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By Arnoud V. den Boer∗,‡ and Bert Zwart†,§

University of Twente‡, Centrum Wiskunde & Informatica (CWI)§

In this note we study the behavior of maximum quasilikelihood
estimators (MQLEs) for a class of statistical models, in which only
knowledge about the first two moments of the response variable is
assumed. This class includes, but is not restricted to, generalized lin-
ear models with general link function. Our main results are related to
guarantees on existence, strong consistency and mean square conver-
gence rates of MQLEs. The rates are obtained from first principles
and are stronger than known a.s. rates. Our results find important
application in sequential decision problems with parametric uncer-
tainty arising in dynamic pricing.

1. Introduction.

1.1. Motivation. We consider a statistical model of the form

E [Y (x)] = h(xTβ(0)), Var(Y (x)) = v(E [Y (x)]),(1)

where x ∈ R
d is a design variable, Y (x) is a random variable whose dis-

tribution depends on x, β(0) ∈ R
d is an unknown parameter, and h and v

are known functions on R. Such models arise, for example, from generalized
linear models (GLMs), where in addition to (1) one requires that the distri-
bution of Y (x) comes from the exponential family (cf. Nelder and Wedder-
burn (1972), McCullagh and Nelder (1983), Gill (2001)). We are interested
in making inference on the unknown parameter β(0).

In GLMs, this is commonly done via maximum-likelihood estimation.
Given a sequence of design variables x1, . . . , xn and observed responses
y1, . . . , yn, where each yi is a realization of the random variable Y (xi),
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the maximum-likelihood estimator (MLE) β̂n is a solution to the equation
ln(β) = 0, where ln(β) is defined as

ln(β) =
n
∑

i=1

ḣ(xTi β)

v(h(xTi β))
xi(yi − h(xTi β)),(2)

and where ḣ denotes the derivative of h.
As discussed by Wedderburn (1974) and McCullagh (1983), if one drops

the requirement that the distribution of Y (x) is a member of the exponential
family, and only assumes (1), one can still make inference on β by solving
ln(β) = 0. The solution β̂n is then called a maximum quasi-likelihood esti-
mator (MQLE) of β(0).

In this note, we are interested in the quality of the estimate β̂n for models
satisfying (1) by considering the expected value of ||β̂n − β(0)||2, where || · ||
denotes the Euclidean norm. An important motivation comes from recent
interest in sequential decision problems under uncertainty, in the field of dy-
namic pricing and revenue management (Besbes and Zeevi, 2009, Araman
and Caldentey, 2011, den Boer and Zwart, 2013, den Boer, 2013, Broder and
Rusmevichientong, 2012). In such problems, one typically considers a seller
of products, with a demand distribution from a parametrized family of distri-
butions. The goal of the seller is twofold: learning the value of the unknown
parameters, and choosing selling prices as close as possible to the optimal
selling price. The quality of the parameter estimates generally improves in
presence of price variation, but that usually has negative effect on short-term
revenue. Recently, there has been much interest in designing price-decision
rules that optimally balance this so-called exploration-exploitation trade-off.
The performance of such decision rules are typically characterized by the re-
gret, which is the expected amount of revenue lost caused by not choosing
the optimal selling price. For the design of price-decision rules and evalua-
tion of the regret, knowledge of the behavior of E[||β̂n − β(0)||2] is of vital
importance.

1.2. Literature. Although much literature is devoted to the (asymptotic)
behavior of maximum (quasi-)likelihood estimators for models of the form
(1), practically all of them focus on a.s. upper bounds on ||β̂n−β(0)|| instead
of mean square bounds. The literature may be classified according to the
following criteria:

1. Assumptions on (in)dependence of design variables and error terms.
The sequence of vectors (xi)i∈N is called the design, and the error
terms (ei)i∈N are defined as

ei = yi − h(xTi β
(0)), (i ∈ N).
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Typically, one either assumes a fixed design, with all xi non-random
and the ei mutually independent, or an adaptive design, where the
sequence (ei)i∈N forms a martingale difference sequence w.r.t. its nat-
ural filtration and where the design variables (xi)i∈N are predictable
w.r.t. this filtration. This last setting is appropriate for sequential de-
cision problems under uncertainty, where decisions are made based on
current parameter-estimates.

2. Assumptions on the dispersion of the design vectors.
Define the design matrix

Pn =

n
∑

i=1

xix
T
i ,(3)

and denote by λmin(Pn), λmax(Pn) the smallest and largest eigenvalues
of Pn. Bounds on ||β̂n−β(0)|| are typically stated in terms of these two
eigenvalues, which in some sense quantify the amount of dispersion in
the sequence (xi)i∈N.

3. Assumptions on the link function.
In GLM terminology, h−1 is called the link function. It is called canon-
ical or natural if ḣ = v ◦ h, otherwise it is called a general or non-
canonical link function. The quasi-likelihood equations (2) for canon-
ical link functions simplify to ln(β) =

∑n
i=1 xi(yi − h(xTi β)) = 0.

To these three sets of assumptions, one usually adds smoothness conditions
on h and v, and assumptions on the moments of the error terms.

An early result on the asymptotic behavior of solutions to (2), is from
Fahrmeir and Kaufmann (1985). For fixed design and canonical link func-
tion, provided λmin(Pn) = Ω(λmax(Pn)

1/2+δ) a.s. for a δ > 0 and some other
regularity assumptions, they prove asymptotic existence and strong consis-
tency of (β̂n)n∈N (their Corollary 1; for the definition of Ω(·), O(·) and o(·),
see the next paragraph on notation). For general link functions, these results
are proven assuming λmin(Pn) = Ω(λmax(Pn)) a.s. and some other regularity
conditions (their Theorem 5).

Chen et al. (1999) consider only canonical link functions. In the fixed
design case, they obtain strong consistency and convergence rates

||β̂n − β(0)|| = o({(log(λmin(Pn)))
1+δ/λmin(Pn)}1/2) a.s.,

for any δ > 0; in the adaptive design case, they obtain convergence rates

||β̂n − β(0)|| = O({(log(λmax(Pn))/λmin(Pn)}1/2) a.s.(4)
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Their proof however is reported to contain a mistake, see Zhang and Liao
(2008, page 1289). These latter authors show for the case of fixed designs
and canonical link functions that ||β̂n − β(0)|| = Op(λmin(Pn)

−1/2), pro-
vided λmin(Pn) = Ω(λmax(Pn)

1/2) a.s. and other regularity assumptions.
Zhu and Gao (2013) extend these result to adaptive designs and prove
||β̂n − β(0)|| = op(λmin(Pn)

−1/2+δ), for arbitrarily small δ > 0. A.s. bounds
on the estimation error in this setting are obtained by Zhang et al. (2011)
who show

||β̂n − β(0)|| = O(λmax(Pn)
1/2(log(λmax(Pn)))

δ/2λmin(Pn)
−1) a.s.,(5)

for arbitrarily small δ > 0.
Chang (1999) extends (4) to a setting with general link functions and

adaptive designs, under the additional condition λmin(Pn) = Ω(nα) a.s. for
some α > 1/2. His proof however appears to contain a mistake, see Remark 1.
In a similar setting, Yue and Chen (2004) derive convergence rates

||β̂n − β(0)|| = O({n log(log(λmax(Pn)))}1/2/nδ) a.s.,(6)

assuming λmin(Pn) = Ω(n3/4+δ) for some δ > 0. Under weaker conditions on
the growth rate of λmin(Pn) and on the moments of the error terms ei, Yin
et al. (2008) extend Yue and Chen (2004) to a setting with adaptive design,
general link function, and multivariate response data. They obtain strong
consistency and a.s. convergence rates

||β̂n − β(0)|| = o

(

{λmax(Pn) log(λmax(Pn))}1/2{log(log(λmax(Pn)))}1/2+δ

λmin(Pn)

)

(7)

for δ > 0, under assumptions on λmin(Pn), λmax(Pn) that ensure that this
asymptotic upper bound is o(1) a.s. Note that, since λmax(Pn) = O(n) for
uniformly bounded designs, the rates in (7) imply the rates in (6) up to
logarithmic terms.

1.3. Assumptions and contributions. In contrast with the literature dis-
cussed above, we study bounds for the expected value of ||β̂n − β(0)||2. The
design is assumed to be adaptive; i.e. the error terms (ei)i∈N form a martin-
gale difference sequence w.r.t. the natural filtration {Fi}i∈N, and the design
variables (xi)i∈N are predictable w.r.t. this filtration. For applications of our
results to sequential decision problems, where each new decision can depend
on the most recent parameter estimate, this is the appropriate setting to
consider. In addition, we assume supi∈NE[e2i | Fi−1] ≤ σ2 < ∞ a.s. for some
σ > 0, and supi∈N E[|ei|r] < ∞ for some r > 2.
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We consider general link functions, and only assume that h and v are
thrice continuously differentiable with ḣ(z) > 0, v(h(z)) > 0 for all z ∈ R.
Concerning the design vectors (xi)i∈N, we assume that they are contained
in a bounded subset X ⊂ R

d. Let λ1(Pn) ≤ λ2(Pn) denote the two smallest
eigenvalues of the design matrix Pn (if the dimension d of β(0) equals 1,
write λ2(Pn) = λ1(Pn)). We assume that there is a (non-random) n0 ∈ N

such that Pn0 is invertible, and there are (non-random) functions L1, L2 on
N such that for all n ≥ n0: λ1(Pn) ≥ L1(n), λ2(Pn) ≥ L2(n), and

L1(n) ≥ cnα, for some c > 0,
1

2
< α ≤ 1 independent of n.(8)

Based on these assumptions, we obtain three important results concerning
the asymptotic existence of β̂n and bounds on E[||β̂n − β(0)||2]:

1. First, notice that a solution to (2) need not always exist. Following
Chang (1999), we therefore define the last-time that there is no solution
in a neighborhood of β(0):

Nρ = sup

{

n ≥ n0 :
there exists no β ∈ R

d with ln(β) = 0

and ||β̂n − β(0)|| ≤ ρ

}

.

For all sufficiently small ρ > 0, we show in Theorem 1 that Nρ is finite
a.s., and provide sufficient conditions such that E[Nη

ρ ] < ∞, for η > 0.
2. In Theorem 2, we provide the upper bound

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2
1n>Nρ

]

= O

(

log(n)

L1(n)
+

n(d− 1)2

L1(n)L2(n)

)

,(9)

where 1n>Nρ denotes the indicator function of the event {n > Nρ}.
3. In case of a canonical link function, Theorem 3 improves these bounds

to

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2
1n>Nρ

]

= O

(

log(n)

L1(n)

)

.(10)

This improvement clearly is also valid for general link functions pro-
vided d = 1. It also holds if d = 2 and ||xi|| is bounded from below by
a positive constant (see Remark 2).

Our L2 bounds (9) are sharper than the (a.s.) bounds derived by Yin
et al. (2008). With bounded regressors that are bounded away from zero
(a minor condition, since in most applications an intercept term is present
in the regressors), the bounds of Yin et al. (2008, Theorem 2.1) reduce to

||β̂n − β(0)||2 = o

(

n log(n) log(log(n))1+2δ

λmin(n)2

)

a.s., for some δ > 0.(11)
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For d = 1 or d = 2, our convergence rates improve the rate (ignoring to
logarithmic factors) of Yin et al. (2008) by a factor n/L1(n). For general d >
1, our convergence rates improve (11) (up to logarithmic factors) whenever
L2(n)/L1(n) → ∞ as n → ∞. And if L2(n) ∼ L1(n), then our rates still
(modestly) improve (11) by removing logarithmic factors. Note that these
improvements are not just theoretical constructs, but have practical value.
For example, for the case d = 1 or 2, Keskin and Zeevi (2013) and den Boer
and Zwart (2013) show for certain dynamic pricing problems that a design
satisfying L1(n) ∼ n1/2 is optimal. Such conclusions can not be obtained
from the rates (11).

Our results also differ from Yin et al. (2008) in terms of proof techniques.
For general link functions, our starting point is a corollary of the Leray-
Schauder theorem to ensure existence of the MQLE; we subsequently bound
moments of last-time random variables, use Taylor approximations, apply
martingale techniques, and deploy a result (Lemma 7) on the magnitude of
solutions to certain quadratic equations. The proof of Yin et al. (2008) starts
from a different topological result (a corollary of Brouwer’s domain invariant
mapping theorem, Dugundji (1966)), and arrives at different convergence
rates. Because our L2 bounds are in general sharper than existing a.s. bounds
(Equations (5), (6), (7)), an attempt to derive our results from these bounds
(e.g. using an uniform-integrability argument) would lead to weaker results
than what we derive from first principles.

An important intermediate result in proving our main theorems is Propo-
sition 2, where we derive

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

xix
T
i

)−1 n
∑

i=1

xiei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= O

(

log(n)

L(n)

)

,

for any function L that satisfies λmin(
∑n

i=1 xix
T
i ) ≥ L(n) > 0 for all suffi-

ciently large n. This actually provides bounds on mean square convergence
rates in least-squares linear regression, and forms the counterpart of Lai and
Wei (1982) who prove similar bounds in an a.s. setting.

Another auxiliary result derived in this paper is Lemma 4, which shows
that the maximum of a martingale (Si)i∈N w.r.t. a filtration {Fi}i∈N satisfies

P

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤ 2P
(

|Sn| ≥ ǫ−
√
2σ2n

)

, (n ∈ N, ǫ > 0),(12)

where supi∈NE[(Si+1 − Si)
2 | Fi−1] ≤ σ2 < ∞ a.s. This result extends a

similar statement on i.i.d. random variables found in Loève (1977a, Section
18.1C, page 260), and may be of independent interest to the reader.
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1.4. Applications. Our results find important application in dynamic
pricing problems. In these problems a seller tries to estimate from data
the revenue-maximizing selling price for a particular product. To this end,
the seller estimates unknown parameters β(0) of a parametric model that
describes customer behavior. Let r(β) denote the expected revenue when
the seller uses the selling price that is optimal w.r.t. parameter estimate
β. In many settings, the expected revenue loss E[r(β(0))− r(β̂n)] caused by
estimation errors is quadratic in ||β(0)− β̂n||. Our theorems 1 and 2 can then
be used to bound this loss:

E
[∣

∣

∣

∣

∣

∣r(β(0))− r(β̂n)
∣

∣

∣

∣

∣

∣

]

= O
(

E
[∣

∣

∣

∣

∣

∣
r(β(0))− r(β̂n)

∣

∣

∣

∣

∣

∣
1n>Nρ

]

+ E
[∣

∣

∣

∣

∣

∣
r(β(0))− r(β̂n)

∣

∣

∣

∣

∣

∣
1n≤Nρ

])

= O

(

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2
1n>Nρ

]

+
E [Nη

ρ ]

nη
max
β

∣

∣

∣

∣

∣

∣
r(β)− r(β(0))

∣

∣

∣

∣

∣

∣

2
)

= O

(

log(n)

L1(n)
+ n−η

)

.

In dynamic pricing problems, such arguments are used to design optimal
decision policies, cf. den Boer and Zwart (2013). These type of arguments
can also be applied to other sequential decision problems with paramet-
ric uncertainty, where the objective is to minimize the regret; for example
the multiperiod inventory control problem (Anderson and Taylor (1976),
Lai and Robbins (1982)) or for parametric variants of bandit problems
(cf. Goldenshluger and Zeevi, 2009, Rusmevichientong and Tsitsiklis, 2010).

In his review on experimental design and control problems, Pronzato
(2008, page 18, Section 9) mentions that existing consistency results for
adaptive design of experiments are usually restricted to models that are lin-
ear in the parameters. The class of statistical models that we consider is
much larger than only linear models; it includes all models satisfying (1).
Our results may therefore also find application in the field of sequential
design of experiments.

1.5. Organization of the paper. The rest of this paper is organized as
follows: Section 2 contains our results concerning the last-time Nρ and upper

bounds on E[||β̂n −β(0)||21n>Nρ ], for general link functions. In Section 3 we
derive these bounds in the case of canonical link functions. Section 4 contains
the proofs of the assertions in Section 2 and 3. In the appendix, Section 4,
we collect and prove several auxiliary results which are used in the proofs
of the theorems of Sections 2 and 3.
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Notation. For ρ > 0, let Bρ = {β ∈ R
d | ||β − β(0)|| ≤ ρ} and ∂Bρ =

{β ∈ R
d | ||β − β(0)|| = ρ}. The closure of a set S ⊂ R

d is denoted by S̄,
the boundary by ∂S = S̄\S. For x ∈ R, ⌊x⌋ denotes the largest integer that
does not exceed x. The Euclidean norm of a vector y is denoted by ||y||. The
norm of a matrix A equals ||A|| = maxz:||z||=1 ||Az||. The 1-norm and ∞-

norm of a matrix are denoted by ||A||1 and ||A||∞. yT denotes the transpose
of a vector or matrix y. If f(x), g(x) are functions with domain in R and
range in (0,∞), then f(x) = O(g(x)) means there exists a K > 0 such that
f(x) ≤ Kg(x) for all x ∈ N, f(x) = Ω(g(x)) means g(x) = O(f(x)), and
f(x) = o(g(x)) means limx→∞ f(x)/g(x) = 0.

2. Results for general link functions. In this section we consider
the statistical model introduced in Section 1.1 for general link functions h,
under all the assumptions listed in Section 1.3. The first main result is The-
orem 1, which shows finiteness of moments of Nρ0 . The second main result
is Theorem 2, which proves asymptotic existence and strong consistency of
the MQLE, and provides bounds on the mean square convergence rates.

Our results on the existence of the quasi-likelihood estimate β̂n are based
on the following fact, which is a consequence of the Leray-Schauder theorem
(Leray and Schauder, 1934).

Lemma 1 (Ortega and Rheinboldt, 2000, 6.3.4, page 163). Let C be an
open bounded set in R

n, F : C̄ → R
n a continuous mapping, and (x −

x0)
TF (x) ≥ 0 for some x0 ∈ C and all x ∈ ∂C. Then F (x) = 0 has a

solution in C̄.

This lemma yields a sufficient condition for the existence of β̂n in the
proximity of β(0) (recall the definitions Bρ = {β ∈ R

d | ||β − β(0)|| ≤ ρ} and
∂Bρ = {β ∈ R

d | ||β − β(0)|| = ρ}):

Corollary 1. For all ρ > 0, if supβ∈∂Bρ
(β−β(0))T ln(β) ≤ 0 then there

exists a β ∈ Bρ with ln(β) = 0.

A first step in applying Corollary 1 is to provide an upper bound for

(β−β(0))T ln(β). To this end, write g(x) = ḣ(x)
v(h(x)) , and choose a ρ0 > 0 such

that (c2 − c1c3ρ) ≥ c2/2 for all 0 < ρ ≤ ρ0, where

c1 = sup
x∈X,
β∈Bρ0

1

2
|g̈(xTβ)| ||x|| , c2 = inf

x∈X,

β,β̃∈Bρ0

g(xTβ)ḣ(xT β̃),

(13)
c3 = sup

i∈N
E[|ei| | Fi−1].
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The existence of such a ρ0 follows from the fact that ḣ(x) > 0 and g(x) > 0
for all x ∈ R, together with the continuity assumptions on h and g.

Lemma 2. Let 0 < ρ ≤ ρ0, β ∈ Bρ, n ∈ N, and define

An =

n
∑

i=1

g(xTi β
(0))xiei, Bn =

n
∑

i=1

ġ(xTi β
(0))xix

T
i ei,

Jn = c1

n
∑

i=1

(|ei| − E[|ei| | Fi−1])xix
T
i .

Then (β − β(0))T ln(β) ≤ Sn(β) − (c2/2)(β − β(0))TPn(β − β(0)), where the
martingale Sn(β) is defined as

Sn(β) = (β − β(0))TAn + (β − β(0))TBn(β − β(0))

+
∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣
(β − β(0))TJn(β − β(0)).

Following Chang (1999), define the last-time

Nρ = sup{n ≥ n0 | there is no β ∈ Bρ s.t. ln(β) = 0}.

The following theorem shows that the η-th moment of Nρ is finite, for 0 <
ρ ≤ ρ0 and sufficiently small η > 0. Recall our assumptions supi∈NE[|ei|r] <
∞, for some r > 2, and λmin(Pn) ≥ L1(n) ≥ cnα, for some c > 0, 1

2 < α ≤ 1
and all n ≥ n0.

Theorem 1. Nρ < ∞ a.s., and E[Nη
ρ ] < ∞ for all 0 < ρ ≤ ρ0 and

0 < η < rα− 1.

Remark 1. Chang (1999) also approaches existence and strong consis-
tency of β̂n via application of Corollary 1. To this end, he derives an upper
bound An + Bn + Jn − nαǫ∗ for (β − β(0))T ln(β), cf. his equation (21). He
proceeds to show that for all β ∈ ∂Bρ the last time that this upper bound
is positive, has finite expectation (cf. his equation (22)). However, to de-
duce existence of β̂n ∈ Bρ from Corollary 1, one needs to prove (in Chang’s
notation)

E [sup{n ≥ 1 | ∃β ∈ ∂Bρ : An +Bn + Jn − nαǫ∗ ≥ 0}] < ∞,(14)

but Chang proves

∀β ∈ ∂Bρ : E [sup{n ≥ 1 | An +Bn + Jn − nαǫ∗ ≥ 0}] < ∞.

(Here the terms An, Bn, Jn and ǫ∗ depend on β).
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Our ideas are also different from Chang in the following sense: to prove
(14), we show that T is bounded from above by a sum of last-time ran-
dom variables, and repeatedly apply the cr-inequality and Proposition 1,
contained in the Appendix. This proposition shows finiteness of moments
of last-time random variables, and is based on a Baum-Katz-Nagaev type
theorem (Lemma 5) by Stoica (2007), and on bounds on tail probabilities of
the maximum of a martingale (Lemma 4, which extends a similar result by
Loève (1977a, Section 18.1C, page 260) on sums of i.i.d. random variables).

The following theorem shows asymptotic existence and strong consistency
of β̂n, and provides mean square convergence rates.

Theorem 2. Let 0 < ρ ≤ ρ0. For all n > Nρ there exists a solution

β̂n ∈ Bρ to ln(β) = 0, and limn→∞ β̂n = β(0) a.s. Moreover,

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2
1n>Nρ

]

= O

(

log(n)

L1(n)
+

n(d− 1)2

L1(n)L2(n)

)

.(15)

Remark 2. If d = 1 then the term n(d−1)2

L1(n)L2(n)
in (15) vanishes. If d = 2,

the next to smallest eigenvalue λ2(Pn) of Pn is actually the largest eigenvalue
of Pn. If in addition infi∈N ||xi|| ≥ dmin > 0 a.s. for some dmin > 0, then

λmax(Pn) ≥ 1
2trace(Pn) ≥ dmin

2 n, and n(d−1)2

L1(n)L2(n)
= O( 1

L1(n)
). The bound in

Theorem 2 then reduces to

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2
1n>Nρ

]

= O

(

log(n)

L1(n)

)

.(16)

Remark 3. In general, the equation ln(β) = 0 may have multiple solu-
tions. Procedures for selecting the “right” root are discussed in Small et al.
(2000) and Heyde (1997, Section 13.3). Tzavelas (1998) shows that with
probability one there exists not more than one consistent solution.

3. Results for canonical link functions. In this section we consider
again the statistical model introduced in Section 1.1, under all the assump-
tions listed in Section 1.3. In addition, we restrict to canonical link functions,
i.e. functions h that satisfy ḣ = v ◦h. The quasi-likelihood equations (2) then
simplify to

ln(β) =

n
∑

i=1

xi(yi − h(xTi β)) = 0.(17)
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This simplification enables us to improve the bounds from Theorem 2. In
particular, the main result of this section is Theorem 3, which shows that

the term O( n(d−1)2

L1(n)L2(n)
) in (15) vanishes, yielding the following upper bound

on the mean square convergence rates:

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2
1n>Nρ

]

= O

(

log(n)

L1(n)

)

.

In the previous section, we invoked a corollary of the Leray-Schauder The-
orem to prove existence of β̂n in a proximity of β(0). In the case of canonical
link function, a similar existence result is derived from the following fact:

Lemma 3 (Chen et al., 1999, Lemma A(i)). Let H : R
d → R

d be a
continuously differentiable injective mapping, x0 ∈ R

d, and δ > 0, r > 0. If
infx:||x−x0||=δ ||H(x)−H(x0)|| ≥ r then for all y ∈ {y ∈ R

d | ||y−H(x0)|| ≤
r} there is an x ∈ {x ∈ R

d | ||x− x0|| ≤ δ} such that H(x) = y.

Chen et al. (1999) assume that H is smooth, but an inspection of their
proof reveals thatH being a continuously differentiable injection is sufficient.

We apply Lemma 3 with H(β) = P
−1/2
n ln(β) and y = 0:

Corollary 2. Let 0 < ρ ≤ ρ0, n ≥ Nρ, δ > 0 and r > 0. If both
||Hn(β

(0))|| ≤ r and infβ∈∂Bδ
||Hn(β)−Hn(β

(0))|| ≥ r, then there is a β ∈ Bδ

with P
−1/2
n ln(β) = 0, and thus ln(β) = 0.

Remark 4. The proof of Corollary 2 reveals that ln(β) is injective for
all n ≥ n0, and thus β̂n is uniquely defined for all n ≥ Nρ.

The following theorem improves the mean square convergence rates of
Theorem 2 in case of canonical link functions.

Theorem 3. In case of a canonical link function,

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2
1n≥Nρ

]

= O

(

log(n)

L1(n)

)

, (0 < ρ ≤ ρ0).(18)

Remark 5. Some choices of h, e.g. h the identity or the logit function,
have the property that infx∈X,β∈Rd ḣ(xTβ) > 0, i.e. c2 in equation (13) has a
positive lower bound independent of ρ0. Since canonical link functions have
c1 = 0 in equation (13), we then can choose ρ0 = ∞ in Lemma 2, Theorem 1
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and Theorem 3. Then Nρ0 = n0 and β̂n exists a.s. for all n ≥ n0. Moreover,
we can drop assumption (8) and obtain

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2
]

= O

(

log(n)

L1(n)

)

, (n ≥ n0).(19)

for any positive lower bound L1(n) on λmin(Pn). Naturally, one needs to
assume log(n) = o(L1(n)) in order to conclude from (19) that E[||β̂n−β(0)||2]
converges to zero as n → ∞.

4. Proofs.

Proof of Lemma 2. A Taylor expansion of h and g yields

yi − h(xTi β) = yi − h(xTi β
(0)) + h(xTi β

(0))− h(xTi β)
(20)

= ei − ḣ(xTi β̃
(1)
i,β )x

T
i (β − β(0)),

g(xTi β) = g(xTi β
(0)) + ġ(xTi β

(0))xTi (β − β(0))
(21)

+
1

2
(β − β(0))T g̈(xTi β̃

(2)
i,β )xix

T
i (β − β(0)),

for some β̃
(1)
i,β , β̃

(2)
i,β on the line segment between β and β(0). As in Chang

(1999, page 241), it follows that

(β − β(0))T ln(β) = (β − β(0))T
n
∑

i=1

g(xTi β)xi(ei − ḣ(xTi β̃
(1)
i,β )x

T
i (β − β(0)))

= (β − β(0))T
n
∑

i=1

g(xTi β
(0))xiei

+ (β − β(0))T
n
∑

i=1

ġ(xTi β
(0))xTi (β − β(0))xiei

+ (β − β(0))T
n
∑

i=1

[

1

2
(β − β(0))T g̈(xTi β̃

(2)
i,β )xix

T
i (β − β(0))

]

xiei

− (β − β(0))T
n
∑

i=1

g(xTi β)xiḣ(x
T
i β̃

(1)
i,β )x

T
i (β − β(0))

= (β − β(0))TAn + (β − β(0))TBn(β − β(0)) + (I)− (II),

writing (I) = (β−β(0))T
∑n

i=1[
1
2(β−β(0))T g̈(xTi β̃

(2)
i,β )xix

T
i (β−β(0))]xiei and

(II) = (β − β(0))T
∑n

i=1 g(x
T
i β)xiḣ(x

T
i β̃

(1)
i,β )x

T
i (β − β(0)). Since

(I) = (β − β(0))T
n
∑

i=1

[

1

2
(β − β(0))T g̈(xTi β̃

(2)
i,β )xi

]

xix
T
i (β − β(0))ei



MEAN SQUARE CONVERGENCE RATES FOR MQLE 387

≤ (β − β(0))T
n
∑

i=1

[

1

2

∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣
|g̈(xTi β̃

(2)
i,β )| ||xi||

]

xix
T
i (β − β(0))|ei|

≤ c1(β − β(0))T
n
∑

i=1

∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ xix
T
i |ei|(β − β(0))

≤ c1(β − β(0))T
n
∑

i=1

∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣
xix

T
i (|ei| − E [|ei| | Fi−1])(β − β(0))

+ c1(β − β(0))T
n
∑

i=1

∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣
xix

T
i E [|ei| | Fi−1] (β − β(0))

≤
∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣
(β − β(0))TJn(β − β(0))

+ c1c3

∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ (β − β(0))T
n
∑

i=1

xix
T
i (β − β(0))

and

(II) ≥ c2(β − β(0))T
n
∑

i=1

xix
T
i (β − β(0)),

by combining all relevant inequalities we obtain

(β − β(0))T ln(β) ≤ (β − β(0))TAn + (β − β(0))TBn(β − β(0))

+
∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ (β − β(0))TJn(β − β(0))

− (c2/2)(β − β(0))T
n
∑

i=1

xix
T
i (β − β(0)),

using (c1c3||β − β(0)|| − c2) ≤ (c1c3ρ− c2) ≤ −c2/2.

Proof of Theorem 1. Fix ρ ∈ (0, ρ0] and 0 < η < rα − 1. Let Sn(β) be
as in Lemma 2. Define the last-time

T = sup{n ≥ n0 | sup
β∈∂Bρ

Sn(β)− ρ2(c2/2)L1(n) > 0}.

By Lemma 2, for all n > T ,

0 ≥ sup
β∈∂Bρ

Sn(β)− ρ2(c2/2)L1(n)

≥ sup
β∈∂Bρ

Sn(β)− (c2/2)(β − β(0))TPn(β − β(0))

≥ sup
β∈∂Bρ

(β − β(0))T ln(β),
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which by Corollary 1 implies n > Nρ. Then Nρ ≤ T a.s., and thus E[Nη
ρ ] ≤

E[T η ] for all η > 0. The proof is complete if we show the assertions for T .
If we denote the entries of the vector An and the matrices Bn, Jn by An[i],

Bn[i, j], Jn[i, j], then

sup
β∈∂Bρ

Sn(β) ≤ ρ ||An||+ ρ2 ||Bn||+ ρ3 ||Jn||

≤ ρ
∑

1≤i≤d

|An[i]|+ ρ2
∑

1≤i,j≤d

|Bn[i, j]| + ρ3
∑

1≤i,j≤d

|Jn[i, j]|,

using the Cauchy-Schwartz inequality and the fact that ||x|| ≤ ||x||1, ||A|| ≤
∑

i,j |A[i, j]| for vectors x and matrices A. (This can be derived from the

inequality ||A|| ≤
√

||A||1||A||∞). We now define d + 2d2 last-times TA[i],
TB[i,j], and TJ [i,j], for all 1 ≤ i, j ≤ d, as follows:

TA[i] = sup{n ≥ n0 | ρ|An[i]| −
1

d+ 2d2
ρ2(c2/2)L1(n) > 0},

TB[i,j] = sup{n ≥ n0 | ρ2|Bn[i, j]| −
1

d+ 2d2
ρ2(c2/2)L1(n) > 0},

TJ [i,j] = sup{n ≥ n0 | ρ3|Jn[i, j]| −
1

d+ 2d2
ρ2(c2/2)L1(n) > 0}.

By application of Proposition 1, Section 4, the last-times TA[i] and TB[i,j] are

a.s. finite and have finite η-th moment, for all η > 0 such that r > η+1
α > 2.

Chow and Teicher (2003, page 95, Lemma 3) states that any two nonnegative
random variables X1,X2 satisfy

E [(X1 +X2)
η] ≤ 2η(E [Xη

1 ] + E [Xη
2 ]),(22)

for all η > 0. Consequently

sup
i∈N

E [||ei| − E [|ei| | Fi−1] |r] ≤ sup
i∈N

E [||ei|+ E [|ei| | Fi−1] |r]

≤ sup
i∈N

2r(E [|ei|r] + E [(E [|ei| | Fi−1])
r]) < ∞,

and Proposition 1 implies that the last-times TJ [i,j] are also a.s. finite and

have finite η-th moment, for all η > 0 such that r > η+1
α > 2. Now

set T =
∑

1≤i≤d TA[i] +
∑

1≤i,j≤d TB[i,j] +
∑

1≤i,j≤d TJ [i,j]. If n > T , then

supβ∈∂Bρ
Sn(β) − ρ2(c2/2)L1(n) ≤ 0, and thus T ≤ T a.s. and E[T η] ≤

E[T η]. T is finite a.s., since all terms TA[i], TB[i,j] and TJ [i,j] are finite a.s.
Moreover, by repeated application of (22), for all η > 0 there is a constant
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Cη such that

E[T η] ≤ Cη





∑

1≤i≤d

E
[

TA[i]

]

+
∑

1≤i,j≤d

E
[

T η
B[i,j]

]

+
∑

1≤i,j≤d

E
[

T η
J [i,j]

]



 .

It follows that E[T η] < ∞ for all η > 0 such that r > η+1
α > 2. In particular,

this implies Nρ < ∞ a.s., and E[Nη
ρ ] < ∞.

Proof of Theorem 2. The asymptotic existence and strong consistency
of β̂n follow directly from Theorem 1 which shows Nρ < ∞ a.s. for all
0 < ρ ≤ ρ0.

To prove the mean square convergence rates, let 0 < ρ ≤ ρ0.
By contraposition of Corollary 1, if there is no solution β ∈ Bρ to ln(β) =

0, then there exists a β′ ∈ ∂Bρ such that (β′ − β(0))T ln(β
′) > 0, and thus

Sn(β
′)− (c2/2)(β

′ − β(0))TPn(β
′ − β(0)) > 0 by Lemma 2. In particular,

(β′ − β(0))T (c2/2)Pn(β
′ − β(0))

−(β′ − β(0))T
[

An +Bn(β
′ − β(0)) +

∣

∣

∣

∣

∣

∣
β′ − β(0)

∣

∣

∣

∣

∣

∣
Jn(β

′ − β(0))
]

≤ 0,

and, writing

(I) =
∣

∣

∣

∣

∣

∣(c2/2)
−1P−1

n

[

An +Bn(β
′ − β(0)) + ρJn(β

′ − β(0))
]∣

∣

∣

∣

∣

∣

2

and

(II) =
(d− 1)2

∣

∣

∣

∣An +Bn(β
′ − β(0)) + ρJn(β

′ − β(0))
∣

∣

∣

∣

2

L1(n)L2(n)(c2/2)2
,

Lemma 7, Section 4, implies

ρ2 =
∣

∣

∣

∣

∣

∣β′ − β(0)
∣

∣

∣

∣

∣

∣

2
≤ (I) + (II).(23)

We now proceed to show

(I) + (II) < Un,(24)

for some Un, independent of β
′ and ρ, that satisfies

E [Un] = O

(

log(n)

L1(n)
+

n(d− 1)2

L1(n)L2(n)

)

.

Thus, if there is no solution β ∈ Bρ of ln(β) = 0, then ρ2 < Un. This
implies that there is always a solution β ∈ B

U
1/2
n

to ln(β) = 0, and thus

||β̂n − β(0)||21n>Nρ ≤ Un a.s., and E[||β̂n − β(0)||21n>Nρ ] ≤ E[Un].
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To prove (24), we decompose (I) and (II) using the following fact: if M,N
are d× d matrices, and N(j) denotes the j-th column of N , then

||MN || = max
||y||=1

||MNy|| = max
||y||=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M
d
∑

j=1

y[j]N(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ max
||y||=1

d
∑

j=1

||My[j]N(j)|| ≤
d
∑

j=1

||MN(j)|| .

As a result we get

∣

∣

∣

∣

∣

∣
P−1
n Bn(β

′ − β(0))
∣

∣

∣

∣

∣

∣
≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

ġ(xTi β
(0))xieix

T
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
β′ − β(0)

∣

∣

∣

∣

∣

∣

≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

∣

∣
P−1
n Jn(β

′ − β(0))
∣

∣

∣

∣

∣

∣
≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])x
T
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
β′ − β(0)

∣

∣

∣

∣

∣

∣

≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In a similar vein we can derive

∣

∣

∣

∣

∣

∣Bn(β
′ − β(0))

∣

∣

∣

∣

∣

∣ ≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

∣

∣
Jn(β

′ − β(0))
∣

∣

∣

∣

∣

∣
≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It follows that

(I) ≤ 2(c2/2)
−2

(

∣

∣

∣

∣P−1
n An

∣

∣

∣

∣

2
+
∣

∣

∣

∣

∣

∣P−1
n Bn(β

′ − β(0))
∣

∣

∣

∣

∣

∣

2
)

+ 2(c2/2)
−2ρ20

∣

∣

∣

∣

∣

∣
P−1
n Jn(β

′ − β(0))
∣

∣

∣

∣

∣

∣

2

≤ Un(1) + Un(2) + Un(3),
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where we write

Un(1) = 2(c2/2)
−2
∣

∣

∣

∣P−1
n An

∣

∣

∣

∣

2
,

Un(2) = 2(c2/2)
−2ρ202





d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 ,

Un(3) = 2(c2/2)
−2ρ402





d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 ,

and

(II) ≤ Un(4) + Un(5) + Un(6),

where we write

Un(4) =
2(d − 1)2 ||An||2

L1(n)L2(n)(c2/2)2
,

Un(5) =
2(d− 1)2

L1(n)L2(n)(c2/2)2



ρ0

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





2

,

Un(6) =
2(d− 1)2ρ40c

2
1

L1(n)L2(n)(c2/2)2





d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





2

.

The desired upper bound Un for (I) + (II) equals Un =
∑6

j=1Un(j). For
Un(1), Un(2), Un(3), apply Proposition 2 in Section 4 on the martingale
difference sequences (g(xTi β

(0))ei)i∈N, (ġ(xTi β
(0))xi[j]ei)i∈N, and (c1(|ei| −

E[|ei| | Fi−1]xi[j]))i∈N, respectively. This implies the existence of a constant
K1 > 0 such that

E[Un(1) + Un(2) + Un(3)] ≤
K1 log(n)

L1(n)
.

For Un(4), Un(5), Un(6), the assumption

sup
i∈N

E
[

e2i | Fi−1

]

≤ σ2 < ∞ a.s.

implies the existence of a constant K2 > 0 such that

E [Un(4) + Un(5) + Un(6)] ≤
K2n(d− 1)2

L1(n)L2(n)
.



392 A. V. DEN BOER AND B. ZWART

Proof of Corollary 2. It is sufficient to show that H(β) is injective.

Suppose P
−1/2
n ln(β) = P

−1/2
n ln(β

′) for some β, β′. Since n ≥ n0 this im-
plies ln(β) = ln(β

′). By a first order Taylor expansion, there are β̃i, 1 ≤
i ≤ n, on the line segment between β and β′ such that ln(β) − ln(β

′) =
∑n

i=1 xix
T
i ḣ(x

T
i β̃i)(β − β′) = 0. Since infx∈X,β∈Bρ ḣ(x

Tβ) > 0, Lemma 8 in

Section 4 implies that the matrix
∑n

i=1 xix
T
i ḣ(x

T
i β̃i) is invertible, and thus

β = β′.

Proof of Theorem 3. Let 0 < ρ ≤ ρ0 and n ≥ Nρ. A Taylor expansion of
ln(β) yields

ln(β)− ln(β
(0)) =

n
∑

i=1

xi(h(x
T
i β

(0))− h(xTi β))

=
n
∑

i=1

xix
T
i ḣ(x

T
i βin)(β

(0) − β),

for some βin, 1 ≤ i ≤ n, on the line segment between β(0) and β. Write
Tn(β) =

∑n
i=1 xix

T
i ḣ(x

T
i βin), and choose k2 > (infβ∈Bρ,x∈X ḣ(xTβ))−1. Then

for all β ∈ Bρ,

λmin (k2Tn(β) − Pn) = λmin

(

n
∑

i=1

xix
T
i (k2ḣ(x

T
i βin)− 1)

)

≥
(

inf
β∈Bρ0 ,x∈X

(k2ḣ(x
Tβ)− 1)

)

λmin(Pn),

by Lemma 8. This implies

yTk2Tn(β)y ≥ yTPny and yTk−1
2 Tn(β)

−1y ≤ yTP−1
n y for all y ∈ R

d,

cf. Bhatia (2007, page 11, Exercise 1.2.12).

Define Hn(β) = P
−1/2
n ln(β), rn = ||Hn(β

(0))||, and δn = rn
k−1
2

√
L1(n)

. If

δn > ρ then it follows immediately that ||β̂n − β(0)|| ≤ ρ < ||Hn(β(0))||
k−1
2

√
L1(n)

.

Suppose δn ≤ ρ. Then for all β ∈ ∂Bδn ,

∣

∣

∣

∣

∣

∣
Hn(β)−Hn(β

(0))
∣

∣

∣

∣

∣

∣

2
=
∣

∣

∣

∣

∣

∣
P−1/2
n (ln(β)− ln(β

(0)))
∣

∣

∣

∣

∣

∣

2

= (β(0) − β)TTn(β)P
−1
n Tn(β)(β

(0) − β)

≥ (β(0) − β)TTn(β)k
−1
2 Tn(β)

−1Tn(β)(β
(0) − β)

≥ (β(0) − β)TPnk
−2
2 (β(0) − β)
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≥ k−2
2

∣

∣

∣

∣

∣

∣β(0) − β
∣

∣

∣

∣

∣

∣

2
λmin(Pn)

≥ k−2
2 δ2nL1(n),

and thus we have infβ∈∂Bδn
||Hn(β) −Hn(β

(0))|| ≥ k−1
2

√

L1(n)δn = rn and

||H(β(0))|| ≤ rn. By Corollary 2 we conclude that ||β̂n − β(0)|| ≤ ||Hn(β(0))||
k−1
2

√
L1(n)

a.s.
Now

E

[

∣

∣

∣

∣

∣

∣
Hn(β

(0))
∣

∣

∣

∣

∣

∣

2
]

= E





(

n
∑

i=1

xiei

)T

P−1
n

(

n
∑

i=1

xiei

)



 = E[Qn],

where Qn is as in the proof of Proposition 2. There we show E[Qn] ≤
K log(n), for some K > 0 and all n ≥ n0, and thus we have

E

[

∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣

2
1n≥Nρ

]

= O

(

log(n)

L1(n)

)

.

APPENDIX: AUXILIARY RESULTS

In this appendix, we prove and collect several probabilistic results which
are used in the preceding sections. Proposition 1 is fundamental to Theorem
1, where we provide sufficient conditions such that the η-th moment of the
last-time Nρ is finite, for η > 0. The proof of the proposition makes use of two
auxiliary lemma’s. Lemma 4 is a maximum inequality for tail probabilities
of martingales; for sums of i.i.d. random variables this statement can be
found e.g. in Loève (1977a, Section 18.1C, page 260), and a martingale
version was already hinted at in Loève (1977b, Section 32.1, page 51). Lemma
5 contains a so-called Baum-Katz-Nagaev type theorem proven by Stoica
(2007). There exists a long tradition of these type of results for sums of
independent random variables, see e.g. Spataru (2009) and the references
therein. Stoica (2007) makes an extension to martingales. In Proposition 2
we provide L2 bounds for least-squares linear regression estimates, similar to
the a.s. bounds derived by Lai and Wei (1982). The bounds for the quality of
maximum quasi-likelihood estimates, Theorem 2 in Section 2 and Theorem
3 in Section 3, are proven by relating them to these bounds from Proposition
2. Lemma 6 is an auxiliary result used in the proof of Proposition 2. Finally,
Lemma 7 is used in the proof of Theorem 2, and Lemma 8 in the proof of
Theorem 3.

Lemma 4. Let (Xi)i∈N be a martingale difference sequence w.r.t. a fil-
tration {Fi}i∈N. Write Sn =

∑n
i=1 Xi, and suppose supi∈N E[X2

i | Fi−1] ≤
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σ2 < ∞ a.s., for some σ > 0. Then for all n ∈ N and ǫ > 0,

P

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤ 2P
(

|Sn| ≥ ǫ−
√
2σ2n

)

.(25)

Proof. We use similar techniques as de la Peña et al. (2009, Theorem
2.21, p.16), where (25) is proven for independent random variables (Xi)i∈N.
Define the events A1 = {S1 ≥ ǫ} and Ak = {Sk ≥ ǫ, S1 < ǫ, . . . , Sk−1 < ǫ},
2 ≤ k ≤ n. Then Ak(1 ≤ k ≤ n) are mutually disjoint, and {max1≤k≤n Sk ≥
ǫ} =

⋃n
k=1Ak.

P

(

max
1≤k≤n

Sk ≥ ǫ

)

≤ P
(

Sn ≥ ǫ−
√
2σ2n

)

+ P

(

max
1≤k≤n

Sk ≥ ǫ, Sn < ǫ−
√
2σ2n

)

≤ P
(

Sn ≥ ǫ−
√
2σ2n

)

+
n
∑

k=1

P
(

Ak, Sn < ǫ−
√
2σ2n

)

≤ P
(

Sn ≥ ǫ−
√
2σ2n

)

+
n
∑

k=1

P
(

Ak, Sn − Sk < −
√
2σ2n

)

(1)
= P

(

Sn ≥ ǫ−
√
2σ2n

)

+
n
∑

k=1

E
[

1Ak
E
[

1
Sn−Sk<−

√
2σ2n

| Fk

]]

(2)

≤P
(

Sn ≥ ǫ−
√
2σ2n

)

+
n
∑

k=1

1

2
P (Ak)

= P
(

Sn ≥ ǫ−
√
2σ2n

)

+
1

2
P

(

max
1≤k≤n

Sk ≥ ǫ

)

,

where (1) uses Ak ∈ Fk, and (2) uses E[1
Sn−Sk<−

√
2σ2n

| Fk] = P (Sk −
Sm >

√
2σ2n | Fk) ≤ E[(Sn − Sk)

2 | Fk]/(2σ
2n) ≤ 1/2 a.s. This proves

P (max1≤k≤n Sk ≥ ǫ) ≤ 2P (Sn ≥ ǫ −
√
2σ2n). Replacing Sk by −Sk gives

P (max1≤k≤n−Sk ≥ ǫ) ≤ 2P (−Sn ≥ ǫ−
√
2σ2n). If ǫ−

√
2σ2n ≤ 0 then (25)

is trivial; if ǫ >
√
2σ2n then

P

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤ P

(

max
1≤k≤n

Sk ≥ ǫ

)

+ P

(

max
1≤k≤n

−Sk ≥ ǫ

)

≤ 2P
(

Sn ≥ ǫ−
√
2σ2n

)

+ 2P
(

−Sn ≥ ǫ−
√
2σ2n

)

= 2P
(

|Sn| ≥ ǫ−
√
2σ2n

)

.
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Lemma 5 (Stoica, 2007). Let (Xi)i∈N be a martingale difference sequence
w.r.t. a filtration {Fi}i∈N. Write Sn =

∑n
i=1Xi and suppose supi∈N E[X2

i |
Fi−1] ≤ σ2 < ∞ a.s. for some σ > 0. Let c > 0, 1

2 < α ≤ 1, η > 2α − 1,

r > η+1
α . If supi∈NE[|Xi|r] < ∞, then

∑

k≥1

kη−1P (|Sk| ≥ ckα) < ∞.

Proposition 1. Let (Xi)i∈N be a martingale difference sequence w.r.t. a
filtration {Fi}i∈N. Write Sn =

∑n
i=1 Xi and suppose supi∈NE[X2

i | Fi−1] ≤
σ2 < ∞ a.s. for some σ > 0. Let c > 0, 1

2 < α ≤ 1, η > 2α − 1, r > η+1
α ,

and define the random variable T = sup{n ∈ N | |Sn| ≥ cnα}, where T takes
values in N ∪ {∞}. If supi∈NE[|Xi|r] < ∞, then

T < ∞ a.s., and E [T η] < ∞.

Proof. There exists an n′ ∈ N such that for all n > n′, c(n/2)α −√
2σ2n ≥ c(n/2)α/2. For all n > n′,

P (T > n) = P (∃k > n : |Sk| ≥ ckα)

≤
∑

j≥⌊log2(n)⌋
P
(

∃2j−1 ≤ k < 2j : |Sk| ≥ ckα
)

≤
∑

j≥⌊log2(n)⌋
P
(

sup
1≤k≤2j

|Sk| ≥ c(2j−1)α
)

(1)

≤ 2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c(2j−1)α −
√
2σ22j

)

(2)

≤ 2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c(2j−1)α/2
)

.

where (1) follows from Lemma 4 and (2) from the definition of n′.
For t ∈ R+ write St = S⌊t⌋. Then

∑

j≥log2(n)

P
(

|S2j | ≥ c(2j−1)α/2
)

=

∫

j≥log2(n)
P
(

|S2j | ≥ c(2j−1)α/2
)

dj(26)

=

∫

k≥n

P (|Sk| ≥ c(k/2)α/2)

k log(2)
dk =

∑

k≥n

P (|Sk| ≥ c(k/2)α/2)
1

k log(2)
,(27)

using a variable substitution k = 2j .
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By Chebyshev’s inequality,

P (T > n) ≤ 2
∑

k≥n

P (|Sk| ≥ c(k/2)α/2)
1

k log(2)

≤ 2
∑

k≥n

σ2k(c(k/2)α/2)−2 1

k log(2)
,

which implies P (T = ∞) ≤ lim infn→∞ P (T > n) = 0. This proves T < ∞
a.s.

Since

E[T η] ≤ η



1 +
∑

n≥1

nη−1P (T > n)





≤ η

[

1 + n′ · (n′)η−1 +
∑

n>n′

nη−1P (T > n)

]

≤ M
∑

n>n′

nη−1
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c(2j−1)α/2
)

,

for some constant M > 0, it follows by (26), (27) that E[T η ] < ∞ if
∑

n≥1

nη−1
∑

k≥n

P (|Sk| ≥ c(k/2)α/2) k−1 < ∞.

By interchanging the sums, it suffices to show
∑

k≥1

kη−1P
(

|Sk| ≥ 2−1−αckα
)

< ∞.

This last statement follows from Lemma 5.

Let (ei)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N,
such that supi∈NE[e2i | Fi−1] = σ2 < ∞ a.s., for some σ > 0. Let (xi)i∈N
be a sequence of vectors in R

d. Assume that (xi)i∈N are predictable w.r.t.
the filtration (i.e. xi ∈ Fi−1 for all i ∈ N), and supi∈N ||x||i ≤ M < ∞
for some (non-random) M > 0. Write Pn =

∑n
i=1 xix

T
i . Let L : N → R+

be a (non-random) function and n0 ≥ 2 a (non-random) integer such that
λmin(Pn) ≥ L(n) for all n ≥ n0, and limn→∞L(n) = ∞.

Proposition 2. There is a constant K > 0 such that for all n ≥ n0,

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

xix
T
i

)−1 n
∑

i=1

xiei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ K
log(n)

L(n)
.
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The proof of Proposition 2 uses the following result:

Lemma 6. Let (yn)n∈N be a nondecreasing sequence with y1 ≥ e. Write
Rn = 1

log(yn)

∑n
i=1

yi−yi−1

yi
, where we put y0 = 0. Then Rn ≤ 2 for all n ∈ N.

Proof. Induction on n. R1 = 1
log(y1)

≤ 1 ≤ 2. Let n ≥ 2 and define

g(y) = 1
log(y)

y−yn−1

y + log(yn−1)
log(y) Rn−1. If Rn−1 ≤ 1, then Rn = g(yn) ≤ 1

log(yn)
+

1 ≤ 2. Now suppose Rn−1 > 1. Since z 7→ (1 + log(z))/z is decreasing in z
on z ≥ 1, and since yn−1 ≥ 1, we have (1+ log(y))/y ≤ (1+ log(yn−1))/yn−1

for all y ≥ yn−1. Together with Rn−1 > 1 this implies

∂g(y)

∂y
=

1

y(log(y))2

[

−1 +
yn−1

y
(1 + log(y))− log(yn−1)Rn−1

]

< 0,

for all y ≥ yn−1. This proves Rn = g(yn) ≤ maxy≥yn−1 g(y) = g(yn−1) =
Rn−1 ≤ 2.

Proof of Proposition 2. Write qn =
∑n

i=1 xiei and Qn = qnP
−1
n qn.

For n ≥ n0, Pn is invertible, and

∣

∣

∣

∣P−1
n qn

∣

∣

∣

∣

2 ≤
∣

∣

∣

∣

∣

∣P−1/2
n

∣

∣

∣

∣

∣

∣

2
·
∣

∣

∣

∣

∣

∣P−1/2
n qn

∣

∣

∣

∣

∣

∣

2
≤ λmin(Pn)

−1qnP
−1
n qn

≤ L(n)−1Qn a.s.,

where we used ||P−1/2
n || = λmax(P

−1/2
n ) = λmin(Pn)

−1/2. We show E[Qn] ≤
K log(n), for a constant K to be defined further below, and all n ≥ n0.

Write Vn = P−1
n . Since Pn = Pn−1 + xnx

T
n , it follows from the Sherman-

Morrison formula (Bartlett, 1951) that Vn = Vn−1 − Vn−1xnxT
nVn−1

1+xT
nVn−1xn

, and thus

xTnVn = xTnVn−1 −
(xTnVn−1xn)x

T
nVn−1

1 + xTnVn−1xn
= xTnVn−1/(1 + xTnVn−1xn).

As in Lai and Wei (1982), Qn satisfies

Qn =

(

n
∑

i=1

xTi ei

)

Vn

(

n
∑

i=1

xiei

)

=

(

n−1
∑

i=1

xTi ei

)

Vn

(

n−1
∑

i=1

xiei

)

+ xTnVnxne
2
n + 2xTnVn

(

n−1
∑

i=1

xiei

)

en

= Qn−1 +

(

n−1
∑

i=1

xTi ei

)

(

−Vn−1xnx
T
nVn−1

1 + xTnVn−1xn

)

(

n−1
∑

i=1

xiei

)
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+ xTnVnxne
2
n + 2

xTnVn−1

1 + xTnVn−1xn

(

n−1
∑

i=1

xiei

)

en

= Qn−1 −
(xTnVn−1

∑n−1
i=1 xiei)

2

1 + xTnVn−1xn
+ xTnVnxne

2
n

+ 2
xTnVn−1

1 + xTnVn−1xn

(

n−1
∑

i=1

xiei

)

en.

Observe that

E





xTnVn−1

(

∑n−1
i=1 xiei

)

1 + xTnVn−1xn
en



 = E





xTnVn−1

(

∑n−1
i=1 xiei

)

1 + xTnVn−1xn
E [en | Fn−1]



 = 0

and

E
[

xTnVnxne
2
n

]

= E
[

xTnVnxnE
[

e2n | Fn−1

]]

≤ E
[

xTnVnxn
]

σ2.

By telescoping the sum we obtain

E[Qn] ≤ E[Qmin{n,n1}] + σ2
n
∑

i=n1+1

E[xTi Vixi],

where we define n1 ∈ N to be the smallest n ≥ n0 such that L(n) > e1/d for
all n ≥ n1. We have

det(Pn−1) = det(Pn − xnx
T
n )

= det(Pn) det(I − P−1
n xnx

T
n )(28)

= det(Pn)(1 − xTnVnxn), (n ≥ n1).

Here the last equality follows from Sylvester’s determinant theorem det(I +
AB) = det(I + BA), for matrices A,B of appropriate size. We thus have

xTnVnxn = det(Pn)−det(Pn−1)
det(Pn)

. For n ∈ N let yn = det(Pn+n1). Then (yn)n∈N is
a nondecreasing sequence with

y1 ≥ det(Pn1+1) ≥ λmin(Pn1+1)
d ≥ e.

Lemma 6 implies

n
∑

i=n1+1

xTi Vixi =

n
∑

i=n1+1

yi−n1 − yi−1−n1

yi−n1

=

n−n1
∑

i=1

yi − yi−1

yi

≤ 2 log(yn−n1) = 2 log(det(Pn)), a.s.
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Now

log(det(Pn)) ≤ d log(λmax(Pn)) ≤ d log(tr(Pn)) ≤ d log(n sup
i∈N

||xi||2)

≤ d log(nM2).

Furthermore, for all n0 ≤ n ≤ n1 we have

E [Qn] ≤ E
[

||qn||2 λmax(P
−1
n )
]

≤ E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

xiǫi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

L(n0)
−1





≤ L(n0)
−1E

[

2

n
∑

i=1

ǫ2i sup
i∈N

||xi||2
]

≤ 2L(n0)
−1M2n1σ

2,

and thus for all n ≥ n0,

E [Qn] ≤ E
[

Qmin{n,n1}
]

+ σ2
n
∑

i=n1+1

E
[

xTi Vixi
]

≤ 2L(n0)
−1M2n1σ

2 + d log(n) + d log(M2)

≤ K log(n),

where K = d+ [2L(n0)
−1M2n1σ

2 + d log(M2)]/ log(n0).

Lemma 7. Let A be a positive definite d × d matrix, and b, x ∈ R
d. If

xTAx + xT b ≤ 0 then ||x||2 ≤ ||A−1b||2 + (d − 1)2 ||b||2
λ1λ2

, where 0 < λ1 ≤ λ2

are the two smallest eigenvalues of A.

Proof. Let 0 < λ1 ≤ · · · ≤ λd be the eigenvalues of A, and v1, . . . , vd the
corresponding eigenvectors. We can assume that these form an orthonormal
basis, such that each x ∈ R

d can be written as
∑d

i=1 αivi, for coordinates

(α1, . . . , αd), and b =
∑d

i=1 βivi for some (β1, . . . , βd). Write

S =

{

(α1, . . . , αd) |
d
∑

i=1

αi(λiαi + βi) ≤ 0

}

.

The orthonormality of (vi)1≤i≤d implies S = {x ∈ R
d | xTAx+ xT b ≤ 0}.

Fix α = (α1, . . . , αd) ∈ S and write R = {i | αi(λiαi+βi) ≤ 0, 1 ≤ i ≤ d},
Rc = {1, . . . , d}\R. For all i ∈ R, standard properties of quadratic equations

imply α2
i ≤ λ−2

i β2
i and αi(λiαi + βi) ≥ −β2

i
4λi

. For all i ∈ Rc,

αi(λiαi + βi) ≤
∑

i∈Rc

αi(λiαi + βi) ≤ −
∑

i∈R
αi(λiαi + βi) ≤ c,
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where we define c =
∑

i∈R
β2
i

4λi
. By the quadratic formula, αi(λiαi+βi)−c ≤ 0

implies

−βi −
√

β2
i + 4λic

2λi
≤ αi ≤

−βi +
√

β2
i + 4λic

2λi
.

(Note that λi > 0 and c > 0 implies that the square root is well-defined). It
follows that

α2
i ≤ 2

β2
i + β2

i + 4λic

4λ2
i

=
β2
i

λ2
i

+ 2c/λi, (i ∈ Rc),

and thus

||x||2 =
d
∑

i=1

α2
i ≤

∑

i∈R
λ−2
i β2

i +
∑

i∈Rc





β2
i

λ2
i

+
2

λi

∑

j∈R

β2
j

4λj





≤
d
∑

i=1

λ−2
i β2

i +
1

2

(

∑

i∈Rc

1

λi

)





∑

j∈R

1

λj





(

n
∑

i=1

β2
i

)

≤
∣

∣

∣

∣A−1b
∣

∣

∣

∣

2
+ (d− 1)2

1

λ1

1

λ2
||b||2 ,

where we used ||A−1b||2 =∑d
j=1 β

2
jλ

−2
j and (

∑

i∈Rc 1)(
∑

j∈R 1) ≤ 2(d − 1)2.

Remark 6. The dependence on λ1λ2 in Lemma 7 is tight in the following
sense: for all d ≥ 2 and all positive definite d×d matrices A there are x ∈ R

d,
b ∈ R

d such that xTAx+ xT b ≤ 0 and

||x||2 ≥ 1

8

(

||A−1b||+ ||b||2
λ1λ2

)

.

In particular, choose β1 = β2 > 0, α1 = −β1/(2λ1), and α2 = (−β2 −
√

β2
2 + 4λ2β

2
1/(4λ1))/(2λ2), and set b = β1v1 + β2v2 and x = α1v1 + α2v2,

where v1, v2 are the eigenvectors of A corresponding to eigenvalues λ1, λ2.
Then xTAx+ xT b =

∑2
i=1 αi(λiαi + βi) = 0 and

||x||2 = α2
1 + α2

2 ≥ β2
1/(4λ

2
1) + β2

2/(4λ
2
2) + β2

1/(4λ1λ2)

≥ 1

8
||A−1b||2 + ||b||2/(8λ1λ2).
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Lemma 8. Let (xi)i∈N be a sequence of vectors in R
d, and (wi)i∈N a

sequence of scalars with 0 < inf i∈Nwi. Then for all n ∈ N,

λmin

(

n
∑

i=1

xix
T
i wi

)

≥ λmin

(

n
∑

i=1

xix
T
i

)

(inf
i∈N

wi).

Proof. For all z ∈ R
d,

zT

(

n
∑

i=1

xix
T
i wi

)

z ≥ (inf
i∈N

wi)z
T

(

n
∑

i=1

xix
T
i

)

z.

Let ṽ be a normalized eigenvector corresponding to λmin(
∑n

i=1 xix
T
i wi).

Then

λmin

(

n
∑

i=1

xix
T
i

)

= min
||v||=1

vT

(

n
∑

i=1

xix
T
i

)

v ≤ ṽT

(

n
∑

i=1

xix
T
i

)

ṽ

≤ ṽT

(

n
∑

i=1

xix
T
i wi

)

ṽ(inf
i∈N

wi)
−1

= λmin

(

n
∑

i=1

xix
T
i wi

)

(inf
i∈N

wi)
−1.
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