes
are connected by (2), (3) and by noting that Dk = D′−k [where Dk and D′−k are the
boxes described in (3) related to � and �′, resp.].

We consider N > m2 ∨ 23 (N ≥ 24 is required in [14, 31]). Thus the seed
x� + B(N1/2) ⊆ �, when it exists, it contains an open path of diameter 2dN1/2 >

N1/2/10, and hence it is connected to the crossing cluster in � by construction
of the renormalized process; see [31], Section 4.2 or [14], Section 5. Moreover it
contains a translated box x� + B(m). By [31], Proposition 4.1, given a supercriti-
cal Bernoulli percolation on Z

d , for all sufficiently large N , there exists an infinite
open cluster of boxes in the “macroscopic” renormalized graph; see [31] for details
on the definition of occupied box. This implies the existence of an infinite cluster
(in the original microscopic percolation) which contains a seed no smaller than the
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FIG. 4. The occupied boxes in the renormalized percolation.

box B(N1/2) in each occupied box of the macroscopic cluster; see Figure 4 where
the grayed boxes are occupied.

By uniqueness, this infinite microscopic cluster coincides with C∞. Clearly, by
construction, the centers of the seeds in two adjacent occupied “macroscopic”
boxes are connected (in C∞) by a path contained into these two boxes; clearly,
the length of such a path is bounded from above by M := 2Nd . Since the per-
colation cluster in the renormalized “macroscopic” process contains a bi-infinite
self-avoiding path of open boxes, the proof is complete. �

PROOF OF THEOREM 1.1. Even though (1) follows easily from (2) and the
diagram in Figure 1, we prove it separately in order to introduce the key idea,
which will be used later to prove (2), in a simpler case. (1) Since C∞ is a subgraph
of Zd , we have that λs(C∞,μ) ≥ λs(Z

d,μ) (remember that these critical values do
not depend on the finite, nonzero initial condition). Take λ > λs(Z

d,μ): our goal is
to prove that λ > λs(C∞,μ). By Lemma 3.2 we know that there exists (a smallest)
m such that λ > λs(x + B(m),μ) for all x ∈ Z

d . Let M , {xj }+∞
j=−∞, {πj }+∞

j=−∞ as
in Lemma 3.6. By Lemma 3.5 and by monotonicity, for all ε > 0 there exist T and
� such that

P
(
η̃T (xj−1) ≥ �, η̃T (xj+1) ≥ �|η̃0(xj ) = �

)
> 1 − ε,

where {η̃t }t≥0 is the BRW (starting from the initial condition �δx0 ) restricted to
A = ⋃∞

j=−∞(xj + B(m)) ∪ πj (which, by Lemma 3.6, is a subset of C∞ which
exists a.s. whenever the cluster is infinite). We recall that the critical parameters of
the BRW are independent of � > 0.

We construct a process {ξt }t≥0 on A, by iteration of independent copies of
{η̃t }t≥0 on time intervals [nT , (n + 1)T ), and we associate it with a percolation
process � on Z× �N (Z representing space and �N representing time), where �N is the
oriented graph on N where all edges are of the type (n,n+1). We index the family
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FIG. 5. A realization of the cluster in the percolation � (left) and �2 (right).

of copies needed as {η̃(i,j)}i∈Z,j∈N and use η̃(i,j),t when also the dependence on
time has to be stressed; moreover η̃(i,j),0 = �δxi

for all i, j . The construction will
be made in such a way that η̃t stochastically dominates ξt for all t ≥ 0 and, when-

ever in the percolation process � we have that (0,0)
�→ (j, n), then ξnT (xj ) ≥ �.

Let us begin our iterative construction with its first step. Start {η̃(0,0),t }t≥0, and
let ξt = η̃(0,0),t for t ∈ [0, T ]; thus ξ0 = η̃(0,0),0 = �δx0 . In the percolation process,

the edge (0,0)
�→ (j,1), j = ±1, is open if η̃(0,0),T (xj ) ≥ �. Now suppose that

we constructed {ξt }t≥0 for t ∈ [0, nT ]; to construct it for t ∈ (nT , (n + 1)T ], we
put ξt = ∑

h∈[−n,n] : ξnT (xh)≥� η̃(h,n),t−nT for all t ∈ (nT , (n + 1)T ]. In the perco-

lation �, for all (i, n) such that there is an open path (0,0)
�→ (i, n), we connect

(i, n)
�→ (j, n + 1), j = i ± 1, if η̃(i,n),T (xj ) ≥ �.

In order to show that, by choosing � sufficiently large, with positive probability
there is an open path in the percolation �, from (0,0) to (0, n) for infinitely many n

(which means that at arbitrarily large times there are at least � individuals at x0 in
the original process), we need a comparison with a one-dependent oriented perco-
lation �2 on Z × �N. This new percolation �2 is obtained by “enlarging” � in the

following way: for all (i, n) ∈ Z× �N, we connect (i, n)
�2→ (j, n + 1), j = i ± 1, if

η̃(i,n),T (xj ) ≥ �. Note that � differs from �2 simply in the fact that in � the opening
procedure takes place only from sites already connected to (0,0) (see Figure 5). By
induction on n, this coupled construction implies that there exists a �2-open path
from (0,0) to (i, n) if and only if there exists a �-open path from (0,0) to (i, n).
By Lemma 3.5, for all ε > 0, by choosing � sufficiently large, we have that for �2
the probability of opening all edges from (i, n) is at least 1 − ε. Let us choose ε

such that the one-dependent percolation �2 dominates a supercritical independent
(oriented) Bernoulli percolation. According to Lemma 3.7, the infinite Bernoulli
percolation cluster in the cone {(i, j) : j ≥ |i|} contains infinitely many sites of
type (0, n) almost surely. Hence, by coupling, there is a positive probability that
the one-dependent infinite percolation cluster contains infinitely many sites of type
(0, n) as well.

The first claim follows since the λ-BRW on C∞ (starting with � particles at x0)
stochastically dominates {η̃t }t≥0, which in turn dominates {ξt }t≥0, and by compar-
ison with �2 we know that ξnT (x0) ≥ � for infinitely many n ∈ N.
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(2) Let us now consider the k-type contact process {ηk
t }t≥0. Take λ > λs(Z

d,μ),
m as in the previous step, and A (along with {xj }+∞

j=−∞ and {πj }+∞
j=−∞) given by

Lemma 3.6 as before. Consider the restriction {η̃k
t }t≥0 of the k-type contact process

to A. Let us begin by proving that λ > λk
s (C∞,μ) for all k sufficiently large. To

this aim it is enough to prove that for the above fixed λ, {η̃k
t }t≥0 survives locally

for all k sufficiently large.
Fix ε > 0, and let T and � be given by Lemma 3.5, such that

P
(
η̃T (y) ≥ �, η̃T

(
y′) ≥ �|η̃0 = �δx

)
> 1 − ε.

Let Nx
T be the total progeny up to time T (including the initial particles), in the

BRW (A,μ), starting from � individuals at site x. Define NT as the total number
of individuals ever born (including the initial particles), up to time T , in a branch-
ing process with rate λK , starting with � individuals at time 0: NT stochastically
dominates Nx

T for all x ∈ A. We have

P
(
η̃T (y) ≥ �, η̃T

(
y′) ≥ �,Nx

T ≤ n|η̃0 = �δx

)
≥ P

(
η̃T (y) ≥ �, η̃T

(
y′) ≥ �|η̃0 = �δx

) + P
(
Nx

T ≤ n|η̃0 = �δx

) − 1

≥ P
(
η̃T (y) ≥ �, η̃T

(
y′) ≥ �|η̃0 = �δx

) + P(NT ≤ n) − 1 > 1 − 2ε,

for all n ≥ n̄ where n̄ satisfies P(NT ≤ n̄) > 1 − ε (n̄ is independent of x).
Define an auxiliary process {η̄t }t∈[0,T ] obtained from {η̃t }t≥0 by killing all new-

borns after that the total progeny has reached size n̄. This implies that, in the pro-
cess {η̄t }t∈[0,T ], the progeny does not reach sites at distance larger than n̄ from
the � ancestors, nor it goes beyond the n̄th generation. In particular, when started
from �δx , the processes {η̄t }t∈[0,T ] and {η̃t }t≥0 coincide, up to time T , on the event
(NT ≤ n̄). Thus

P
(
η̄T (y) ≥ �, η̄T

(
y′) ≥ �|η̄0 = �δx

)
≥ P

(
η̄T (y) ≥ �, η̄T

(
y′) ≥ �,Nx

T ≤ n|η̄0 = �δx

)
= P

(
η̃T (y) ≥ �, η̃T

(
y′) ≥ �,Nx

T ≤ n|η̃0 = �δx

)
> 1 − 2ε.

The percolation construction of step (1) can be repeated by using i.i.d. copies of
{η̄t }t∈[0,T ] instead of {η̃(i,j)}i∈Z,j∈N. Call {ξ̄t }t≥0 the corresponding process con-
structed from these copies as {ξt }t≥0 was constructed from {η̃(i,j)}i∈Z,j∈N. As in
step (1), by choosing ε sufficiently small, we have that ξ̄nT (x0) ≥ � for infinitely
many n ∈ N.

Let H be the number of paths in Z
d of length n̄, containing the origin: H is

an upper bound for the number of such paths in C∞ or in A. It is easy to show
that ξ̄t (x) ≤ Hn̄ for all t and x. Thus if we take k ≥ Hn̄, then η̃k

t stochastically
dominates ξ̄t . The supercriticality of the percolation on Z × �N associated to ξ̄

implies that {η̃k
t }t≥0 survives locally. The inequality λ > λk

s (C∞,μ) follows since
{ηk

t }t≥0 stochastically dominates {η̃k
t }t≥0. This implies that, for every sufficiently
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large k, λs(Z
d,μ) ≤ λk

s (Z
d,μ) ≤ λk

s (C∞,μ) < λ (see Figure 1), and the proof is
complete. �

We discuss here an interesting result on oriented percolation which is used in
the proofs of Theorem 1.1 and [11], Theorem 5.1.

LEMMA 3.7. Consider a supercritical Bernoulli oriented percolation in Z ×
�N: almost every infinite cluster contains an infinite number of vertices of type
(0, n). The same holds for a supercritical Bernoulli oriented percolation in N× �N.

PROOF. Let us begin with the percolation in Z × �N. By (i, j) → (i′, j ′) we
mean that there is an open path in the percolation from (i, j) to (i ′, j ′), while
by (i, j) → ∞ we mean that there is an infinite open path from (i, j). By us-
ing the translation invariance of the percolation law, the results of [16], Sec-
tion 3 [in particular equations (7) and (11)] imply that a.s. if (i, j) → ∞, then
for all i′ ∈ Z there exists j ′ ≥ j such that (i, j) → (i ′, j ′). This implies that a.s.,
with respect to the percolation measure, every vertex satisfying (i, j) → ∞ has
the covering property; that is, if we project on the first coordinate (i.e., on Z)
the vertices in the cluster “branching” from it, we obtain the whole set Z. Let
J := min{j ′ : (i, j ′) → ∞ for some i ∈ Z} be the bottom level of the infinite clus-
ter; for all j ≥ J there exists i ∈ Z such that (i, j) → ∞. Consider the set of
infinite clusters which contain just a finite number of vertices of type (0, n); de-
note by (0,N) the “highest” of such vertices (N depending on the cluster), then
there exists i (depending on the cluster) such that (i,N + 1) → ∞. This implies
that (i,N + 1) is in the infinite cluster a.s. By the covering property above, the
probability that there are no paths from (i,N + 1) to (0, j ′) (for some j ′ ≥ N + 1)
is 0. Thus the set of infinite clusters containing a finite number of vertices of type
(0, n) has probability 0.

In the case of the oriented Bernoulli percolation on N × �N, we proceed analo-
gously. Observe that this percolation can be obtained from the oriented Bernoulli
percolation on Z× �N by deleting all edges outside N× �N; this defines a coupling
between these percolation processes. We use here (i, j) � (i ′, j ′) for an open path
in the oriented percolation in N × �N and again (i, j) → (i ′, j ′) for a path in the
oriented percolation in Z × �N (clearly the existence of the first one implies the
existence of the last one). Since the infinite cluster in Z × �N is unique a.s., then
the infinite cluster N × �N is a.s. a subset of the previous one. In the supercriti-
cal case, for all j ≥ min{j ′ : (i, j ′) � ∞ for some i ∈ N}, there exists i ∈ N such
that (i, j) � ∞; thus (i, j) → ∞. We proved before that a.s. (i, j) → (0, j ′) for
some j ′ ≥ j . Let us take the smaller of such j ′s, say j ′

0. Hence (i, j) → (0, j ′
0)

and the connecting path is entirely contained in N × �N, thus (i, j) � (0, j ′
0). The

conclusion follows as in the previous case. �
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FIG. 6. Comparison between cN0 (dashed) and the k0-type contact process (thick).

PROOF OF THEOREM 1.2. If follows easily from Theorem 1.1, the hypothesis
λs(Z

d,μ) = λw(Zd,μ) and the diagram shown in Figure 1. �

PROOF OF THEOREM 1.3. Let ε > 0 such that c(0) − ε > λs(Z
d,μ). By the

assumptions on c, there exists δ > 0 such that c(z) > c(0) − ε for all z ∈ [0, δ].
From Theorem 1.1 we know that there exists k0 such that the k-type contact
process (C∞,μ) associated with λ := c(0) − ε survives locally, for all k ≥ k0.
Moreover, there exists N0 such that δN > k0 − 1 for all N ≥ N0. Since cN(i) ≥
λ1[0,k−1](i) for all i ∈ N (see Figure 6), by coupling we have local survival for the
RBRWs (C∞,μ, cN) for all N ≥ N0. �

PROOF OF COROLLARY 1.4. (1) It suffices to note that the total number of
individuals is dominated by the total number of particles in a continuous-time
branching process with breeding parameter α + β; for the details, see [6], The-
orem 1(1).

(2) Note that μ is translation invariant, hence quasi-transitive. The claim follows
from Theorem 1.3 since λs(Z

d,μ) = (α + β)−1 and c(0) = 1. �

REMARK 3.8. In [23] the process is constructed by means of a semi-
group of operators on Lip(W) (the space of Lipschitz functions on the con-
figuration space W). In [7] this technique is applied to the construction of
the restrained BRWs where (μ(x, y))x,y∈X is a stochastic matrix adapted to
a graph with bounded geometry. Our definition of μ is more general. The
only difference between the construction needed here and those in [7, 23]
consists in the choice of the configuration space W and its norm; we refer
to [23] for the notation and details. As in [7, 23] we consider the space W :=
{η ∈ N

X :
∑

x∈X η(x)α(x) < +∞} where its metric is defined by ‖η − η̄‖ :=∑
x∈X |η(x) − η̄(x)|α(x). Our choice of the positive function α :X → (0,+∞)

is made in such a way that
∑

y∈X μ(x, y)α(y) ≤ K̃α(x) for all x ∈ X (and
some fixed K̃ > 0). There are many ways to do this: a possible choice is
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α(x) := ∑∞
n=0 K̃−n ∑

y∈X μ(n)(x, y)b(y) where b :X → (0,+∞) is a fixed posi-

tive, bounded function and K̃ > supx∈X lim supn→∞ n

√∑
y∈X μ(n)(x, y) [take, e.g.,

K̃ > supx∈X

∑
y∈X μ(x, y)]. Once α is chosen, the rest of the construction of the

process is carried on as in [7, 23]. In particular the system of differential equa-
tions satisfied by {E(ηt (y)|η0 = δx)}x∈X can be explicitly derived from [23], Lem-
mas 2.12 and 2.16(e).
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