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A FUNCTIONAL DATA ANALYSIS APPROACH
FOR GENETIC ASSOCIATION STUDIES
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We present a new method based on Functional Data Analysis (FDA) for
detecting associations between one or more scalar covariates and a longitu-
dinal response, while correcting for other variables. Our methods exploit the
temporal structure of longitudinal data in ways that are otherwise difficult
with a multivariate approach. Our procedure, from an FDA perspective, is a
departure from more established methods in two key aspects. First, the raw
longitudinal phenotypes are assembled into functional trajectories prior to
analysis. Second, we explore an association test that is not directly based on
principal components. We instead focus on quantifying the reduction in L2

variability as a means of detecting associations. Our procedure is motivated
by longitudinal genome wide association studies and, in particular, the child-
hood asthma management program (CAMP) which explores the long term
effects of daily asthma treatments. We conduct a simulation study to better
understand the advantages (and/or disadvantages) of an FDA approach com-
pared to a traditional multivariate one. We then apply our methodology to
data coming from CAMP. We find a potentially new association with a SNP
negatively affecting lung function. Furthermore, this SNP seems to have an
interaction effect with one of the treatments.

1. Introduction.

1.1. The childhood asthma management program. The childhood asthma
management program, CAMP, is a multi-center, longitudinal clinical trial designed
to better understand the long term impact of two common daily asthma medica-
tions, Budesonide and Nedocromil, on children [The Childhood Asthma Manage-
ment Program Research Group (1999, 2000)]. Subjects, ages 5–12, with asthma
were selected, randomly assigned a particular treatment (one of the two drugs or
placebo) and monitored for several years. At each clinical visit a number of mea-
surements were taken, but the primary one we focus on here is forced expiratory
volume in one second or FEV1, which measures the development of the lungs. The
goal of the present paper is to associate FEV1, measured longitudinally, with single
nucleotide polymorphisms (SNPs) and to detect possible SNP by treatment inter-
actions, while correcting for other covariates such as age and gender. Analyzing
longitudinal data can be challenging and often such measurements are converted
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to scalars where univariate methods can readily be applied [Tantisira et al. (2011)].
However, since the subjects of this study are children, the development of the child
over time is also of great interest. This development can be complicated and non-
linear as the child ages, thus, a flexible framework to allow for such patterns is
desirable. Conversely, analyzing hundreds of thousands of SNPs requires power-
ful procedures which exploit any structure inherent in the data. It is reasonable to
think that, while a child’s lungs develop “nonlinearly,” their development is still
relatively smooth over time, and that major daily fluctuations in FEV1 are primar-
ily noise independent of the underlying development. Finally, while all children
make their clinical visits at approximately the same time, the spacing between vis-
its varies throughout the study. So a procedure which is relatively robust against
differences in temporal spacing would be vital.

1.2. Functional data analysis. Given the nature of the data and our goals,
we develop and present a framework for association testing based on functional
data analysis. Over the last two decades an abundance of high frequency data and
complex longitudinal studies have driven the development of inferential statisti-
cal tools for samples of objects which can be viewed as functions or trajectories.
Tools falling under the umbrella of functional data analysis (FDA) have been ap-
plied to areas such as human growth patterns [Chen and Müller (2012), Verzelen,
Tao and Müller (2012)], gene expression [Tang and Müller (2009)], credit card
transaction volumes [Kokoszka and Reimherr (2013)], geomagnetic activity pat-
terns [Gromenko and Kokoszka (2013)], and neuroimaging [Reiss et al. (2011),
Zipunnikov et al. (2011)], to name only a few. The driving view in FDA is that
certain data structures can be viewed as observations from a function space. To
illustrate this point, consider Figure 1. We plot the values of log(FEV1) for one
particular CAMP subject as circles, with linear interpolation indicated by a dashed
line. A nonparametric smoother based on B-splines is also plotted as a solid line.

FIG. 1. Plot of one subject from the CAMP study. Circles represent observed values which are
linearly interpolated by the dashed line, while the solid line is calculated using smoothing splines.
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FIG. 2. Plots of the log(FEV1) curves for the first one hundred subjects. The left panel displays
curves obtained via smoothing splines, while the right panel displays curves which are linearly in-
terpolated.

As we can see, the B-splines have generated a curve which has smoothed out a lot
of the inherent noise in the data, giving a clearer picture of lung development in
the child.

We can obtain such a curve for every subject (and actually pool information
across children to help generate the curves). We plot the resulting curves for the
first 100 CAMP subjects (of 540 total) in Figure 2, alongside their unsmoothed
interpolated analogs. We can see that the nonparametric smoothers have decreased
the noise inherent in the data, resulting in a clear smooth trajectory for each child’s
development. Our goal is then to associate the patterns we see in the curves with
SNPs and to explore SNP by treatment interactions. However, analyzing such ob-
jects is challenging because they are inherently infinite-dimensional objects. The
approach we outline here exploits the assumption that the functions come from
a Hilbert space by using a functional linear model to relate the functional response
variables to the univariate covariates. Define Yn(t) to be the value at time t of the
smoothed log(FEV1) curve for the nth subject. We then use the following linear
model,

Yn(t) = α(t) +
J∑

j=1

β1,j (t)X1;j,n +
K∑

k=1

β2,k(t)X2;k,n + εn(t)(1)

for n = 1, . . . ,N , where N is the total number of subjects, and the total number
of covariates is J + K . Here the {Yn}, {X1;j,n} and {X2;k,n} are observed. The
first set of covariates {X1;j,n} will include those we wish to correct for (gender,
age, etc.), while the second set will include those covariates we wish to test the
nullity of (SNPs, treatment effects, etc.). Therefore, the goal of this paper is test
the hypothesis

H0 :β2,k(t) ≡ 0 for k = 1, . . . ,K.
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To test if H0 is true, we propose using the reduction in the sum of squared norms as
a testing procedure. Our approach is a kind of functional analog to the reduction in
sum of squares used in univariate ANOVA methods. This differs from current FDA
approaches which are usually based on principal component analysis and attempt
to project the infinite-dimensional problem down to a multivariate problem. As
we will note in Section 5, FDA methods based on PCA seem to have nontrivial
stability problems which become especially evident when carrying out hundreds
of thousands of tests.

While the literature on FDA and functional linear models is quite large, we
provide some key references in terms of carrying out hypothesis tests with a func-
tional linear model. Cardot et al. (2003) examine a PCA-based testing procedure
for a scalar response/functional covariate model which Kokoszka et al. (2008) ex-
tends to the fully functional setting. Antoniadis and Sapatinas (2007) examine a
mixed-effects model for the modeling of functional data and utilize a wavelet de-
composition approach to carry out inference. Zhang and Chen (2007) analyze the
effect of the “smoothing first then inference” approach to handling functional data
(like the approach considered presently) and consider an L2 normed approach for
testing the nullity of the covariates in a functional linear model. Finally, Reiss,
Huang and Mennes (2010) combine a basis expansion approach for model fitting
and a permutation testing approach for local hypothesis testing in a functional lin-
ear model which is implemented in the R package Refund.

1.3. Alternative methodolgies. The application of FDA methods in main
stream human genetics research is present but still in its infancy. Functional map-
ping methods [Ma, Cassella and Wu (2002), Wu and Lin (2006)] in genetics are
similar in spirit to FDA methods, but, as of yet, have not taken advantage of the
full flexibility of FDA methods. In most functional mapping settings very specific
shapes for describing the data are instilled in the models with fairly simple error
structures, whereas an FDA approach utilizes nonparametric methods to allow for
greater flexibility. More generally, the application of FDA methods to longitudinal
data is a very active area of research; see, for example, Fan and Zhang (2000),
Hall, Müller and Wang (2006), Yao, Müller and Wang (2005), to name only a few.
Typically, FDA approaches for longitudinal data focus on estimation and obtaining
principal components which differs with our goal of powerful hypothesis testing.

More traditional longitudinal approaches model the dependence between obser-
vations from the same subject by introducing random effects. Such an approach
typically assumes a very specific structure for the dependence between observa-
tions, but the question of how to carry out the desired hypothesis tests is not solved
by introducing mixed effects. One could include fixed effects in the form of poly-
nomial functions over time, but given how the children are developing, it is difficult
to say which functions would be most appropriate. Another approach would be to
use time series to model the within subject dependence. However, the time points
are not evenly spaced, the data is not stationary, and one would still have the prob-
lem of how to carry out the hypothesis testing.
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1.4. Overview. The remainder of the paper is organized as follows. In Sec-
tion 2 we present our approach based on the reduction of sum of squared norms.
We first present the single predictor case for illustrative purposes and conclude
with the general case that allows one to correct for covariates, test the nullity of fac-
tor variables, or test the nullity of multiple covariates. In Section 3 we explore some
of the major differences between our procedure and previous FDA approaches.
In particular, we show how the difference can be thought of as a difference in
weighting schemes on the scores. This view allows for an entire family of testing
procedures by choosing different weights. In Section 4 we present a small-scale
simulation study. We show how the smoothness of the underlying functions in-
fluences the power of our procedure as compared to a PC-based procedure and a
traditional multivariate one. In Section 5 we apply our methods to a genome wide
association study on childhood asthma that has proven difficult to analyze using
traditional methods. We show that there may in fact be a gene by treatment inter-
action, but further validation is needed. We conclude the paper with discussion of
our results in Section 6. All asymptotic results are provided in Appendix A, while
proofs are given in Appendix B.

2. Methodology. To construct the trajectories, we first apply a subject by sub-
ject B-splines smoother. Some type of smoothing is useful for the CAMP data due
to the inherent noise in spirometer readings. A splines-based smoother is espe-
cially useful given the fairly smooth and nearly monotonic structure of the trajecto-
ries. The smoothing parameter is chosen by leave-one-subject-out cross-validation,
where we compare the mean of the smoothed curves to the observed points of the
left out subject. We then form mean function, covariance function and nugget ef-
fect estimates. The final curves are obtained by going back to each subject and
kriging the curves using the parameter estimates. Such an approach attempts to
better utilize information across subjects to help with curve construction. This dif-
fers slightly from the smoothing methods found in the PACE package in MATLAB
(2013), as we do not utilize a PCA and we construct curves through multiple re-
finements as opposed to using scatter plot smoothers. Further details are outlined
in Reimherr (2013).

We present our methods in two sections. The first considers a functional re-
sponse with one univariate quantitative covariate and provides an easier Introduc-
tion to our methods. The second section generalizes the first so that our methods
are applicable to a wider range of settings. While we introduce all technical nota-
tion below, precise mathematical assumptions, theorems and proofs can be found
in Appendices A and B.

Single predictor. We begin by presenting our procedure for the simpler setting
when

Yn(t) = β(t)Xn + εn(t)
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for n = 1, . . . ,N , where Xn and Yn(t) are assumed to be centered. This will pro-
vide a simpler format for introducing the more technical aspects of FDA tools. We
assume that {Xn} and {εn} are two i.i.d. sequences and independent of each other.
Without loss of generality, we will also assume that t ∈ [0,1]. One could assume
that t takes values in any closed interval, but the results will remain the same.

The slope function β(t) we will assume to be square integrable:

‖β‖2 =
∫

β(t)2 dt < ∞.

We will further assume that εn(t) is square integrable almost surely:

‖εn‖2 =
∫

εn(t)
2 dt < ∞ with probability 1.

Therefore, β and εn will take values from the Hilbert space L2[0,1] (with proba-
bility 1) equipped with the inner product

〈x, y〉 =
∫

x(t)y(t) dt.

This implies that Yn also takes values from L2[0,1] almost surely. Throughout,
when writing ‖ · ‖ of a function, we will mean this to be the L2[0,1] norm. We
will also assume that

E
[
X2

n

]
< ∞ and E‖εn‖2 < ∞.

This will imply [Bosq (2000)] that εn will have a covariance function Cε(t, s)

which can be expressed as

Cε(t, s) = E
[
εn(t)εn(s)

] =
∞∑
i=1

λivi(t)vi(s).

Note that this is simply an application of the spectral theorem. One can view
Cε(t, s) as the kernel of an integral operator acting on L2[0,1], in which case {λi}
and {vi} will be the eigenvalues and eigenfunctions, respectively, of the resulting
operator. The moment assumptions will imply that

∞∑
i=1

λi < ∞.

In functional principal component analysis, the vi are the functional principal com-
ponents, while λi will correspond to the variability explained by the component.
A functional PCA-based approach would involve choosing a small number of vi

and projecting the Yn onto them. This reduces the infinite-dimensional problem
involving Yn into a multidimensional problem involving the scores 〈Yn, vi〉. Un-
fortunately, as we will note in Section 5, this can induce stability problems in the
resulting inferential tools.
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We can use this assumed structure to construct a test statistic to determine if β is
the zero function by examining how much the inclusion of the covariate reduces
the sum of squared norms of the Yn:

� =
N∑

n=1

‖Yn‖2 −
N∑

n=1

‖Yn − β̂Xn‖2,

where β̂ is the pointwise least squares estimator

β̂(t) =
∑N

n=1 Yn(t)Xn∑N
n=1 X2

n

.

In this simple scenario, the procedure is equivalent to taking N‖β̂‖2 as the test
statistic; however, for testing the nullity of multiple covariates, � has a more nat-
ural generalization as we will see in the next section. By Theorem 2 in Section A,
if β = 0, then as N → ∞,

�
D→

∞∑
i=1

λiχ
2
i (1),

where χ2
i (1) are i.i.d. chi-squared 1 random variables. Since the {λi} are

summable, the above will be OP (1). If β 	= 0, then

� = NE
[
X2

1
]‖β‖2 + OP (1)

as N → ∞ by Theorem 2. Such a procedure does not have the stability problems
inherent in PCA techniques and avoids having to choose the number of compo-
nents. A minor difficulty arises in working with the limiting distribution under the
null which does not have a closed-form expression. However, under our assump-
tions, the weights {λi} are summable and, in practice, typically decrease extremely
quickly. Thus, one may obtain p-values by considering the distribution of

I∑
i=1

λiχ
2
i (1)

for some large value of I . As long as I is reasonably large, the procedure will be
robust against the choice. One can estimate the {λi} by using the eigenvalues, {λ̂i},
of the empirical covariance function:

Ĉε(t, s) = 1

N − 1

∑(
Yn(t) − β̂(t)Xn

)(
Yn(s) − β̂(s)Xn

)
.

By Theorem 3, the {λ̂i} will be close to the {λi}, uniformly over i, for large N .
Thus, we can use the estimated eigenvalues to compute p-values. While there
are several methods for approximating the distribution of weighted sums of chi-
squares, we have found the method of Imhof (1961) to work very well even
for extremely small p-values which are required in genome wide association
studies. Further details and comparisons can be found in Duchesne and Lafaye
De Micheaux (2010).
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Multiple predictors. In order to test the nullity of multiple predictors, interac-
tion terms or factor variables all while correcting for other covariates, one requires
a more general testing procedure than found in the previous section. We now ex-
amine the larger model

Yn(t) = α(t) +
J∑

j=1

β1,j (t)X1,j ;n +
K∑

k=1

β2,k(t)X2,k;n + εn(t)

= α(t) + XT
1,nβ1(t) + XT

2,nβ2(t) + εn(t).

We assume that α, {β1,j } and {β2,k} all take values in L2[0,1] and that εn takes
values in L2[0,1] almost surely. Define the larger vector XT

n = (1,XT
1,n,XT

2,n) and
assume that E[XT

n Xn] = �X exists and has full rank. Assume that {Xn} and {εn}
are two i.i.d. sequences and independent of each other. As before, assume that {εn}
are centered and that E‖εn‖2 < ∞.

In terms of matrices, the model can be expressed as

Y(t) = X1β1(t) + X2β2(t) + ε(t),

where we group the intercept into the first matrix of covariates. We abuse notation
slightly as X1 also refers to first observation, but, given the context, it will always
be clear what we mean. We define the corresponding least squares estimators

β̂1(t) = (
XT

1 X1
)−1XT

1 Y(t) and β̂(t) = (
XT X

)−1XT Y(t),

where

X = (X1 X2 ) .

We define the more general version of our test statistic as

� =
N∑

n=1

(∥∥Yn − XT
1,nβ̂1

∥∥2 − ‖Yn − Xnβ̂‖2)
.

By Theorem 4 in Appendix A, under the hypothesis that all of the β2 coordinates
are zero functions, we have that, as N → ∞,

�
D→

∞∑
i=1

λiχ
2
i (K),

where the λi are as before, but χ2
i (K) now have K degrees of freedom corre-

sponding to the K covariates we are testing. Under the alternative, we have, by
Theorem 4,

� = N

∫
β2(t)

T �X,2 : 1β2(t) + OP (1),
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where �X,2 : 1 is the Schur complement

�X,2 : 1 = �X,22 − �X,21�
−1
X,11�X,12.

The matrix �X,2 : 1 appears since we must take into account how dependent the
second set of covariates are on the first. The empirical eigenvalues (defined as
before) {λ̂i} can again be used for computing p-values by Theorem 5.

3. A unified framework. To better understand the difference between our ap-
proach and an FDA approach based on principal components [Cardot et al. (2003),
Kokoszka et al. (2008)], we provide a more general testing framework that includes
both.

Consider the single predictor case. In a traditional FDA approach, one would
usually do the following. Using the observations {Yn}, form the estimated eigen-
values and eigenfunctions {λ̂i , v̂i} and assume the {Xn} have been standardized
such that

N−1
N∑

n=1

Xi = 0 and N−1
N∑

n=1

X2
n = 1.

Computing the eigenelements is easily done using the FDA package in R or
Matlab; see Ramsay and Silverman (2005) for more details. Then form the test
statistic as

�2 =
I∑

i=1

N−1(
∑N

n=1 Xn〈Yn, v̂i〉)2

λ̂i

.

In other words, one computes the covariance between the covariate and each PC,
then pools the results after standardizing by λ̂j . We can also express

�2 =
I∑

i=1

N−1(
∑N

n=1 Xn〈Yn, v̂i〉)2

λ̂j

=
I∑

i=1

N〈β̂, v̂i〉2

λ̂i

.

When β = 0, �2 is asymptotically χ2(I ).
Conversely, in this simpler scenario, our � test statistic becomes

� = N‖β̂‖2.

By Parceval’s identity, we have

N‖β̂‖2 = N

N∑
i=1

〈β̂, v̂i〉2.

So the difference between the two approaches in this simple case can be thought of
as a difference in weighting schemes. For the more general case, it helps to think
in terms of explained variability. Define

�(wN) = N

N∑
i=1

wN(i)R̂2
i ,
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where R̂2
i is the proportion of variance in the ith PC explained by the covariates:

R̂2
i =

∑N
n=1(〈Yn, v̂i〉 − 〈Yn − Xnβ̂, v̂i〉)2

∑N
n=1〈Yn, v̂i〉2

= 〈β̂, v̂i〉2

λ̂i

.

Then �2 corresponds to taking

wN(i) = 11≤i≤I ,

while � corresponds to taking

wN(i) = λ̂i .

Put in words, each scheme assigns different weights to the projections. In the tra-
ditional case, all (standardized) projections are given equal weights, while in our
approach each (standardized) projection is weighted by the corresponding amount
of variability it explains. Both weighting schemes arise naturally, but there might
be other meaningful choices of wN as well.

Choosing an “optimal” weighting scheme is complicated by the fact that the
PCs must be estimated and it is well known that eigenfunction estimates can be
very noisy as one moves beyond the first few PCs. Furthermore, while � can be
expressed using PCA for comparison purposes, it does not directly depend on it,
which avoids potential stability problems when dealing with PCs corresponding to
small eigenvalues.

4. Simulation study. We carry out a small-scale simulation study to analyze
the power of our procedure as compared to other methods. We generate data using
the model

Yn(t) = β(t)Xn + εn(t).

The Xn represent a common SNP with minor allele frequency 0.5 and are taken
to be i.i.d. binomial random variables with success parameter 1/2 and trial param-
eter 2, centered by their mean (in this case 1). The εn are generated as station-
ary, isotropic, Gaussian processes with mean zero and covariance coming from
the Mátern class with parameters (0,1,0,1/4,5/2), representing mean, variance,
nugget, scale and ν, respectively, where ν controls the smoothness of the process.
In what follows, similar results are obtained if the εn are replaced with rougher
Mátern processes or Brownian motion (tables available upon request). Such a pro-
cess will have sample paths which are one time continuously differentiable. The
covariance function can be expressed explicitly as, for t, s ∈ [0,1] and d = |t − s|,

E
[
εn(t)εn(s)

] = C(d) =
(

1 +
√

5d

1/4
+ 5d2

3/16

)
exp

(
−

√
5d

1/4

)
.

We take N = 200, use 1000 repetitions in all cases, and let M = 5,10,20,50,
where M is the number of points sampled per curve. We assume that the points
are always sampled on an even grid on the [1/M,1] interval and the curves are
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reconstructed using the same approach mentioned at the beginning of Section 2.
We compare three different slope functions:

1. Linear Function: β(t) = 0.18 × 2(t − 1/2)/0.5773,
2. Normal CDF: β(t) = 0.18 × 
(7.5(t − 1/2))/0.6517,
3. Sinusoidal: β(t) = 0.18 × √

2 cos(2πt).

Notice that the functions are normalized such that the L2 norm of the function
is 0.18, which was chosen to get a clear comparison of power between the pro-
cedures. We are especially interested in the second, as we believe its shape to be
more reflective of the types of patterns we expect to see in our asthma data as well
as human growth data in general; over the course of several years children grow in
spurts followed by a leveling off as they get closer to adulthood. Plots of the above
functions are given in Figure 3.

The methods we compare in each scenario are as follows:

• L2: Our Method (◦),
• PC: A MANOVA performed with 3, 4, and total 5 PCs, the p-value is then taken

as the largest ( ),
• PC5: A MANOVA performed with 5 PCs ( ),
• MV: A MANOVA performed on the observed points ( ).

In parenthesis we include the plotting symbol for each procedure plotted in
Figure 4. We include both Methods PC and PC5 to illustrate the consequences
of having to choose the number of PCs. Method PC is common when trying to
determine if one’s results are robust against the number of PCs chosen. Note that
Methods L2, PC5 and MV are well calibrated, while Method 2 is conservative
(tables available upon request, not shown here for brevity).

FIG. 3. Plots of the three β functions used under the alternative hypothesis.
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FIG. 4. Power plots for 4 procedures plotted against the number of points sample per curve (M).
Method L2 is ◦, PC is , PC5 is , and MV is . The left, middle and right panels correspond to
the linear, normal c.d.f. and sinusoidal signals.

The results are summarized in Figure 4. There are a few interesting patterns that
become clear upon examination. The first is that the PC5 method does quite well
in all of the settings. However, the PC method does a bit worse, as expected. This
reflects the price of having to choose the number of PCs. Our procedure’s behavior
is fairly consistent across scenarios due to the normalization of the β functions.
The smoothness of the process seems to help our method, and in the normal c.d.f.
setting we seem to do quite well, while in the sinusoidal case our method performs
slightly worse. The MV method seems to not work as well when compared to
the FDA methods. It is especially interesting to see that the multivariate approach
does worse as one adds points. This is due to the high dependence of the points
across time; increasing the number of points increases the dimension, while the
high correlation between points means the overall signal does not increase much.

We conclude this section with a closer examination of what is driving the simu-
lation results. Given the exposition in Section 3, we can gain insight by looking at
the R2 for each PC. That is, we project the Yn onto each PC and in each case look
at what proportion of the variability is explained by the covariate. In Figure 5 we
plot the theoretical R2 values against the PCs.

FIG. 5. R2 plotted against PC number.
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As we can see, the patterns provide a nice reflection of the power results. For
the normal setting, the R2 decreases with the PC number, while in the sinusoidal
setting one gets a peak at PC number 3 (because here β closely matches the 3rd
PC). The linear setting has a very interesting alternating pattern (due to the PCs
alternating as even/odd functions). When looking at plots of 〈β,vj 〉2 only (not
shown here for brevity), one sees similar patterns, but they are more subtle. It is
not until those plots are scaled by the eigenvalues that you see these very strong
patterns. An important note is that to obtain a similar looking plot empirically, that
is, using empirical R2 values, one needs a rather large sample size. For N = 200,
one will obtain a very chaotic plot. It is not until N is over 1000, or better yet
10,000, that one sees the empirical plots agreeing nicely with the theoretical ones.
This is in large part due to the difficulty in estimating eigenfunctions. Eigenvalues
are, in some sense, much easier to estimate accurately. However, the accuracy of
eigenfunction estimates depends greatly on what the eigenvalues are, and, in par-
ticular, how large and spread out the values are. The smaller an eigenvalue is, and
the closer it is to another eigenvalue, the harder the corresponding eigenfunction
becomes to estimate.

5. Application. The childhood asthma management project, CAMP, is a
multi-center, longitudinal clinical trial designed to better understand the long-term
impact of several treatments for mild to moderate asthma [The Childhood Asthma
Management Program Research Group (1999, 2000)]. Subjects, ages 5–12, with
asthma were selected, randomly assigned a particular treatment and monitored for
several years. Our data consists of 540 Caucasian subjects monitored for 4 years,
each of whom made 16 clinical visits. Genome-wide SNP data and phenotype in-
formation were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap) study
accession phs000166.v2.p1. Each subject’s first three visits are 1–2 weeks apart
and occur prior to treatment; the second two visits are 2 months apart, while the
remaining 11 visits are around 4–5 months apart. While a large number of mea-
surements are taken, we focus on the log of forced expiratory volume in one second
(FEV1), that is, the total volume of air a subject can force out of their lungs in one
second. Each subject is given one of two treatments, Budesonide and Nedocromil,
or assigned to the Placebo group. Each treatment was assigned to approximately
30% of the subjects, with the remaining 40% receiving the placebo. Trajectories
were assembled using a smoothing approach based on B-splines, the details of
which can be found in Reimherr (2013).

For each subject we have approximately six hundred and seventy thousand
SNPs genotyped after filtering out those with minor allele frequencies below 5%.
We used our procedure to test for an association between FEV1 and each SNP,
while correcting for age, gender and treatment. The model is given by (at each
time point)

log(FEV1) ∼ age + gender + treatment + SNP,

http://www.ncbi.nlm.nih.gov/gap


FDA APPROACH FOR GENETIC ASSOCIATION STUDIES 419

FIG. 6. Manhattan plot of GWAS p-values across chromosomes.

where we take age to be the age of the patient at the beginning of the study. A Man-
hattan plot summarizing all the p-values across chromosomes is given in Figure 6
and a QQ-plot on the log10 scale is given in Figure 7. Examining the QQ-plot,
we can see that the procedure is well calibrated, as the p-values smaller than
0.001 fall directly on the 45 degree line, while there are also some very small
p-values indicating some genetic associations. We found one SNP with a p-value
of 1.016 × 10−8: rs12734254 in gene ST6GALNAC5 on chromosome 1 (signif-
icant at the 5% significance level with a Bonferroni correction). A plot of the es-

FIG. 7. QQ-plot comparing GWAS p-values (y-axis, observed) to uniform distribution (x-axis,
expected) on log10 scale.
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FIG. 8. The left panel is a plot of the SNP (rs12734254) effect with pointwise confidence intervals
included as dashed lines. The right panel is a plot of the SNP by treatment interaction with Placebo
set as the baseline (in red), Budesonide is given by the solid line, and Nedocromil as the dashed. We
include grey vertical lines indicating the time of the visits.

timated coefficient function is given in Figure 8. As we can see, presence of the
minor allele (frequency 41.63%) is associated with a decrease in lung function
which worsens with time. The magnitude of the p-value remained the same for
different levels of smoothing in the preprocessing step, thus, the finding is fairly
robust against the initial level of smoothing.

Next, we tested if that SNP also had an interaction effect with treatment; we
found a p-value of 0.00284. Since we used significance of the main effects as
type of screening before testing for an interaction (which resulted in one test),
we do not need to make a correction for multiple testing and, thus, the p-value
gives strong evidence that there is a SNP by treatment interaction. In Figure 8 we
plot the SNP by treatment interaction effect so that we can better understand the
nature of the interaction (with the placebo group set as the baseline). As we can
see, the interaction seems to be driven by the difference between the Budesonide
group and the Nedocromil group. The Nedocromil group has a stronger decreasing
trend, while the Budesonide effect is actually positive. Thus, the presence of the
minor allele suggests that Budesonide might in fact have a positive impact on lung
function or that at least Budesonide can counter the effects of the deleterious SNP.

To illustrate the power gained by using the FDA approach, we compared it to
a univariate approach. If instead of using our approach we take the difference be-
tween the endpoints and perform the same type of association analysis (but now
with a scalar response), the p-value for our SNP effect becomes 0.002 and the
p-value for the interaction test becomes 0.135. Since this is our top SNP, we would
expect the p-value for the scalar approach to be smaller, but the drop in p-value
is still quite large. More generally, one does not need an FDA approach to exploit
the temporal structure in longitudinal data, but it does give a natural framework in
which to do it. The potential power gains made by meaningfully pooling across
coordinates should be a serious consideration in any longitudinal approach.



FDA APPROACH FOR GENETIC ASSOCIATION STUDIES 421

Finally, we note that when using an FDA approach based on PCA we ran into
some interesting stability issues. In particular, we would on occasion see some very
large signals coming from a SNP where the rare allele was only present in a few
individuals, making the result unreliable and suspicious. Upon closer examination,
it seemed as though the PCs corresponding to smaller eigenvalues were the culprit.
This was likely due to the inherent noise in those eigenfunctions which may have
been driven by a small number of individuals. Typically, this would not obviously
be problematic, but when carrying out a GWAS with hundreds of thousands of
SNPs it is possible to come upon a SNP present only in those individuals which
are driving the smaller PCs.

6. Discussion. We have presented a new method based on functional data
analysis for detecting genetic associations with longitudinal variables. FDA meth-
ods allow for a flexible framework that exploits the temporal structure of the data
which can result in increased power. Two primary advantages of our particular ap-
proach over a PCA-based test is that one does not need to choose the number of
principal components (while still maintaining excellent power) and the interpreta-
tion of the results is not tied to the interpretability of the shapes of the PCs, which
can be especially challenging for the nonleading eigenfunctions. Furthermore, we
have found our procedure to be substantially more stable than a PC-based method.
This became crucial when conducting hundreds of thousands of tests. We showed
how the smoothness of the trajectories and underlying parameter functions deter-
mine the power of our procedure, as well as traditional PCA-based methods, as
compared to a multivariate approach. In particular, our simulations reinforced the
current FDA paradigm: the smoother the objects, the greater the advantage of FDA
procedures.

We applied our methodology to data coming from the childhood asthma man-
agement study (CAMP). We showed how an association test can be carried out
which measures the effect of a SNP on a functional object, while correcting for
other covariates. We then followed that test up with an interaction test. Interest-
ingly, we found a mildly significant SNP effect with a significant drug by SNP
interaction effect. Such results are of great interest due to the impact they can have
on choosing treatment courses for patients.

A useful area for improvement would be to develop a method for estimat-
ing/incorporating the interpolation error from the preprocessing step. In high fre-
quency settings such an error is typically very small, but in longitudinal settings
where one has a relatively small number of observations per subject, the error can
be significant. Indeed, for a very small number of points per curve (2–4) the in-
terpolation error would be so large that classical multivariate methods or methods
based on pooled nonparametric smoothers might be more appropriate. Accounting
for this error would hopefully help with power and parameter estimation.

We would be excited to see more FDA methodology developed that does not
directly depend on PCA. While we have presented a method based on L2 norms,
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it would be interesting to see how one could account for processes whose covari-
ance changes substantially over time. We mentioned the idea of standardizing the
functions to have unit variance at every time point. However, it is still unclear how
one could take into account the covariance between time points. Indeed, it might
be desirable to give less weight to temporal regions with high dependence, since
they, in some sense, carry less information than regions with lower dependence.

We believe FDA to be a very interesting and promising method for exploit-
ing the temporal structure in longitudinal studies. The problems facing geneticists
are quite challenging due to the sheer abundance of noise inherent in their data.
To help overcome this noise, researchers are constantly finding new ways of ex-
ploiting information and structure. Here we have shown how an FDA method can
exploit a temporal structure to achieve better power. Furthermore, the results are
still interpretable as we are, in essence, focusing on large scale patterns. Thus, as
we saw in our application, we were able to deliver powerful results with inter-
pretable conclusions. While the FDA toolbox is expanding rapidly, very little has
been done which tailors FDA techniques for genetic studies. We hope that we have
taken a meaningful step in this direction.

APPENDIX A: ASYMPTOTIC RESULTS

In this section we provide the explicit underlying assumptions and asymptotic
results which justify the behavior of our procedure under the null and alternative
hypotheses.

Single predictor.

ASSUMPTION 1. Assume we have the following relationship:

Y(t) = β(t)X + ε(t),

where X and ε are random and take values in R and L2[0,1], respectively. Assume
that β ∈ L2[0,1] and that the following moment conditions hold:

EX = 0, E
[
ε(t)

] = 0, EX2 < ∞ and E‖ε‖2 < ∞.

Finally, assume that (X1, Y1), . . . , (XN,YN) are i.i.d. copies of (X,Y ).

THEOREM 1. If Assumptions 1 holds, then
√

N(β̂ − β)
D→ Z,

where Z is a mean zero Gaussian process in L2[0,1] with covariance operator

E[ε ⊗ ε]
E[X2] .
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THEOREM 2. If Assumptions 1 holds and β = 0, then

�
D→

∞∑
i=1

λiχ
2
i (1),

where {λi} are the eigenvalues of the covariance operator of ε and {χ2
i (1)} are

i.i.d. chi-squared 1 random variables. If β 	= 0 (in an L2 sense), then

� = NE
[
X2]‖β‖2 + OP (1).

THEOREM 3. If Assumption 1 holds, then

Ĉε := 1

N − 1

N∑
n=1

(Yn − Xnβ̂) ⊗ (Yn − Xnβ̂)
P→ Cε,

where convergence occurs in the space of Hilbert–Schmidt operators and, conse-
quently,

sup
1≤i<∞

|λ̂i − λi | ≤ ‖Ĉε − Cε‖ P→ 0,

where {λ̂i} are the eigenvalues of Ĉε . If in addition E‖εn‖4 < ∞, then
√

N(Ĉε − Cε)
D→ N (0,�),

where � = E[(ε1 ⊗ ε1 − Cε) ⊗ (ε1 ⊗ ε1 − Cε)]. Consequently, one has that

sup
1≤i<∞

|λ̂i − λi | ≤ ‖Ĉε − Cε‖ = OP

(
N−1/2)

.

Multiple predictors.

ASSUMPTION 2. Assume we have the following relationship:

Yn(t) = α(t) +
J∑

j=1

β1,j (t)X1,j ;n +
K∑

k=1

β2,k(t)X2,k;n + εn(t)

= α(t) + XT
1,nβ1(t) + XT

2,nβ2(t) + εn(t),

where J and K are fixed integers and X1,n,X2,n and ε are random and take val-
ues in R

J , RK and L2[0,1], respectively. Assume that {β1,j } and {β2,k} are el-
ements of L2[0,1] and that E‖ε‖2 < ∞. Let XT

n = (1,XT
1,n,XT

2,n) and assume
that E[XT

n Xn] = �X exists and has full rank. Last, assume that {X1, . . . ,XN }
and {ε1, . . . , εN } are two i.i.d. sequences, independent of each other, and that
E[εn(t)] = 0.
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THEOREM 4. If Assumptions 2 holds and β2 = 0, then

�
D→

∞∑
i=1

λiχ
2
i (K),

where {λi} are the eigenvalues of the covariance operator of ε and {χ2
i (K)} are

i.i.d. chi-squared K random variables. If β2 	= 0, then

� = N

∫
β2(t)

T �X,2 : 1β2(t) + OP (1),

where �X,2 : 1 is the Schur complement

�X,2 : 1 = �X,22 − �X,21�
−1
X,11�X,12.

THEOREM 5. If Assumptions 2 holds, then
√

N(β̂ − β)
D→ N

(
0,�−1Cε

)
,

where convergence occurs with respect to the product space (L2[0,1])N . Further-
more, we have

Ĉε := 1

N − 1 − J − K

N∑
n=1

(Yn − Xnβ̂) ⊗ (Yn − Xnβ̂)
P→ Cε,

where convergence occurs in the space of Hilbert–Schmidt operators and, conse-
quently,

sup
1≤i<∞

|λ̂i − λi | ≤ ‖Ĉε − Cε‖ P→ 0,

where {λ̂i} are the eigenvalues of Ĉε . If in addition E‖εn‖4 < ∞, then
√

N(Ĉε − Cε)
D→ N (0,�),

where � = E[(ε1 ⊗ ε1 − Cε) ⊗ (ε1 ⊗ ε1 − Cε)]. Consequently, one has

sup
1≤i<∞

|λ̂i − λi | ≤ ‖Ĉε − Cε‖ = OP

(
N−1/2)

.

APPENDIX B: PROOFS

Since the simpler single predictor scenario is a special case of the more general
setting, we will only prove the more general theorems.

PROOF OF THEOREM 4. In matrix form we can express the model as

Y(t) = X1β1(t) + X2β2(t) + ε(t) = Xβ(t) + ε(t).
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We use the least squares estimators

β̂(t) = (
XT X

)−1XT Y(t) β̂1(t) = (
XT

1 X1
)−1XT

1 Y(t).

We define our test statistic as

�2 =
N∑

n=1

∥∥Yn(t) − XT
1,nβ̂1(t)

∥∥2 −
N∑

n=1

∥∥Yn(t) − XT
n β̂(t)

∥∥2
.

The sum of squared residuals based on X can now be expressed as

(
Y(t) − Xβ̂(t)

)T (
Y(t) − Xβ̂(t)

)

= (
ε(t) − X

(
XT X

)−1XT ε(t)
)T (

ε(t) − X
(
XT X

)−1XT ε(t)
)

= ε(t)T ε(t) − ε(t)T X
(
XT X

)−1Xε(t).

The residuals using only X1 can be expressed as

Y(t) − X1β̂1(t)

= Xβ(t) + ε(t) − X1
(
XT

1 X1
)−1XT

1 Y(t)

= Xβ(t) + ε(t) − X1
(
XT

1 X1
)−1XT

1 Xβ(t) − X1
(
XT

1 X1
)−1XT

1 ε(t)

= X2β2(t) + ε(t) − X1
(
XT

1 X1
)−1XT

1 X2β2(t) − X1
(
XT

1 X1
)−1XT

1 ε(t).

So the sum of squared residuals is (after expanding and combining like terms)

β2(t)
T XT

2 X2β2(t) + ε(t)T ε(t) − β2(t)
T XT

2 X1
(
XT

1 X1
)−1XT

1 X2β2(t)

− ε(t)T X1
(
XT

1 X1
)−1XT

1 ε(t) + 2βT
2 (t)XT

2 ε(t)

− 2β2(t)
T XT

2 X1
(
XT

1 X1
)−1XT

1 ε(t).

By examining the orders of each of the terms, one can verify that for β2 	= 0 we
have

�2 = N

∫
β2(t)

T �X,2 : 1β2(t) dt + OP (1).

Since �X has full rank, �X,2 : 1 is positive definite. Therefore, under the alternative
we have

�2 → ∞.

Under the null β2 = 0, the sum of squared residuals becomes

ε(t)T ε(t) − ε(t)T X1
(
XT

1 X1
)−1XT

1 ε(t).
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Therefore, the reduction in the sum of squared residuals by including X2 is given
by

ε(t)T X
(
XT X

)−1XT ε(t) − ε(t)T X1
(
XT

1 X1
)−1XT

1 ε(t)

= ε(t)T
[
X

(
XT X

)−1XT − X1
(
XT

1 X1
)−1XT

1
]
ε(t).

Using the Hilbert space CLT, we have that

N−1/2XT ε(t)
D→ Z(t),

where Z(t) is a vector of Gaussian processes that can be expressed as

Z(t) = �
1/2
X Z′(t),

where Z′(t) is a vector of i.i.d. Gaussian processes with covariance functions
E[εn(t)εn(s)]. Therefore, the reduction in the sum of squared residuals (by the
continuous mapping theorem and Slutsky’s lemma) is asymptotically equal in dis-
tribution to

Z′(t)T AZ′(t),

where

A = I − �1/2
x

(
�−1

x,11 0

0 0

)
�1/2

x .

Notice that A is in fact a projection matrix with rank

rank(A) = trace(A) = (K + J ) − J = K.

Therefore, we have that

Z′(t)T AZ′(t) D=
K∑

k=1

Z′
k(t)

2.

This implies that the asymptotic distribution of �2 is now a weighted sum of
χ2(K) random variables. �

PROOF OF THEOREM 5. We start by showing the asymptotic normality of β̂ .
Notice we can express

√
N

(
β̂(t) − β(t)

) = √
N

(
XT X

)−1XT Y(t) = (
N−1XT X

)−1(
N−1/2XT Y(t)

)
.

By the multivariate law of large numbers,

N−1XT X → �X.

By the CLT for Hilbert spaces,

XT Y
D→ N (0,�C).
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So by Slutsky’s lemma,
√

N(β̂ − β)
D→ N

(
0,�−1C

)
as desired.

Next, turning to the estimate of the covariance operator for the error terms, we
have

Ĉε = 1

N − 1 − J − K

N∑
n=1

(Yn − Xnβ̂) ⊗ (Yn − Xnβ̂)

= 1

N − 1 − J − K

N∑
n=1

(
εn − Xn(β̂ − β)

) ⊗ (
εn − Xn(β̂ − β)

)
.

Examining the pieces, we have that
N∑

n=1

Xn(β̂ − β) ⊗ εn =
N∑

n=1

Xn(β̂ − β) ⊗ εn = OP (1)

by combining the convergence rate of β̂ and the Hilbert space CLT. Next we have
N∑

n=1

Xn(β̂ − β) ⊗ Xn(β̂ − β) = OP (1)

by combining the convergence rate of β̂ and the multivariate law of large numbers.
Therefore, we can conclude

Ĉε = N−1
N∑

n=1

εn ⊗ εn + OP

(
N−1)

.

We then immediately have that

Cε
P→ Cε

by the Hilbert space law of large numbers. Notice that

‖εn ⊗ εn‖2 =
∫ ∫

εn(t)
2εn(s)

2 dt ds = ‖εn‖4.

Therefore, E‖εn‖4 < ∞ implies that E‖εn ⊗ εn‖2 < ∞ and by the Hilbert space
CLT we can conclude that √

N(Ĉε − Cε) → N(0,�),

where

� = E
[
(εn ⊗ εn − Cε) ⊗ (εn ⊗ εn − Cε)

]
.

To obtain the final claim, we apply Corollary 4.5 on page 252 of Gohberg, Gold-
berg and Kaashoek (2003), which gives

|λ̂i − λi | ≤ ‖Ĉε − Cε‖. �
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