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BALANCED ROUTING OF RANDOM CALLS

BY MALWINA J. LUCZAK1 AND COLIN MCDIARMID

Queen Mary University of London and University of Oxford

We consider an online network routing problem in continuous time,
where calls have Poisson arrivals and exponential durations. The first-fit dy-
namic alternative routing algorithm sequentially selects up to d random two-
link routes between the two endpoints of a call, via an intermediate node, and
assigns the call to the first route with spare capacity on each link, if there is
such a route. The balanced dynamic alternative routing algorithm simultane-
ously selects d random two-link routes, and the call is accepted on a route
minimising the maximum of the loads on its two links, provided neither of
these two links is saturated.

We determine the capacities needed for these algorithms to route calls
successfully and find that the balanced algorithm requires a much smaller
capacity. In order to handle such interacting random processes on networks,
we develop appropriate tools such as lemmas on biased random walks.

1. Introduction. Modern telecommunication systems operate at high band-
width and throughput and require quick path selection algorithms in order to fully
utilise network resources while minimising routing cost. In many settings, each
pair of nodes have dedicated capacity for communication between them, designed
to meet demand. When all the capacity is in use in times of congestion, common
routing strategies will attempt to find an alternative route via one or more interme-
diate nodes. Usually, an admission protocol checks a small number of alternatives,
and rejects the incoming call if none is available. Examples of such protocols in-
clude AT&T’s Dynamic Nonhierarchical Routing algorithm [2] and the Dynamic
Alternative Routing (DAR) algorithm [8]; see also [6, 7, 9, 10, 12].

Dynamic routing in communication networks belongs to a class of online load-
balancing problems, where tasks are to be assigned to one or more links (servers),
and communication requests (customers) may only be assigned to specific paths
(subsets of servers), depending on their properties and/or network topology. Re-
search in this area has witnessed rapid developments, with many papers demon-
strating the advantage of balanced allocations, as in the “power of two choices”
phenomenon [5, 11, 15–18, 20, 21].
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This paper is concerned with an online routing problem in continuous time,
where calls have Poisson arrivals and exponential durations (and so in particular
calls end, in contrast to many earlier models). Load-balancing and alternative rout-
ing strategies are deployed to assign bandwidth to arriving calls, under constraints
imposed by network topology. First, in order to set the scene, let us recall a related
online routing problem in discrete time from [17], where calls do not end.

An earlier discrete time model. There is a set V = {1, . . . , n} of n nodes, each
pair of which may wish to communicate. A call is an unordered pair {u, v} of
distinct nodes, that is an edge of the complete graph Kn on V . For each of the(n
2

)
unordered pairs {u, v} of distinct nodes, there is a direct link, also denoted by

{u, v}, with capacity D1 = D1(n). The direct link is used to route a call as long as
it has available capacity. There are also two indirect links, denoted by uv and vu,
each with capacity D2 = D2(n). The indirect link uv may be used when for some
w a call {u,w} finds its direct link saturated, and we seek an alternative route via
node v. Similarly vu may be used for alternative routes for calls {v,w} via u.

We are given a sequence of M calls one at a time. For each call in turn, we
must choose a route (either a direct link or an alternative two-link route via an
intermediate node) if this is possible, before seeing later calls. These routes cannot
be changed later, and calls do not end. The aim is to minimise the number of calls
that fail to be routed successfully.

The calls are independent random variables Z1,Z2, . . . ,ZM , where each Zj is
uniformly distributed over the edges e ∈ E(Kn), the edge set of Kn. Let d be a
(fixed) positive integer. A general dynamic alternative routing algorithm GDAR
operates as follows. For each call e = {u, v} in turn, the call is routed on the direct
link if possible, and otherwise nodes w1, . . . ,wd are selected uniformly at random
with replacement from V \ {u, v}, and the call is routed via one of these nodes if
possible, along the two corresponding indirect links. The first-fit dynamic alter-
native routing algorithm FDAR is the version when we always choose the first
possible alternative route, if there is one. The balanced dynamic alternative rout-
ing algorithm BDAR is the version when we choose an alternative route which
minimises the larger of the current loads on its two indirect links, if possible. Calls
that do not find an available route are lost.

Results for this model were first obtained in [13, 18], and later strengthened
and extended in [17]. Consider the case where M ∼ c

(n
2

)
for a constant c > 0.

It is known that with the algorithm FDAR we need both link capacities D1,D2

of order
√

lnn
ln lnn

to ensure that asymptotically almost surely (a.a.s.), that is, “with
probability → 1 as n → ∞”, all M calls are routed successfully. The balanced
method BDAR succeeds with much smaller capacities. Specifically, there is a tight
threshold value close to ln lnn/ lnd for D2 to guarantee that a.a.s. no call fails (and
the precise value of D1 is unimportant; see Theorems 1.3 and 7.1 in [17], where in
the latter D1 = 0).
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1.1. Our model. Here we consider a related continuous-time network model,
with the desirable additional feature that calls end. Of course this gives a much
better model for calls, but it leads to harder analysis, since, for example, we now
need to handle biased random walks with negative as well as positive increments.

Calls arrive in a Poisson process with rate λ
(n

2

)
, where λ is a positive constant.

The calls are i.i.d. random variables Z1,Z2, . . . , where Zj is the j th call to arrive
and is uniform over the edges of Kn for each j ; also let Tj be the arrival time of
call Zj . For each edge {u, v} there are two links, uv and vu, both with capacity
D = D(n) < ∞. Since in [17] the use of direct links was found to have only a
minor effect on the total capacity requirements for efficient communication, here
we do not use direct links but instead demand that each call be routed along a path
consisting of a pair of indirect links. This yields a cleaner model which captures
the interesting behaviour, and for which we can give a rigorous analysis without
(we hope!), making the paper too long for the gentle reader.

If a call is for {u, v}, then we pick d possible intermediate nodes uniformly
at random with replacement, as in the GDAR algorithm. The FDAR algorithm
chooses the first possible alternative route, if there is one. The BDAR algorithm
chooses an alternative route minimising the larger of the current loads on its two
links, if possible (ties are broken arbitrarily). Call durations are unit mean exponen-
tial random variables, independent of one another and of the arrivals and choices
processes. When a call terminates, both busy links are freed. Calls that do not find
an available route are lost.

For each edge e = {u, v} ∈ E(Kn) and node w ∈ V \ e, let Xt(e,w) denote
the number of calls in progress at time t which are routed along the path consist-
ing of links uw and vw, that is, calls between the end nodes u and v of e routed
via w. We call Xt = (Xt(e,w) : e ∈ E,w ∈ V \ e) the load vector at time t and
let X = (Z+)n(n−1)(n−2)/2 denote the set of all possible load vectors. The pro-
cess X = (Xt)t≥0 of load vectors is a continuous-time jump Markov chain with
state space X , defined on some probability space (�,F,P). By standard results,
there exists a unique stationary distribution π , and, whatever the distribution of the
starting state X0, the distribution of the load vector Xt at time t converges to π as
t → ∞.

We put a natural partial order on X : given two vectors x, x̃ ∈ X , we say that
x ≤ x̃ if x(e,w) ≤ x̃(e,w) for each e ∈ E(Kn), w ∈ V \ e. Given X -valued ran-
dom variables Z and Z̃, we say that Z̃ stochastically dominates Z if P(Z ≥ z) ≤
P(Z̃ ≥ z) for all z. If this is the case, then we also say that the distribution FZ of
Z is stochastically dominated by the distribution F

Z̃
of Z̃. We note that Z̃ stochas-

tically dominates Z if and only if there exists a coupling of Z and Z̃ such that
Z ≤ Z̃ with probability 1.

Our main interest is in the blocking probability, that is, the probability that a
new call fails to find an available route and is thus lost. As in the discrete version
analysed in [17], or in the models analysed in [15] and [16] (see also [3, 5, 20, 21]),
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in our more complicated continuous-time network model we observe the “power
of two choices” phenomenon; that is, with the BDAR algorithm for d ≥ 2 the
capacity required to ensure that most calls are routed successfully is much smaller
than with the FDAR algorithm. (When d = 1 FDAR and BDAR reduce to the same
algorithm.) Let us now state our main results, which contain precise statements of
this maxim.

Throughout the paper, we use the asymptotic O(·), �(·) and o(·) notation in
a usual way. Thus for nonnegative functions f (n) and g(n) defined on N, we
write f (n) = O(g(n)) if there exists a constant C such that f (n) ≤ Cg(n) for all
sufficiently large n, f (n) = �(g(n)) if g(n) = O(f (n)), and f (n) = o(g(n)) if
f (n)/g(n) → 0 as n → ∞.

1.2. Our results. Theorem 1.1 below shows that, when the FDAR algorithm
is used, capacity D(n) of order lnn

ln lnn
is needed in order to ensure that no call is

lost in a time interval of length polynomial in n. The set-up is as follows.
The arrival rate per edge is fixed as λ > 0, and d is a fixed positive integer.

Let α > 0, and let each link have capacity D = D(n) ∼ α lnn
ln lnn

as n → ∞. We
may need a “burn-in” period t0: for each n, if the distribution of the initial state
X0 is stochastically dominated by the stationary distribution π , then let t0 = 0, and
otherwise let t0 = t0(n) = 5 lnn. Now we consider any t1 ≥ t0 and K > 0, and time
intervals [t1, t1 + nK ].

Let us say that α is K-good if, whatever version of GDAR we use, for each
t1 ≥ t0, the mean number of calls lost during the interval [t1, t1 + nK ] is o(1); and
α is K-bad if, when we use FDAR, for each t1 ≥ 0, the mean number of calls lost
during the interval [t1, t1 + nK ] is n�(1). (Observe that α cannot be both K-good
and K-bad.)

The first theorem below shows that α = 2/d is a critical value (which does
not depend on λ). In particular, if α > 2/d , then α is K-good for some K > 0.
The second theorem concerns α above this threshold and describes the pairs α,K

where α is K-good or K-bad. The behaviour is simple when d is 1 or 2, and more
interesting for d ≥ 3; see Figures 1 and 2.

THEOREM 1.1. If α > 2/d , then α is K-good for some K > 0, and if α ≤ 2/d ,
then α is K-bad for each K > 0.

THEOREM 1.2. Let α > 2/d , and let K > 0.

(a) If 2/d < α ≤ 1 (and so d ≥ 3), then α is K-good for dα − K > 2, and α is
K-bad for dα − K < 2.

(b) If α ≥ 1 (as must be the case when d is 1 or 2), then α is K-good for
α − K > 3 − d , and α is K-bad for α − K < 3 − d .

As foreshadowed above, the next result shows that the BDAR algorithm requires
significantly smaller capacities. Note that the expected number of calls arriving in
a time interval of length nK is ∼(λ/2)nK+2.
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FIG. 1. When α is K-good: case d ≤ 2.

FIG. 2. When α is K-good: case d > 2.

THEOREM 1.3. Let λ > 0 be fixed, and let d ≥ 2 be a fixed integer. Let K > 0
be a constant. Then there exist constants c = c(λ, d,K) > 0 and κ = κ(λ, d) such
that the following holds:

(a) Suppose that D(n) ≥ ln lnn/lnd + c, and we use the BDAR algorithm.
Given n and a distribution for X0, let t0 = 0 if this initial distribution is stochas-
tically dominated by the equilibrium distribution, and let t0 = κ lnn otherwise.
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Then the expected number of failing calls during the interval [t1, t1 + nK ] is o(1)

for each t1 ≥ t0.
(b) If D(n) ≤ ln lnn/lnd − c and we use any GDAR algorithm, then a.a.s. at

least nK+2−o(1) calls are lost during [t1, t1 + nK ] for each t1 ≥ 0.

Some parts of our proofs are built on our earlier work on balls and bins in
continuous time [15]. Indeed that earlier paper arose from the need of the authors
to sort out simpler “network-free” load-balancing results so as to be ready to tackle
the additional complications in network routing problems, where a call occupies
two adjacent links.

We mention that a process similar to the one defined above, but sometimes also
with direct links, was considered in Luczak and Upfal [18] and then in Anag-
nostopoulos, Kontoyiannis and Upfal [1]. The earlier of these works obtained,
heuristically, some preliminary results. These indicate that link capacity of order
ln lnn/ lnd is sufficient to ensure that with the BDAR algorithm, in equilibrium,
a new call is accepted with high probability, and capacity of order ln ln(t0n)/ lnd

is sufficient to ensure that all calls arriving during an interval of length t0 are ac-
cepted with high probability. There is also a short explanation of why link capacity
of order �(

√
ln(t0n)/ ln ln(t0n)) is necessary to achieve this with FDAR.

Augmented versions of these arguments appear in the later paper of Anagnos-
topoulos et al. [1]. They find an upper bound of ln lnn/ lnd + o(ln lnn/ lnd) for
the capacity required by the BDAR algorithm to ensure that, in equilibrium, an
arriving call is accepted with probability tending to 1 as n → ∞. Further, they
identify a lower bound of �(

√
lnn/ ln lnn) for the capacity needed by the FDAR

algorithm to achieve the same effect.
Here we give rigorous proofs of sharp versions of these bounds and turn them

into sharp two-sided results by supplementing them with a matching lower bound
on the performance of the BDAR algorithm and a matching upper bound on the
performance of the FDAR algorithm. Further, we do not restrict our attention to
the equilibrium distribution, and we prove upper and lower bounds on the perfor-
mance of these algorithms over long time intervals. Accordingly, our proofs are
considerably more involved and subtle than the arguments put forward in [1]. In
comparison with that paper, our lower bounds for the FDAR algorithm are of the
order lnn/ ln lnn, not

√
lnn/ ln lnn: this is due to the fact that we never allow di-

rect routing between pairs of nodes, whereas in [1] direct routing is allowed for
FDAR (though not for BDAR).

1.3. Some notation. Here we give some further definitions and notation which
we shall need shortly. The subscript t always refers to time. Given an edge e =
{u, v} ∈ E(Kn), let Xt(e) = ∑

w/∈e Xt (e,w) denote the number of calls between
u and v in progress at time t . Also, given distinct nodes v and u, let Xt(vu) =∑

w 	=u,v Xt ({v,w}, u), which is the load of link vu at time t . Given a node v ∈ V ,
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let Xt(v) = ∑
u	=v Xt(vu), which is the number of calls with one end v at time t .

Thus ‖Xt‖1 := 1
2

∑
v∈V Xt(v) is the total number of calls at time t .

We say that a link is saturated (or full) if it has load equal to its capacity D.
Given a node v, we let St (at v) denote the set of saturated links vw (for w 	= v) for
calls at v at time t and let St (at v) = |St (at v)|, which is the number of saturated
links vw. Similarly, given a node w, we let St (via w) denote the set of saturated
links vw for calls at some node v 	= w at time t and let St (via w) = |St (via w)|.

1.4. Overview of the proofs. The rest of the paper is organised as follows. Sec-
tion 2 contains some preliminary lemmas that will be needed later in our proofs.
After recalling some probability inequalities, there are results concerning biased
random walks, transferring probability bounds from points to intervals, comparing
jump Markov chains to independent birth-death processes, and a nonasymptotic
version of the PASTA principle. Section 3 is where we introduce the “network”
dependencies. Lemma 3.1 is a key result on the probability of a call failing con-
ditionally on the history up to then, and also we establish inequalities for the total
number of calls and the number of saturated links.

In Section 4 we prove Theorems 1.1 and 1.2, which describe when the pair
(α,K) is good or bad. The approximate picture is as follows. The number St (at v)

of saturated links at a node v has expected value n1−α+o(1), and the probabil-
ity p that a call with one end v fails is roughly E[(St (at v)/n)d ]. If 0 < α < 1,
then St (at v) is concentrated and E[St (at v)d ] = n(1−α)d+o(1) and p is n−αd+o(1).
The expected number of arrivals in an interval of length nK is about nK+2,
and nK+2p = nK+2−αd+o(1), so α is K-good when K + 2 − αd < 0, and α is
K-bad when K + 2 − αd > 0. When α ≥ 1, then E[St (at v)d ] ∼ E[St (at v)] and
p = n1−α−d+o(1), and again we see when α is K-good by looking at nK+2p.

To show goodness in these theorems we need to show that, throughout a time
interval, there are not too many saturated links in the network. To show badness
we need a lower bound on the number of saturated links at a vertex, and for this
we need also to upper bound the number of saturated links, so that an arriving call
wishing to use the link is not too often blocked because the “partner” link of the
pair is saturated.

In Section 5 we prove Theorem 1.3 on the balanced routing algorithm BDAR.
We are not able to use the neat approach used in [15] for balls in bins (based on
rapid mixing, concentration and simple explicit balance equations in equilibrium)
in the more complicated network model. Instead the proof is based on the “lay-
ered induction” approach, used, for example, in [3, 4], though now with additional
hurdles.

For the upper bound, the key step is to show that if for each node v the number of
arcs at v with “weighted load” at least h is at most α throughout an interval [t, t0],
then with high probability for each node v the number of arcs at v with weighted
load at least h + 1 is at most α′ � α throughout a slightly smaller interval [t ′, t0].
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We thus deduce that with high probability no link is ever saturated in the relevant
interval of length nK , and so no call is lost. For the lower bound, we use a similar
approach to show that with high probability for each node v, at least n1−ε links vw

incident on v are saturated throughout the interval of length nK , and hence with
high probability at least nK+2−εd−o(1) calls arriving during the interval are lost.

Finally we make some concluding remarks in Section 6.

2. Preliminary results. In this section we give some basic results which will
be used in our proofs. Topics covered include some general probability inequalities
and random walks “with drift”. The reader may wish to skim this section and refer
back to it as required.

2.1. Inequalities. If the random variable Y has the Poisson distribution with
mean μ > 0, we write Y ∼ Po(μ), and for nonnegative integers k, we write

pk(μ) = P(Y ≥ k) = e−μ
∑
j≥k

μj

j !(1)

and note that

pk(μ) ≤ μk/k! ≤ (eμ/k)k.(2)

When μ > 0 is a constant and D = D(n) is an integer with D ∼ α lnn/ ln lnn, we
have

pD(μ) = n−α+o(1).(3)

The following are a pair of standard concentration inequalities for a binomial or
Poisson random variable Y with mean μ:

P(Y − μ ≥ εμ) ≤ exp
(−1

3ε2μ
)

(4)

and

P(Y − μ ≤ −εμ) ≤ exp
(−1

2ε2μ
)

(5)

for 0 ≤ ε ≤ 1; see, for example, Theorem 2.3(c) and inequality (2.8) in [19].
We shall use the following version of Talagrand’s inequality; see, for exam-

ple, Theorem 4.3 in [19]. (In the notation in [19], the function h below is a
(c2r)-configuration function.)

LEMMA 2.1. Let Y = (Y1, Y2, . . .) be a finite family of independent random
variables, where the random variable Yj takes values in a set Yj . Let Y = ∏

j Yj .
Let c and r be positive constants, and suppose that the nonnegative real-valued

measurable function h on Y satisfies the following two conditions for each y ∈ Y :

• Changing the value of a co-ordinate yj can change the value of h(y) by at
most c.



BALANCED ROUTING OF RANDOM CALLS 1287

• If h(y) = s, then there is a set of at most rs co-ordinates such that h(y′) ≥ s for
any y′ ∈ Y which agrees with y on these co-ordinates.

Let m be a median of the random variable Z = h(Y). Then for each x ≥ 0,

P(Z ≥ m + x) ≤ 2 exp
(
− x2

4c2r(m + x)

)
(6)

and

P(Z ≤ m − x) ≤ 2 exp
(
− x2

4c2rm

)
.(7)

2.2. Random walks and birth-and-death processes. We start with a lemma
from [17], which will be used in Sections 5.1 and 5.2. For n ∈ N and 0 ≤ p ≤ 1,
let B(n,p) denote a binomial random variable with parameters n and p.

LEMMA 2.2 (Lemma 2.3 in [17]). Let F0 ⊆ F1 ⊆ · · · be a filtration; let
Y1, Y2, . . . be indicator random variables such that each Yi is Fi -measurable; and
let E0,E1, . . . be events where Ei ∈ Fi for each i = 0,1, . . . . For each t ∈ N, let
Rt = ∑t

i=1 Yi . Let 0 ≤ p ≤ 1, and let k be a positive integer.

(a) Assume that for each i = 1,2, . . .

P(Yi = 1|Fi−1) ≤ p on Ei−1 ∩ {Ri−1 < k}.
Then for each t ∈N

P

(
{Rt ≥ k} ∩

(
t−1⋂
i=0

Ei

))
≤ P

(
B(n,p) ≥ k

)
.

(b) Assume that for each i = 1,2, . . .

P(Yi = 1|Fi−1) ≥ p on Ei−1 ∩ {Ri−1 < k}.
Then for each t ∈N

P

(
{Rt < k} ∩

(
t−1⋂
i=0

Ei

))
≤ P

(
B(n,p) < k

)
.

The next lemma concerns hitting times of a generalised random walk with a
“downward drift”. It is the “reverse” of Lemma 7.2 in [15], and can be deduced
easily from that result by replacing the Yi with −Yi ; we omit the details. It will be
used in the proofs of Lemma 2.4 and Theorem 1.3(b).

LEMMA 2.3. Let F0 ⊆ F1 ⊆ · · · be a filtration; let Y1, Y2, . . . be random
variables taking values in {−1,0,1} such that each Yi is Fi-measurable; and let
E0,E1, . . . , be events where each Ei ∈ Fi . For each t ∈N, let Rt = R0 +∑t

i=1 Yi .
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Let 0 ≤ p ≤ 1/3, let r0 and r1 be integers such that r1 < r0, and let m be an integer
such that pm ≥ 2(r0 − r1). Assume that for each i = 1, . . . ,m,

P(Yi = 1|Fi−1) ≤ p on Ei−1 ∩ (Ri−1 > r1)

and

P(Yi = −1|Fi−1) ≥ 2p on Ei−1 ∩ (Ri−1 > r1).

Then

P

((
m⋂

t=1

{Rt > r1}
)

∩
(

m−1⋂
i=0

Ei

)∣∣∣∣R0 = r0

)
≤ exp

(
−pm

28

)
.

We will use the last lemma to show that, for a type of discrete-time “immigra-
tion-death” process satisfying suitable conditions, it is unlikely that the “popula-
tion” Rt stays above the level r throughout a long period. The following lemma
will be used in the proof of Theorem 1.3(a).

LEMMA 2.4. Let F0 ⊆ F1 ⊆ · · · , be a filtration; let Y1, Y2, . . . be random
variables taking values in {−1,0,1} such that each Yi is Fi-measurable; and let
E0,E1, . . . be events where each Ei ∈Fi . Let a, b > 0 be constants, and let r̃ and r

be integers with 2a/b ≤ r ≤ r̃ − 1.
Let R0 = r̃ , and let Rt = R0 + ∑t

i=1 Yi . Assume that for each i = 1,2, . . .

P(Yi = 1|Fi−1) ≤ a on Ei−1 ∩ (Ri−1 > r)

and

P(Yi = −1|Fi−1) ≥ by on Ei−1 ∩ (Ri−1 = y)

for each y = r + 1, . . . , r̃ , and

P(Yi = −1|Fi−1) ≥ br̃ on Ei−1 ∩ (Ri−1 > r̃).

Let m′ = � 4
b
��log2

r̃
r
�, and let E be the event

⋂m′
i=1 Ei . Then

P

((
m′⋂
t=1

{Rt > r}
)

∩ E

)
≤ 2 exp

(
− r

14

)
.(8)

PROOF. Let k = �log2
r̃
r
� − 1, so that 2kr < r̃ ≤ 2k+1r . Let T0, T1, . . . , Tk be

the hitting times to cross the k + 1 intervals from r̃ down to 2kr , from 2kr down to
2k−1r , and so on, ending with the interval from 2r down to r . Thus

T0 = min
{
t ≥ 0 :Rt = 2kr

}
,

and for j = 1, . . . , k,

Tj = min
{
t > Tj−1 :Rt = 2k−j r

}
.
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Consider j ∈ {0, . . . , k}. We want to upper bound the probability that Tj −Tj−1

is large. To do this, we may use Lemma 2.3 with p as pj = b2k−j−1r , r0 =
2k−j+1r (except that for j = 0 we let r0 = r̃), r1 = 2k−j r and m as mj = � 4

b
�. Note

that pjmj ≥ 2k−j+1r , which is at least twice the length of the interval. (It may look
at first sight that we are “giving away” rather a lot on the “upward” probability but
this makes only a constant factor difference.) Hence, with T−1 ≡ 0,

P
(
E ∩ {Tj − Tj−1 > mj }) ≤ exp

(
−pjmj

28

)
≤ exp

(
−2k−j r

14

)
.

But now

P
(
E ∩ {

Rt > r ∀t ∈ {
1, . . . ,m′}}) ≤

k∑
j=0

P
(
E ∩ (Tj − Tj−1 > mj)

)

≤
k∑

j=0

exp
(
−2k−j r

14

)

≤ e−r/14/
(
1 − e−r/14)

.

Hence

P
(
E ∩ {

Rt > r ∀t ∈ {1, . . . ,m}}) ≤ 2e−r/14,

by the above if e−r/14 ≤ 1
2 and trivially otherwise. �

The next lemma appears as Lemma 7.3 in [15] and shows that if we try to
cross an interval against the drift we rarely succeed. It will be used in the proof of
Lemma 5.2 and also in the proof of Lemma 5.4.

LEMMA 2.5. Let a be a positive integer. Let p and q be reals with q > p ≥ 0
and p + q ≤ 1. Let F0 ⊆ F1 ⊆ F2 ⊆ · · · be a filtration; let Y1, Y2, . . . be random
variables taking values in {−1,0,1} such that each Yi is Fi-measurable; and let
E0,E1, . . . be events where each Ei ∈ Fi . Let R0 = 0, and let Rk = ∑k

i=1 Yi for
k = 1,2, . . . . Assume that for each i = 1, . . . ,m,

P(Yi = 1|Fi−1) ≤ p and P(Yi = −1|Fi−1) ≥ q

on Ei−1 ∩ {0 ≤ Ri−1 ≤ a − 1}.
Let

T = inf
{
k ≥ 1 :Rk ∈ {−1, a}} and ET =

T⋂
i=0

Ei.

Then

P
({RT = a} ∩ ET

) ≤ (p/q)a.
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We must handle random processes like Xt(v), the number of active calls with
one end v at time t , which can increase only when new calls arrive, and be able to
move from probability bounds at points of time to bounds over intervals of time.
We require another lemma, which extends Lemma 2.1 in [15].

Consider the n-node case of our network model, where the set of all load vec-
tors is X = (Z+)n(n−1)(n−2)/2. Let us say that a real-valued function f on X has
bounded increase at a node v if whenever s and t are times with s < t , then f (xt )

is at most f (xs) plus the total number of arrivals in the interval (s, t] for v; f has
bounded increase via a node v if for each s < t , f (xt ) is at most f (xs) plus twice
the total number of arrivals in the interval (s, t] routed via v as the intermedi-
ate node; and for each s < t , f has strongly bounded increase at a node v if
f (xt ) is at most f (xs) plus the maximum number of arrivals for v in the inter-
val (s, t] which use any given link incident on v. Thus, for example, given v ∈ V ,
f (x) = x(v) (the total number of calls with one end v in state x) has bounded
increase at v, f (x) = |{w ∈ V \ {v} :x(wv) ≥ D}| (number of saturated links wv,
for calls with one end w routed via v, in state x) has bounded increase via v, and
f (x) = maxw∈V \{v} x(vw) (maximum load of a link vw, for calls with one end v,
in state x) has strongly bounded increase at v.

The following elementary lemma will be invoked many times, in the proofs of
various other lemmas, as well as in the proofs of the three theorems. (Think of the
bounds g as increasing and h as decreasing.)

LEMMA 2.6. Consider functions f :X → R and g,h :R → R. Let v be a
node in V , let t1 ≥ 0 and τ > 0, and let E ∈ Ft1 . Suppose that, for all a ∈ R and
all times t1 ≤ t ≤ t1 + τ ,

P
(
E ∩ {

f (Xt) ≤ a
}) ≤ g(a) and P

(
E ∩ {

f (Xt) ≥ a
}) ≤ h(a).

Let σ > 0, let a ∈ R, and let b ≥ 0.

(a) Either (i) suppose that f has bounded increase at v, and let θ =
P(Po(λ(n − 1)σ ) > b) or (ii) suppose that f has strongly bounded increase at v,
and let θ = (n − 1)P(Po(λdσ) > b). Then

P
(
E ∩ {

f (Xt) ≤ a for some t ∈ [t1, t1 + τ ]}) ≤
⌈

τ

σ

⌉(
g(a + b) + θ

)
(9)

and

P
(
E ∩ {

f (Xt) ≥ a + b for some t ∈ [t1, t1 + τ ]}) ≤
⌈

τ

σ

⌉(
h(a) + θ

)
.(10)

(b) Suppose that f has bounded increase via v, and let θ = P(Po(λd(n −
1)σ/2) > b). Then

P
(
E ∩ {

f (Xt) ≤ a for some t ∈ [t1, t1 + τ ]}) ≤
⌈

τ

σ

⌉(
g(a + 2b) + θ

)
(11)
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and

P
(
E ∩ {

f (Xt) ≥ a + 2b for some t ∈ [t1, t1 + τ ]}) ≤
⌈

τ

σ

⌉(
h(a) + θ

)
.(12)

PROOF. We may assume that τ
σ

is a positive integer j by considering replac-
ing σ by σ ′ = τ/� τ

σ
� (note that 0 < σ ′ ≤ σ and τ

σ ′ = � τ
σ
�).

Consider first the case (a)(i), when f has bounded increase at v. Note that the
union of the j intervals Ir = [t1 + (r − 1)σ, t1 + rσ ] for r = 1, . . . , j is [t1, t1 + τ ].
Let Ar denote the event that there are >b arrivals for node v in the interval Ir , so
that P(Ar) = P(Po(λ(n − 1)σ ) > b) = θ . Observe that, given t ∈ Ir , if f (Xt) ≤ a

and Ar fails (so there are at most b arrivals during Ir ), then f (Xt1+rσ ) ≤ a + b.
Thus

E ∩ {
f (Xt) ≤ a for some t ∈ [t1, t1 + τ ]}

⊆ E ∩
{( j⋃

r=1

{
f (Xt1+rσ ) ≤ a + b

}) ∪
( j⋃

r=1

Ar

)}
,

and (9) follows. Similarly

E ∩ {
f (Xt) ≥ a + b for some t ∈ [t1, t1 + τ ]}

⊆ E ∩
{( j⋃

r=1

{
f (Xt1+(r−1)σ ) ≥ a

}) ∪
( j⋃

r=1

Ar

)}
,

and (10) follows.
To handle the case (a)(ii) when f has strongly bounded increase at v, note that

the arrival process onto any given link vu is stochastically dominated by a Poisson
process with rate

(n − 2)λ
(n − 2)d − (n − 3)d

(n − 2)d
≤ λd.

[Here we used the inequality (1 − x)d ≥ 1 − dx for 0 ≤ x ≤ 1.] Thus if Br denotes
the event that there are >b arrivals in the interval Ir that are routed on some link
vu, u 	= v, then

P(Br) ≤ (n − 1)P
(
Po(λdσ) > b

);
and we can complete the proof as above, replacing events Ar with events Br .

Finally, in the case (b) the arrival process onto links with v as the intermediate
node is stochastically dominated by a superposition of

(n−1
2

)
independent Poisson

processes, each with rate

λ
(n − 2)d − (n − 3)d

(n − 2)d
≤ λd

n − 2
.
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If Cr denotes the event that there are >b arrivals in the interval Ir that are routed
via v, then P(Cr) ≤ P(Po(λd(n − 1)σ/2) > b). The rest of the proof is as above.

�

We present one more lemma in this subsection. Consider a continuous-time
jump Markov chain M = (Mt)t≥0 with countable state space S and with q-matrix
q = (q(x, y) :x, y ∈ S). Under certain conditions we can compare features of its
behaviour with that of independent birth-and-death processes. We shall need the
following lemma to handle the lower bound part of Theorems 1.1 and 1.2.

Let N be a positive integer, and let the index j run over {1, . . . ,N}. For each j

let ej denote the j th unit N -vector, and let fj be a function from S to Z
+, and write

f (x) for (f1(x), . . . , fN(x)). Assume that the following two conditions hold:

(i) for all distinct x and y in S such that q(x, y) > 0, we have f (y) = f (x)±ej

for some j ;
(ii) for each x ∈ S and each j∑

y∈S : fj (y)=fj (x)−1

q(x, y) = fj (x).

Now define λj (x) for each x ∈ S and each j by setting

λj (x) = ∑
y∈S : fj (y)=fj (x)+1

q(x, y).

LEMMA 2.7. Let M be a continuous-time jump Markov chain as above.
For each j let λj > 0 be a constant. Let 0 ≤ t1 < t2. For j = 1, . . . ,N , let
W(j) = (Wt(j))t≥0 be independent birth-and-death processes, where each W(j)

has constant birth rate λj and death rate equal to w when in state w, where
W0(j) = 0 for each j . Let W = (W(j) : j = 1, . . . ,N). Let F ⊆ S be such that
for each x ∈ F and each j we have λj (x) ≥ λj , and let A be the event that Mt ∈ F

for each t ∈ [t1, t2]. Then for each downset B in {0,1, . . .}N ,

P
({

f (Mt2) ∈ B
} ∩ A

) ≤ P(Wt2−t1 ∈ B).(13)

Now let nj be a given positive integer for each j = 1, . . . ,N . Let W̃ = (W̃t )t≥0,
where W̃t = (W̃t (j) : j = 1, . . . ,N) and each W̃ (j) = (W̃t (j))t≥0 is like W(j)

except that W̃ (j) has upper population limit nj . Let F̃ ⊆ S be such that, for each
x ∈ F̃ and each j = 1, . . . ,N , if fj (x) < nj , then λj (x) ≥ λj . Let Ã be the event
that Mt ∈ F̃ for each t ∈ [t1, t2]. Then for each downset B in {0,1, . . .}N ,

P
({

f (Mt2) ∈ B
} ∩ Ã

) ≤ P(W̃t2−t1 ∈ B).(14)

PROOF. Let us prove (13), the first part of the lemma: the second part, with
population limits, may be proved similarly.
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Let W ′
t (j ) = Wt−t1(j), and similarly for W ′

t and W ′. Let m0 ∈ F , and condition
on Mt1 = m0. Then we may assume that λj (x) ≥ λj for each x ∈ S, since the
values λj (x) for x /∈ F are irrelevant, and then we may ignore the event A. But now
we can couple M with W ′ in such a way that, for each j , every arrival in W ′(j) is
matched by an increment in fj . Also, for each j , whenever fj (Mt) = W ′

t (j ), every
event decreasing fj can be matched by a departure in W ′(j). Since fj (Mt1) ≥ 0 for
all j , under the coupling, fj (Mt) ≥ W ′

t (j ) for each j = 1, . . . ,N and t ∈ [t1, t2],
and it follows in particular that

P
(
f (Mt2) ∈ B|Mt1 = m0

) ≤ P
(
W ′

t2
∈ B

) = P(Wt2−t1 ∈ B).

Inequality (13) now follows since this is true for each m0 ∈ F . �

2.3. PASTA. We shall need information on the behaviour of our routing sys-
tems at arrival times of calls, and sometimes we will need to use the following
nonasymptotic version of the PASTA principle (“Poisson arrivals see time aver-
ages”).

Let M = (Mt)t≥0 be a Markov process with state space S, let (Nt)t≥0 be a Pois-
son “arrival” process with constant rate λ, and assume that for each s > 0, Ms and
the process (Nt − Ns)t≥s are independent. Thus we have the “lack of anticipation
property” that for each time s the future arrivals are independent of the process up
to time s. Let f be a bounded real-valued function on S.

Let 0 ≤ a < b be fixed. Let V be the sum of the values f (Mt−) over the arrival
times t in [a, b]. We are interested in EV .

LEMMA 2.8. Let α = inft∈[a,b]E[f (Mt)] and β = supt∈[a,b]E[f (Mt)]. Then

αλ(b − a) ≤ EV ≤ βλ(b − a),

and in particular, if Mt is stationary, then EV = λ(b − a) ·E[f (Ma)].
For example, consider a simple queuing system in equilibrium, as in the work of

Anagnostopoulos et al. [1] on routing random calls. Here we have an M/M/B/B

queue, where the Poisson arrivals have rate λ, service times are exponential, and
there are B servers; and further where there can be at most B customers in the
system. Let P1 be the probability that there are B customers in the system. Then
the expected number of customers lost in a unit time interval is λP1.

To deduce this from the lemma above, take Mt as the number of customers
at time t , and let f (B) = 1 and f (x) = 0 if x 	= B , so that V is the number of
customers lost. (It is not true that the probability that a customer is lost is (1 −
e−λ)P1, as stated in the proof of Theorem 6 of [1].)

PROOF OF LEMMA 2.8. Let A be the number of arrivals in [a, b]. For each k =
1,2, . . . on the event that A ≥ k, let Tk be the kth last arrival time in [a, b] and let
Vk = f (MTk−); and otherwise let Tk = −1 say and let Vk = 0. Then V = ∑

k≥1 Vk .
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First let us consider k = 1: we shall show that

EV1 =
∫ b−a

0
E

[
f (Mt)

]
λe−λ(b−t) dt.(15)

To prove this result, let c = b − a and for each n = 1,2, . . . let

In =
⌈
n(T1 − a)

c

⌉
− 1,

and note that T1 − c
n

≤ a + cIn

n
< T1. Let

Yn = f (Ma+(cIn/n)) =
n−1∑
i=0

I{a+(ci/n)<T1≤a+(c(i+1)/n)}f (Ma+(ci/n)).

Then Yn → V1 a.s., and so EYn → EV1 by dominated convergence. Also, crucially,
the random variables I{a+(ci/n)<T1≤a+(c(i+1)/n)} and f (Ma+(ci/n)) are independent
for each i. Hence, since b − T1 has probability density λe−λt for 0 ≤ t ≤ c,

EYn =
n−1∑
i=0

P

(
a + ci

n
< T1 ≤ a + c(i + 1)

n

)
E

[
f (Ma+(ci/n))

]

=
n−1∑
i=0

P

(
c

(
1 − i + 1

n

)
≤ b − T1 < c

(
1 − i

n

))
E

[
f (Ma+(ci/n))

]

= (
eλc/n − 1

) n−1∑
i=0

e−λc(1−(i/n))
E

[
f (Ma+(ci/n))

]

∼ λ
c

n

n−1∑
i=0

E
[
f (Ma+(ci/n))

]
e−λ(b−(a+(ci/n)))

→
∫ b−a

0
E

[
f (Mt)

]
λe−λ(b−t) dt as n → ∞

since E[f (Mt)] is continuous as a function of t . This establishes (15).
Now consider general k ≥ 1. Denote the probability density function of Tk on

[a, b] by gk(t). Then just as for (15) we have

EVk =
∫ b−a

0
E

[
f (Mt)

]
gk(b − t) dt.(16)

But V = ∑
k≥1 Vk and

∑
k≥1

∫ b−a

0
gk(b − t) dt = ∑

k≥1

P(A ≥ k) = EA = λ(b − a),

and the lemma follows. �
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3. Saturated links and failure probability. In this section we give lemmas
specific to the network setting. We give upper and lower bounds on the conditional
blocking probability of a call, upper and lower bounds on the total number of active
calls for a node v, and upper bounds on the number of saturated links incident on v

over long periods of time. All the results are valid for any GDAR algorithm.
Recall that Xt = (Xt(e,w) : e ∈ E,w ∈ V \ e) denotes the load vector at time t .

For each time t we let Ft denote the σ -field generated by (Xs : s ≤ t) (i.e., the
σ -field of events up to and including time t). Given a stopping time T with respect
to this filtration, we let FT denote the σ -field of all events up to and including
time T , and let FT − denote the σ -field of events strictly before T .

First we consider the failure probability of a call. Recall that for k = 1,2, . . .

the call Zk arrives at time Tk . For each k and each node v, for brevity let d(k)(v)

denote STk−(at v), the number of full links at v when the call Zk arrives. The next
lemma is central to our results.

LEMMA 3.1. For each k = 1,2, . . .

P(Zk fails|Zk,FTk−) ≤
(

2 maxv d(k)(v)

n − 2

)d

(17)

and

P(Zk fails|FTk−) ≤ 2d+1

n

∑
v∈V

(
d(k)(v)

n − 2

)d

;(18)

also, assuming that n ≥ 4,

P(Zk fails|FTk−) ≥ 1

2n

∑
v∈V

(
d(k)(v)

n − 2

)d

.(19)

PROOF. Conditional on the event that, when a call arrives, the sum of the
numbers of saturated links at the ends of the call is s, the probability it fails is at
most ( s

n−2)d . Thus

P
(
Zk fails|Zk = {u, v},FTk−

) ≤
(

d(k)(u) + d(k)(v)

n − 2

)d

≤
(

2 maxw d(k)(w)

n − 2

)d

,

which gives (17). Similarly,

P(Zk fails|FTk−) ≤ 1(n
2

) ∑
u	=v

(
d(k)(u) + d(k)(v)

n − 2

)d

≤ 2d−1(n
2

) ∑
u	=v

(
d(k)(u)d + d(k)(v)d

n − 2

)d

,
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and (18) follows. [For the second inequality we used the fact that f (x) = xd is
convex for x > 0, and so (x + y)d ≤ 2d−1(xd + yd) for x, y > 0.]

On the other hand,

P(Zk fails|FTk−) ≥ 1

2
(n
2

) ∑
v∈V

∑
u	=v

(d(k)(v) − IXTk−(vu)=D

n − 2

)d

.

But for each v ∈ V ,∑
u	=v

(
d(k)(v) − IXTk−(vu)=D

)d

= (
n − 1 − d(k)(v)

)
d(k)(v)d + d(k)(v)

(
d(k)(v) − 1

)d
≥ 1

2
(n − 1)d(k)(v)d

for n ≥ 4. [To see this, consider separately the case d(k)(v) ≤ n−1
2 , when the first

term suffices; and the case d(k)(v) = x ≥ n
2 , when (x −1)d ≥ xd(1−d/x) ≥ 1

2xd .]
Hence

P(Zk fails|FTk−) ≥ 1

2
(n

2

) ∑
v∈V

1/2(n − 1)d(k)(v)d

(n − 2)d

= 1

2n

∑
v∈V

(
d(k)(v)

n − 2

)d

,

and (19) follows. �

To obtain our estimates for the total number of active calls for a node v, and
upper bounds on the number of saturated links incident on v, we compare the pro-
cess X to a much simpler dominating process X̃ = (X̃t )t≥0 which also has state
space X and satisfies X̃0 = X0 and evolves as follows. The edges e = {u, v} in
E(Kn) receive independent rate λ Poisson arrival streams of calls; each link uv

has infinite capacity, and each call throughout its duration occupies d two-link
routes chosen uniformly at random with replacement. (If a route is chosen more
than once by a given call, then the call will still be counted only once on the cor-
responding two links.) All call durations are unit mean exponentials independent
of one another and of the arrivals and choices processes, and whenever a call is
completed, it frees all the links it has been occupying.

As for process X, for each edge e in E(Kn) and each node w /∈ e, we let
X̃t (e,w) denote the number of calls between the end nodes of e routed via w

in progress at time t ; also, let X̃t (vu) denote the load of link vu, let X̃t (e) de-
note the number of calls in progress between the end nodes of e at time t , and
let X̃t (v) denote the number of calls with one end v in progress at time t . [Note
that, in contrast to process X, here it is not necessarily the case that X̃t (e) equals
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∑
w/∈e X̃t (e,w), and it is not the case that X̃t (v) equals

∑
u	=v X̃t (vu); this is be-

cause a single call is allowed to occupy more than one route.] Note further that the
process (X̃t (e) : e ∈ E(Kn)) is itself Markov, since the capacities are infinite, and
so no calls get rejected. It has a unique equilibrium distribution, and in equilibrium
the X̃t (e) are all independent Po(λ) random variables. Thus in equilibrium, the
total number ‖X̃t‖1 of ongoing calls at time t is Po(λ

(n
2

)
); and, for each v, the total

number X̃t (v) of ongoing calls with one end v is Po(λ(n − 1)).
We shall use T (v) to denote the time that the last of the X0(v) initial calls with

one end v departs. Also, we let T = maxv∈V T (v), the time when the last of the
initial ‖X0‖1 calls depart. As was mentioned earlier, if initially there are many
calls, then the system needs a “burn-in” period to reduce “congestion” measures
such as the number of full links. The system will have “lost” the memory of the
bad initial state once all the initial calls are completed. For this reason, for various
events A we shall give an upper bound on P(A ∩ {T ≤ t}). We may later obtain an
upper bound on P(A) using

P(A) ≤ P
(
A ∩ {T ≤ t}) + P(T > t),(20)

and noting that

P(T > t) ≤ E‖X0‖1e
−t .(21)

To see why (21) holds, temporarily let It denote the number of initial calls surviv-
ing to time t , and observe that

P(T > t) = P(It > 0) ≤ EIt = E‖X0‖1e
−t .

We shall always be interested in link capacities D(n) which grow slowly with n,
and which in particular satisfy D(n) = o(n). Thus always ‖X0‖1 = o(n3), and
so (21) gives

P(T > t) = o
(
n3) · e−t .(22)

If X0 is stochastically at most the equilibrium distribution for X̃, we let T̃ = 0 a.s.
and otherwise let T̃ = T .

The next lemma shows that for any node v ∈ V , the number Xt(v) of calls at v

is unlikely to deviate far above λ(n − 1) once the initial calls have gone.

LEMMA 3.2. Let 0 < δ < 1, let n be a positive integer, and let At be the event
that Xt(v) ≥ (1 + δ)λ(n − 1) for some vertex v. Then for all times t1 ≥ 0 and
t2 ≥ t1,

P
(
At2 ∩ {T̃ ≤ t1}) ≤ ne−(1/3)δ2λ(n−1).(23)

Note that the value of D is not relevant here.
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PROOF OF LEMMA 3.2. Let Ỹ = (Ỹt )t≥0, with Ỹt = (Ỹt (e,w) : e ∈ E(Kn),

w /∈ e), be a Markov process with the same q-matrix as (X̃t ) but in equilibrium.
Observe that the equilibrium distribution for (Xt) is stochastically at most the
distribution for Ỹt . We couple (Xt), (X̃t ), and (Ỹt ) as follows. We assume that
X0 = X̃0, and further if X0 is stochastically at most the equilibrium distribution Ỹ0,
then X0 = X̃0 ≤ Ỹ0. All subsequent arrival and potential departure times of new
calls are the same for the three processes, except that the departures of calls that
were not accepted due to none of their chosen routes being available in (Xt) are
ignored in that process. Additionally, every one of the ‖X0‖1 initial calls in (Xt)

is coupled with a corresponding initial call in (X̃t ) and in (Ỹt ), and the paired calls
have the same departure times.

Since all calls are accepted in X̃ and in Ỹ , under the coupling, for each node v

and time t , on the event T̃ ≤ t we have

Xt(v) ≤ X̃t (v) ≤ Ỹt (v).(24)

But Ỹt (v) is a Poisson random variable with mean λ(n− 1), and so by the concen-
tration inequality (4), we have, for each v, and all t2 ≥ t1,

P
({

Xt2(v) ≥ (1 + δ)λ(n − 1)
} ∩ {T̃ ≤ t1}) ≤ e−(1/3)δ2λ(n−1).

Now (23) follows by summing the above bound over all v. �

We will now use the above result to show that, after a burn-in period, we are
unlikely to observe large deviations of Xt(v) above λ(n − 1) for any node v even
during very long time intervals. Recall the notation pD(μ) introduced in (1).

LEMMA 3.3. Given 0 < δ < 1, there exists a constant β = β(δ) > 0 such that
the following holds. Let the capacity D = D(n) = o(n). Let κ > 0, and let t̃0 =
(κ + 3) lnn. If X0 is stochastically at most the equilibrium distribution, let t0 = 0,
and otherwise let t0 = t̃0. Let Ct denote the event that Xt(v) > (1 + δ)λ(n − 1) for
some vertex v. Then as n → ∞, for each time t1 ≥ t0

P
(
Ct holds for some t ∈ [

t1, t1 + eβn]) = o
(
n−κ)

.

PROOF. Let C′
t denote the event that Xt(v) > (1 + δ/2)λ(n − 1) for some

vertex v. By Lemma 3.2, there exists a constant γ > 0 such that for each time
t ≥ t0,

P
(
C′

t ∩ {T̃ ≤ t0}) ≤ 2e−γ n.

We may assume that γ ≤ δ/12. Let β = γ /3. Let v ∈ V , and let f (Xt) = Xt(v),
which has bounded increase at v. We now apply inequality (10) in Lemma 2.6,
with a = (1+ δ/2)λ(n−1), b = (δ/2)λ(n−1), τ = eβn, σ = δ/4, and E the event



BALANCED ROUTING OF RANDOM CALLS 1299

{T̃ ≤ t0}. Also, let θ = P(Po(λ(n − 1)δ/4) > λ(n − 1)δ/2). Thus for all positive
integers n and all times t1 ≥ t0, we have

P
({

Xt(v) > (1 + δ)λ(n − 1) for some t ∈ [
t1, t1 + eβn]} ∩ {T̃ ≤ t0})

≤ (
(4/δ)eβn + 1

)(
2e−γ n + θ

)
.

Also, by (4), θ ≤ e−(n−1)δ/12 = O(e−γ n). Hence, summing over the n nodes in V ,
we obtain

P
({

Ct for some t ∈ [
t1, t1 + eβn]} ∩ {T̃ ≤ t0}) = o

(
e−βn)

.

We may now use (20) and (21) to complete the proof, noting that always ‖X0‖1 =
O(n2D) = o(n3). �

To end this section we shall upper bound the number of saturated links around
any given node in the following lemma. Observe from (2) that if we have δ > 0
and D = D(n) → ∞, then for n sufficiently large we may, for example, take k as
δn in the lemma.

LEMMA 3.4. Let n and D be positive integers, and let k ≥ 4pD(dλ)(n − 1).
Then for each t ≥ 0,

P
({

St (at v) ≥ k
} ∩ {T̃ ≤ t}) ≤ 2 exp

(
− k

16d2D

)
(25)

and

P
({

St (via v) ≥ k
} ∩ {T̃ ≤ t}) ≤ 2 exp

(
− k

64D

)
.(26)

PROOF. We use the coupling of the three processes (Xt), (X̃t ) and (Ỹt ) de-
scribed in the proof of Lemma 3.2. Consider a link vu (where u 	= v) and a time t :
under the coupling, on the event that T̃ ≤ t ,

Xt(vu) ≤ X̃t (vu) ≤ Ỹt (vu).(27)

We can thus work mostly with the stationary dominating process (Ỹt ), where we
bound expectations and use concentration inequalities.

Let v ∈ V be a node. Note that for each u 	= v, the load Ỹt (vu) of link vu is a
Poisson random variable with mean

λ(n − 2)
(n − 2)d − (n − 3)d

(n − 2)d
≤ dλ.

We adapt some more notation introduced earlier for (Xt) to (Ỹt ) in the natural
way. Thus we write S̃t (at v) to denote the set of links vw for calls at v that have
load at least D at time t in (Ỹt ), and we write S̃t (at v) = |S̃t (at v)|. Also, for
w ∈ V , S̃t (via w) denotes the set of links uw for calls at some node u, and routed
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via w, that have load at least D at time t in (Ỹt ) and S̃t (via w) = |S̃t (via w)|. Then
E[S̃t (at v)] ≤ (n − 1)pD(dλ) and E[S̃t (via w)] ≤ (n − 1)pD(dλ) for all times
t ≥ 0.

For a given v ∈ V , we may think of the loads Ỹt (vu) of links vu for u 	= v

as being determined by a family of (n − 1)(n − 2)d independent Poisson random
variables each with mean λ/(n − 2)d [corresponding to n − 1 choices of the other
end node w and (n−2)d choices of d routes for a call with end nodes v and w], and
so there is strong concentration of measure. Note that the median m(v) of S̃t (at v)

is at most 2(n − 1)pD(dλ). We can use Talagrand’s inequality Lemma 2.1, with
c = d and r = D. This gives, for all z ≥ 0,

P
(
S̃t (at v) ≥ m(v) + z

) ≤ 2 exp
(
− z2

4d2D(m(v) + z)

)
.

Now take z ≥ 2(n − 1)pD(dλ) ≥ m(v), so that

P
(
S̃t (at v) ≥ 2z

) ≤ 2 exp
(
− z

8d2D

)
.(28)

Similarly, given w ∈ V , the loads Ỹt (uw) of links uw for u 	= w may be determined
by a family of

(n−1
2

)[(n−2)d − (n−3)d ] independent random variables Po(λ/(n−
2)d) (corresponding to calls for all possible pairs of distinct nodes v,u ∈ V \ {w}
choosing a route via node w). Applying Talagrand’s inequality with c = 2 and
r = D, we have, for t ≥ 0 and z ≥ 2(n − 1)pD(dλ),

P
(
S̃t (via w) ≥ 2z

) ≤ 2 exp
(
− z

32D

)
.

But Xt(vu) ≤ Ỹt (vu) on the event that T̃ ≤ t [as we noted in (27)], and we deduce
that inequalities (25) and (26) hold. �

4. Proof of Theorems 1.1 and 1.2. Let us recall the rough story. The num-
ber St (at v) of saturated links at a node v has expected value n1−α+o(1), and
by Lemma 3.1 the probability p that a call with one end v fails is roughly
E[(St (at v)/n)d ]. There is a change of behaviour at α = 1. If 0 < α < 1, then
St (at v) is concentrated and E[St (at v)d ] = n(1−α)d+o(1) and p is n−αd+o(1).
The expected number of arrivals in an interval of length nK is about nK+2,
and nK+2p = nK+2−αd+o(1), so α is K-good when K + 2 − αd < 0, and α is
K-bad when K + 2 − αd > 0. When α ≥ 1, then E[St (at v)d ] ∼ E[St (at v)] and
p = n1−α−d+o(1), and again we see when α is K-good by looking at nK+2p.

Note that the case α = 1 is covered by our proofs: we show that α is K-good if
K < d − 2, and α is K-bad if K > d − 2.



BALANCED ROUTING OF RANDOM CALLS 1301

4.1. Upper bounds: Showing α is K-good. Here our aim is to prove that, for
appropriate α and K , if we use any GDAR algorithm on a network with n nodes,
and the link capacity D(n) ∼ α lnn/ ln lnn is high enough, then the mean number
of calls that are lost over an interval of length nK is o(1) as n → ∞. To achieve
this, we need to be able to show that, throughout the time interval, there are not
too many saturated (full) links in the network.

We may need to wait for a “burn-in” period so that any initial congestion can
dissipate, and in fact in this case we wait until all the initial calls have left the sys-
tem. Recall that T denotes the departure time of the last of the initial calls. Recall
also that T̃ = 0 if the distribution of X0 is stochastically at most the stationary
distribution, and T̃ = T otherwise. Now ‖X0‖1 ≤ (n

2

)
D = o(n2 lnn) (as n → ∞).

Hence, by (21), for each t > 0,

P(T̃ > t) ≤ P(T > t) ≤ E‖X0‖1e
−t = o

(
n2 lnne−t ).(29)

Recall that we set t1 ≥ t0 = 5 lnn if X0 is not stochastically dominated by the
stationary distribution, and t0 = 0 otherwise. Let t2 = t1 + K lnn, and let t3 = t1 +
nK . Then by (29), P(T̃ > t1) = o(n−2) and P(T̃ > t2) = o(n−K−2). For 0 ≤ t < t ′
let NF (t, t ′) be the number of calls that fail in the interval (t, t ′]. We shall show
that for j = 1,2 we have ENF (tj , tj+1) = o(1), yielding ENF (t1, t1 +nK) = o(1)

as required.
For 0 ≤ t < t ′, let NA(t, t ′) be the number of calls that arrive in the in-

terval (t, t ′]. Thus NA(t, t ′) ∼ Po(λ
(n
2

)
(t ′ − t)). Let N1 = �2ENA(t1, t2)� ∼

λKn2 lnn, and let N2 = �2ENA(t1, t3)� ∼ λnK+2. Finally here note that since
D ∼ α lnn/ ln lnn, from (1) we have

pD(dλ) = n−α+o(1).(30)

There are two subcases, for α ≤ 1 and α > 1.
Suppose first that (K + 2)/d < α ≤ 1 (and so d ≥ 3). In order to upper bound

the probability that a call Zk fails, we will use Lemmas 3.4 and 2.6 to up-
per bound the maximum number of saturated links at any node, and then we
can use inequality (17) in Lemma 3.1. By inequality (25) in Lemma 3.4 with
k = 4(n − 1)pD(dλ) + ln3 n, for each v ∈ V ,

P
({

St (at v) ≥ 4(n − 1)pD(dλ) + ln3 n
} ∩ {T̃ ≤ t})

= exp
(−�

(
ln3 n/D

)) = exp
(−�

(
ln2 n

))
.

For 0 ≤ t < t ′, let At,t ′ be the event that Ss(at v) ≤ 4(n − 1)pD(dλ) + 2 ln3 n for
each vertex v and each s ∈ (t, t ′]. By the above inequality and Lemma 2.6(a)(i)
[with τ = nK , σ = 1/n, a = 4(n − 1)pD(dλ) + ln3 n and b = ln3 n], for each
t ≥ 0,

P
(
At,t+nK ∩ {T̃ ≤ t}) = exp

(−�
(
ln2 n

))
,
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and it follows that for j = 1 and 2 we have

NjP(Atj ,tj+1) = o(1).

Let j be 1 or 2. List the calls arriving after tj as Z′
1,Z

′
2, . . . arriving at times

tj < T ′
1 < T ′

2 < · · · . Since for each k = 1,2, . . .{
T ′

k ≤ tj+1
} ∩ Atj ,tj+1 ⊆ {

ST ′
k−(at v) ≤ 4(n − 1)pD(dλ) + 2 ln3 n ∀v

}
,

by inequality (17) applied to these arrivals we have

P
({

Z′
k fails

} ∩ {
T ′

k ≤ tj+1
} ∩ At,t ′

) ≤ p0,

where by (30)

p0 =
(

8(n − 1)pD(dλ) + 4 ln3 n

n − 2

)d

= n−αd+o(1) = o
(
n−K−2)

.

Note also that, if the random variable Yj ∼ Po(λ
(n
2

)
(tj+1 − t1)), then EYj ≤ Nj/2,

and so E[Yj IYj>Nj
] = o(1). Hence

ENF (tj , tj+1)

= E

[NA(tj ,tj+1)∑
k=1

IZ′
k fails

]

= E

[NA(tj ,tj+1)∑
k=1

IZ′
k failsINA(tj ,tj+1)≤Nj

]

+E

[NA(tj ,tj+1)∑
k=1

IZ′
k failsINA(tj ,tj+1)>Nj

]

≤
Nj∑
k=1

P
({

Z′
k fails

} ∩ {
T ′

k ≤ tj+1
}) +E

[
NA(tj , tj+1)INA(tj ,tj+1)>Nj

]

≤
Nj∑
k=1

P
({

Z′
k fails

} ∩ {
T ′

k ≤ tj+1
} ∩ Atj ,tj+1

) + NjP(Atj ,tj+1) + o(1)

≤ Njp0 + o(1) = O
(
nK+2p0

) + o(1) = o(1).

Thus ENF (t1, t3) = o(1), as required. This completes the proof of the subcase
(K + 2)/d < α ≤ 1.

Now consider the other subcase, where α > 1 and α > K + 3 − d . We may
assume that K ≥ d − 2, and now the condition reduces simply to α > K + 3 − d .
In this subcase we need a different and somewhat more involved proof. [Note
that p0 = �(n−d) and so nK+2p0 may be large.] In order to upper bound the
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probability that a call fails, we will use inequality (18) in Lemma 3.1, and to upper
bound the expected number of saturated links at a node, we use the stationary
dominating process.

Fix j , and as before list the calls arriving after time tj as Z′
1,Z

′
2, . . . arriving at

times tj < T ′
1 < T ′

2 < · · · . We will show that

∞∑
k=1

P
({

Z′
k fails

} ∩ {T̃ ≤ tj } ∩ {
T ′

k ≤ tj+1
}) ≤ (tj+1 − tj )n

3−d−α+o(1).(31)

From this result we will complete the proof quickly.
Now for the details. Note first that, since each T ′

k > tj we have

{T̃ ≤ tj } ∩ {
T ′

k ≤ tj+1
} ∈ FT ′

k−.

Thus, by Lemma 3.1 inequality (18), for each k = 1,2, . . .

P
({

Z′
k fails

} ∩ {T̃ ≤ tj } ∩ {
T ′

k ≤ tj+1
})

≤ 2d+1

n(n − 2)d

∑
v∈V

E
[(

ST ′
k−(at v)

)d
I
T̃ ≤tj

IT ′
k≤tj+1

]
.

Recall from the proof of Lemma 3.4 in Section 3 that there is a coupling involving
a stationary copy (Ỹt ) of the dominating process with the following property. On
{T̃ ≤ t}, for each v ∈ V , the number St (at v) of links ending in v which are satu-
rated at time t is stochastically at most the number S̃t (at v) of links vu for u 	= v

such that Ỹt (vu) ≥ D. Therefore, for each k = 1,2, . . .

P
({

Z′
k fails

} ∩ {T̃ ≤ tj } ∩ {
T ′

k ≤ tj+1
}) ≤ 2d+1

n(n − 2)d

∑
v∈V

E
[
S̃T ′

k−(at v)dIT ′
k≤tj+1

]
.

Hence
∞∑

k=1

P
({

Z′
k fails

} ∩ {T ≤ tj } ∩ {
T ′

k ≤ tj+1
})

≤ 2d+1

n(n − 2)d
E

[ ∞∑
k=1

∑
v∈V

S̃T ′
k−(at v)dIT ′

k≤tj+1

]

= 2d+1

n(n − 2)d
λ

(
n

2

)
(tj+1 − tj )

∑
v∈V

E
[
S̃0(at v)d

]
,

where the last equality follows from the PASTA property of Lemma 2.8.
Let us write d̃(v) for S̃0(at v) for brevity. We now claim that, for each v ∈ V ,

E
[
d̃(v)d

] = E
[
d̃(v)

](
1 + o(1)

) = n1−α+o(1).(32)

Inequality (31) will follow immediately from the last result and claim (32).
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To prove the claim, consider the dominating process at time 0. Consider first a
fixed link vw. The probability that a call {u, v} uses this link is 1 − (1 − 1

n−2)d .
Thus from our earlier discussion the load on the link has Poisson distribution with
mean λ(n − 1)(1 − (1 − 1

n−2)d) = λd + O(n−1). It follows as in (30) that the
probability that vw has load at least D is n−α+o(1), and so

E
[
d̃(v)

] = n1−α+o(1).

This gives one part (the easy part) of claim (32).
Now fix v ∈ V , and let u1, . . . , ud be distinct nodes in V \ {v}. Let N(ui) be the

number of live calls with one end v that have selected the link vui but none of the
links vuj for j 	= i. Let Ñ be the number of live calls that have selected at least
two of the links vui . Then the N(ui) are i.i.d., each is Poisson with mean at most
λd , and Ñ is Poisson with mean O(1/n).

Let x = d + α, and let A be the event that Ñ ≤ x. Note that P(Ā) = O(n−x)

by (2) and

E

[
k∏

i=1

I
Ỹ0(vui)≥D

IA

]
≤ E

[
k∏

i=1

IN(ui)≥D−x

]
= P

(
N(u1) ≥ D − x

)k
.

Also, by (2), P(N(u1) ≥ D − x) ≤ n−α+o(1). Now let ak be the number of parti-
tions of 1, . . . , d into exactly k nonempty blocks. In the sums below the wj run
over V \ {v}. We find

E
[
d̃(v)dIA

] = E

[
d∏

j=1

∑
wj

I
Ỹ0(vwj )≥D

IA

]

= ∑
w1,...,wd

E

[
d∏

j=1

I
Ỹ0(vwj )≥D

IA

]

=
d∑

k=1

ak(n − 1)kE

[
k∏

i=1

I
Ỹ0(vui)≥D

IA

]

≤ E
[
d̃(v)IA

] +
d∑

k=2

akn
k
P

(
N(u1) ≥ D − x

)k

≤ E
[
d̃(v)

] + O

(
d∑

k=2

(
n1−α+o(1))k)

= E
[
d̃(v)

] + O
(
n−2(α−1)+o(1)) = n1−α+o(1).

Also

E
[
d̃(v)dIĀ

] ≤ nd
P(Ā) = O

(
nd−x) = O

(
n−α)

.
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Thus (32) holds, and hence so does (31), as we noted earlier.
Now we may complete the proof using (31). We have

ENF (tj , tj+1) =
∞∑

k=1

P
({

Z′
k fails

} ∩ {
T ′

k ≤ tj+1
})

≤
∞∑

k=1

P
({

Z′
k fails

} ∩ {
T ′

k ≤ tj+1
} ∩ {T̃ ≤ tj })

+
∞∑

k=1

P
({

T ′
k ≤ tj+1

} ∩ {T̃ > tj })

≤ (tj+1 − tj )n
3−d−α+o(1) + NjP(T̃ > tj )

+E
[
NA(tj , tj+1)INA(tj ,tj+1)>Nj

]
≤ nK+3−α−d+o(1) + o(1) = o(1).

Thus ENF (t1, t3) = o(1), as required.

4.2. Lower bounds: Showing α is K-bad. Here we want to prove that if we
use the FDAR algorithm on a network with n nodes, and the capacity D ∼
α lnn/ ln lnn is not sufficiently high, then many calls will be lost over an inter-
val of length nK . We shall use Lemma 3.1 inequality (19) to obtain a lower bound
on the probability that a call Zk is lost. To use this lemma we need a lower bound
on the number of saturated links at a vertex, and for this we need a lower bound on
the rate at which calls arrive on a given link. Finally, to lower bound this rate we
need to upper bound the number of saturated links, so that an arriving call wishing
to use the link is not too often blocked because the “partner” link of the pair is sat-
urated. Thus to lower bound numbers of saturated links we must first upper bound
such numbers.

We say that a call Zk with endpoints {u, v} and choices j1, j2, . . . , jd of inter-
mediate nodes is blocked at u or blocked from v if the link uj1 is saturated when the
call arrives; that is, if XTk−(uj1) = D(n). Clearly, if such a call Zk is not accepted
onto a route, then in particular, it is blocked at u or v. Also,

P
({Zk blocked at u}|FTk−,Zk = {u, v}) = 1

n − 2

∑
j 	=u,v

IXTk−(uj)=D(n).

Therefore, for each v ∈ V ,

P
({Zk blocked from v}|FTk−, v ∈ Zk

)
= 1

(n − 1)(n − 2)

∑
u	=v

∑
j 	=u,v

IXTk−(uj)=D(n).
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Fix a node v ∈ V and 0 < δ < 1. Then on the event STk−(at u) ≤ (n− 2)δ/2 for all
nodes u,

P
({Zk blocked from v}|FTk−, v ∈ Zk

) ≤ δ/2.

In other words, while for each node u the number of full links uj is at most (n −
2)δ/2, the probability that a new call which selects link vj as its first choice is
blocked by the “partner” link uj (where u is the random other end of the call)
is at most δ/2. Thus, while for each node u the number of full links uj is at most
(n−2)δ/2, the arrival rate of calls onto each link vj for j 	= v is at least λ(1−δ/2).

For 0 ≤ s0 ≤ s1 let A′
s0,s1

be the event that St (at u) ≤ (n − 2)δ/2 for all nodes u

and all times t ∈ [s0, s1]. For each load vector x and each node j 	= v, let fj (x) be
the number of calls in progress on the link vj . Also let W̃ (vj) be independent birth-
and-death processes for j 	= v, each with arrival rate λj = λ(1− δ/2), death rate 1,
population 0 at time 0, and population limit nj = D. Let W̃t (v) = ∑

j IW̃
(vj)
t =D

, the

number of the W̃ (vj) processes in state D at time t . Now we may apply Lemma 2.7
on [s0, s1], with N = n − 1 and A as the event A′

s0,s1
, to obtain, for each integer

k ≥ 0,

P
({

Ss1(at v) ≤ k
} ∩ A′

s0,s1

) ≤ P
(
W̃s1−s0(v) ≤ k

)
.(33)

It follows that

P
(
Ss1(at v) ≥ k

) ≥ P
(
W̃s1−s0(v) ≥ k

) − P
(
A′

s0,s1

)
,

and summing over k = 1, . . . , n − 1 gives

ESs1(at v) ≥ EW̃s1−s0(v) − nP
(
A′

s0,s1

)
.

It is well known that in equilibrium the n − 1 immigration-death processes W̃ (vj)

are i.i.d. random variables with a Poisson distribution Po(λ(1 − δ/2)) truncated
at D. Since, by standard theory, each W̃ (vj) converges to equilibrium exponentially
fast, there exists a constant c̃ > 0 such that, uniformly over t ≥ c̃ lnn and j 	= v,
P(W̃

(vj)
t = D) ≥ n−α+o(1), and so E[W̃t (v)] ≥ n1−α+o(1). Thus, assuming s1 ≥

s0 + c̃ lnn, for each vertex v, we have

ESs1(at v) ≥ n1−α+o(1) − nP
(
A′

s0,s1

)
.(34)

Before we break into two cases as in the proof of the upper bound, let us establish
some more notation. Let t0 = (K + 5 + c̃) lnn, let t1 ≥ t0, let t ′1 = t1 − c̃ lnn, and
let t2 = t1 + nK . (For the lower bound proof, it is not important to distinguish
between the cases where X0 is stochastically at most the stationary process and
where it is not.) List the calls arriving after t1 as Z′

1,Z
′
2, . . . , arriving at times

t1 < T ′
1 < T ′

2 < · · · . As in the upper bound proof, NA(t1, t2) is the number of calls
arriving during the interval (t1, t2], and NF (t1, t2) is the number of calls that arrive
during the interval (t1, t2] and are not accepted.
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Suppose first that 0 < α < min{1, (K + 2)/d}. (We consider the remaining case
1 ≤ α < K + 3 − d later.) Recall that D ∼ α lnn/ ln lnn. Let 0 < δ < min{1, (K +
2)/d} − α. Using inequality (5)

P
({

St (at v) ≤ 2n1−α−δ} ∩ A′
s0,s1

) ≤ P
(
W̃t−s0(v) ≤ 2n1−α−δ)

≤ exp
(−n1−α+o(1))

uniformly over nodes v and times t such that s0 + c̃ lnn ≤ t ≤ s1.
For 0 ≤ s0 ≤ s1 let As0,s1 denote the event that St (at v) ≥ n1−α−δ for all v ∈ V

and all t ∈ [s0, s1]. By the above and Lemma 2.6(a), with τ = nK , a = b = n1−α−δ ,
and σ = (2λ)−1n−α−δ ,

P
(
At1,t2 ∩ A′

t ′1,t2
) ≤ exp

(−n1−α−δ+o(1)) = o
(
n−K−2)

.

Also, by Lemma 3.4, and Lemma 2.6(a), with τ = nK + c̃ lnn, a = b = (n−2)δ/4,
and σ = n−1/2,

P
(
A′

t ′1,t2
∩ {

T ≤ t ′1
}) = o

(
n−K−2)

.

Further by (21)

P
(
T > t ′1

) ≤ E‖X0‖1e
−t ′1 = o

(
n2 lnn

) · e−(K+5) lnn = o
(
n−K−2)

.

It thus follows that

P
(
A′

t ′1,t2
) = o

(
n−K−2)

(35)

and

P(At1,t2) = o
(
n−K−2)

.(36)

By Lemma 3.1, equation (19), on the event B that ST ′
k−(at v) ≥ (n − 2)1−α−δ

for each v ∈ V ,

P
(
Z′

k fails|FT ′
k−

) ≥ 1
2(n − 2)−(α+δ)d := p0.

Note that both B and {T ′
k ≤ t2} are in FT ′

k−, and so

P
(
Z′

k fails ∩ {
T ′

k ≤ t2
}) ≥ P

(
Z′

k fails ∩ B ∩ {
T ′

k ≤ t2
})

= E
(
P

(
Z′

k fails|FT ′
k−

)
IBI{T ′

k≤t2}
)

≥ p0P
(
B ∩ {

T ′
k ≤ t2

})
≥ p0P

(
At1,t2 ∩ {

T ′
k ≤ t2

})
,

where the last inequality follows since

At1,t2 ∩ {
T ′

k ≤ t2
} ⊆ B ∩ {

T ′
k ≤ t2

}
.
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Now

E
[
NF (t1, t2)

] =
∞∑

k=1

P
({

Z′
k fails

} ∩ {
T ′

k ≤ t2
})

≥ p0

∞∑
k=1

P
(
At1,t2 ∩ {

T ′
k ≤ t2

}) = p0E
(
IAt1,t2

NA(t1, t2)
)
.

Let N0 = 2E[NA(t1, t2)] = 2λ
(n

2

)
nK . Note that by (36) we have N0P(At1,t2) =

o(1), and, since E[NA(t1, t2)] ≤ N0/2, we have E[NA(t1, t2)INA(t1,t2)>N0] = o(1).
Thus

E
[
IAt1,t2

NA(t1, t2)
]

= E
[
IAt1,t2

NA(t1, t2)INA(t1,t2)≤N0

] +E
[
IAt1,t2

NA(t1, t2)INA(t1,t2)>N0

]
≤ N0P(At1,t2) +E

[
NA(t1, t2)INA(t1,t2)>N0

] = o(1),

and hence, for n large enough,

E
[
NF (t1, t2)

] ≥ 1
2p0E

[
NA(t1, t2)

] ≥ 1
2nK+2−(α+δ)d = n�(1),

as required.
Now consider the remaining case, when 1 ≤ α < K + 3 − d; see Figures 1

and 2. Recall that E[W̃t (v)] ≥ n1−α+o(1) uniformly over t ≥ c̃ lnn and v ∈ V . By
Lemma 3.1, inequality (19),

P
(
Z′

k fails ∩ {
T ′

k ≤ t2
}) ≥ 1

2
n−1(n − 2)−d

∑
v

E
[(

ST ′
k−(at v)

)d
I{T ′

k≤t2}
]
.

Since ST ′
k−(at v) takes nonnegative values and we seek a lower bound, we may

replace the exponent d here by 1. Let St be the total number of saturated links at
time t , so that St = ∑

v St (at v). Then by (34) and (35), for t1 < t ≤ t2,

ESt ≥ n
(
n1−α+o(1) − nP

(
A′

t ′1,t2
)) = n2−α+o(1).

Hence, using the PASTA result Lemma 2.8 for the second inequality below,

E
[
NF (t1, t2)

] =
∞∑

k=1

P
(
Z′

k fails ∩ {
T ′

k ≤ t2
})

≥ 1

2
n−1(n − 2)−d

E

[ ∞∑
k=1

∑
v

ST ′
k−(at v)I{T ′

k≤t2}

]

≥ 1

2
n−1(n − 2)−d

E
[
NA(t1, t2)

]
inf

t∈(t1,t2]
E[St ]

≥ n−1−d+2+2−α+o(1) = nK+3−d−α+o(1) = n�(1),
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as required.
Now suppose t1 < t0 and t2 = t1 + nK . Then we can apply the above argu-

ment to calls arriving during the interval [t0, t2] with the same conclusion, and so
E[NF (t1, t2)] = n�(1) in this case also, as required.

5. Proof of Theorem 1.3. After introducing some notation and preliminary
results, we will discuss separately the upper and lower bound parts of the theorem.

Fix an integer d ≥ 2 and a constant K > 0. Let φ = (101 +K)/ ln 2. We choose
times t0, t1, t2, depending on n, as follows. If X0 is stochastically at most the equi-
librium distribution, let t0 ≥ 0, and otherwise let t0 ≥ (K + 8) lnn: now let

t1 = t0 + φ lnn and t2 = t1 + nK.(37)

(Note that for convenience we have treated t0 here slightly differently from the
statement of Theorem 1.3.) Now fix a constant 0 < δ < 1. For each t ∈ [t0, t2], let
A0

t be the event {
(Xs(v) ≤ (1 + δ)λ(n − 1) ∀s ∈ [t0, t],∀v

};
by Lemma 3.3, P(A0

t2
) = O(n−K−3).

Also, let A1
t be the event{

Ss(via v) ≤ (n − 2)δ/4 ∀s ∈ [t0, t],∀v
}
.

By Lemmas 3.4 and 2.6 [with a = b = (n−2)δ/8, τ = φ lnn+nK and σ = n−1/2],

P
(
A1

t2
∩ {T̃ ≤ t0}) = O

(
n−K−3)

,

and hence by (29) also P(A1
t2
) = O(n−K−3).

Recall that for each link vw, Xt(vw) is the load of link vw at time t , that
is, the number of calls using this link at time t . For v ∈ V and h = 0,1, . . . , let
Lt(v,h) be the number of links vw (w 	= v) at v with Xt(vw) ≥ h [so, in particular,
for each v ∈ V , Lt(v,0) = n − 1 for all t]. For v ∈ V and h = 0,1, . . . , we let
Ht(v,h) = ∑

k≥h Lt (v, k).
Let c = max{c1, c2}, where c1 and c2 are constants, respectively, defined in

Sections 5.1 and 5.2 below. We will show that Theorem 1.3 holds with this value
of c and with κ = K + 7 + φ.

5.1. Upper bound. Let the constant c1 = c1(λ, d,K) be as in (40) below, and
assume, as in the discussion preceding (22), that ln lnn

lnd
+ c1 ≤ D(n) = o(n), as

n → ∞. We shall show that a.a.s. no calls arriving during the interval [t1, t2] of
length nK fail. We assume that t0 ≥ (K + 8) lnn and t1 = t0 + φ lnn, as at (37)
above: we will discuss briefly at the end of this subsection the case when X0 is
stochastically at most the equilibrium distribution, and we do not have a burn-in
time (so we allow then any t1 ≥ 0).
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Given a positive integer h0, a decreasing sequence of nonnegative numbers
(αh)h≥h0 , and an increasing sequence of times (τh)h≥h0 such that t0 ≤ τh ≤ t1
for each h, let

Bt(h0) = {
Ls(v,h0) ≤ 2αh0 ∀s ∈ [τh0, t],∀v

}
,

and for h = h0 + 1, h0 + 2, . . . let

Bt(h) = {
Hs(v,h) ≤ 2αh ∀s ∈ [τh, t],∀v

}
.

Also, for each h, let B(h) = Bt2(h). Observe that if B(h) holds, then each link has
load at most h + 2αh − 1, at each time t ∈ [τh, t2].

The idea of the proof is to choose a sequence of about ln lnn/ lnd numbers
αh decreasing quickly from a constant multiple of n to zero, and an increasing
sequence of times τh for h = h0, h0 + 1, h0 + 2, . . . satisfying t0 ≤ τh ≤ t1 for
all h. Then the aim is to show that B(h0) holds a.a.s., and that, if B(h) holds
a.a.s., then so does B(h + 1), and to deduce that B(h) holds a.a.s. for some h with
h+ 2αh ≤ D. Thus a.a.s. no link is ever saturated during [t1, t2], and so no call can
fail during that interval.

We choose h0 and a decreasing sequence of numbers αh ≥ 0 as follows. First,
let

h0 = ⌈
max

{
8λ,768λ2}⌉

and αh0 = min
{
n − 1

8
,
n − 1

768λ

}
.

Note that αh0 ≥ λ(n − 1)/h0. Hence, on A0
t2

, for each t ∈ [t0, t2], since Xt(v) ≤
2λ(n − 1), we have Lt(v,h0) ≤ 2λ(n − 1)/h0 ≤ 2αh0 and so A0

t2
⊆ B(h0). We

may (and do) assume that n is sufficiently large that αh0 ≥ 14(K + 4) lnn. Next let
the values αh be defined by setting

αh

n − 1
= 6λ

(
8αh−1

n − 1

)d

,(38)

for h = h0 + 1, h0 + 2, . . . , h∗, where h∗ = h∗(n) is the largest h such that αh ≥
14(K + 4) lnn. (We shall see shortly that there is such an h.) Also, define αh∗+1 =
14(K + 4) lnn and αh∗+2 = 2K + 7. Recurrence (38) can be rewritten as

α̃h = 48λ · α̃d
h−1,(39)

where α̃h = 8αh/(n − 1). Since α̃h0 ≤ 1, it follows that for h0 + 1 ≤ h ≤ h∗

α̃h = (48λ)1+d+···+dh−h0−1
α̃dh−h0

h0
≤ (48λ · α̃h0)

1+d+···+dh−h0−1
.

But now, since 48λ · α̃h0 ≤ 1
2 , for h0 ≤ h ≤ h∗ we have

8αh

n − 1
= α̃h ≤

(
1

2

)(dh−h0−1)/(d−1)

,
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and so h∗(n) = ln lnn/ lnd + O(1). We now set

c1 = sup
k

{
h∗(k) + 4K + 16 − ln ln k

lnd

}
(40)

so that

D = D(n) ≥ ln lnn

lnd
+ c1 ≥ h∗(n) + 2 + 2αh∗+2.

Now define an increasing sequence (τh)h≥h0 of times as follows. Let γh =
48�log2 (2αh/αh+1)� for h = h0, . . . , h

∗ − 1, let γh∗ = 48 log2 n, and let γh∗+1 =
(K + 4) log2 n. Note that 2αh∗/αh∗+1 ≤ n/ lnn = o(n) and so γh∗ ≥
48�log2 (2αh∗/αh∗+1)� for n sufficiently large; this will be needed in the proof
of Lemma 5.1. Let τh0 = t0, and let τh = τh−1 + γh−1 for h = h0 + 1, h0 + 2, . . . ,

h∗ + 2. Thus τh∗+2 = t0 + ∑h∗+1
h=h0

γh. Note that

τh∗ − t0 =
h∗−1∑
h=h0

γh = 48
h∗−1∑
h=h0

⌈
log2 (2αh/αh+1)

⌉

≤ 96
(
h∗ − h0

) + 48
h∗−1∑
h=h0

(log2 αh − log2 αh+1)

≤ 96h∗ + 48 log2 αh0 ≤ 49 log2 n

for n sufficiently large, and then

τh∗+2 − t0 = τh∗ − t0 + γh∗ + γh∗+1 ≤ (101 + K) log2 n = φ lnn.

Thus τh∗+2 ≤ t1.
As noted above, A0

t2
⊆ B(h0), and so P(B(h0)) is near 1. We shall show that

P(B(h)∩B(h− 1)) is small for each h = h0 + 1, . . . , h∗ + 2, which will yield that
P(B(h∗ + 2)) is close to 1. Hence, as we discussed earlier, since D ≥ h∗ + 2 +
2αh∗+2, a.a.s. throughout [t1, t2], there are no full links. More precisely, we shall
show that

P
(
B

(
h∗ + 2

)) = o
(
n−K−2)

.

Let NA(t1, t2) be the number of arrivals in (t1, t2]; then NA(t1, t2) ∼ Po(λ
(n
2

)
(t2 −

t1)). Let NF (t1, t2) be the number of calls that fail during (t1, t2]. Then

ENF (t1, t2) = E[NF IB(h∗+2)] +E[NF IB(h∗+2)]
≤ λnK+2

P
(
B

(
h∗ + 2

)) +E
[
NA(t1, t2)INA(t1,t2)≥λnK+2

]
(41)

= o(1).

This yields the desired upper bound of Theorem 1.3 when the distribution of X0
need not be stochastically dominated by the stationary distribution.
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To prove that P(B(h) ∩ B(h − 1)) is small for each h, we first show that if
B(h − 1) holds, then a.a.s. for each v there exists a (random) time τh(v) ∈
[τh−1, τh] such that Hτh(v)(v, h) ≤ αh. We then show that a.a.s. Ht(v,h) ≤ 2αh

for all t ∈ [τh(v), t2] and all v ∈ V .
For each node v ∈ V and for each integer h = h0 + 1, . . . , h∗ + 2, let

C(v,h) = {∃τh(v) ∈ [τh−1, τh] :Hτh(v)(v, h) ≤ αh

}
.

Let also C(h) = ⋂
v C(v,h), so that

C(h) = {∃w :Ht(w,h) > αh ∀t ∈ [τh−1, τh]}
is the event that there is a node u such that the number of calls with height at least
h at u is greater than αh throughout [τh−1, τh].

LEMMA 5.1.

h∗+2∑
h=h0+1

P
(
C(h) ∩ B(h − 1)

) = o
(
n−K−2)

.

PROOF. The idea of the proof here is, for a fixed v and h, to consider the
random value Ht(v,h) at jump times t , when the value changes by 0 or ±1. We
upper bound the probability of a positive change and lower bound the probability
of a negative change, and then use Lemma 2.4. For h = h∗ + 2 we need a slightly
different argument, using Lemma 2.2.

Fix a node v and a height h with h0 + 1 ≤ h ≤ h∗ + 1. Let J0(v) = τh−1, and
enumerate the jump times of the process of arrivals (possibly failing) and termina-
tions of calls with one end v after J0(v) as J1(v), J2(v), . . . . For k = 0,1, . . . let
Rk = HJk(v)(v, h) and for k = 1,2, . . . let Yk = Rk − Rk−1, so that

Rk = R0 +
k∑

j=1

Yj .

Note that each jump Yk ∈ {−1,0,1} and is FJk(v)-measurable and hence also
FJk+1(v)−-measurable, and that the sum

∑
k : τh−1<Jk(v)≤τh

Yk is the net change
in Ht(v,h) during the interval (τh−1, τh]. For h = h0, . . . , h

∗ − 1, let mh =
�12λn��log2(2αh/αh+1)�, which is ≤1

2γhλ(n − 1) for n large enough. Let also
mh∗ = �12λn��log2 n�, which is ≤1

2γh∗λ(n − 1) for n large enough. Note that for
each h = h0 + 1, . . . , h∗ + 1, we have Jmh−1(v) ≤ τh a.a.s., since by inequality (5),

Pr
(
Jmh−1(v) > τh

) ≤ P
(
Po

(
λ(n − 1)γh−1

)
< mh−1

) ≤ e−γh−1λ(n−1)/8.

Now define events Ek for k = 0,1, . . . by letting

Ek = A0
Jk+1(v)− ∩ BJk+1(v)−(h − 1) = A0

Jk(v) ∩ BJk(v)(h − 1),



BALANCED ROUTING OF RANDOM CALLS 1313

and let E = ⋂mh−1−1
k=0 Ek . We saw earlier that P(A0

τh
) = O(n−K−3). Thus

P
(
E ∩ B(h − 1)

) ≤ P

(mh−1−1⋃
k=0

A0
Jk(v) for some v

)

≤ P
(
Jmh−1(v) > τh for some v

) + P
(
A0

τh

) = O
(
n−K−3)

.

Now we obtain bounds for the probabilities (conditional on the past) of jumps in
Ht(v,h): an upper bound for the probability that a jump Yk is positive, and a lower
bound for the probability that a jump Yk is negative, so that we can use Lemma 2.4.
On the event Ek−1, upper bounding P(Jk(v) is an arrival time|FJk(v)−) by 1, we
obtain for n sufficiently large [since n − 2 ≥ 1

2(n − 1) for n ≥ 3]

P(Yk = 1|FJk(v)−) ≤
(

2 maxw LJk(v)−(w,h − 1)

n − 2

)d

≤
(

2 maxw HJk(v)−(w,h − 1)

n − 2

)d

≤
(

8αh−1

n − 1

)d

≤ αh

6λ(n − 1)
,

where the last inequality is from (38) and the choice of αh∗+1. Thus on the
event Ek−1,

P(Yk = 1|FJk(v)−) ≤ a where a = αh

6λ(n − 1)
.

Now consider negative steps. The rate of arrivals of calls with one end v is
λ(n − 1), and on A0

Jk(v)− there are at most 2λ(n − 1) active calls with one end v.

It follows that on A0
Jk(v)−,

P(Yk = −1|FJk(v)−) ≥ HJk(v)−(v, h)

3λ(n − 1)
= Rk−1

3λ(n − 1)
,

and so, for each y ≥ αh, on Ek−1 ∩ {Rk−1 = y},

P(Yk = −1|FJk(v)−) ≥ y

3λ(n − 1)
= by where b = 1

3λ(n − 1)
.

Note that for t ≥ τh−1, on Bt(h − 1), Ht(w,h) ≤ 2αh−1 − 1 for all nodes w. Note
also that 2a

b
= αh. Let r = αh, and let r̃ satisfy αh + 1 ≤ r̃ ≤ 2αh−1. Then by

Lemma 2.4

P
(
E ∩ {

HJk(v)(v, h) > αh ∀k ≤ mh−1
}|HJ0(v)(v, h) = r̃

)
≤ 2e−αh/14 = O

(
n−K−4)

.
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Summing over all nodes v, it follows that, uniformly over h0 + 1 ≤ h ≤ h∗ + 1,

P
(
C(h) ∩ B(h − 1)

) ≤ P
(
C(h) ∩ E

) + P
(
E ∩ B(h − 1)

) = O
(
n−K−3)

.

Now let h = h∗ + 2. We say that a call has height h at v if it is routed onto a link
vw that already has h − 1 calls at the time. Let NH(v) denote the number of new
calls for v arriving during (τh∗+1, τh∗+2] with height at least h∗ + 2. We will use
Lemma 2.2 to show that with high probability NH(v) ≤ K + 3 for each v. Then
we will see that with high probability no calls with height at least h∗ + 2 at time
τh∗+1 last until time τh∗+2.

Enumerate calls with one end v arriving after time τh∗+1 as Z′
1(v),Z′

2(v), . . .

with arrival times J ′
1(v), J ′

2(v), . . . . Recall that γh∗+1 = (K + 4) lnn, and define
mh∗+1 = �2γh∗+1λ(n − 1)�. For k = 0,1, . . . let

E′
k = A0

J ′
k+1(v)− ∩ BJ ′

k+1(v)−
(
h∗ + 1

)
.

Further let E′ = ⋂mh∗+1−1
k=0 E′

k . For each k = 1,2, . . . , on E′
k−1,

P
(
Z′

k(v) has height ≥ h∗ + 2|FJ ′
k(v)−

) ≤ p1,

where

p1 =
(

4αh∗+1

n − 2

)d

=
(

56(K + 4) lnn

n − 2

)d

.

Further we note that, for each positive integer r ,

P
(
B(mh∗+1,p1) ≥ r

) ≤ (mh∗+1p1)
r = O

((
n−d+1(lnn)d+1)r)

,

where, as earlier, B(n,p) is a binomial random variable with parameters n and p.
For k = 1,2, . . . , let Y ′

k denote I{Z′
k(v) has height≥h∗+2}. Let NA(v) be the number

of calls with one end v arriving during the interval (τh∗+1, τh∗+2], and let N ′
A(v)

be the number of calls with one end v arriving during the interval (τh∗+1, t2]. Then,
using Lemma 2.2 (with p = p1, t = mh∗+1, Yi = Y ′

i , Ei = E′
i , Fi = FJ ′

i (v)− and
k = r) for each integer r ≥ K + 4,

P
({

NH(v) ≥ r
} ∩ E′)

≤ P

({mh∗+1∑
k=1

Y ′
i ≥ r

}
∩ E′

)
+ P

(
NA(v) > mh∗+1

)

≤ P
(
B(mh∗+1,p1) ≥ r

) + P
(
Po

(
λ(n − 1)γh∗+1

)
> mh∗+1

) = o
(
n−K−3)

.

Summing over all v ∈ V ,

P
({

NH(v) ≥ r for some v
} ∩ B

(
h∗ + 1

))
≤ ∑

v

P
({

NH(v) ≥ r
} ∩ E′) + P

(
E′ ∩ B

(
h∗ + 1

))

≤ o
(
n−K−2) + P

(
A0

t2

) + ∑
v

P
(
N ′

A(v) < mh∗+1
) = o

(
n−K−2)

.
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Also, on Bτh∗+1(h
∗ +1) there are at most 28(K +4) lnn calls present at time τh∗+1

with height at least h∗ + 2, and so the probability that at least one survives to time
τh∗+2 is at most 28(K + 4) lnne−γh∗+1 = o(n−K−2). Hence

P
(
C

(
h∗ + 2

) ∩ B
(
h∗ + 1

)) = o
(
n−K−2)

,

as required. �

We now show that a.a.s., for each h = h0 + 1, . . . , h∗ + 2, there will be no
“excursions” that cross upwards from αh to at least 2αh; that is, Ht(v,h) cannot
exceed 2αh during the time interval (τv(h), t2] for any v ∈ V and any h = h0 +
1, . . . , h∗ + 2.

LEMMA 5.2.

h∗+2∑
h=h0+1

P
(
B(h) ∩ B(h − 1) ∩ C(h)

) = o
(
n−K−2)

.

PROOF. Take h ∈ {h0, . . . , h
∗ + 2}. The only possible start times for an up-

ward crossing excursion of Ht(v,h) are arrival times during [τh−1, t2]. Let N0 =
2λnK+1. Then the probability that, for some v, more than N0 calls with one end v

arrive during the interval (τh(v), t2] is O(n−K−3).
Now consider a fixed node v. Let J0 = τh(v), and let J1, J2, . . . be the jump

times of the process of arrivals (possibly failing) and terminations of calls with one
end v after time τh(v). For k = 0,1, . . . let Rk = HJk

(v,h), and for k = 1,2, . . . let
Yk = Rk − Rk−1. Then each Yk ∈ {−1,0,1} and is FJk

-measurable and thus also
FJk+1−-measurable. For k = 0,1, . . . , let

Ek = A0
Jk

∩ BJk
(h − 1).

As in the proof of Lemma 5.1, on Ek−1

P(Yk = 1|FJk
) ≤ q+

h :=
(

8αh−1

n − 1

)d

,

P(Yk = −1|FJk
) ≥ q−

h := αh

3λ(n − 1)
,

and for h ≤ h∗ + 1,

q+
h ≤ αh

6λ(n − 1)
= q−

h /2.

Let p = q+
h , q = q−

h and a = �αh�−1 ≥ αh −2. By Lemma 2.5, the probability
that the event A0

t2
∩ B(h − 1) occurs and any given excursion during (τh(v), t2]
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leads to a “crossing” is at most (q+
h /q−

h )αh−2, and so for h = h0 + 1, . . . , h∗ + 2,
summing over all v ∈ V and over all possible excursion starting times,

P
(
B(h) ∩ B(h − 1) ∩ C(h)

)
≤ 2λnK+2(

q+
h /q−

h

)αh−2 + P
(
Ā0

t2

) + O
(
n−K−3)

.

For h = h0 + 1, . . . , h∗ + 1,(
q+
h /q−

h

)αh−2 ≤ 2−αh+2 = 2−14(K+4) lnn+2 = O
(
n−2K−5)

,

and so the above bound is O(n−K−3). For h = h∗ + 2,

q+
h

q−
h

=
(

8 · 14(K + 4) lnn

n − 1

)d

· λ(n − 1)

2K + 7
= O

(
n1−d lnd n

) = O
(
n−1 ln2 n

)
and so (

q+
h /q−

h

)αh−2 = O
(
n−2K−5) · lnO(1) n,

and the lemma follows. �

We may now complete the proof of Theorem 1.3(a). Recall that A0
τ2

⊆ Bh0 , and

that P(A0
τ2

) = o(n−K−2). Then

P
(
B

(
h∗ + 2

))

≤ P
(
A0

τ2

) + P
(
B(h0) ∩ A0

τ2

) +
h∗+2∑

h=h0+1

P
(
B(h) ∩ B(h − 1)

)

= P
(
A0

τ2

) +
h∗+2∑

h=h0+1

P
(
C(h) ∩ B(h − 1)

)

+
h∗+2∑

h=h0+1

P
(
B(h) ∩ C(h) ∩ B(h − 1)

)

= o
(
n−K−2)

.

This completes the proof of (41) and thus of the upper bound of Theorem 1.3,
for the case of general starting configuration.

Finally let us consider the case when the distribution of the initial state X0 is
stochastically dominated by the stationary distribution π . Let us set t0 = 0 and
consider t1 ∈ [0, (k + 8) lnn).

Let Bt = ⋂h∗+2
h=h0

B ′
t (h), where the events B ′

t (h) are like the events Bt(h) above,
but with 2 replaced by 3/2. We may adapt the upper bound proof described above
to show that Bt holds a.a.s. for t large enough. Thus B0 must hold a.a.s. for the
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equilibrium distribution. But B0 is a decreasing event, and so B0 must hold a.a.s.
for any initial distribution stochastically at most the equilibrium distribution. Now
we deduce as above that, for all v and all t ∈ [0, t1 + nK ], Lt(v,h0) ≤ 2αh0 , and
Ht(v,h) ≤ 2αh for each h = h0 + 1, . . . , h∗ + 2. Finally, we may deduce as before
that the expected number of calls that fail during [0, t1 + nK ] is o(1), and this
completes the proof.

5.2. Lower bound. Let the constant c2 = c2(λ, d,K) be as defined below, and
let D = D(n) ≤ ln lnn

lnd
− c2. Let 0 < ε < min{1, (K + 2)/d}. Once again, we work

on the interval [t1, t2] of length nK defined in (37). We shall show that a.a.s. for
each v at least (n−1)1−ε links vw incident on v are saturated (and so unavailable)
throughout the interval, and hence a.a.s. at least nK+2−εd−o(1) calls arriving during
the interval fail.

Given a sequence of nonnegative numbers (αh)h≥0 and a sequence of times
(τh)h≥0 such that t0 ≤ τh ≤ t1 for each h, let

Bt(h) = {
Ls(v,h) ≥ α ∀s ∈ [τh, t],∀v

}
,

and let B(h) = Bt2(h). We shall choose numbers α0, α1, . . . , starting with α0 =
n − 1 and decreasing rapidly. We shall further choose an increasing sequence of
times τh, h = 0,1, . . . , such that t0 ≤ τh ≤ t1 for each h. Our aim is to show that
B(D(n)) occurs a.a.s., with a value αD(n) ≥ (n − 1)1−ε , so that there are always
many saturated links.

The numbers αh are given as follows. Let ν = min{1,λ}
24ed , so that 0 < ν < 1. Now

let α0 = n − 1, and for h = 1,2, . . . define αh by setting

αh

n − 1
= ν

h

(
αh−1

n − 1

)d

.(42)

Since 1
12 ≤ e − 1, it is easily checked that 2αh ≤ αh−1(1 − e−1), and so (αh −

2αh+1)
d ≥ (αh/e)

d for each h.
We want to choose the constant c2 in the upper bound on D(n) above such that

for n sufficiently large

αD(n) ≥ (n − 1)1−ε.

To see that such a choice is possible, let βh = αh

n−1 . Then β0 = 1 and

βh = ν

h
βd

h−1 for h = 1,2, . . . .(43)

It follows that for each positive integer h,

βh = ν1+d+···+dh−1

∏h
i=1 id

h−i
.(44)
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To upper bound the denominator in (44), note that for some c3 > 0,

ln
(
h(h − 1)d(h − 2)d

2 · · ·2dh−2) = dh
h∑

i=2

d−i ln i ≤ c3d
h

and so
∏h

i=1 id
h−i ≤ ec3d

h
. It follows that for each h ∈ N,

βh ≥ e−dh(ln(1/ν)+c3).

Let c4 be such that d−c4(ln( 1
ν
) + c3) ≤ ε; if h ≤ ln ln(n − 1)/ lnd − c4, then

βh ≥ exp
(−(

ln(n − 1)
)
d−c4

(
ln(1/ν) + c3

))
≥ exp

(−ε ln(n − 1)
) = (n − 1)−ε.

Since ln lnn ≤ ln ln(n − 1) + 1 for n large enough, we can take c2 = c4 + 1.
For h = 0,1, . . . let γh = 4

max{1,λ}(h+1)
. Now define an increasing sequence of

times τh as follows. Let τ0 = t0, and for h = 1, . . . , let τh = τh−1 + γh−1. Then

τD(n) − t0 =
D(n)−1∑

h=0

γh ≤ 4
D(n)∑
h=1

1

h
≤ 4 ln(D + 1) = O(ln ln lnn).

It follows that τD ≤ t1 for n sufficiently large.
Since α0 = n − 1, it follows that P(B(0)) = 1; we prove by induction that

P(B(h)) = O(n−K−3) for h = 1, . . . ,D(n), so that a.a.s. throughout [t1, t2] for
each v there are at least (n−1)1−ε saturated links vw incident on v. The main step
is to show that P(B(h) ∩ B(h − 1)) is small for each h; to do this, we first show
that if B(h − 1) occurs, then a.a.s. for each v there exists a time τh(v) ∈ [τh−1, τh]
such that Lτh(v)(v, h) ≥ 2αh.

For each node v ∈ V and each positive integer h, let

C(v,h) = {∃τh(v) ∈ [τh−1, τh] :Lth(v)(v, h) ≥ 2αh

}
,

and let C(h) = ⋂
v C(v,h).

LEMMA 5.3.
D∑

h=1

P
(
C(h) ∩ B(h − 1)

) = o
(
n−K−2)

.(45)

PROOF. The idea is very similar to that in the proof of Lemma 5.1. We con-
sider the variable Lt(v,h) at jump times t , when it changes by 0 or ±1. We lower
bound the probability of a positive change and upper bound the probability of a
negative change, and use a reversed version of Lemma 2.3.

Fix a node v and an integer h ≥ 1. Let J0(v) = τh−1 and enumerate the jump
times of the process of arrivals (possibly failing) and terminations of calls with one
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end v after time J0(v) as J1(v), J2(v), . . . . For k = 0,1, . . . let Rk = LJk(v)(v, h)

and for k = 1,2, . . . let Yk = Rk − Rk−1, so that

Rk = R0 +
k∑

j=1

Yj .

Then each Yk ∈ {−1,0,1}, is FJk(v) and hence also FJk+1(v)−-measurable, and∑
k : τh−1<Jk(v)≤τh

Yk is the net change in Lt(v,h) during (τh−1, τh].
For h = 0,1, . . . , let mh = 2 min{1, λ}(n − 1)/(h + 1) = 1

2λ(n − 1)γh. Note
that, for h = 0,1, . . . ,D(n),

P
(
Jmh−1(v) > τh

) ≤ P
(
Po

(
λ(n − 1)γh−1

)
< mh−1

) ≤ e−γh−1λ(n−1)/8.

For k = 0,1, . . . let Ek = A0
Jk+1(v)− ∩ A1

Jk+1(v)− ∩ BJk+1(v)−(h − 1). Let E =⋂mh−1−1
k=0 Ek . Recalling that P(A0

t2
∪ A1

t2
) = O(n−K−3),

P
(
E ∩ B(h − 1)

) ≤ P
(
Jmh−1(v) > τh for some v

) + P
(
A0

τh
∪ A1

τh

)
= O

(
n−K−3)

.

We now seek a lower bound (conditional on the past) on the probability that the
jump Yk takes value 1. First note that on A0

Jk(v)− the conditional probability that

Jk(v) is an arrival time (for a call for v) is at least 1/(2 + δ) ≥ 1
3 . Now note that

Yk takes value 1 if the kth call (with endpoints v and u, for any random choice
of u 	= v) is routed onto a link vw with load exactly h − 1 at Jk−1(v); this will
happen if, in particular, for every intermediate node wi selected, the link vwi has
load exactly h − 1 at time Jk−1(v), and at least one of the “partner” links uwi is
not blocked at time Jk−1(v).

Now we want to consider u picked uniformly at random (u.a.r.) from V \ {v}
and w1, . . . ,wd picked u.a.r. from V \ {v,u}. We may pick u and w1, . . . ,wd as
follows. First pick w1 u.a.r. from V \ {v}, then pick u u.a.r. from V \ {v,w1},
then pick w2, . . . ,wd independently and u.a.r. from V \ {v,u}. [This gives ex-
actly the same distribution on the (d + 1)-tuple u,w1, . . . ,wd .] On A1

Jk(v)− we
have SJk(v)−(via w) ≤ (n − 2)/2 for all nodes w; and so, whatever w1 is picked,

the probability conditional on FJk(v)− that uw1 is saturated is at most 1
2 . Hence,

on A0
Jk(v)− ∩ A1

Jk(v)−,

P(Yk = 1|FJk(v)−)

≥ 1

3

LJk(v)−(v,h − 1) − LJk(v)−(v,h)

n − 1

× 1

2

(
LJk(v)−(v,h − 1) − 1 − LJk(v)−(v,h)

n − 2

)d−1

≥ 1

6

(
LJk(v)−(v,h − 1) − 1 − LJk(v)−(v,h)

n − 1

)d

.
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It follows that, on Ek−1 ∩ (Rk−1 < 2αh),

P(Yk = 1|FJk(v)−) ≥ 1

6

(
αh−1 − 2αh

n − 1

)d

≥ e−d

6

(
αh−1

n − 1

)d

= 4hαh

min{1, λ}(n − 1)

by (42). Thus on the event Ek−1 ∩ (Rk−1 < 2αh),

P(Yk = 1|FJk(v)−) ≥ 2p where p = 2hαh

min{1, λ}(n − 1)
.

Now we consider negative steps. The probability that Jk(v) is a departure time of
a given call with one end v is at most 1

λ(n−1)
, and so

P(Yk = −1|FJk(v)−) ≤ h(LJk(v)−(v, h) − LJk(v)−(v, h + 1))

λ(n − 1)
.

It follows that, for each y < 2αh, on Ek−1 ∩ (Rk−1 = y),

P(Yk = −1|FJk(v)−) ≤ hy

λ(n − 1)
≤ 2hαh

λ(n − 1)

≤ 2hαh

min{1, λ}(n − 1)
= p.

Let r1 = 2αh, and let r0 be any positive integer less than 2αh. Note that
q+
h mh−1 ≥ 4αh ≥ 2(r1 − r0). By a natural “reversed” version of Lemma 2.3 (i.e.,

by Lemma 7.2 in [15]), for any value of r0 ≤ r1,

P
(
E ∩ (

LJk(v)(v, h) < 2αh ∀k ∈ {1, . . . ,mh−1})|LJ0(v)(v, h − 1) = r0
)

≤ e−αh/7 ≤ e−αD/7 ≤ e−�(n1−ε).

Note that we used Lemma 2.4 in place of Lemma 2.3 in the corresponding part
of the proof of the upper bound in Theorem 1.3. The reason for this is that, in
the upper bound, we had to bring the quantity Ht(v,h) from at most 2αh−1 to αh

(rather than from at least 0 to 2αh) and, for large h, αh−1 and αh are of a different
order of magnitude in n, and we did not want to “give away” the extra downward
drift of Ht(v,h) in the vicinity of αh−1.

Summing over all v we see that

P
(
C(h) ∩ B(h − 1)

) ≤ P
(
C(h) ∩ E

) + P
(
E ∩ B(h − 1)

) = O
(
n−K−3)

.

Thus we have now completed the proof of (45). �

We now need to prove that for each h = 1,2, . . . ,D(n), a.a.s. there will be no
excursions that cross downwards from 2αh to less than αh; that is, each of the
numbers Lt(v,h) is unlikely to drop below αh during (τv(h), t2].
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LEMMA 5.4.
D∑

h=1

P
(
B(h) ∩ B(h − 1) ∩ C(h)

) = o
(
n−K−2)

.

PROOF. Take h ∈ {1, . . . ,D(n)} and v ∈ V . The only possible start times for
a crossing of Lt(v,h) from 2αh to αh are completion times of calls with one end v

during [τh−1, t2]. Let N0 = 4λnK . Then the probability that, for some v, more than
N0 calls with one end v terminate during the interval (τh(v), t2] is O(n−K−3).

Now consider a fixed node v. Let J0 = τh(v), and let J1, J2, . . . be the jump
times of the process of arrivals (possibly failing) and completions of calls with one
end v after time τh(v). For k = 0,1, . . . , let Rk = LJk

(v,h) and for k = 1,2, . . .

let Yk = Rk − Rk−1. Then each Yk ∈ {−1,0,1} and is FJk
and hence FJk+1−-

measurable. For k = 0,1, . . . let

Ek = A0
Jk+1− ∩ A1

Jk+1− ∩ BJk+1−(h − 1).

As in the proof of Lemma 5.3, on Ek−1,

P(Yk = 1|FJk(v)−) ≥ q+
h := 4hαh

min{1, λ}(n − 1)
,

P(Yk = −1|FJk(v)−) ≤ q−
h := 2hαh

min{1, λ}(n − 1)

and q−
h = 1

2q+
h .

Analogously to the proof of Lemma 5.2, we may apply a reversed version of
Lemma 2.5 with p = q−

h , q = q+
h , a = �αh� − 1. The probability that the event

A0
t2

∩ A1
t2

∩ B(h − 1) occurs and any given excursion during (τh(v), t2] leads to
a “crossing” is at most (q−

h /q+
h )�αh�−1 ≤ (1/2)αh−2. Summing over all v ∈ V , for

h = 1, . . . ,D(n),

P
(
B(h) ∩ B(h − 1) ∩ C(h)

) ≤ nN0
(1

2

)αh−2 + O
(
n−K−3) + P

(
A0

t2
∪ A1

t2

)
≤ 4λnK+2(1

2

)αD−2 + O
(
n−K−3)

= O
(
n−K−3)

. �

Now, as in the proof of the upper bound,

P
(
B

(
D(n)

)) ≤ P
(
B(0)

) +
D(n)∑
h=1

P
(
B(h) ∩ B(h − 1)

)

=
D(n)∑
h=1

P
(
C(h) ∩ B(h − 1)

) +
D(n)∑
h=1

P
(
B(h) ∩ C(h) ∩ B(h − 1)

)

= o
(
n−K−2)

.
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As before, let NA(t1, t2) be the total number of calls arriving in (t1, t2]; then
NA(t1, t2) ∼ Po(λ

(n
2

)
(t2 − t1)). Also, as before, NF (t1, t2) is the number of calls

that are lost during (t1, t2]. On the event BT ′
k−(D(n)), for n sufficiently large,

P
(
Z′

k fails|FT ′
k−

) ≥ 1

2

(
(n − 1)1−ε − 1

n − 2

)d

≥ 1

4
n−εd := p1.

Let N1 = �1
2λ

(n
2

)
nK�. Let b∗ = 1

32λnK+2−dε , and let B∗ = {NF (t1, t2) < b∗}.
Then, by Lemma 2.2,

P
(
B∗) ≤ P

(
B

(
D(n)

)) + P
(
NA(t1, t2) < N1

) + P
(
B(N1,p1) < b∗) = o

(
n−K−2)

.

Now suppose 0 ≤ t1 ≤ t0, and let t2 = t1 + nK . Then we can apply the above
argument to [t0, t2] with the same conclusion. Since ε can be chosen arbitrarily
small, this completes the proof of the lower bound of Theorem 1.3.

6. Concluding remarks. We have considered the performance of two algo-
rithms for a continuous-time network routing problem, strengthening and extend-
ing the earlier results in [18] and [1], with full proofs.

For simplicity we have assumed throughout that the underlying network is a
complete graph, but our results carry over in a straightforward way to a suit-
ably “dense” subnetwork. Consider, for example, the upper bound in Theorem 1.3
part (a). Let δ > 0, and suppose that, in the network with n nodes, for each pair
of nodes u and v the number of possible intermediate nodes is at least δn. [For
instance, if] 0 < p < 1 is fixed and the n(n − 1) possible links appear indepen-
dently with probability p, then with high probability each pair of distinct nodes has
(p2 + o(1))n common neighbours.] Minor alterations to the proof of Theorem 1.3
part (a) show that we obtain the same conclusion: if D(n) ≥ ln lnn/lnd +c, and we
use the BDAR algorithm, then the expected number of failing calls during an in-
terval of length nK is o(1). The only difference is that now the constant c depends
also on δ. Note that the leading term ln lnn/lnd depends only on the problem size
n and the number d of choices, and not on δ (or on λ or K).

For the dense networks we have been considering, it has been natural to work
with two-link routes. If we wish to consider routing in sparser networks, for ex-
ample, a random graph as above but with p = o(1), then it would be natural to
consider longer routes for calls, but we do not pursue that here.

The analysis in [18] (see also [13]) suggested that the performance of the model
could be upper and lower bounded by differential equations. While that analysis
was nonrigorous, it turns out that a suitable differential equation approximation,
and concentration of measure bounds, can indeed be obtained: the details appear
in [14]. The main challenge was to disentangle the complex dependencies within
subsets of links to obtain a tractable asymptotic approximation for the generator of
the underlying Markov process.
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