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1. Introduction

Nonparametric statistical inference for Lévy-type processes have been attracting
the attention of researchers for many years starting from the works of Rubin
and Tucker (1959) and Basawa and Brockwell (2007). The popularity of Lévy
models is based on their simplicity on the one hand and the ability to reproduce
many specific properties of the economic data on the other hand. In this article,
we consider a class of processes known as the time-changed Lévy process. Let X
be a Lévy process and T be a non-negative, non-decreasing stochastic process
with T (0) = 0. Then the time-changed Lévy process is defined as Ys = XT (s).
The change of time can be motivated by the fact that some economical effects
(e.g., nervousness of the market which is indicated by volatility) can be better
expressed in terms of “business” time which may run faster than the physical
one in some periods (see Veraart and Winkel, 2010).

Theoretically it is known that even in the case of the Brownian motion X, the
resulting class of time-changed processes is rather large and basically coincides
with the class of all semimartingales (Monroe, 1978). Nevertheless, the practical
application of this fact for financial modelling meets two major problems: first,
the change of time T can be highly intricate - for instance, if Y has discontinuous
trajectories (see Barndorff-Neilsen and Shiryaev, 2010); second, the dependence
structure between X and T can be also quite sophisticated. In order to avoid
the above difficulties we consider the whole class of Lévy processes for X and
assume that X is independent of T .

Suppose now that a time-changed process Y is observable on the equidistant
time grid 0 < ∆ < · · · < n∆ with some n ∈ N and ∆ > 0. A natural question
is which parameters of the underlying Lévy process X can be identified from
the observations Y0, Y∆, . . . , Yn∆ as n → ∞. This question has been recently
addressed in the literature, and the answer turns out to crucially depend on the
asymptotic behaviour of ∆ and on the degree of our knowledge about T . So in
the case of high-frequency data with increasing time horizon, i.e., ∆n → 0 with
n ·∆n → ∞ (also known as rapidly increasing design), one basically can, under
some regularity conditions, identify X completely, provided E[T ] is known (see
Figueroa-López, 2009). If the time horizon remains fixed, only the diffusion part
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of X and the behaviour of the Lévy measure of X at 0 can be identified (see Aı̈t-
Sahalia and Jacod, 2009 and 2012). The latter behaviour can be characterised
in terms of the so-called Blumenthal-Getoor index or successive Blumenthal-
Getoor indexes. The Blumenthal-Getoor index is a characteristic of the activity
of small jumps and for a one-dimensional Lévy process Z = (Zt)t≥0 with a Lévy
measure ν can be defined via

BG(Z) = inf

{
r > 0 :

∫

|x|≤1

|x|rν(dx) <∞
}
.

The Blumenthal-Getoor index, its practical importance and its theoretical prop-
erties, have recently got much attention in the literature. For instance, Mijatovic
and Tankov (2012) studied the impact of this index on the asymptotic behavior
of the implied volatility. Rosenbaum and Tankov (2012) showed how the activity
of small jumps influences the optimal discretization strategies for option pricing.

An important remark is that the statistical analysis of the time-changed Lévy
models is much more difficult than the one of Lévy models. This lies in the fact
that the increments of Y are not any longer independent and that neither the
process X nor T is directly observable (see Belomestny, 2011).

This paper is devoted to the case of low-frequency data, i.e., the case when ∆
is fixed and n → ∞. For this case, Belomestny (2011) has proved that one can
not in general identify the Lévy measure X from the low-frequency observations
of Y . However, the question remains open whether the behaviour of ν at 0,
expressed in terms of the BG index, can be recovered. It follows from the results
of this work that a consistent estimation of the BG index of X is basically
possible, provided the Lévy process X is independent of T and has a nonzero
diffusion part.

The approach presented in this paper was already introduced by Belomestny
and Panov (2013) in the context of affine stochastic volatility models. Neverthe-
less, the unique similarity between this paper and Belomestny and Panov (2013)
is the main idea to use the asymptotic behaviour of the characteristic function
of the increments of the price processes to infer on the Blumenthal-Getoor (BG)
index. Indeed, the results are quite different: while the simultaneous estimation
of the jump activities for Lévy process driving the volatility and the state pro-
cess in ASV models is not possible, for the time-changed Lévy processes we are
able to consistently estimate the BG indexes of the processes X and T provided
X has a non-zero diffusion part. Furthermore, there are huge differences between
Belomestny and Panov (2013) and the current paper on the methodological side.
For example, the analysis in Belomestny and Panov (2013) is heavily based on
the properties of affine processes that can not be used in the current framework.

The paper is organised as follows. In the next section, we present the main
setup and give basic definitions and examples. Next, we introduce the main
object of our study, the time-changed Lévy processes and formulate the main
assumptions. Section 3 contains the so-called Abelian theorem describing the
asymptotic behaviour of the characteristic function of the increments Yt+∆−Yt
for fixed ∆ > 0. Estimation algorithm for the Blumenthal-Getoor index of X
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is presented in Section 4, where also some theoretical results showing the con-
sistency of the proposed estimator and the corresponding rates of convergence,
are presented. Some numerical examples can be found in Section 5. All proofs
are collected in Section 6.

2. Setup

2.1. Lévy process X

Throughout this paper we assume that the process (Xt) is a one-dimensional
Lévy process on some filtered probability space (Ω,F , (Ft)t≥0,P). This partic-
ularly means that the characteristic function of X has the form:

φX(u) := E [exp {iuXt}] = exp {tψ(u)} , t > 0,

where the function ψ(u) is the so-called characteristic exponent of X . The Lévy-
Khintchine formula yields

ψ(u) = iµu− 1

2
σ2u2 + V(u),

V(u) :=

∫

R\{0}

(
eiux − 1− iux · 1{|x|≤1}

)
ν(dx),

where µ ∈ R, σ is a non-negative number and ν is a Lévy measure on R \ {0},
which satisfies

∫

R\{0}

(|x|2 ∧ 1) ν(dx) <∞.

A triplet (µ, σ2, ν) is called the characteristic triplet of the Lévy process Xt. We
need the following assumptions.

(AL) σ is strictly positive and the function V(u) has the following representa-
tion:

V(u) = −λ1 |u|γ Ψ1(u), (2.1)

where λ1 > 0, γ ∈ (0, 2), and for u large enough

|1−Ψ1(u)| ≤ ϑ1u
−χ1 (2.2)

with χ1 ∈ (0, γ), ϑ1 > 0.

The assumption (AL) is, for example, fulfilled if there exist β(0) > 0, β(1) ∈ R

such that
∫

|x|>ε

ν(dx) = ε−γ(β(0) + β(1)εχ1(1 +O(ε))), ε→ +0, (2.3)
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see Lemma C.1. Note that the parameter γ in (2.3) coincides with the Blumenthal-
Getoor index, because this index can be equivalently defined as the smallest
number p ∈ [0, 2] such that

lim
ε→0+

εp
∫

|x|>ε

ν(dx) ∈ (0,+∞). (2.4)

On the other hand, if the Assumption (AL) is fulfilled, then the parameter γ
in (2.1) also coincides with the Blumenthal-Getoor index of the process X . In
fact, Theorem 4.15 from Bismut (1983), known also as Abelian and Tauberian
theorem for Lévy processes, states that the condition (2.4) is equivalent to

ReV(u) ≍ −Cuγ, u→ +∞ (2.5)

with some C > 0. Here and in the sequel the notation f(u) ≍ g(u) as u →
∞ (with some functions f and g such that g(u) 6= 0, ∀u ∈ R) means that
limu→∞ f(u)/g(u) = 1.

2.2. Time change

Let T = (T (s))s≥0 be an increasing right-continuous process with left limits
such that T (0) = 0 and, for each fixed s, the random variable T (s) is a stopping
time with respect to the filtration F . In this paper, it is also assumed that

(AT1) the process T is independent of X ;
(AT2) the sequence Tk = T (∆k) − T (∆(k − 1)), k ∈ N, is strictly stationary

and α-mixing with the mixing coefficients (αT (j))j∈N satisfying

αT (j) ≤ ᾱ0 exp(−ᾱ1j), j ∈ N,

for some positive constants ᾱ0 and ᾱ1 (the term “α-mixing sequence”
means that αT (j) → 0 as j → +∞);

(AT3) the Laplace transform of T (∆) has the following asymptotic behavior:

L∆(u) := E[exp(−uT (∆))] ≍ A exp {−λ2uαΨ2(u)} , u→ +∞, (2.6)

with λ2 > 0, A > 0, α ∈ (0, 1], and Ψ2(u) such that for u large enough

|1−Ψ2(u)| ≤ ϑ2u
−χ2

with some χ2, ϑ2 ≥ 0.

Note that in the case where T is an increasing Lévy process, i.e., a subordinator,
the parameter α coincides with the Blumenthal-Getoor index of T .

Remark 2.1. It is easy to see that the most restrictive assumption is (AT1).
This assumption is made for the identifiability reasons. The corresponding class
of processes remains rather large, but its full characterisation is still an open
problem (see Barndorff-Nielsen and Shiryaev, 2010).
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2.3. Examples

Tempered stable subordinator. The tempered stable distribution with parameters
(a, b, α) can be defined via its Laplace transform:

L
TS(u) := exp

{
ab− a(b1/α + 2u)α

}
,

where a > 0, b ≥ 0, α ∈ (0, 1), see Schoutens (2003). The tempered stable sub-
ordinator is a process Zt, which has increments Zt+s −Zt following a tempered
stable law with parameters (sa, b, α). The Lévy measure of this process is of the
form:

ρ(x) :=
c

xα+1
exp{−λx}I{x > 0},

where λ = b1/α/2. Here the decay rate of big jumps, c = −a ∗ 2α/Γ(−α) alters
the intensity of all jumps simultaneously, and α is the Blumenthal-Getoor in-
dex of the process (see Cont and Tankov, 2004). Tempered stable subordinator
satisfy (AT3) with χ2 = 1, λ2 = 2αa∆, ϑ2 = b1/αα/2 and A = exp{ab∆}.

Integrated CIR process. Another candidate for the time change process is given
by the integrated Cox-Ingersoll-Ross (CIR) process. The CIR process is defined
as a solution of the following SDE:

dZt = (a− bZt)dt+ ζ
√
Zt dWt,

where a, b and ζ are positive numbers, and Wt is a Wiener process. If Z0 is
sampled from the stationary invariant distribution π and 2a ≥ ζ2, then Zt is
strictly stationary and ergodic. The time change process T (s) is then defined as

T (s) =

∫ s

0

Zt dt.

The Laplace transform of T (∆) under π is given by

L
iCIR
∆ (u) = Eπ

[
E
[
e−uT (∆)|Z0

]]

=
exp

{
ab∆/ζ2

}
(
cosh(Λ∆/2) + b

Λ sinh(Λ∆/2)
)2a/ζ2 ·

· Eπ
[
exp

{ −2Z0u

b+ Λcoth(Λ∆/2)

}]
, (2.7)

where Λ(u) =
√
b2 + 2ζ2u, see Chapter 15.1.2 from Cont and Tankov (2004).

Since the stationary distribution of the integrated CIR process is the Gamma
distribution with parameters 2a/ζ2 and 2b/ζ2, the Laplace transform of Z0

under π has a form

Eπ
[
e−hZ0

]
=

(
1 + h

ζ2

2b

)−2a/ζ2

,
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and therefore

Eπ

[
exp

{ −2Z0u

b+ Λcoth(Λ∆/2)

}]
=

(
1 +B1(Λ)

ζ2

b

u

Λ

)−2a/ζ2

, (2.8)

where B1(Λ) = (b/Λ + coth(Λ∆/2))−1 → 1 as Λ → ∞. From the definitions of
the hyperbolic functions, it directly follows that

cosh(Λ∆/2) +
b

Λ
sinh(Λ∆/2) =

1

2
B2(Λ)e

Λ∆/2. (2.9)

where

B2(Λ) := (1 + b/Λ)

(
1 +

1− b/Λ

1 + b/Λ
e−Λ∆

)
→ 1, Λ → ∞.

Substituting (2.8) and (2.9) into (2.7), we get the following asymptotics for the
function LiCIR∆ (u) as u→ ∞:

L
iCIR
∆ (u) ≍ eab∆/ζ

2

22a/ζ
2

exp
{
−∆a

ζ2
ΛB3(u)

}
, (2.10)

with

B3(u) := 1 +
2

∆Λ
log

(
1 +B1(Λ)

ζ2

b

u

Λ

)
→ 1, u→ ∞.

From (2.10) it follows that the assumption (AT3) is fulfilled with α = 1/2 and

A = eab∆/ζ
2

22a/ζ
2

, λ2 =
∆a

ζ

√
2, Ψ2(u) = B3(u)

√
1 +

b2

2ζ2u
.

Note that for u large enough,

|1−Ψ2(u)| = B3(u)
√
1 + b2/(2ζ2u)− 1 . u−1/2 log(u), u→ ∞

and therefore χ2 = 1/2− ǫ for arbitrary small ǫ < 1/2.

3. The characteristic function of Y∆

Denote the characteristic function of Y∆ by φ∆(u), then

φ∆(u) = ET (∆)

[
EX

[
exp

{
iuXT (∆)

}
|T (∆)

]]
.

Since the inside (conditional) expectation is equal to exp{T (∆)ψ(u)}, we get

φ∆(u) = E exp {T (∆)ψ(u)} . (3.1)

The first objective of this paper is to infer on the asymptotic behavior of φ∆(u).
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Theorem 3.1. Consider the process Ys := XT (s), where the processes X and
T satisfy the conditions (AL), (AT1)–(AT3) with χ2 > 1− γ/2. Then

∣∣φ∆(u)
∣∣ = A exp

{
−τ (1)|u|2α

(
1 + τ (2)|u|γ−2 + r(u)

)}
(3.2)

with

τ (1) = λ2
(
σ2/2

)α
, τ (2) = 2αλ1/σ

2,

and

|r(u)| ≤ K ·max
{
τ (2)ϑ1 |u|(γ−2)−χ1 , ϑ2

(
σ2/2

)−χ2 |u|−2χ2

}
,

where K > 0 doesn’t depend on the parameters of the processes X and T .

Remark 3.2. The examples of Section 2.3 show that the condition χ2 > 1−γ/2
is not restrictive. For example, if the tempered stable distribution is used as a
time change, then this condition holds for any Lévy process X since χ2 = 1 in
this case.

Remark 3.3. In the sequel we will use the notation

χ̃1 := min {χ1, 2χ2 + γ − 2}

and

τ (3) := Kτ (2)ϑ1I
{
χ̃1 = χ1

}
+K

(
σ2/2

)−χ2
ϑ2I
{
χ̃1 = 2χ2 + γ − 2

}

≤ Kmax
{
τ (2)ϑ1,

(
σ2/2

)−χ2
ϑ2

}
,

In these notations, |r(u)| ≤ τ (3)|u|γ−2−χ̃1 for |u| large enough.

Remark 3.4. In this remark, we draw attention of the special case α = 1,
which holds for instance if T is deterministic. In this case, the statement of
Theorem 3.1 can be checked directly. Since λ2 = T (∆), we get

∣∣φ∆(u)
∣∣ =

∣∣∣eψ(u)T (∆)
∣∣∣ = exp

{
−
(
1

2
σ2u2 + λ1|u|γΨ1(u)

)
T (∆)

}

= exp

{
−τ (1)|u|2

(
1 + τ (2)|u|γ−2 + r(u)

)}

with τ (1) = λ2σ
2/2, τ (2) = 2λ1/σ

2, and |r(u)| . τ (2)ϑ1 |u|(γ−2)−χ1 , u→ ∞.

Remark 3.5. Theorem 3.1 can be viewed as the Abelian theorem for time-
changed Lévy processes. For the detailed discussion of the term “Abelian the-
orem” and closely related term “Tauberian theorem”, we refer to the book by
Korevaar (2004). Perhaps the most famous result of this type is the Karamata
Tauberian theorem (see Bingham et al., 1987). For the Lévy processes, the corre-
sponding fact was proven by Bismut, 1983 and this yields the following corollary
of Theorem 3.1.
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Corollary 3.6. If the process T is a subordinator with α < 1, and the assump-
tions of the Theorem 3.1 are fulfilled, then the Blumenthal-Getoor index of the
process Y is equal to 2α.

4. Estimation of the Blumenthal-Getoor index

4.1. Main idea

Consider the processes Xt and T (s) satisfying the assumptions (AL), (AT1)–
(AT3). First, assume that A = 1 in (AT3) and fix some θ > 2. In this case,
Theorem 3.1 yields

Y1(u) := log
{
− log

[
|φ∆(u)|θ2α/

∣∣φ∆(θu)
∣∣
]}

= log(Q) + (2α+ γ − 2) log |u|+ log(R1(u)),
(4.1)

where

Q := τ (1)τ (2)θ2α(1− θγ−2) > 0 and R1(u) := 1 +
r(u) − r(θu)

τ (2)|u|γ−2(1 − θγ−2)
.

Note that R1(u) → 1 as u→ +∞ due to Remark 3.3. The representation (4.1)
tells us that Y1(u) is, up to a reminder term log(R1(u)), a linear function of
log |u| with the slope 2α + γ − 2. If the parameter α is assumed to be known,
then one can view the estimation of γ as a linear regression problem (at least
for large u) and apply the (weighted) least-squares approach. Otherwise, if α is
unknown, one should first estimate α. This can be also done by the method of
(weighted) least-squares. Indeed, define

Y2(u) := log
(
− log |φ∆(u)|

)
= log(τ (1)) + 2α log |u|+ log(R2(u)),

where R2(u) → 1 as u→ +∞. So, Y2(u) is (at least for large u) a linear function
of log |u| with the slope proportional to α. If A 6= 1, then one can first apply
the transformation:

φ̃∆(u) := |φ∆(2u)|/|φ∆(u)| = exp
{
−τ̄ (1)|u|2α

(
1 + τ̄ (2)|u|γ−2 + r̄(u)

)}

with

τ̄ (1) := τ (1)
(
22α − 1

)
, τ̄ (2) := τ (2)

22α+γ−2 − 1

22α − 1
, r̄(u) =

22αr(2u)− r(u)

22α − 1

and then work with φ̃∆(u) instead of φ∆(u). The above discussion shows that
one can consistently estimate the parameters α and γ, provided a consistent
estimate for the c.f. of Y∆ is available.
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4.2. Estimation of the characteristic function

Suppose that the discrete observations Y0, Y∆, . . . , Yn∆ of the state process Y are
available for some fixed ∆ > 0. We estimate φ∆(u) by its empirical counterpart
φ∆n (u) defined as

φ∆n (u) :=
1

n

n∑

k=1

eiu(Y∆k−Y∆(k−1)). (4.2)

Note that due to the assumption (AT2), the process Y is ergodic and α-mixing
with

E
[
eiu(Ys+∆−Ys)

]
= φ∆(u)

for any s ≥ 0 (see Appendix D.1). Hence by virtue of the Birkhoff ergodic
theorem (see Athreya and Lahiri, 2010),

φ∆n (u) −→ φ∆(u), n→ ∞,

almost surely and in L1.

4.3. The case of known α

Introduce a weighting function wVn(u) = V −1
n w1(u/Vn), where Vn is a sequence

of positive numbers tending to infinity, and w1 is an almost everywhere smooth
function supported on [ε, 1] for some ε > 0 that satisfies

∫ 1

ε

w1(u) du = 0,

∫ 1

ε

w1(u) log u du = 1. (4.3)

Some examples of such weighting functions can be found in Panov (2012). If
2− γ < 2α, we define an estimator of γ by

γ̂n(α) := 2(1− α) +

∫ ∞

0

wVn(u) log

(
− log

|φ∆n (u)|θ
2α

|φ∆n (θu)|

)
du. (4.4)

For 2− γ > 2α consider the estimate

γ̂∗n(α) := 2(1− α) +

∫ ∞

0

wVn(u) log

(
1− |φ∆n (u)|θ

2α

|φ∆n (θu)|

)
du. (4.5)

In our theoretical study we mainly focus on the first case (a couple of remarks
about the second case can be found in Section A). The estimate γ̂n(α) can be
represented as γ̂n(α) = 2(1−α)+mn,2, where mn,2 is a solution of the following
optimization problem:

(mn,1,mn,2) := argmin
β1,β2

∫ ∞

0

w̃Vn(u)
{
log

(
− log

|φ∆n (u)|θ
2α

|φ∆n (θu)|

)

− β2 log(u)− β1

}2

du, (4.6)
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where w̃Vn(u) is an almost everywhere smooth positive function on R that can
represented in the form w̃Vn(u) = w̃1 (u/Vn) /Vn with some function w̃1 sup-
ported on the interval [ε, 1]. The proof of the fact that (4.4) and (4.6) are
equivalent follows the same lines as the proof of Lemma A.4 in Belomestny and
Panov (2013). In particular, the weighting functions w1 and w̃1 are related as
follows:

w1(u) := w̃1(u)

∫ 1

ε
w̃1(s) log s ds−

(∫ 1

ε
w̃1(s) ds

)
log u

(∫ 1

ε w̃
1(s) log s ds

)2
−
∫ 1

ε w̃
1(s) log2 s ds ·

∫ 1

ε w̃
1(s) ds

.

Next, we introduce the deterministic quantity

γ̄n(α) := 2(1− α) +

∫ ∞

0

wVn(u) log

(
− log

|φ∆(u)|θ2α

|φ∆(θu)|

)
du. (4.7)

The next lemma shows that γ̄n(α) is close to γ.

Lemma 4.1. In the setup of Theorem 3.1, it holds for n large enough,

|γ − γ̄n(α)| ≤ CV −χ̃1
n , (4.8)

where χ̃1 was introduced in Remark 3.3, and C is some positive constant. More
precisely, for n large enough,

|γ − γ̄n(α)| ≤ C(1) τ
(3)

τ (2)
1 + θγ−2−χ̃1

1− θγ−2
(εVn)

−χ̃1 , (4.9)

where C(1) > 0 does not depend on the parameters of Y .

In the sequel we shall use the notation

|γ − γ̄n(α)| . V −χ̃1
n , n→ ∞,

which means the existence of some C > 0 such that (4.8) is fulfilled. The next
lemma shows that γ̂n(α) converges to γ̄n(α) in probability.

Lemma 4.2. Let the sequence Vn be such that

εn :=
logn√
n

exp
{
τ (4) (θVn)

2α
}
= o(1), n→ ∞, (4.10)

where τ (4) := τ (1)(1 + τ (2) + τ (3)). Assume that the conditions of Theorem 3.1
are fulfilled and moreover 2− γ < 2α. Then there exist positive constants C(2),
κ and δ such that

P
{
|γ̄n(α) − γ̂n(α)| ≤ C(2)εnV

(2−γ)−2α
n

}
> 1− κ n−1−δ. (4.11)

The last two lemmas can be combined into the following theorem, which
presents the minimax upper bound for γ̂n(α).
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Theorem 4.3 (minimax upper bound for γ̂n(α)). Fix some set of positive
numbers

P = (α◦, α
◦, χ1◦, λ1◦, λ

◦
1, ϑ

◦
1, χ2◦, λ2◦, λ

◦
2, ϑ

◦
2)

and consider a class of time-changed Lévy models A = A (P) such that

• Assumptions (AT1), (AT2) hold;
• Assumption (AT3) is fulfilled with α ∈ [α◦, α

◦] ⊂ (0, 1), χ2 ≥ χ2◦ > 0,
λ2 ∈ [λ2◦, λ

◦
2] and ϑ2 ∈ (0, ϑ◦2);

• Assumption (AL) is fulfilled with γ ∈ (γ◦, 2), where γ◦ := max{χ1◦, 2(1−
α)}, χ1 ∈ [χ1◦, γ), λ1 ∈ [λ1◦, λ

◦
1], and ϑ1 ∈ (0, ϑ◦1).

Take Vn = (q logn)1/(2α
◦) with q < (2θ2α

◦

minA τ (4)(A ))−1, where τ (4) =
τ (4)(A ) is defined in Lemma 4.2. Then there exists Ξ > 0 such that for any
Ξ1 > Ξ it holds

sup
A

P
{
|γ̂n(α)− γ| ≥ Ξ1(log n)

−χ̃1◦/(2α
◦)
}
< κ n−1−δ, (4.12)

where χ̃1◦ := min {χ1◦, 2χ2◦ + γ◦ − 2}, the supremum is taken over the set of
all models from A (P), constants κ and δ do not depend on P.

The next theorem states that the rates obtained in Theorem 4.3 are optimal.

Theorem 4.4 (lower bound). For any Ξ2 < Ξ, it holds

lim
n→∞

inf
γ̂∗

n

sup
A

P
{
|γ̂∗n − γ| ≥ Ξ2(log n)

−χ̃1◦/(2α
◦)
}
> 0 (4.13)

where the infimum is taken over all possible estimates of the parameter γ, the
supremum - over the set of all models from A .

4.4. The case of unknown α

Estimation of α. Define an estimate of the parameter α via

α̂n :=
1

2

∫ ∞

0

wUnα (u) log
(
− log |φ∆n (u)|

)
du, (4.14)

where Un is a sequence of positive numbers tending to infinity, and a weighting
function wUnα satisfies the same properties as the function wVn , see (4.3).

This estimate can be alternatively defined as a solution α̂n = ln,1 of the
following optimization problem:

(ln,1, ln,2) := argmin
β1,β2

∫ ∞

0

w̃Unα (u)
(1
2
log
(
− log |φ∆n (u)|

)

− β2 log(u)− β1

)2
du, (4.15)
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where w̃Unα (u) is an almost everywhere smooth positive function on R having
the representation:

w̃Unα (u) =
1

Un
w̃1
α

(
u

Un

)

with some function w̃1
α supported on the interval [ε, 1]. The upper bound for

the estimate α̂n is given in the next theorem.

Theorem 4.5 (upper bound for α̂n). Take the sequence

Un = (q logn)1/(2α
◦) with q < q◦ :=

(
21−α◦λ◦2 max

{
σ2α◦ , σ2α◦

})−1

.

Then there exists a positive constant Ξ3 such that

sup
A

P
{
|α̂n − α| ≥ Ξ3(logn)

(γ−2)/α◦

}
< κ n−1−δ, (4.16)

where the supremum is taken over the set of all models from A , and the con-
stants κ and δ are defined in Theorem 4.3.

Estimation of γ in the case of unknown α. After estimating α using the
sequence Un, one can define an estimate of γ via

γ̂n(α̂n) := 2(1− α̂n) +

∫ ∞

0

wVn(u) log

(
− log

|φ∆n (u)|θ
2α̂n

|φ∆n (θu)|

)
du. (4.17)

The next theorem shows that the upper bound for the estimate γ̂n(α̂n) is the
same as in the case of the known α as long as χ̃1◦ ≤ 2(2 − γ). The latter
inequality holds true if, e.g., γ ≤ 4/3.

Theorem 4.6 (upper bound for γ̂n(α̂n)). Take the sequences

Un = (q logn)1/(2α
◦) with q < q◦ :=

(
21−α◦λ◦2 max

{
σ2α◦ , σ2α◦

})−1

,

Vn = (p logn)
1/(2α◦)

with p < p◦ := q◦/
(
1 + ε2α

◦

)
.

Then

sup
A

P
{
|γ̂n(α̂n)− γ| ≥ Ξ4(logn)

max{−χ̃1◦,2(γ−2)}/(2α◦)
}
< κ n−1−δ, (4.18)

where the supremum is taken over the set of all models from A , constants κ
and δ do not depend on the parameters of Y , and Ξ4 depends on P only. In
particular, if we additionally assume that χ̃1◦ ≤ 2(2− γ), then

sup
A

P
{
|γ̂n(α̂n)− γ| ≥ Ξ4(logn)

−χ̃1◦/(2α
◦)
}
< κ n−1−δ. (4.19)
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5. Numerical examples

In our numerical study we consider the following time-changed Lévy model. Let
Ys be in the form

Ys := XT (s), Xt := σWt +Gt, (5.1)

where

• Wt is a Brownian motion and parameter σ = 0.25/
√
252 ≈ 0.016, which

corresponds to the annual volatility equal to 0.25,
• Gt is a Lévy process which will be specified later,
• T (s) is the integrated CIR process with parameters a = 1.763, b = 1.763,
ζ = 0.563, see Section 2.3 for notation; note that the assumptions (AT2)
and (AT3) hold for this T (s) with α = 1/2, if Z0 has the invariant distri-
bution.

Note that the values of parameters for T (s) are taken from Figueroa-López
(2012). As for the process Gt, we focus on the following two cases:

1. Gt is a stable process with index γ = 1.2 . In this case, the characteristic
exponent of Xt is equal to

ψ(u) = −σ2u2/2− δ1|u|γ
(
1− ıδ2 sign(u) tan (πγ/2)

)
, (5.2)

where we take δ1 = 0.25 and δ2 = 0.3. Note that the assumption (AL) is
fulfilled with λ1 = δ1.

2. Gt is a Normal inverse Gaussian (NIG) process (i.e., γ = 1). This process
is defined by

Gt = σGW̃Ut + θGUt,

where W̃ is a Brownian motion independent ofW , U is an inverse Gaussian
subordinator independent of W̃ such that E[Ut] = 0.21 t, and σG = 0.5,
θG = −0.8. Note that these parameter values are used in Figueroa-López
(2012). In this case, the assumption (AL) is guaranteed by the fact that
the characteristic exponent of X can be represented in the form

ψ(u) = −σ2u2/2 + χ1

(√
χ2
2 − χ2

3 −
√
χ2
2 − (χ3 + ıu)2

)
+ ıχ4u, (5.3)

with some χ1 ∈ R+, χ2 ∈ R+, χ3 ∈ R, χ4 ∈ R, see Belomestny (2011).

For both choices of the process Gt, we estimate the parameters α and γ by
the following procedure. First, we generate a trajectory Y0, Y∆, . . . , Yn∆ with
∆ = 1. Next, we estimate the characteristic function φn(u) by φ

∆
n (u), see (4.2),

and consider the optimization problem (4.15):

(ln,1, ln,2) := argmin
β1,β2

∫ Uup

Ulow

(1
2
log
(
− log |φ∆n (uUn)|

)

− β2 log(uUn)− β1

)2
du. (5.4)
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Fig 1. Boxplots of the estimate α̂n for different values of n based on 100 simulation runs for

the model with stable process Gt.
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Fig 2. Boxplots of the estimate α̂n for different values of n based on 100 simulation runs for

the model with Normal inverse Gaussian process Gt.

where Ulow and Uup are the truncation levels. The solution ln,1 of this problem
gives an estimate of α, which we denote by α̂n. Figures 1 and 2 show the boxplots
of α̂n as a function of n based on 100 simulation runs for the first and the second
choice of the process Gt, respectively.
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Fig 3. Boxplots of the estimates γ̂n(α) and γ̂n(α̂n) for different values of n based on 100

simulation runs for the model with stable process Gt.

Next, we proceed to the estimation of γ by considering the optimization
problem (4.6) with α = α̂n:

(mn,1,mn,2) := argmin
β1,β2

∫ Vup

Vlow

{
log

(
− log

|φ∆n (uVn)|θ
2α̂n

|φ∆n (θuVn)|

)

− β2 log(u)− β1

}2

du, (5.5)

where Vlow and Vup are the truncation levels, and θ = 2. The estimate of γ is
then defined as γ̂n(α̂n) = 2(1− α̂n) +mn,1.

To illustrate Theorem 4.6, we compute also the estimates γ̂n(α), which are
the solutions of the optimization problem (5.5) with the true value α = 1/2
instead of its estimate α̂n. The boxplots given on Figure 3 and 4 indicate that
the quality of the estimates γ̂n(α) and γ̂n(α̂n) is quite similar. Note that the
condition 2 − γ > 2α is not fulfilled for the model with NIG process (and
therefore the theory presented in this paper formally cannot be applied to this
situation), but the use of estimator (5.5) still makes sense.

6. Proofs

In the sequel we use the simplified notation: φ(u) := φ∆(u) and φn(u) := φ∆n (u).
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Fig 4. Boxplots of the estimates γ̂n(α) and γ̂n(α̂n) for different values of n based on 100

simulation runs for the model with Normal inverse Gaussian process Gt.

6.1. Proof of Theorem 3.1

First note that by (3.1),

|φ(u)| ≍ E exp {T (∆)Re(ψ(u))} = L∆ (−Re(ψ(u))) , u→ ∞, (6.1)

i.e., |φ(u)| is asymptotically equivalent to the Laplace transform of T (∆) com-
puted at the point −Re(ψ(u)). Substitung (2.6) into (6.1), we get

|φ(u)| ≍ A exp {−λ2 (−Reψ(u))
α
Ψ2 (−Reψ(u))} .

Using now Assumption (AT3), we conclude that

|φ(u)| ≍ A exp {−λ2 (−Reψ(u))
α
(1 + S(−Reψ(u)))} , (6.2)

where |S(u)| ≤ ϑ2u
−χ2 . Recall that by Assumption (AL),

− Reψ(u) =
1

2
σ2u2 + λ1|u|γ Re(Ψ1(u)). (6.3)

Therefore for u large enough,

S(−Reψ(u)) ≤ K1ϑ2
(
σ2/2

)−χ2 |u|−2χ2 , (6.4)
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where K1 > 0 doesn’t depend on the parameters of the processes X and T .
Substituting (6.3) and (6.4) into (6.2), we get

|φ(u)| ≍ A exp

{
−λ2

(1
2
σ2
)α

|u|2α
(
1 +

2αλ1
σ2

|u|γ−2Re(Ψ1(u)) +R(u)
)}

where

|R(u)| = S(−Reψ(u))
(
1 + 2αλ1|u|γ−2Re(Ψ1(u))/σ

2
)

≤ K2ϑ2
(
σ2/2

)−χ2 |u|−2χ2 , (6.5)

with K2 = 2K1, since |u|γ−2Re(Ψ1(u)) → 0 as u→ ∞. The inequality

|1− Re(Ψ1(u))| ≤ |1−Ψ1(u)| ≤ ϑ1|u|−χ1 , u→ ∞

yields the required upper bound for r(u) and completes the proof.

6.2. Estimation of γ when α is known

6.2.1. Upper bounds

Proof of Lemma 4.1. First note that

|γ − γ̄n(α)| =

∣∣∣∣
∫ Vn

εVn

wVn(u) log

(
1 +

r(u)− r(θu)

uγ−2τ (2) (1− θγ−2)

)
du

∣∣∣∣. (6.6)

Since |r(u)− r(θu)| /uγ−2 ≤ τ (3)
(
1 + θγ−2−χ̃1

)
u−χ̃1 as u → ∞, and | log(1 +

x)| ≤ 2|x| for any |x| ≤ 1/2, it follows that for u large enough,

|γ − γ̄n(α)| ≤ (εVn)
−χ̃1 2

τ (3)(1 + θγ−2−χ̃1)

τ (2) (1− θγ−2)

∫ 1

ε

|w1(u)|du

with C > 0. The statement of the lemma follows with C(1) := 2
∫ 1

ε
|w1(u)|du.

Proof of Lemma 4.2. The proof of this theorem follows the same lines as the
proof of its analogue for the case of affine stochastic volatility models (Be-
lomestny and Panov, 2013).

We begin the proof with the following lemma.

Lemma 6.1. Suppose that

ε̃n :=

[
inf

u∈[εVn,Vn]
|φ(u)|

]−θ2α
logn√
n

= o(1), n→ ∞. (6.7)
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Then there exist positive constants B1, κ and δ such that for any n > 1

P

{
|γ̄n(α)− γ̂n(α)| ≤ B1ε̃n

∫ Vn

εVn

∣∣wVn(u)
∣∣ ∣∣log−1 (G(u))

∣∣ du
}

> 1− κn−1−δ, (6.8)

where G(u) = |φ(u)|θ2α/ |φ(uθ)|.
Proof. We divide the proof of the lemma into several steps.

1. Denote Gn(u) = |φn(u)|θ
2α

/ |φn(θu)| . It holds

Gn(u)− G(u) = |φn(u)|θ
2α − |φ(u)|θ2α

|φn(uθ)|
+

|φ(u)|θ2α

|φ(uθ)|
|φ(uθ)| − |φn(uθ)|

|φn(uθ)|

= G(u)
[
ξ1,n(u) + ξ2,n(u)

1− ξ2,n(u)

]
=: G(u)Λn(u)

(6.9)

with

ξ1,n(u) =
|φn(u)|θ

2α − |φ(u)|θ2α

|φ(u)|θ2α and ξ2,n(u) =
|φ(uθ)| − |φn(uθ)|

|φ(uθ)| .

2. Lemma 7.5 from Belomestny and Panov (2013) shows that the event

Wn =

{
sup

u∈[εVn,Vn]

|ξk,n(u)| ≤ B2 ε̃n, k = 1, 2

}

has the probability tending to 1 as n tends to infinity. More precisely, it holds

P(Wn) ≥ P

{
sup

u∈[0,Vn]

|ξk,n(u)| ≤ B2ε̃n

}
≥ 1− κn−1−δ, k = 1, 2 (6.10)

for some positive constants B2, κ and δ.
3. For any u ∈ [εVn, Vn], the Taylor expansion for the function f(x) =

log(− log(x)) in the vicinity of the point x = G(u) yields

Yn(u)− Y(u) = K1(u)(Gn(u)− G(u)) +K2(u)(Gn(u)− G(u))2 (6.11)

with

K1(u) = G−1(u) log−1(G(u)),

|K2(u)| ≤ 2−1 max
z∈In(u)

[
1 + | log(z)|
z2 log2(z)

]
, (6.12)

where In(u) stands for the interval between G(u) and Gn(u). Due to Theorem 3.1,

G(u) = exp
{
−τ (1)θ2αu2α

[
1 + τ (2)|u|γ−2 + r(u)

]
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+ τ (1)(θu)2α
[
1 + τ (2)|θu|γ−2 + r(θu)

]}
(6.13)

= exp
{
−A1|u|2α+(γ−2) +R(u)

}
,

where A1 = τ (1)τ (2)θ2α(1−θγ−2) > 0 and |R(u)| ≤ A2|u|2α+(γ−2)−χ̃1 for u large
enough with A2 = τ (1)τ (3)θ2α[1+θ(γ−2)−χ̃1] > 0. The condition 2α+(γ−2) > 0
guarantees that G(u) → 0 as u → +∞. The length of the interval In(u) is
equal to G(u)|Λn(u)|; therefore, the length of In(u) tends to 0 on the event Wn,
uniformly in u ∈ [εVn, Vn]. Thus, In(u) ⊂ (0, 1) on Wn for n large enough and
the maximum on the right hand side of the inequality in (6.12) is attained at
one of the endpoints of interval In(u).

4. Denote Q(u) = K2(u)(Gn(u) − G(u))2. Lemma 7.6 from Belomestny and
Panov (2013) shows that there exists a positive constant B3 such that for any
u ∈ [εVn, Vn] and for n large enough

Wn ⊂
{
|Q(u)| ≤ B3(ξ

2
1,n(u) + ξ22,n(u))

∣∣log−1 (G(u))
∣∣} . (6.14)

5. The Taylor expansion (6.11) and the previous discussion yield on the
set Wn,

|γ̄n(α)− γ̂n(α)| =

∣∣∣∣∣

∫ Vn

εVn

wVn(u)(Yn(u)− Y(u)) du
∣∣∣∣∣

≤
∫ Vn

εVn

|wVn(u)|
( |Gn(u)− G(u)|

|G(u)|
∣∣log−1 (G(u))

∣∣

+ |Q(u)|
)
du

≤
∫ Vn

εVn

|wVn(u)| log−1
(
G−1(u)

)( |Gn(u)− G(u)|
|G(u)|

+B3(ξ
2
1,n(u) + ξ22,n(u))

)
du.

By (6.9), the expression in the brackets is equal to

P :=
|Gn(u)− G(u)|

|G(u)| +B3(ξ
2
1,n(u) + ξ22,n(u))

=
|ξ1,n(u) + ξ2,n(u)|

|1− ξ2,n(u)|
+B3(ξ

2
1,n(u) + ξ22,n(u)).

Taking into account that ξ2,n < 1 on the set Wn by (6.10), we conclude that P
can be upper bounded onWn as follows (all supremums are taken over [εVn, Vn]):

P ≤ sup |ξ1,n(u)|+ sup |ξ2,n(u)|
1− sup |ξ2,n(u)|

+B3

(
(sup |ξ1,n(u)|)2 + (sup |ξ2,n(u)|)2

)

≤ 2B2ε̃n
1−B2ε̃n

+ 2B3B
2
2 ε̃

2
n ≤ B1ε̃n

with B1 > 0. This completes the proof of the lemma.
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Next, we proceed with the proof of Lemma 4.2. First, we get a lower bound
for the infimum of the function |φ(u)| over [εVn, Vn]:

inf
u∈[εVn,Vn]

|φ(u)| ≥ exp
{
−τ (1)V 2α

n

(
1 + τ (2)|Vn|γ−2 + τ (2)ϑ1V

(γ−2)−χ̃1
n

)}

≥ exp
{
−τ (1)

(
1 + τ (2) + τ (3)

)
V 2α
n

}
.

Applying Lemma 6.1 and taking into account that by (6.13), | log(G(u))| &

u2α+(γ−2), we arrive at the desired result.

Proof of Theorem 4.3. Now we combine Lemma 4.1 with Lemma 4.2. We choose

the sequence Vn in the form V 2α◦

n = q logn. The assumption

q < min
A

(
2τ (4)θ2α

◦

)−1

guarantees (4.10) for any model from A . With the above Vn we have εn ≤
(logn)/nκ1 where κ1 > 0. Therefore, on a set of probability 1−κn−δ−1, for any
models from A , it holds

|γ̂n(α) − γ| ≤ C1(logn)
−χ̃1/(2α

◦) + C2
(logn)κ2

nκ1

with χ̃1 := min {χ1, 2χ2 + γ − 2}, some κ2, positive C1, C2, n large enough.
From here it follows that the estimate γ̂n(α) is of logarithmic order, i.e.,

P
{
|γ̂n(α)− γ| ≤ C(logn)−χ̃1/(2α

◦)
}
≥ 1− κn−δ−1, (6.15)

where

C = C(1) τ (3)
1 + θγ−2−χ̃1

1− θγ−2
ε−χ̃1q−χ̃1/(2α

◦). (6.16)

Note that the constant C can be uniformly bounded on the set of models from
A . This completes the proof.

6.2.2. Lower bounds

Proof of Theorem 4.4. The aim of this proof is to show that

lim
n→∞

inf
γ̂∗

n

sup
A ′

P {|γ̂∗n − γ| ≥ ψn} > 0, ψn := Ξ2(log n)
−χ̃1◦/(2α

◦), (6.17)

where Ξ2 is any positive constant smaller than Ξ, infimum is taken over all
possible estimates of the parameter γ, supremum - over all models from the
class A ′, which includes the models from A constructed with subordinators T .

The main ingredient of the proof is the following lemma, which follows from
Tsybakov (2009), Section 2.2 and Theorem 2.2.
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Lemma 6.2. Let P = {Pγ} be a (nonparametric) family of models in Rm.
Assume that there exist two values of parameter γ, say γ1 and γ2, such that
|γ1 − γ2| > 2ψn and moreover the corresponding measures P1 := Pγ1 and P2 :=
Pγ2 satisfy the following properties:

1. there exists a measure µ such that P1 ≪ µ and P2 ≪ µ;
2. the χ2 - distance between P⊗n

1 and P⊗n
2 is bounded by some constant η ∈

R+, where the χ2 - distance is defined for any two measures P and Q as

χ2 (P,Q) :=





∫ (
dP
dQ − 1

)2
dQ, if P ≪ Q,

+∞, otherwise.

Then (6.17) holds.

It holds

χ2
(
P⊗n
1 ,P⊗n

2

)
=
(
1 + χ2 (P1,P2)

)n − 1,

see Tsybakov (2009). Therefore the boundedness of the χ2 divergence is equiv-
alent to the condition:

χ2 (P1,P2) ≤ q1/n − 1 ≍ log q

n
, (6.18)

where q := 1 + η > 1. Further properties of the χ2
1 -divergence are discussed in

Liese and Vajda (1987).

Lemma 6.3. There exist two parameters γ1 and γ2 such that |γ1 − γ2| > 2ψn,
and the measures P1 = Pγ1 and P2 = Pγ2 belong to A ′ and satisfy the condition
(6.18).

Proof. 1. Presentation of the models. Let us fix some set of parameters P. Our
aim is to construct two time-changed models from A ′ = A ′(P). Let T (s) follow
the tempered stable process with b = 0 in both models. The choice of parameters
α ∈ (α◦, α

◦) and a ∈ [2−αλ2◦, 2
−αλ◦2] guarantees that the assumption (AT3)

holds with A = 1, λ2 ∈ [λ2◦, λ
◦
2] and any ϑ2, γ2. For the Lévy process X in

the first model, we take the sum of two independent processes: the Brownian
motion W and γ-stable process X̃ with γ ∈ (γ◦, 2) and λ1 ∈ [λ1◦, λ

◦
1], so that

the characteristic exponent of X is equal to ψ(u) = −u2/2− λ1|u|γ . Note that
the condition (AL) holds for any values of ϑ1 and χ1. According to (6.1), the
characteristic function of the increments in the first model has the following
asymptotics:

φ(u) ≍ exp

{
−λ2

(
1

2
u2 + λ1|u|γ

)α}
, u→ ∞.

We define the Lévy processX for the second model by its characteristic exponent

ψ̆(u) = −1

2
u2 − λ1|u|γI{|u| ≤M} − λ1b|u|γ−2ψn

(
1 + c|u|−χ̆1

)
I{|u| ≥M},



2992 D. Belomestny and V. Panov

whereM, c > 0, χ̆1 ∈ [χ1◦, γ) and b =M2ψn/(1+c|M |−χ̆1). As it is explained in
Belomestny (2010), Appendix A.4, this function determines some Lévy process
with the BG index equal to γ̆ = γ − 2ψn for M and c large enough. Moreover,
for b = 1, any fixed M and c, this process satisfies the assumption (AL), since

Ψ1(u) = |u|2ψnI{|u| ≤M}+
(
1 + c|u|−χ̆1

)
I{|u| ≥M}

lies between 1− c|u|−χ̆1 and 1+ c|u|−χ̆1 for |u| large enough. Assumption b = 1
yields the following relation between M and n:

ψn =
log
(
1 +M−χ̆1

)

2 logM
≍ 1/

(
M χ̆1 logM

)
, M → ∞. (6.19)

The characteristic function of the second time-changed Lévy process is given by

φ̆∆(u) = exp
{
λ2

(
−ψ̆(u)

)α}
.

Note that both time-changed Lévy processes have absolute continuous distri-
butions. Denoting the corresponding densities in the time moment ∆ by p∆(x)
and p̆∆(x), we can express the χ2 - divergence between p∆(x) and p̆∆(x) in the
following way:

χ2(P1,P2) =

∫

R

(p∆(x) − p̆∆(x))
2

p∆(x)
dx, (6.20)

since p∆(x)p̆∆(x) > 0, ∀x ∈ R.
2. Lower bound for p∆(x). The density function p∆(x) can be written as

p∆(x) =

∫

R+

qt(x)π∆(t)dt,

where π∆(t) is the density function of the tempered stable process at the time
moment t, and qt(x) is the density function of the sum of X̃t andWt. Since qt(x)
is a convolution of two density functions, and the (strictly) γ-stable process X̃t

posseses the property X̃t
d
= t1/γX̃1 (see Cont and Tankov, 2004), we conclude

that

qt(x) =
1

(2π)1/2t1/2+1/γ

∫

R

exp

{
− (x− v)2

2t

}
pst

( v

t1/γ

)
dv

& |x|−(γ+1), x→ ∞,

where pst is the density of X̃1; the last inequality follows from Zolotarev (1986).
Fixing some 0 < d1 < d2 < 1/2, we arrive at

p∆(x) ≥
∫ d2

d1

qt(x)π∆(t)dt & |x|−(γ+1).



Estimation in time-changed Lévy models 2993

Returning now to (6.20). Taking into account that p∆(x) is bounded on any
set of the form {|x| ≤ C} by some constant D, we get with C large enough,

χ2(P1,P2) ≤ D

∫

|x|≤C

(p∆(x)− p̆∆(x))
2
dx

+

∫

|x|>C

|x|1+γ (p∆(x) − p̆∆(x))
2 dx =: I1 + I2

3. Upper bound for I1. By the Parseval-Plancherel theorem (see, e.g., Ushakov,
1999),

I1 ≤ D

∫

R

(p∆(x)− p̆∆(x))
2
dx =

D

2π

∫

|x|>M

∣∣∣φ(x)− φ̆(x)
∣∣∣
2

dx,

as φ(x) coincides with φ̆(x) for |x| ≤M . Next, note that

∫

|x|>M

∣∣∣φ(x) − φ̆(x)
∣∣∣
2

dx =

∫

|x|>M

e−2λ2(x2/2+λ1|x|
γ−ψn)

α

(eκ1 − eκ2)
2
du,

where

κ1 = −λ2
(
x2/2 + λ1|x|γ

)α
+ λ2

(
x2/2 + λ1|x|γ−ψn

)α

≍ −2αλ1λ2
(
x2/2

)α |x|γ−2 < 0;

κ2 = −λ2
(
x2/2 + λ1|x|γ−2ψn

(
1 + c|x|−χ̆1

))α
+ λ2

(
x2/2 + λ1|x|γ−ψn

)α

≍ −2αλ1λ2c
(
x2/2

)α |x|γ−ψn−2 < 0.

Therefore,

I1 .

∫

|x|>M

e−2λ2(x2/2+λ1|x|
γ−ψn)αdx

. e−2λ2(M2/2)
α
∫

|x|>M

e−4λ1λ2α|x|
γ−ψn−2

du.

The asymptotic bound for the last integral can be obtained using the change of
variables and integration by parts. Denote ξ1 = 4λ1λ2α and ξ2 = γ − ψn − 2,
then

1

2

∫

|x|>M

e−ξ1|x|
ξ2
dx ≤

∫

v>Mξ2

e−ξ1vd(v1/ξ2 )

≤ −e−ξ1Mξ2
M + ξ1

∫

v>Mξ2

e−ξ1vv1/ξ2dv

≤ −e−ξ1Mξ2
M + ξ1e

−ξ1M
ξ2

∫

v>Mξ2

v1/ξ2dv

. e−ξ1M
ξ2
M1+ξ2 .

(6.21)
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This in turn leads to the following upper bound for the integral I1:

I1 . e−2λ2(M2/2)αe−4λ1λ2αM
γ−ψn−2

Mγ−ψn−1 ≤ e−2λ2(M2/2)αMγ−ψn−1.

4. Upper bound for I2. Note that

I2 ≤
∫

|x|>M

[
x2 (p∆(x)− p̆∆(x))

]2
dx ≤ 1

2π

∫

|x|>M

∣∣∣ ̂x2p∆(x)− ̂x2p̆∆(x)
∣∣∣
2

dx,

where ĝ(x) stands for the Fourier transform of a function g(x). Making use of

the property x̂2g(x) = ∂2ĝ(x)/∂x2, we conclude

I2 .

∫

|x|>M

x4
∣∣∣φ(x) − φ̆∆(x)

∣∣∣
2

dx . e−2λ2(M2/2)αMγ−ψn+3,

by the arguments similar to (6.21),

1

2

∫

|x|>M

|x|ne−ξ1|x|ξ2dx . e−ξ1M
ξ2
Mn+1+ξ2

for any n > 0.
5. Choice of M . Finally, we get

χ2(P1,P2) . e−µ1M
2α

Mµ2 , M → +∞,

where µ1 = λ2 21−α > 0, µ2 = γ − ψn + 3 > 0. The aim now is to choose
the parameter M in such way that the conditions (6.18) and (6.19) are fulfilled
simultaneously. TakeM = (An/µ1)

1/(2α). Substituting thisM into (6.18) results
in the following condition on An:

−An +
µ2

2α
log

(
An
µ1

)
. − logn,

suggesting the choice An = log(n logβ n) with β > µ2/(2α). Hence

M =



log
(
n logβ n

)

λ2 21−α




1/(2α)

, β > (γ − ψn + 3)/(2α),

satisfies (6.18) and (6.19). This completes the proof.

6.3. Estimation of α

The empirical counterpart of the estimate α̂n is given by

ᾱn :=
1

2

∫ ∞

0

wUnα (u) log (− log |φ(u)|) du.

The closeness of ᾱn and α is proved in the next lemma.
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Lemma 6.4.

|α− ᾱn| . Uγ−2
n , n→ ∞. (6.22)

Proof. The proof follows the same lines as one of Lemma 4.1. The basic obser-
vation is that

|α− ᾱn| =
1

2

∫ Un

εUn

wUnα (u) log
(
1 + τ (2)uγ−2 + r(u)

)
du

≤
∫ Un

εUn

wUnα (u)
(
τ (2)uγ−2 + r(u)

)
du

≤ Uγ−2
n

(
τ (2) + τ (3)U−χ̃1

n

) ∫ 1

ε

w1
α(u)du.

This completes the proof.

The next lemma is an analogue of Lemma 4.2 for the estimate α̂n.

Lemma 6.5. There exist positive constants D, κ and δ such that

P

{
|ᾱn − α̂n| ≤ D

logn√
n

exp{τ (1)U2α
n }

U2α
n

}
≥ 1− κn−1−δ.

Proof. The main ingredient of the proof is the observations that the difference
between α̂n and ᾱn has the representation:

|α̂n − ᾱn| =
1

2

∣∣∣∣∣

∫ Un

εUn

wUnα (u)
(
log (− log |φ(u)|)− log (− log |φn(u)|)

)
du

∣∣∣∣∣

≤ 1

2

∫ Un

εUn

∣∣wUnα (u)
∣∣ ·
∣∣∣∣ max
ξ∈In(u)

1

ξ log ξ

∣∣∣∣ · ||φ(u)| − |φn(u)|| du,

(6.23)

where In(u) is the interval between φ(u) and φn(u). Since φn(u) converges
uniformly to φ(u) (see Section 4.2), we conclude that

∣∣∣∣ max
ξ∈In(u)

1

ξ log ξ

∣∣∣∣ ≤ max
a∈(1/2,3/2)

1

a|φ(u)| · | log (a |φ(u)|) |

=
2

|φ(u)| · (log 2 + |log |φ(u)||) . (6.24)

Theorem 3.1 yields

min
u∈[εUn,Un]

|φ(u)| =
(

max
u∈[εUn,Un]

exp
{
τ (1)|u|2α

(
1 + τ (2)|u|γ−2 + r(u)

)})−1

= exp
{
−τ (1)U2α

n

(
1 + τ (2)Uγ−2

n + r(Un)
)}

≍ exp
{
−τ (1)U2α

n

}
.

(6.25)
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Similar to (6.10), there exist positive constants B, κ and δ such that

P

{
sup

u∈[εUn,Un]

∣∣∣|φ(u)| − |φn(u)|
∣∣∣ ≤ B

logn√
n

}
≥ 1− κn−1−δ. (6.26)

Combining (6.24), (6.25), (6.26) with (6.23), we arrive at the desired result.

Proof of Theorem 4.5. The choice U2α◦

n = q log n yields that on a set Wn of the

probability larger than 1− κn−1−δ, it holds for any model from A

|ᾱn − α̂n| ≤ D
logn√
n

exp{τ (1)U2α◦

n }
U2α◦

n

= D
logn√
n

nqτ
(1)

(q logn)
α◦/α◦

.
(logn)κ2

nκ1
,

with κ1 = 1/2−qτ (1) and some κ2. Therefore, choosing q < q◦ = minA

{
1/(2τ (1)

}

we get on Wn

|α̂n − α| ≤ |ᾱn − α̂n|+ |α̂n − α| .
(
logn

)(γ−2)/α◦

.

This completes the proof.

6.4. Estimation of γ when α is unknown

Proof of Theorem 4.6.

1. Preliminary remarks. Note that

|γn(α̂n)− γ| ≤ |γn(α̂n)− γ̄n(α)| + |γ̄n(α)− γ|
≤ 2 |α̂n − α|+ |γ̄n(α)− γ|

+

∣∣∣∣
∫ ∞

0

wVn(u) log
(−θ2α̂n log |φn(u)|+ log |φn(θu)|

−θ2α log |φ(u)|+ log |φ(θu)|
)∣∣∣∣ du.

The upper bound for the first two summands are given in Theorem 4.5 and
Lemma 4.1, respectively. So, the aim now is to find the upper bound for the last
summand, which we denote by I.

I ≤
∣∣∣∣
∫ ∞

0

wVn(u) log
(−θ2α̂n log |φn(u)|+ log |φn(θu)|

−θ2α log |φ(u)|+ log |φ(θu)|
)∣∣∣∣ du

≤ 2
∣∣∣
∫ ∞

0

wVn(u)
−θ2αΥ1 +Υ2

−θ2α log |φ(u)|+ log |φ(θu)|
∣∣∣,

where

Υ1 := θ2(α̂n−α) log |φn(u)| − log |φ(u)|,
Υ2 := log |φn(θu)| − log |φ(θu)|.

2. Upper bounds for Υ1 and Υ2. Note that for any u > 1 and any β ∈ R,
∣∣uβ − 1

∣∣ ≤ u|β| − 1.
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Moreover, for β tending to zero,

u|β| − 1 ≤ C|β| log(u),
where C > 0. This in particularly implies that for any small υ > 0 and n large
enough,

∣∣∣θ2(α̂n−α) − 1
∣∣∣ ≤ 2C log(θ)|α̂n − α| .

(
logn

)(γ−2)/α◦

:= υn,

where the last asymptotic inequality follows from Theorem 4.5 (here we choose
the sequence Un as it is described in Theorem 4.5). Therefore, for n large enough,

|Υ1| ≤
∣∣∣∣log

( |φn(u)|
|φ(u)|

)∣∣∣∣+ υn |log |φn(u)||

≤ 2
||φn(u)| − |φ(u)||

|φ(u)| + υn |log |φn(u)|| . (6.27)

On the other hand, (6.26) together with Theorem 3.1 yield that for n large
enough,

|log |φn(u)|| =

∣∣∣∣log |φ(u)| + log
( |φn(u)| − |φ(u)|

|φ(u)| + 1
)∣∣∣∣

. |log |φ(u)||+ 2
||φn(u)| − |φ(u)||

|φ(u)| .

Substituting this bound into (6.27), we conclude that

|Υ1| ≤ 2 (1 + υn)
||φn(u)| − |φ(u)||

|φ(u)| + υn |log |φ(u)|| . (6.28)

Next, the arguments similar to given in the proof of Theorem 6.1, we get that
for u ∈ [εVn, Vn],

||φn(u)| − |φ(u)||
|φ(u)| ≤ logn√

n

(
inf

u∈[εVn,Vn]
|φ(u)|

)−1

.
logn√
n

exp
{
τ (1)V 2α

n

}
,

|log |φ(u)|| . exp
{
−τ (1) (εVn)2α

}
.

Combining the last inequalities and the definition of υn, we conlcude that

|Υ1| . 3
logn√
n

exp
{
τ (1)V 2α

n

}
+
(
logn

)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

}
.

As for Υ2, it is bounded for large n, up to a constant, by the absolute value of
ξ2,n from Lemma 6.1:

|Υ2| =
∣∣∣∣log

( |φn(θu)|
|φ(θu)|

)∣∣∣∣ ≤ 2
||φn(θu)| − |φ(θu)||

|φ(θu)|

:= 2 |ξ2,n(u)| .
logn√
n

exp
{
τ (1)V 2α

n

}
.
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3. Upper bound for I. Taking into account

−θ2α log |φ(u)|+ log |φ(θu)| ≍ −τ (1)τ (2)θ2α
(
1− θγ−2

)
|u|2α+(γ−2)

(see (6.13) for details), we arrive at

I . V −(2α+(γ−2))
n

((
3 θ2α + 1

) logn√
n

exp
{
τ (1)V 2α

n

}

+
(
logn

)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

})
. (6.29)

Denote

G1(α) :=
(
3 θ2α + 1

) logn√
n

exp
{
τ (1)V 2α

n

}
,

G2(α) :=
(
logn

)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

}
.

It is a worth mentioning that for any model from A and n large enough,

G1(α) ≤ G1(α
◦) . G2(α

◦) ≤ G2(α)

provided that V 2α◦

n = p logn with p ≤ p◦. This means that the asymptotic
bound for I is given by the second summand in (6.29), i.e.,

I . V −(2α+(γ−2))
n

(
logn

)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

}

.
(
logn

)(−2α+(γ−2))/(2α◦)

. (6.30)

4. Upper bound for |γ̂n(α̂n)− γ|. To conclude the proof, we combine (6.30),
Theorem 4.5 and Lemma 4.1:

I .
(
log n

)(−2α+(γ−2))/(2α◦)

,

|α̂n − α| .
(
log n

)(γ−2)/α◦

,

|γ̄n(α) − γ| .
(
log n

)−χ̃1/(2α
◦)

.

Since 2− γ < 2α for class A ,

(γ − 2)/α◦ > (−2α+ (γ − 2))/(2α◦),

and we arrive at (4.18).

Appendix A: The case 2 − γ > 2α

Assume A = 1 and introduce the estimate:

γ̂∗n(α) := 2(1− α) +

∫ ∞

0

wVn(u) log

(
1− |φn(u)|θ

2α

|φn(θu)|

)
du. (A.1)
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The main idea behind (A.1) comes from

|φ(u)|θ2α

|φ(θu)| = exp
{
−A1|u|2α+(γ−2)R(u)

}
, |R(u)| . 1 +A2|u|−χ̃1

with A1 = τ (1)τ (2)θ2α(1 − θγ−2) > 0 and A1A2 = τ (1)τ (3)θ2α(1 + θ(γ−2)−χ1)
meaning that

Y3(u) := 1− |φ(u)|θ2α

|φ(θu)| ≍ A1|u|2α+(γ−2)R(u)

Taking logarithms of both parts, we conclude that Y3(u) is linear in log |u| (at
least for large |u|) with slope 2α+ γ − 2. Therefore, the weighted least squares
can be used here to estimate α as well. The analysis of γ̂∗n(α) is quite similar to
the analysis of γ̂n(α).

Theorem A.1. Introduce the deterministic quantity:

γ̄∗n(α) := 2(1− α) +

∫ ∞

0

wVn(u) log

(
1− |φ(u)|θ2α

|φ(θu)|

)
du.

(i) In the setup of Theorem 3.1, it holds for n large enough,

|γ − γ̄∗n(α)| . V −χ̃1
n , n→ ∞.

(ii) Let the sequence Vn be such that

εn :=
logn√
n

exp
{
τ (4) (θVn)

2α
}
= o(1), n→ ∞.

Then there exist positive constants C(3), κ and δ such that

P
{
|γ̄∗n(α)− γ̂∗n(α)| ≥ C(3)εnV

(2−γ)−2α
n

}
< κ n−1−δ. (A.2)

(iii) Take Vn = (q logn)1/(2α
◦) with q <

(
2θ2α

◦

minA τ (4)
)−1

. Then

sup
A

P
{
|γ̂n(α) − γ| ≥ Ξ5(logn)

−χ̃1/(2α
◦)
}
< κ n−1−δ, (A.3)

where χ̃1 := min{χ1, 2χ2 + γ − 2}, the supremum is taken over the set of all
models from A , constants κ and δ do not depend on the parameters of the
underlined models, and Ξ5 depends on P only.

Appendix B: The case σ = 0

This paper is mainly devoted to the case σ > 0. Nevertheless, in the case σ = 0
it is still possible to identify γ when α is known. The analogue of Theorem 3.1
can be formulated for models with σ = 0 as follows.
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Theorem B.1. Consider the process Ys := XT (s), where the processes Xt and
T (s) satisfy the conditions (AT1)–(AT3) with χ2 > 1 − γ/2, and moreover it
holds

(AL’) σ = 0 and the function V(u) has the following representation:

V(u) = −λ1 |u|γ Ψ1(u),

where λ1 > 0, γ ∈ (0, 2), and for u large enough

|1−Ψ1(u)| ≤ ϑ1u
−χ1 ,

with χ1 ∈ (0, γ), ϑ1 > 0.

Then

∣∣φ∆(u)
∣∣ = A exp

{
−τ̆ (1)|u|αγ (1 + r̆(u))

}
, (B.1)

where τ̆ (1) = λα1 λ2 and for u large enough

|r̆(u)| ≤ Kmax
{
αϑ1|u|−χ1 , ϑ2(λ1)

−χ2 |u|−γχ2
}

(B.2)

with some constant K > 0 not depending on the parameters of the processes X
and T .

Proof. The proof follows the same lines as the proof of Theorem 3.1, see Sec-
tion 6.1. Substituting (6.3) into (6.2), and taking into account that σ = 0, we
arrive at

|φ(u)| ≍ A exp
{
−λ2

(
λ1|u|γ ReΨ1(u)

)α(
1 + S (λ1|u|γ ReΨ1(u))

)}
.

The upper bound (B.2) for the remainder r̆(u) follows from the facts that for u
large enough

ReΨ1(u) ≤ 1 + ϑ1|u|−χ1 ,

|S (λ1|u|γ ReΨ1(u))| ≤ K1ϑ2 (λ1)
−χ2 |u|−γχ2

with some constant K1 > 0 not depending on the parameters of the considered
processes.

Similar to Corollary 3.6, we conclude from Theorem B.1 that the BG index
of the compound process Y is equal to δ := αγ in this case. Motivated by (B.1)
and assuming for simplicity that A = 1, we define the estimate of δ by

δ̂n =

∫ ∞

0

wVn(u) log
(
− log

(
φ∆n (u)

))
du.

This kind of estimators has been considered in details in Section 4.4. If the
parameter α is assumed to be known, we are able to estimate the parameter γ
by γ̂n := δ̂n/α.
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Appendix C: Asymptotic behavior of the characteristic exponent

Lemma C.1. Consider a Lévy measure ν on R \ {0} that fulfilles

G(ε) :=

∫

|x|>ε

ν(dx) = ε−γ(β(0) + β(1)εχ1(1 +O(ε))), ε→ +0 (C.1)

with 0 < χ1 < γ < 2, and β(0) > 0. Denote

V(u) = Re(ψ(u)) +
1

2
σ2u2 =

∫

R

(
cos(ux)− 1

)
dν(x).

Then as u→ +∞,

V(u) = −uγ
(
β(0)dγ + β(1)dγ−χ1u

−χ1

)
+O(1).

where dγ = Γ(1− γ) sin((1 − γ)π/2).

Appendix D: Mixing properties of Y

Lemma D.1. Let Xt be a one-dimensional Lévy process with the Lévy measure
ν and let T (t) be a time change independent of Xt. Fix some ∆ > 0 and consider
two sequences Tk = T (∆k)−T (∆(k−1)) and Zk = Y∆k−Y∆(k−1), k = 1, . . . , n,
where Yt = XT (t). If the sequence (Tk)k∈N is strictly stationary and α-mixing
with the mixing coefficients (αT (j))j∈N, then the sequence (Zk)k∈N is also strictly
stationary and α-mixing with the mixing coefficients (αZ(j))j∈N, satisfying

αZ(j) ≤ αT (j), j ∈ N. (D.1)

Proof. Fix some natural k, l with k + l < n. Using the independence of incre-
ments of the Lévy process Xt and the fact that T is a non-decreasing process,
we get E[φ(Z1, . . . , Zk)] = E[φ̃(T1, . . . , Tk)] and

E[φ(Z1, . . . , Zk)ψ(Zk+l, . . . , Zn)] = E[φ̃(T1, . . . , Tk)ψ̃(Tk+l, . . . , Tn)], k, l ∈ N

for any two functions φ : Rk → [0, 1] and ψ : Rn−l−k → [0, 1], where φ̃(t1, . . . ,

tk) = E[φ(Xt1 , . . . , Xtk)] and ψ̃(t1, . . . , tk) = E[ψ(Xt1 , . . . , Xtk)]. This implies
that the sequence Zk is strictly stationary and α-mixing with the mixing coef-
ficients satisfying (D.1).
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