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Let ξ0, ξ1, . . . be independent identically distributed complex-valued ran-
dom variables such that E log(1 + |ξ0|) < ∞. We consider random analytic
functions of the form

Gn(z) =
∞∑

k=0

ξkfk,nzk,

where fk,n are deterministic complex coefficients. Let μn be the random
measure counting the complex zeros of Gn according to their multiplici-
ties. Assuming essentially that − 1

n logf[tn],n → u(t) as n → ∞, where u(t)

is some function, we show that the measure 1
nμn converges in probabil-

ity to some deterministic measure μ which is characterized in terms of the
Legendre–Fenchel transform of u. The limiting measure μ does not depend
on the distribution of the ξk’s. This result is applied to several ensembles
of random analytic functions including the ensembles corresponding to the
three two-dimensional geometries of constant curvature. As another applica-
tion, we prove a random polynomial analogue of the circular law for random
matrices.

1. Introduction.

1.1. Statement of the problem. Let ξ0, ξ1, . . . be nondegenerate independent
identically distributed (i.i.d.) random variables with complex values. The simplest
ensemble of random polynomials are the Kac polynomials defined as

Kn(z) =
n∑

k=0

ξkz
k.

The distribution of zeros of Kac polynomials has been much studied; see [1, 10,
14–16, 28, 31, 36]. It is known that under a very mild moment assumption, the
complex zeros of Kn cluster asymptotically near the unit circle T = {|z| = 1} and
that the distribution of zeros is asymptotically uniform with regard to the argument.
To make this precise, we need to introduce some notation. Let G be an analytic
function in some domain D ⊂ C. Assuming that G does not vanish identically,
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we consider a measure μG counting the complex zeros of G according to their
multiplicities:

μG = ∑
z∈D : G(z)=0

nG(z)δ(z).

Here, nG(z) is the multiplicity of the zero at z and δ(z) is the unit point mass at z.
If G vanishes identically, we put μG = 0. Then, Ibragimov and Zaporozhets [16]
proved that the following two conditions are equivalent:

(1) With probability 1, the sequence of measures 1
n
μKn

converges as n → ∞
weakly to the uniform probability distribution on T.

(2) E log(1 + |ξ0|) < ∞.

Along with the Kac polynomials, many other remarkable ensembles of random
polynomials (or, more generally, random power series) appeared in the literature.
These ensembles are usually characterized by invariance properties with respect to
certain groups of transformations and have the general form

Gn(z) =
∞∑

k=0

ξkfk,nz
k,

where ξ0, ξ1, . . . are i.i.d. complex-valued random variables and fk,n are complex
deterministic coefficients. The aim of the present work is to study the distribution
of zeros of Gn asymptotically as n → ∞. We will show that under certain assump-
tions on the coefficients fk,n, the random measure 1

n
μGn

converges, as n → ∞,
to some limiting deterministic measure μ. The limiting measure μ does not de-
pend on the distribution of the random variables ξk ; see Figure 1. Results of this

FIG. 1. Zeros of the Weyl random polynomial Wn(z) = ∑n
k=0 ξk

zk√
k! of degree n = 2000. The

zeros were divided by
√

n. Left: Complex normal coefficients. Right: Coefficients are positive with
P[log ξk > t] = t−4 for t > 1. In both cases, the limiting distribution of zeros is uniform on the
unit disk.



1376 Z. KABLUCHKO AND D. ZAPOROZHETS

type are known in the context of random matrices; see, for example, [35]. How-
ever, the literature on random polynomials and random analytic functions usually
concentrates on the Gaussian case, since in this case explicit calculations are pos-
sible; see, for example, [2, 4, 6, 8, 10, 13, 28–30, 32, 33]. The only ensemble of
random polynomials for which the independence of the limiting distribution of ze-
ros on the distribution of the coefficients is well understood is the Kac ensemble;
see [1, 15, 16, 36]. In the context of random polynomials, there were many results
on the universal character of local correlations between close zeros [3, 19, 29, 30].
In this work, we focus on the global distribution of zeros.

The paper is organized as follows. In Sections 2.1–2.4, we state our results for
a number of concrete ensembles of random analytic functions. These results are
special cases of the general Theorem 2.8 whose statement, due to its technicality,
is postponed to Section 2.5. Proofs are given in Sections 3 and 4.

1.2. Notation. Let Dr = {z ∈ C : |z| < r} be the open disk with radius r > 0
centered at the origin. Let D = D1 be the unit disk. Put D∞ = C. Denote by λ the
Lebesgue measure on C. A Borel measure μ on a locally compact metric space
X is called locally finite (l.f.) if μ(A) < ∞ for every compact set A ⊂ X. A se-
quence μn of l.f. measures on X converges vaguely to a l.f. measure μ if for every
continuous, compactly supported function ϕ :X →R,

lim
n→∞

∫
X

ϕ(z)μn(dz) =
∫
X

ϕ(z)μ(dz).(1)

If μn and μ are probability measures, the vague convergence is equivalent to the
more familiar weak convergence for which (1) is required to hold for all continu-
ous, bounded functions ϕ; see Lemma 4.20 in [17]. Let M(X) be the space of all
l.f. measures on X endowed with the vague topology. Note that M(X) is a Polish
space; see Theorem A2.3 in [17]. A random measure on X is a random element
defined on some probability space (�,F,P) and taking values in M(X). The a.s.
convergence and convergence in probability of random measures are defined as the
convergence of the corresponding M(X)-valued random elements. An equivalent
definition: a sequence of random measures μn converges to a random measure μ in
probability (resp., a.s.), if (1) holds in probability (resp., a.s.) for every continuous,
compactly supported function ϕ :X →R.

2. Statement of results.

2.1. The three invariant ensembles. Let ξ0, ξ1, . . . be i.i.d. random variables.
Unless stated otherwise, they take values in C, are nondegenerate, and satisfy the
condition E log(1 + |ξ0|) < ∞. Fix a parameter α > 0. We start by considering the
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following three ensembles of random analytic functions (see, e.g., [13, 33]):

Fn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=0

ξk

(
n(n − 1) · · · (n − k + 1)

k!
)α

zk (elliptic, n ∈ N, z ∈ C),

∞∑
k=0

ξk

(
nk

k!
)α

zk (flat, n > 0, z ∈C),

∞∑
k=0

ξk

(
n(n + 1) · · · (n + k − 1)

k!
)α

zk (hyperbolic, n > 0, z ∈ D).

Note that in the elliptic case Fn is a random polynomial of degree n, in the flat case
it is a random entire function, whereas in the hyperbolic case it is a random analytic
function defined on the unit disk D. The a.s. convergence of the series in the latter
two cases follows from Lemma 4.4 below. In the particular case when α = 1/2
and ξk are complex standard Gaussian with density z �→ π−1 exp{−|z|2} on C,
the zero sets of these analytic functions possess remarkable invariance properties
relating them to the three geometries of constant curvature; see [13, 33]. In this
special case, the expected number of zeros of Fn in a Borel set B can be computed
exactly [13, 33]:

E
[
μFn

(B)
] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n

π

∫
B

(
1 + |z|2)−2

λ(dz) (elliptic case, B ⊂ C),

n

π
λ(B) (flat case, B ⊂ C),

n

π

∫
B

(
1 − |z|2)−2

λ(dz) (hyperbolic case, B ⊂ D).

In the next theorem, we compute the asymptotic distribution of zeros of Fn for
more general ξk’s.

THEOREM 2.1. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables such
that E log(1 + |ξ0|) < ∞. As n → ∞, the sequence of random measures 1

n
μFn

converges in probability to the deterministic measure having a density ρα with
respect to the Lebesgue measure, where

ρα(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2πα
|z|(1/α)−2(

1 + |z|1/α)−2 (elliptic case, z ∈ C),

1

2πα
|z|(1/α)−2 (flat case, z ∈ C),

1

2πα
|z|(1/α)−2(

1 − |z|1/α)−2 (hyperbolic case, z ∈ D).
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2.2. Littlewood–Offord random polynomials. Next, we consider an ensemble
of random polynomials which was introduced by Littlewood and Offord [21, 22].
It is related to the flat model. First, we give some motivation. Let ξ0, ξ1, . . . be non-
degenerate i.i.d. random variables. Given a sequence w0,w1, . . . ∈ C\{0} consider
a random polynomial Wn defined by

Wn(z) =
n∑

k=0

ξkwkz
k.(2)

For wk = 1, we recover the Kac polynomials, for which the zeros concentrate near
the unit circle. The next result shows that the structure of the zeros does not differ
essentially from the Kac case if the sequence wk grows or decays not too fast.

THEOREM 2.2. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables such
that E log(1+|ξ0|) < ∞. If limk→∞ 1

k
log |wk| = w for some constant w ∈R, then

the sequence of random measures 1
n
μWn

converges in probability to the uniform
probability distribution on the circle of radius e−w centered at the origin.

We would like to construct examples where there is no concentration near a
circle. Let us make the following assumption on the sequence wk :

log |wk| = −α(k log k − k) − βk + o(k), k → ∞,(3)

where α > 0 and β ∈ R are parameters. Particular cases are polynomials of the
form

W(1)
n (z) =

n∑
k=0

ξk

(k!)α zk,

W(2)
n (z) =

n∑
k=0

ξk

kαk
zk,

W(3)
n (z) =

n∑
k=0

ξk

�(αk + 1)
zk.

The family W(1)
n has been studied by Littlewood and Offord [21, 22] in one of the

earliest works on random polynomials. They were interested in the number of real
zeros. In the next theorem, we describe the limiting distribution of complex zeros
of Wn. Let μn be the measure counting the points of the form e−βn−αz, where
z is a zero of Wn. That is, for every Borel set B ⊂ C,

μn(B) = μWn

(
eβnαB

)
.(4)

THEOREM 2.3. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables such
that E log(1 + |ξ0|) < ∞. Let w0,w1, . . . be a complex sequence satisfying (3).
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With probability 1, the sequence of random measures 1
n
μn converges to the deter-

ministic probability measure having the density

z �→ 1

2πα
|z|(1/α)−21z∈D(5)

with respect to the Lebesgue measure on C.

For the so-called Weyl random polynomials Wn(z) = ∑n
k=0 ξk

zk√
k! having α =

1/2 and β = 0, the limiting distribution is uniform on D; see Figure 1. This re-
sult can be seen as an analogue of the famous circular law for the distribution
of eigenvalues of non-Hermitian random matrices with i.i.d. entries [5, 35]. For-
rester and Honner [9] stated the circular law for Weyl polynomials and discussed
differences and similarities between the matrix and the polynomial cases; see
also [18].

Under a minor additional assumption on the coefficients wk we can prove that
the logarithmic moment condition is not only sufficient, but also necessary for the
a.s. convergence of the empirical distribution of zeros. It is easy to check that the
additional assumption is satisfied for Wn = W(i)

n with i = 1,2,3.

THEOREM 2.4. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables. Let
w0,w1, . . . be a complex sequence satisfying (3) and such that for some C > 0,

|wn−k/wn| < Ceβknαk for all n ∈ N, k ≤ n.(6)

Let μn be as in (4). Then, the following are equivalent:

(1) With probability 1, the sequence of random measures 1
n
μn converges to the

probability measure with density (5).
(2) E log(1 + |ξ0|) < ∞.

It should be stressed that in all our results we assume that the random vari-
ables ξk are nondegenerate (i.e., not a.s. constant). To see that this assumption is
essential, consider the deterministic polynomials

sn(z) =
n∑

k=0

zk

k! .(7)

A classical result of Szegő [34] states that the zeros of sn(nz) cluster asymptot-
ically (as n → ∞) along the curve {|ze1−z| = 1} ∩ D; see Figure 2 (left). This
behavior is manifestly different from the distribution with density 1/(2π |z|) on D

we have obtained in Theorem 2.3 for the same polynomial with randomized coef-
ficients; see Figure 2 (right).
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FIG. 2. Left: Zeros of the Szegő polynomial sn(z) = ∑n
k=0

zk

k! of degree n = 200. Right: Zeros of

the Littlewood–Offord random polynomial Wn(z) = ∑n
k=0 ξk

zk

k! of degree n = 2000 with complex
normal coefficients. In both cases, the zeros were divided by n.

2.3. Littlewood–Offord random entire function. Next we discuss a random en-
tire function which also was introduced by Littlewood and Offord [23, 24]. Their
aim was to describe the properties of a “typical” entire function of a given or-
der 1/α. Given a complex sequence w0,w1, . . . satisfying (3) consider a random
entire function

W(z) =
∞∑

k=0

ξkwkz
k.(8)

Examples are given by

W(1)(z) =
∞∑

k=0

ξk

(k!)α zk,

W(2)(z) =
∞∑

k=0

ξk

kαk
zk,

W(3)(z) =
∞∑

k=0

ξk

�(αk + 1)
zk.

The first function is essentially the flat model considered above, namely
W(1)(nαz) = Fn(z). For α = 1, it is a randomized version of the Taylor series for
the exponential. The last function is a randomized version of the Mittag–Leffler
function. Our aim is to describe the density of zeros of W on the global scale. Let
μn be the measure counting the points of the form e−βn−αz, where z is a zero
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of W. That is, for every Borel set B ⊂ C,

μn(B) = μW
(
eβnαB

)
.(9)

We have the following strengthening of the flat case of Theorem 2.1.

THEOREM 2.5. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables such
that E log(1 + |ξ0|) < ∞. Let w0,w1, . . . be a complex sequence satisfying (3).
With probability 1, the random measure 1

n
μn converges to the deterministic mea-

sure having the density

z �→ 1

2πα
|z|(1/α)−2(10)

with respect to the Lebesgue measure on C.

As a corollary, we obtain a law of large numbers for the number of zeros of W.

COROLLARY 2.6. Let N(r) = μW(Dr ) be the number of zeros of W in the
disk Dr . Under the assumptions of Theorem 2.5,

N(r) = e−β/αr1/α(
1 + o(1)

)
a.s. as r → ∞.

In the case α = 1/2 the limiting measure in Theorem 2.5 has constant den-
sity 1/π . The difference between the limiting densities in Theorems 2.3 and 2.5 is
that in the latter case there is no restriction to the unit disk. It has been pointed out
by the unknown referee that in the special case of the Bernoulli-distributed ξk’s
Theorem 2.5 can be deduced from the results of Littlewood and Offord [23, 24]
using the Levin–Pfluger theory ([20], Chapter 3). Our proof is simpler than the
proof of Littlewood and Offord [23, 24]. For a related work, see also [25, 26].

Let us again stress the importance of the nondegeneracy assumption. The ex-
ponential function ez has no complex zeros, whereas the zeros of its randomized
version

∑∞
k=0 ξk

zk

k! have the global-scale density 1/(2π |z|) on C. For the absolute
values of the zeros, the limiting density is constant and equal to 1 on (0,∞).

2.4. Randomized theta function. Given a parameter α ∈ (0,1) ∪ (1,∞) we
consider a random analytic function

Hn(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=0

ξke
n1−αkα

zk (case α < 1, z ∈ D),

∞∑
k=0

ξke
−n1−αkα

zk (case α > 1, z ∈ C).
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THEOREM 2.7. Let ξ0, ξ1, . . . be nondegenerate i.i.d. random variables such
that E log(1 + |ξ0|) < ∞. As n → ∞, the sequence of random measures 1

n
μHn

converges in probability to the deterministic measure having the density

z �→ 1

2πα|1 − α|
1

|z|2
∣∣∣∣ log |z|

α

∣∣∣∣(2−α)/(α−1)

with respect to the Lebesgue measure on C. The density is restricted to D in the
case α < 1 and to C \D in the case α > 1.

As the parameter α crosses the value 1, the zeros of Hn jump from the unit
disk D to its complement C \D. Note that the case α = 1 corresponds formally to
Kac polynomials for which the zeros are on the boundary of D. The special case
α = 2 corresponds to the randomized theta function

Hn(z) =
∞∑

k=0

ξke
−k2/nzk.(11)

The limiting distribution of zeros has the density 1
4π |z|2 on C\D. One can also take

the sum in (11) over k ∈ Z in which case the zeros fill the whole complex plane
with the same density.

A similar model, namely the polynomials Qn(z) = ∑n
k=0 ξke

−kα
zk , where

α > 1, has been considered by Schehr and Majumdar [27]. Assuming that ξk are
real-valued they showed that almost all zeros of Qn become real if α > 2. In our
model, the distribution of the arguments of the zeros remains uniform for every α.

2.5. The general result. We are going to state a theorem which contains all
examples considered above as special cases. Let ξ0, ξ1, . . . be nondegenerate i.i.d.
complex-valued random variables such that E log(1 + |ξ0|) < ∞. Consider a ran-
dom Taylor series

Gn(z) =
∞∑

k=0

ξkfk,nz
k,(12)

where fk,n ∈ C are deterministic coefficients. Essentially, we will assume that for
some function u(t) the coefficients fk,n satisfy

|fk,n| = e−nu(k/n)+o(n), n → ∞.

Here is a precise statement. We assume that there is a function f : [0,∞) → [0,∞)

and a number T0 ∈ (0,∞] such that

(A1) f (t) > 0 for t < T0 and f (t) = 0 for t > T0.
(A2) f is continuous on [0, T0), and, in the case T0 < +∞, left continuous

at T0.
(A3) limn→∞ supk∈[0,An] ||fk,n|1/n − f ( k

n
)| = 0 for every A > 0.
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(A4) R0 := lim inft→∞ f (t)−1/t ∈ (0,∞], lim infk→∞ |fk,n|−1/k ≥ R0 for ev-
ery fixed n ∈N and additionally, lim infn,k/n→∞ |fk,n|−1/k ≥ R0.

It will be shown later that condition (A4) ensures that the series (12) defin-
ing Gn converges with probability 1 on the disk DR0 . Let I :R → R ∪ {+∞}
be the Legendre–Fenchel transform of the function u(t) = − logf (t), where
log 0 = −∞. That is,

I (s) = sup
t≥0

(
st − u(t)

) = sup
t≥0

(
st + logf (t)

)
.(13)

Note that I is a convex function, I (s) is finite for s < logR0 and I (s) = +∞ for
s > logR0. Recall that μGn

is the measure assigning to each zero of Gn a weight
equal to its multiplicity.

THEOREM 2.8. Under the above assumptions, the sequence of random mea-
sures 1

n
μGn

converges in probability to some deterministic locally finite measure
μ on the disk DR0 . The measure μ is rotationally invariant and is characterized by

μ(Dr ) = I ′(log r), r ∈ (0,R0).(14)

By convention, I ′ is the left derivative of I . Since I is convex, the left derivative
exists everywhere on (−∞, logR0) and is a nondecreasing, left-continuous func-
tion. Since the supremum in (13) is taken over t ≥ 0, we have lims→−∞ I ′(s) = 0.
Hence, μ has no atom at zero. If I ′ is absolutely continuous on some interval
(log r1, log r2), then the density of μ on the annulus r1 < |z| < r2 with respect to
the Lebesgue measure on C is

ρ(z) = I ′′(log |z|)
2π |z|2 .(15)

It is possible to give a characterization of the measure μ without referring to
the Legendre–Fenchel transform. The radial part of μ is a measure μ̄ on (0,∞)

defined by μ̄((0, r)) = μ(Dr ). Suppose first that u is convex on (0, T0) (which
is the case in all our examples). Then, μ̄ is the image of the Lebesgue measure
on (0,∞) under the mapping t �→ eu′(t), where u′ is the left derivative of u. This
follows from the fact that (u′)← = I ′ and (I ′)← = u′ by the Legendre–Fenchel
duality, where ϕ←(t) = inf{s ∈ R :ϕ(s) ≥ t} is the generalized left-continuous in-
verse of a nondecreasing function ϕ. In particular, the support of μ is contained in
the annulus {

elimt↓0 u′(t) ≤ |z| ≤ elimt↑T0 u′(t)}
and is equal to this annulus if u′ has no jumps. In general, any jump of u′ (or,
by duality, any constancy interval of I ′) corresponds to a missing annulus in the
support of μ. Also, any jump of I ′ (or, by duality, any constancy interval of u′)
corresponds to a circle with positive μ-measure. More precisely, if I ′ has a jump
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at s (or, by duality, u′ takes the value s on an interval of positive length), then μ

assigns a positive weight (equal to the size of the jump) to the circle of radius es

centered at the origin. In the case when u is nonconvex, we can apply the same
considerations after replacing u by its convex hull.

One may ask what measures μ may appear as limits in Theorem 2.8. Clearly,
μ has to be rotationally invariant, with no atom at 0. The next theorem shows that
there are no further essential restrictions.

THEOREM 2.9. Let μ be a rotationally invariant measure on C such that

(1) μ(C \DR0) = 0, where R0 := sup{r > 0 :μ(Dr ) < ∞} ∈ (0,∞].
(2)

∫ R
0 μ(Dr )r

−1 dr < ∞ for some (hence, every) R < R0.

Then, there is a random Taylor series Gn of the form (12) with convergence radius
a.s. R0 such that 1

n
μGn

converges in probability to μ on the disk DR0 .

EXAMPLE 2.10. Consider a random polynomial

Gn(z) =
n∑

k=0

ξkz
k + 2n

2n∑
k=n+1

ξk

(
z

2

)k

+
(

9

2

)n 3n∑
k=2n+1

ξk

(
z

3

)k

.(16)

We can apply Theorem 2.8 with

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t ∈ [0,1],
(log 2)(t − 1), t ∈ [1,2],
(log 3)t − log 9

2 , t ∈ [2,3],
+∞, t ≥ 3,

I (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s ≤ 0,
s, s ∈ [0, log 2],
2s − log 2, s ∈ [log 2, log 3],
3s − log 6, t ≥ log 3.

The function u′ has three constancy intervals of length 1 where it takes values
0, log 2, log 3. Dually, the function I ′ has three jumps of size 1 at 0, log 2, log 3 and
is locally constant outside these points. It follows that the limiting distribution of
the zeros of Gn is the sum of uniform probability distributions on three concentric
circles with radii 1,2,3.

REMARK 2.11. Suppose that Gn satisfies the assumptions of Theorem 2.8.
Then, so does the derivative G′

n (and, moreover, f is the same in both cases). Thus,
the derivative of any fixed order of Gn has the same limiting distribution of zeros
as Gn. Similarly, for every complex sequence cn such that lim supn→∞ 1

n
log |cn| ≤

f (0), the function Gn(z) − cn satisfies the assumptions. Hence, the limiting dis-
tribution of the solutions of the equation Gn(z) = cn is the same as for the zeros
of Gn.
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3. Proofs: Special cases. We are going to prove the results of Section 1. We
will verify the assumptions of Section 2.5 and apply Theorem 2.8. Recall the no-
tation u(t) = − logf (t).

PROOF OF THEOREM 2.2. We can assume that w = 0 since otherwise we can
consider the polynomial Wn(e

−wz). It follows from limk→∞ 1
k

log |wk| = 0 that
assumptions (A1)–(A4) of Section 2.5 are fulfilled with T0 = 1, R0 = +∞ and

f (t) =
{

1, t ∈ [0,1],
0, t > 1,

u(t) =
{

0, t ∈ [0,1],
+∞, t > 1.

The Legendre–Fenchel transform of u is given by I (r) = max(0, r). It follows
from (14) that μ is the uniform probability measure on T. �

REMARK 3.1. Under a slightly more restrictive assumption E log |ξ0| < ∞,
Theorem 2.2 can be deduced from the result of Hughes and Nikeghbali [14] (which
is partially based on the Erdős–Turan inequality). This method, however, requires
a subexponential growth of the coefficients and therefore fails in all other examples
we consider here.

PROOF OF THEOREM 2.1. By the Stirling formula, logn! = n logn−n+o(n)

as n → ∞. It follows that assumption (A3) holds with

u(t) =
⎧⎪⎨
⎪⎩

α
(
t log t + (1 − t) log(1 − t)

)
, 0 ≤ t ≤ 1, elliptic case,

α(t log t − t), t ≥ 0, flat case,
α

(
t log t − (1 + t) log(1 + t)

)
, t ≥ 0, hyperbolic case.

In the elliptic case, u(t) = +∞ for t > 1. The Legendre–Fenchel transform of u is
given by

I (s) =
⎧⎪⎨
⎪⎩

α log
(
1 + es/α

)
, s ∈R, elliptic case,

αes/α, s ∈R, flat case,
−α log

(
1 − es/α

)
, s < 0, hyperbolic case.

In the hyperbolic case, I (s) = +∞ for s ≥ 0. We have R0 = 1 in the hyperbolic
case and R0 = +∞ in the remaining two cases. The proof is completed by apply-
ing Theorem 2.8. �

PROOF OF THEOREM 2.3. We are going to apply Theorem 2.8 to the poly-
nomial Gn(z) = Wn(e

βnαz). We have fk,n = eβk+αk lognwk , for 0 ≤ k ≤ n. Equa-
tion (3) implies that assumption (A3) is satisfied with

u(t) =
{

α(t log t − t), t ∈ [0,1],
+∞, t > 1.

The Legendre–Fenchel transform of u is given by

I (s) =
{

αes/α, s ≤ 0,
α + s, s ≥ 0.
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Applying Theorem 2.8, we obtain that 1
n
μGn

converges in probability to the re-
quired limit. A.s. convergence will be demonstrated in Section 4.6 below. �

PROOF OF THEOREM 2.5. We apply Theorem 2.8 to Gn(z) = W(eβnαz). We
have u(t) = α(t log t − t) for all t ≥ 0. Hence, I (s) = αes/α for all s ∈ R. We can
apply Theorem 2.8 to prove convergence in probability. A.s. convergence will be
demonstrated in Section 4.7 below. �

PROOF OF THEOREM 2.7. Put σ = +1 in the case α > 1 and σ = −1 in the
case α < 1. We have u(t) = σ tα for t ≥ 0. It follows that

I (r) =
⎧⎨
⎩σ(α − 1)

(
σr

α

)α/(α−1)

, σ r ≥ 0,

+∞, σ r < 0.

We can apply Theorem 2.8. �

4. Proofs: General results.

4.1. Method of proof of Theorem 2.8. We use the notation and the assump-
tions of Section 2.5. We denote the probability space on which the random vari-
ables ξ0, ξ1, . . . are defined by (�,F,P). We will write μn = μGn

for the measure
counting the zeros of Gn. To stress the randomness of the object under considera-
tion we will sometimes write Gn(z;ω) and μn(ω) instead of Gn(z) and μn. Here,
ω ∈ �. The starting point of the proof of Theorem 2.8 is the formula

μn(ω) = 1

2π
� log

∣∣Gn(z;ω)
∣∣(17)

for every fixed ω ∈ � for which Gn(z;ω) does not vanish identically. Here, � de-
notes the Laplace operator in the complex z-plane. The Laplace operator should
always be understood as an operator acting on D′(DR0), the space of generalized
functions on the disk DR0 ; see, for example, Chapter II of [11]. Equation (17)
follows from the formula 1

2π
� log |z − z0| = δ(z0), for every z0 ∈ C; see Exam-

ple 4.1.10 in [11]. First, we will compute the limiting logarithmic potential in (17).

THEOREM 4.1. Under the assumptions of Section 2.5, for every z ∈DR0 \ {0},

pn(z) := 1

n
log

∣∣Gn(z)
∣∣ P−→
n→∞ I

(
log |z|).(18)

We will prove Theorem 4.1 in Sections 4.2, 4.3, 4.4 below. Theorem 4.1 fol-
lows from equations (22) and (27) below. Moreover, it follows from (22) that
lim supn→∞ pn(z) ≤ I (log |z|) a.s. Unfortunately, we were unable to prove that
lim infn→∞ pn(z) ≥ I (log |z|) a.s. Instead, we have the following slightly weaker
statement.



COMPLEX ZEROS OF RANDOM ANALYTIC FUNCTIONS 1387

PROPOSITION 4.2. Let l1, l2, . . . be an increasing sequence of natural num-
bers such that lk ≥ k3 for all k ∈ N. Under the assumptions of Section 2.5 we have,
for every z ∈ DR0 \ {0},

plk (z) = 1

lk
log

∣∣Glk (z)
∣∣ a.s.−→
k→∞ I

(
log |z|).(19)

Proposition 4.2 follows from equations (22) and (27) by noting that∑∞
k=1 k−3/2 < ∞ and applying the Borel–Cantelli lemma. The next proposition

allows us to pass from convergence of potentials to convergence of measures. We
will prove it Section 4.5. Recall that μn counts the zeros of Gn.

PROPOSITION 4.3. Let l1, l2, . . . be any increasing sequence of natural num-
bers. Assume that for Lebesgue-a.e. z ∈ DR0 equation (19) holds. Then,

1

lk
μlk

a.s.−→
k→∞

1

2π
�I

(
log |z|).(20)

With these results, we are in position to prove Theorem 2.8. We need to show
that 1

n
μn converges to μ in probability, as a sequence of M(DR0)-valued random

variables. A sequence of random variables with values in a metric space converges
in probability to some limit if and only if every subsequence of these random
variables contains a subsubsequence which converges a.s. to the same limit; see,
for example, Lemma 3.2 in [17]. Let a subsequence 1

n1
μn1,

1
n2

μn2, . . . , where
n1 < n2 < · · ·, be given. Write lk = nk3 , so that {lk} is a subsequence of {nk} and
lk ≥ k3. It follows from Propositions 4.2 and 4.3 that (20) holds. So, the random
measure 1

n
μn converges in probability to 1

2π
�I (log |z|). It remains to observe that

the generalized function 1
2π

�I (log |z|) is equal to the measure μ given in (14).
This follows from the fact that the radial part of � in polar coordinates is given by
1
r

d
dr

r d
dr

. This gives the desired result.

4.2. The logarithmic moment condition. The next well-known lemma states
that i.i.d. random variables grow subexponentially with probability 1 if and only if
their logarithmic moment is finite.

LEMMA 4.4. Let ξ0, ξ1, . . . be i.i.d. random variables. Fix ε > 0. Then,

S := sup
k=0,1,...

|ξk|
eεk

< +∞ a.s. ⇐⇒ E log
(
1 + |ξ0|) < ∞.(21)

PROOF. For every nonnegative random variable X we have

∞∑
k=1

P[X ≥ k] ≤ EX ≤
∞∑

k=0

P[X ≥ k].
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With X = 1
ε

log(1 + |ξ0|) it follows that E log(1 + |ξ0|) < ∞ if and only if∑∞
k=1 P[|ξ0| ≥ eεk − 1] < ∞ for some (equivalently, every) ε > 0. The proof is

completed by applying the Borel–Cantelli lemma. �

Note in passing that Lemma 4.4 and condition (A4) imply that for every n ∈ N

the series (12) converges with probability 1 on DR0 .

4.3. Upper bound in Theorem 4.1. Fix an ε > 0. All constants which we will
introduce below depend only on ε. Let us agree that all inequalities will hold uni-
formly over z ∈ De−2εR0

\ {0} if R0 < ∞ and over z ∈ D1/ε \ {0} if R0 = ∞. We
will show that there exists an a.s. finite random variable M = M(ε) such that for
all sufficiently large n, ∣∣Gn(z)

∣∣ ≤ Men(I (log |z|)+3ε).(22)

First, we estimate the tail of the Taylor series (12) defining Gn. By assumption (A4)
there is A > max(0,− logf (0)) such that for all n ≥ A and all k ≥ An,

|fk,n| < (|z|e2ε)−k
.

Lemma 4.4 implies that there exist a.s. finite random variables S,M ′ such that for
all n ≥ A,∣∣∣∣ ∑

k≥An

ξkfk,nz
k

∣∣∣∣ ≤ S
∑

k≥An

eεk|fk,n||z|k ≤ S
∑

k≥An

e−εk ≤ M ′e−An.(23)

We now consider the initial part of the Taylor series (12) defining Gn. Take some
δ > 0. By assumption (A3), there is N such that for all n > N and all k ≤ An,

|fk,n| <
(
f

(
k

n

)
+ δ

)n

.(24)

It follows from (13) that for all t ≥ 0,

t log |z| + logf (t) ≤ I
(
log |z|).(25)

Using (24), (25) and Lemma 4.4 with ε/A instead of ε we obtain that there is an
a.s. finite random variable M ′′ such that for all sufficiently large n,∣∣∣∣ ∑

0≤k<An

ξkfk,nz
k

∣∣∣∣ ≤ M ′′ ∑
0≤k<An

e(εk)/A

(
f

(
k

n

)
+ δ

)n

|z|k(26)

≤ M ′′eεn
∑

0≤k<An

(
e(k/n) log |z|+logf (k/n) + δ|z|k/n)n

≤ M ′′e2εn(
eI (log |z|) + δ max

(
1, |z|A))n

≤ M ′′en(I (log |z|)+3ε),
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where the last inequality holds if δ = δ(ε) is sufficiently small. Combining (23)
and (26) and noting that −A < logf (0) ≤ I (log |z|) by (25), we obtain that (22)
holds with M = M ′ + M ′′ for sufficiently large n. By enlarging M , if necessary,
we can achieve that it holds for all n ≥ A.

4.4. Lower bound in Theorem 4.1. Fix ε > 0 and z ∈ DR0 \ {0}. We are going
to show that

P
[∣∣Gn(z)

∣∣ < en(I (log |z|)−4ε)] = O

(
1√
n

)
, n → ∞.(27)

We will use the Kolmogorov–Rogozin inequality in a multidimensional form
which can be found in [7]. Given a d-dimensional random vector X define its
concentration function by

Q(X; r) = sup
x∈Rd

P
[
X ∈ Dr (x)

]
, r > 0,(28)

where Dr (x) is a d-dimensional ball of radius r centered at x. An easy conse-
quence of (28) is that for all independent random vectors X,Y and all r, a > 0,

Q(X + Y ; r) ≤ Q(X; r), Q(aX; r) = Q(X; r/a).(29)

The next result follows from Corollary 1 on page 304 of [7].

THEOREM 4.5 (Kolmogorov–Rogozin inequality). There is a constant Cd de-
pending only on d such that for all independent (not necessarily identically dis-
tributed) random d-dimensional vectors X1, . . . ,Xn and for all r > 0, we have

Q(X1 + · · · + Xn; r) ≤ Cd ·
(

n∑
k=1

(
1 − Q(Xk; r))

)−1/2

.

The idea of our proof of (27) is to use the Kolmogorov–Rogozin inequality
to show that the probability of very strong cancellation among the terms of the
series (12) defining Gn is small. First, we have to single out those terms of Gn in
which |fk,nz

k| is large enough. By definition of I , see (13), there is t0 ∈ [0, T0]
such that t0 log |z| + logf (t0) > I (log |z|)− ε. Moreover, by assumption (A2), we
can find a closed interval J of length |J | > 0 containing t0 such that

f (t)|z|t > eI (log |z|)−2ε, t ∈ J.

Define a set Jn = {k ∈ N0 :k/n ∈ J }. By assumption (A3) there is N such that for
all n > N and all k ∈ Jn,

|fk,n||z|k > en(I (log |z|)−3ε).

Let n > N . For k ∈N0 define

ak,n = e−n(I (log |z|)−3ε)fk,nz
k.
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Note that |ak,n| > 1 for k ∈ Jn. Define

Gn,1 = ∑
k∈Jn

ak,nξk, Gn,2 = ∑
k /∈Jn

ak,nξk.

By considering real and imaginary parts, we can view the complex random vari-
ables ak,nξk as two-dimensional random vectors. Using (29), we arrive at

P
[∣∣Gn(z)

∣∣ < en(I (log |z|)−4ε)] ≤ Q
(
Gn,1 + Gn,2; e−εn) ≤ Q

(
Gn,1; e−εn)

.(30)

By Theorem 4.5, there is an absolute constant C such that for all r > 0,

Q(Gn,1; r) ≤ C ·
( ∑

k∈Jn

(
1 − Q(ak,nξk; r))

)−1/2

≤ C ·
( ∑

k∈Jn

(
1 − Q(ξk; r))

)−1/2

.

Here, the second inequality follows from the fact that |ak,n| > 1 for k ∈ Jn. Now,
since the random variable ξ0 is supposed to be nondegenerate, we can choose r > 0
so small that Q(ξ0; r) < 1. Note that this is the only place in the proof of Theo-
rem 2.8 where we use the randomness of the ξk’s in a nonobvious way. The rest of
the proof is valid for any deterministic sequence ξ0, ξ1, . . . such that |ξn| = O(eδn)

for every δ > 0. If n is sufficiently large, then e−εn ≤ r and hence,

Q
(
Gn,1; e−εn) ≤ Q(Gn,1; r) ≤ C1|Jn|−1/2 ≤ C2n

−1/2.(31)

In the last inequality, we have used that the number of elements of Jn is larger than
(|J |/2)n for large n. Taking (30) and (31) together completes the proof of (27).

4.5. Proof of Proposition 4.3. Define a set A ⊂ DR0 × �, measurable with
respect to the product of the Borel σ -algebra on DR0 and F , by

A =
{
(z,ω) : lim

k→∞plk (z;ω) = I
(
log |z|)}.

We know from assumption (19) that for Lebesgue-a.e. z ∈ DR0 it holds that∫
� 1(z,ω)/∈AP(dω) = 0. By Fubini’s theorem, for P-a.e. ω ∈ �, it holds that∫
DR0

1(z,ω)/∈Aλ(dz) = 0. Hence, there is a measurable set E1 ⊂ � with P[E1] = 0
such that for every ω /∈ E1,

lim
k→∞plk (z;ω) = I

(
log |z|), for Lebesgue-a.e. z ∈ DR0 .(32)

Let k(ω) = min{k ∈ N0 : ξk(ω) �= 0}, ω ∈ �. Since the ξk’s are assumed to be
nondegenerate, the set E0 = {ω ∈ � :k(ω) = ∞} satisfies P[E0] = 0. By condi-
tions (A3) and (A1), after ignoring finitely many values of n, we can assume that
fk,n �= 0 for 0 ≤ k ≤ T0n/2. Define n(ω) = 2k(ω)/T0. For ω /∈ E0 and n > n(ω)

the function Gn does not vanish identically. For every fixed ω /∈ E0 and n > n(ω)



COMPLEX ZEROS OF RANDOM ANALYTIC FUNCTIONS 1391

the function pn(z;ω) = 1
n

log |Gn(z;ω)| is subharmonic, as a function of z; see
Example 4.1.10 in [11]. Also, it follows from (22) that there is a measurable
set E2 ⊂ � with P[E2] = 0 such that for every ω /∈ E2, the family of functions
Pω = {z �→ plk (z;ω) :k ∈ N}, is uniformly bounded above on every compact sub-
set of DR0 . Let E = E0 ∪E1 ∪E2, so that P[E] = 0. Fix ω /∈ E. By Theorem 4.1.9
of [11], the family Pω is either precompact in D′(DR0), the space of generalized
functions on the disk DR0 , or contains a subsequence converging to −∞ uniformly
on compact subsets of DR0 . The latter possibility is excluded by (32). Thus, the
family Pω is precompact in D′(DR0). Any subsequential limit of Pω must coin-
cide with the function I (log |z|) by (32) and Proposition 16.1.2 in [12]. It follows
that for every fixed ω /∈ E,

plk (z;ω) −→
k→∞ I

(
log |z|) in D′(DR0).(33)

Since the Laplace operator is continuous on D′(DR0), we may apply it to the both
sides of (33). Recalling (17) we obtain that for every ω /∈ E,

1

lk
μlk (ω) = 1

2π
�plk (z;ω) −→

k→∞
1

2π
�I

(
log |z|) in D′(DR0).

A sequence of locally finite measures converges in D′(DR0) if and only if it con-
verges vaguely. This completes the proof of (20).

4.6. Proof of the a.s. convergence in Theorem 2.3. Recall that convergence in
probability has already been established in Section 3. To prove the a.s. convergence
we first extract a subsequence to which we can apply the Borel–Cantelli lemma.
Given n ∈ N we can find a unique jn ∈ N such that j3

n ≤ n < (jn + 1)3. Write
mn = j3

n and Gn(z) = Wn(e
βmα

nz). Note that limn→∞ mn/n = 1. Thus, it suffices
to show that 1

n
μGn

converges a.s. to the measure with density (5). As a first step,
we will prove the a.s. convergence of the corresponding potentials. Fix z ∈ D \ {0}.
We will prove that

pn(z) = 1

n
log

∣∣Gn(z)
∣∣ a.s.−→
n→∞α|z|1/α.(34)

Note that Gn satisfies all assumptions of Section 2.5. It follows from Proposi-
tion 4.2 applied to the subsequence lj = j3 that

1

mn

log
∣∣Gmn(z)

∣∣ a.s.−→
n→∞α|z|1/α.(35)

Let now n ∈ N be a sufficiently large number not of the form j3. We have, by
Lemma 4.4 and (3),

∣∣Gn(z) − Gmn(z)
∣∣ =

∣∣∣∣∣
n∑

k=mn+1

ξkwke
βkmαk

n zk

∣∣∣∣∣
≤ Se2εn

n∑
k=mn+1

e−α(k log k−k)nαk|z|k.
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The function x �→ −α(x logx − x) + αx logn defined for x > 0 attains its maxi-
mum, which is equal to αn, at x = n. Recall that |z| < 1. Since mn > (1 − ε)n and
εnS < eεn if n is sufficiently large, we have the estimate∣∣Gn(z) − Gmn(z)

∣∣ ≤ e3εneαn|z|(1−ε)n.

Since α + log |z| < α|z|1/α , we have, if ε > 0 is small enough,∣∣Gn(z) − Gmn(z)
∣∣ ≤ e(1−ε)n(α|z|1/α−2ε) ≤ emn(α|z|1/α−2ε).(36)

Bringing (35) and (36) together we obtain (34).
We are ready to complete the proof. It follows from (34) and Proposition 4.3

that the restriction of 1
n
μGn

to D converges a.s. to a measure μ with density (5),
as a sequence of random elements with values in M(D). To prove that the a.s.
convergence holds in the sense of M(C)-valued elements, we need to show that
limn→∞ 1

n
μGn

(C \ D) = 0 a.s., or, equivalently, that lim infn→∞ 1
n
μGn

(D) = 1
a.s. Let f :C → [0,1] be a continuous function with support in D. Then, since
ν �→ ∫

f dν defines a continuous functional on M(D),

lim inf
n→∞

1

n
μGn

(D) ≥ lim inf
n→∞

1

n

∫
C

f dμGn
=

∫
C

f dμ a.s.

The supremum of the right-hand side over all admissible f is equal to 1 since
μ(D) = 1. This proves the claim.

4.7. Proof of the a.s. convergence in Theorem 2.5. Let mn be defined in the
same way as in the previous proof. Write Gn(z) = W(eβmα

nz). Note that Gn satis-
fies the assumptions of Section 2.5 with I (s) = αes/α . By Proposition 4.2, for all
z ∈C \ {0},

pn(z) = 1

n
log

∣∣Gn(z)
∣∣ a.s.−→
n→∞α|z|1/α.(37)

Then, it follows from Proposition 4.3 that 1
n
μGn

converges a.s. to the measure with
density (10).

4.8. Proof of Theorem 2.4. We prove only the implication (1) ⇒ (2) since
the converse implication has been established in Theorem 2.3. Let Wn(z) =∑n

k=0 ξkwkz
k , where wk is a sequence satisfying (3) and (6). Assume that

E log(1+|ξ0|) = ∞. Fix ε > 0. We will show that with probability 1 there exist in-
finitely many n’s such that all zeros of Wn(e

βnαz) are located in the disk D2ε . This
implies that 1

n
μn does not converge a.s. to the measure with density (5). We use an

idea of [16]. By Lemma 4.4, lim supn→∞ |ξn|1/n = +∞. Hence, with probability 1
there exist infinitely many n’s such that

|ξn|1/n > max
k=1,...,n−1

|ξn−k|1/(n−k),

(38)

|ξn|1/n > max
{

3C + 1

ε
,

1

eαε

}
.
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Let n be such that (38) holds. By (6) and (38), we have for every z ∈ C and k < n,∣∣wn−kξn−k

(
eβnαz

)n−k∣∣ ≤ C|wn|eβknαk|ξn|(n−k)/n
∣∣eβnαz

∣∣n−k

= C
∣∣wnξn

(
eβnαz

)n∣∣(|ξn|1/n|z|)−k
.

For every z such that |z| > ε, we obtain∣∣∣∣∣
n−1∑
k=1

wn−kξn−k

(
eβnαz

)n−k

∣∣∣∣∣ ≤ C
∣∣wnξn

(
eβnαz

)n∣∣ ·
(

n−1∑
k=1

1

(3C + 1)k

)

<
1

3

∣∣wnξn

(
eβnαz

)n∣∣.
By (3) and (38), the right-hand side of this inequality goes to +∞ as n → ∞.
In particular, for sufficiently large n, it is larger than |ξ0w0|. It follows that for
|z| > ε, the term of degree n in the polynomial Wn(e

βnαz) is larger, in the sense of
absolute value, than the sum of all other terms. Hence, the polynomial Wn(e

βnαz)

has no zeros outside the disk D2ε .

4.9. Proof of Theorem 2.9. Start with a measure μ satisfying the assumptions
of Theorem 2.9. Define a function I by I (s) = ∫ s

−∞ μ(Der ) dr for s < logR0. The
integral is finite by the second assumption of the theorem. Clearly, I is nonde-
creasing, continuous and convex on (−∞, logR0). For s > logR0 let I (s) = +∞.
Define I (logR0) by left continuity. Let now u be defined as the Legendre–Fenchel
transform of I :

u(t) = sup
s∈R

(
st − I (s)

)
.

We claim that the random analytic function Gn(z) = ∑∞
k=0 ξkfk,nz

k with fk,n =
e−nu(k/n) satisfies assumptions (A1)–(A4) of Theorem 2.8 with f = e−u. By
the Legendre–Fenchel duality, the function u possesses the following properties.
First, it is convex and lower-semicontinuous. Second, it is finite on the interval
[0, T0), where T0 = lim supt→+∞ I (t)/t satisfies T0 ∈ (0,+∞]. This holds since
I is nondecreasing and lims→−∞ I (s) = 0 by construction. Third, u(t) = +∞ for
t > T0 and t < 0. This verifies assumption (A1). Fourth, formula (13) holds and
limt→+∞ u(t)/t = logR0. This, together with Lemma 4.4, shows that the conver-
gence radius of Gn is R0 a.s. and verifies assumption (A4). Finally, u is continuous
on [0, T0) (since it is convex and finite there), and, in the case T0 < +∞, the func-
tion u is left continuous at T0 (follows from the lower-semicontinuity of u). This
verifies assumption (A2). Assumption (A3) holds trivially with f = e−u.

Acknowledgment. The authors are grateful to the unknown referee who con-
siderably simplified the original proof of Theorem 2.8. The argument in Sec-
tion 4.5 follows the idea of the referee.
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