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We extend the framework of Neuts’ matrix analytic approach
to a reflected process generated by a discrete time multidimensional
Markov additive process. This Markov additive process has a general
background state space and a real vector valued additive compo-
nent, and generates a multidimensional reflected process. Our major
interest is to derive a closed form formula for the stationary distribu-
tion of this reflected process. To this end, we introduce a real valued
level, and derive new versions of the Wiener-Hopf factorization for the
Markov additive process with the multidimensional additive compo-
nent. In particular, it is represented by moment generating functions,
and we consider the domain for it to be valid.

Our framework is general enough to include multi-server queues
and/or queueing networks as well as non-linear time series which are
currently popular in financial and actuarial mathematics. Our results
yield structural results for such models. As an illustration, we apply
our results to extend existing results on the tail behavior of reflected
processes.

A major theme of this work is to connect recent work on matrix
analytic methods to classical probabilistic studies on Markov additive
processes. Indeed, using purely probabilistic methods such as censor-
ing, duality, level crossing and time-reversal (which are known in the
matrix analytic methods community but date back to Arjas & Speed
[2] and Pitman [29]), we extend and unify existing results in both
areas.

1. Introduction. The complexity of applied probability models has
significantly increased over the last decades. Financial and actuarial mathe-
maticians use time series which can be non-linear, and models in stochastic
networks are typically required to consider multidimensional distributions.
Thus, there is a need for general mathematical structures that allow for
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enough model flexibility and at the same time possesses enough structure
to allow for a tractable performance analysis.

One success story in applied probability is the use of phase-type distri-
butions and, more generally, matrix analytic methods. These objects enable
a tractable algorithmic analysis of a significant class of stochastic models.
The idea is to define a two-dimensional Markov process. The evolution in
one dimension (called the level) is typically additive (up to some boundary
reflection conditions), and other behavior is modeled by the other compo-
nent, called the background process, or phase. From a probabilistic point of
view, this is a special case of a reflected Markov additive process, but this
connection has never been exploited in a systematic manner. On the other
hand, the literature on Markov additive processes has not been driven by
applications in stochastic networks, and the present state of the art calls for
another look at such processes.

This brings us to the main aim of this paper: Our primary interest is in
a reflected process driven by a discrete time Markov additive process. The
latter process is referred to as MAP in short, which is also called a Markov
random walk in the literature. It is assumed that the additive component
of MAP is R

d-valued, where d is a positive integer, and its background
states take values in a locally compact, separable metric space. We define
a mapping, which assigns a real value to the additive component, which
is called a level. Reflection takes place when the level hits value 0. There
are many applications of such reflected processes, particularly, in stochastic
networks and queueing theory. For example, they can describe multi-server
queues, parallel queues, fluid flow models and general queueing networks.
Ideally, one would like to derive an expression for the stationary distribution
which enables performance analysis of such systems.

We aim to derive a certain closed form formula for the stationary dis-
tribution of a reflected MAP, using the boundary transitions and hitting
probabilities of the additive component. This allows us (i) to extend Neuts’
matrix analytic framework and the existing theory on Markov additive pro-
cesses in a unified way, and (ii) to study problems like obtaining the asymp-
totic tail behavior of the stationary distribution. Throughout the paper, we
assume the existence of the stationary distribution of the reflected MAP. Of
course, this existence is also an important issue, but it can usually be sepa-
rately verified in specific applications. We give some sufficient conditions for
existence in this paper.

The key ideas to derive the closed form formula are to use certain factor-
izations, called Wiener-Hopf factorizations for the MAP due to Arjas and
Speed [2], and the representation of stationary distribution by occupation
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measures due to Pitman [29]. We combine these ideas with the exponential
change of measure with respect to the additive component, which enables us
to consider the asymptotic tail behavior through the extended factorizations.
For this change of measure, we have to deal with operator moment generat-
ing functions, which are extension of matrix moment generating functions,
and to consider their convergence parameters.

These observations allow us to extend Neuts’ matrix analytic approach to
a multidimensional additive components and to a general background state
space. For this, we work with nonnegative kernels, which are operators on
function spaces, rather than matrices. There have been few studies in this
direction (e.g., see [32]). Another new feature is the multi-dimensionality of
the additive component, never studied under the framework of the Neuts’
matrix analytic approach. One may think that such a multi-dimensionality
can be reduced to the one dimensional case by incorporating auxiliary in-
formation into the background state. This is possible, but it complicates the
background process, which may make analysis intractable (see, e.g., [24]).
We keep the multidimensional additive component as long as possible. Of
course, this may cause another difficulty given the lack of total ordering of
higher-dimensional state spaces. We deal with this by the level, which is
different from the additive component in the multidimensional case while
the additive component can be a level in the one dimensional case. Thus,
the level is different from that of Neuts’ approach. However, the exponential
change of measure still works well.

In this paper, we only consider tail asymptotics of the stationary distribu-
tions of the reflecting MAP’s for application. For the one-dimensional case,
we extend existing results of Miyazawa and Zhao [24] from the case of count-
ably many background states to real-valued background states. This allows
us to consider precise asymptotics of a system with autoregressive input. For
the multi-dimensional case, we give some preliminary results which, together
with the other results in this paper, are further developed in [16]. We have
not considered other applications, but one may think of them. For example,
the resulting expressions for the steady-state distribution may be useful to
derive (corrected)-diffusion approximations, or to derive error bounds asso-
ciated to truncation of the background state space. A full development of
such results will be undertaken elsewhere.

This paper is organized as follows. In Section 2, we first consider the cen-
sored process of a discrete time Markov process generated by a stopping
time, and derive a decomposition identity for the occupation measure. In
Section 3, we specialize this decomposition for a Markov additive process
with a multidimensional additive component, and derive a version of the
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Wiener-Hopf factorization. As a corollary, we also derive the conventional
Wiener-Hopf factorization. In Section 4, we introduce the reflected MAP,
and derive some closed form expressions for its stationary distribution. These
results are applied to study asymptotic tail behavior of the stationary dis-
tribution in Section 5. Concluding remarks are given in Section 6.

2. Censoring a discrete time Markov process. The purpose of this
section is to derive a number of structural results, which will be specialized
later on to Markov additive processes. Let {Zn} = {Zn;n = 0, 1, . . .} be
a discrete-time Markov process with respect to filtration {Fn}. Denote its
state space by S. We assume that S is a complete separable metric space
with the Borel σ-field B(S). A subset of S is said to be bounded if it is
contained in some ball with a finite radius. Since S is separable, B(S) can
be generated by a countable set of open balls with bounded radii, and a
measure on (S,B(S)) is uniquely determined by its restriction to the set of
those balls or of all bounded sets in B(S) (e.g., see [4]). In our applications, S
is typically a finite dimensional Euclidean space, so the reader may consider
S as such a space. However, this restriction does not gain any profit in this
section, so we just work with the general S.

We mainly work with probability transition kernels on (S,B(S)), and
consider random variables and stochastic processes on a probability space.
However, many of our results are easily extended to nonnegative kernels on
(S,B(S)) and measurable functions. Thus, we first introduce them following
the notions of [28].

LetM+(S),M0+(S),Mb(S) andM
0
b (S) be the set of all measurable func-

tions from (S,B(S)) to (R,B(R)) which are positive, nonnegative, bounded,
and bounded with bounded support, respectively. Let U be a function from
S ×B(S) to R+ ≡ [0,+∞] such that (S,B(S)) if U(·, A) ∈M0+(S) for each
A ∈ B(S) and U(x, ·) is a measure on (S,B(S)) for each x ∈ S. Then, U is
said to be a nonnegative kernel on S×B(S). For this nonnegative kernel U ,

Uf(x) ≡

∫

S

U(x, dx′)f(x′), f ∈M0+(S), x ∈ S

defines a linear nonnegative operator on M+(S), where Uf(x) may be in-
finite. U is said to be σ-finite if there is a f ∈ M+(S) such that Uf(x) <
∞ for all x ∈ S, finite if U(x, S) < ∞ for all x ∈ S, and bounded if
supx∈S U(x, S) < ∞. In particular, a bounded nonnegative kernel U is said
to be sub-stochastic if supx∈S U(x, S) ≤ 1 and stochastic if supx∈S U(x, S) =
1. For two nonnegative kernels U and V , their product UV is defined as



FACTORIZATION FOR MULTIDIMENSIONAL MAP 71

(UV )f(x) = U(V f)(x), i.e.

(UV )f(x) =

∫

S×S

U(x, dx′)V (x′, dx′′)f(x′′), f ∈M0+(S).

Similarly to Uf , we define an operation of U to a measure ν on (S,B(S)) as

νU(B) =

∫

S

ν(dx)U(x,B), B ∈ B(S).

Then, U is an operator on the set of all nonnegative measures on (S,B(S)).
We now consider the discrete time Markov chain Zn with state space

(S.B(S)). We assume that it is time homogeneous and non-defective, and
let

Q(x,A) = P (Zn+1 ∈ A|Zn = x), x ∈ S,A ∈ B(S).

Then, Q ≡ {Q(x,A);x ∈ S,A ∈ B(S)} is a stochastic kernel.
Let τ be a stopping time, that is, τ is a nonnegative integer-valued random

variable such that {τ ≤ n} ∈ Fn for all n ≥ 0, where τ can be infinite. We
consider censoring the Markov process {Zn} by a sequence of stopping times
constructed from this stopping time. To this end, we introduce the following
two sets of nonnegative kernels.

Definition 2.1. Define nonnegative kernels G(s) andH(s) on (S,B(S))
for each nonnegative number s ∈ (0, 1) as

G(s)f(x) = Ex(s
τf(Zτ ); τ <∞), x ∈ S, f ∈Mb(S),

H(s)f(x) = Ex

(
τ−1∑

n=0

snf(Zn); τ <∞

)
, x ∈ S, f ∈Mb(S),

and denote the corresponding kernels on (S,B(S)) for s = 1 byG = G(1) and
H = H(1), where Ex represents the conditional expectation given Z0 = x.

Throughout the paper, we shall use underline “ ” to indicate generating
functions with respect to time index. For a stopping time τ , let τn be the n-th
stopping time when the chain restarts at time τn−1 with state Zτn−1 , where
τn − τn−1 is stochastically identical to τ under the conditional distribution
given Zτn−1 = Z0.

The resulting embedded Markov chain Zτn has transition probability ker-
nel G, which may be defective. Motivated by the fact that τ is often a hitting
time, we call this embedded Markov chain a censored process. On the other
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hand, H1A represents the mean number of visiting A ∈ B(S) between em-
bedded points (i.e. during the censoring). This censoring process is more
general than the conventional one in which τ is a hitting time at a given set
C ∈ B(S). In our applications, this level of generality is necessary.

We now give the following identity due to Pitman [29] (see Proposition
3.2 there). Since the expression is different from that in [29], we give its
proof in Appendix A.

Lemma 2.1. For s ∈ [0, 1), we have

H(s) +G(s) = I + sH(s)Q,(2.1)

or, equivalently,

H(s)(I − sQ) = I −G(s).(2.2)

where I is an identity operator. Furthermore, (2.1) is valid also for s = 1,
but both sides may be infinite.

We note that this lemma is useful to construct a stationary measure of Q.

Corollary 2.1. Suppose the transition kernel G has a stationary mea-
sure ν0, i.e.,

ν0(A) = ν0G1A, A ∈ B(S),(2.3)

and define a measure ν on B(S) as

ν(A) = ν0H1A, A ∈ B(S).

Then, ν is a stationary measure for Q if ν(A) <∞ for all bounded A ∈ B(S).

Proof. Suppose that A ∈ B(S) is bounded. Note that G = G(1) and
H = H(1). Then, from ν(A) < ∞ and (2.3), (2.2) implies ν0HQ1A < ∞.
Hence, (2.2) with s = 1 can be evaluated with 1A. Thus, it follows from
(2.2) and (2.3) that

ν0H(1−Q)1A = ν01A − ν0G1A = 0.

This immediately implies

ν(A) = ν0H1A = ν0HQ1A = νQ(A),

which completes the proof.

Corollary 2.1 may be interpreted as a regenerative construction of the
stationary measure, where τ is the regeneration cycle. In applications of
Corollary 2.1, we need to identify G and H. These are generally hard prob-
lems, and we need more structure on Q to go further.
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3. Markov additive process and the Wiener-Hopf factorization.
Motivated by applications in stochastic networks, we are particularly inter-
ested in stochastic processes taking values in a nonnegative quadrant. These
processes often have simple additive structure within the quadrant and are
reflected at the boundary of the quadrant, where the reflection may compli-
cate state transitions. In view of Corollary 2.1, if Q is the transition kernel
of such a reflected process, we can study the stationary distribution ν of Q
through H in which τ is chosen as a hitting time of the boundary. However,
this direct approach is generally hard to be evaluated. So, before going to
the reflected processes, we focus on a tractable additive structure inside the
boundary.

3.1. Definitions and basic properties. Let {Xn} be a discrete time Markov
process with state space SX , which is a complete and separable metric space.
Let SY be either the d-dimensional Euclidean vector space R

d or the d-
dimensional discrete space Zd, where d is a positive integer, and Z is the set

of all integers. We use the standard Euclidean norm ‖u‖ ≡
√
u21 + · · ·+ u2d,

and the inner product 〈u,v〉 ≡
∑d

i=1 uivi. Let B(SY ) be the Borel σ-field on
SY . Note that we use the discrete topology for Zd. Many of our results can
be extended to SY being a complete separable metric space with an additive
operation which is closed in SY . However, SY = R

d or Z
d is sufficient for

most applications. In what follows, we assume that SY = R
d unless stated

otherwise for simplicity.
Let {Yn} be an SY -valued additive process such that the increment ∆Yn ≡

Yn+1 − Yn only depends on Xn and Xn+1 with respect to the filtration
σ((Xn′ , Yn′);n′ ≤ n). Namely, we assume that

P (Xn+1 ∈ A,∆Yn ∈ B|Xn′−1, Yn′ , n′ ≤ n,Xn = x)

= P (Xn+1 ∈ A,∆Yn ∈ B|Xn = x), A ∈ B(SX), B ∈ B(SY ), x ∈ SX .

These transition probabilities are also assumed to be independent of n. De-
note the right-hand side by K(x,A × B). Thus, we are concerned with the
joint process {(Xn, Yn)}, which has state space S ≡ SX×SY . This process is
called a discrete-time Markov additive process, while K ≡ {K(x,A×B)} is
called a Markov additive kernel. We simply refer to {(Xn, Yn)} as a Markov
additive process while Xn and Yn are referred to as a background state and
an additive component, respectively. See [2] for more details.

Since {(Xn, Yn)} is also viewed as a Markov process with state space S, we
can consider its transition kernel. Denote this kernel by Q, which is defined
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as an operator on Mb(S):

Qg(x,u) =

∫

S

K(x, dy × dv)g(y,u + v), g ∈Mb(S), (x,u) ∈ S.

We shall use a time reversed version of this Markov process. However, we
need to be careful since Q may not have a stationary measure. In what
follows, we analytically construct such a process.

Assume that K(x, SX × SY ) = 1, i.e. for every x, {(Xn, Yn)} is non-
terminating. We always assume the following irreducibility.

(3a) The kernel KX ≡ {K(x,A × SY )} of the background process is irre-
ducible, that is, there exists a σ-finite measure ψ on (SX ,B(SX)) such
that if ψ(A) > 0, then there is a positive integer n0 for each x ∈ SX
such that Kn0

X (x,A) > 0.

Remark 3.1. This irreducibility is referred to as ψ-irreducibility in the
literature. Since such irreducibility implies the existence of a maximal irre-
ducible measure, we can assume without loss of generality that ψ is maximal
(see Section 2 of [28]).

We always assume (3a), but this is not a mandatory request. Some of
our results may not need this assumption. By Theorem 2.1 of [28], (3a)
implies that there exist a positive integer n0, a nonnegative function gs(x)
on SX and a measure λ on (SX ,B(SX)) such that

∫
gs(x)ψ(dx) > 0 for the

irreducible measure ψ and

gs(x)λ(A) ≤ Kn0
X (x,A), x ∈ S,A ∈ B(SX).(3.1)

gs is called a small function, and KX is said to satisfy the minorization
condition. In the literature, the following stronger condition is often used
(see, e.g. [26, 27]), but we only need it for some special cases in Section 5.

(3b) For the Markov additive kernel K satisfying (3a), there are a positive
integer n0, a family of measures {h(x, ·);x ∈ SX} on (Rd,B(Rd)) and
a measure λ on (SX ,B(SX)) such that

h(x,B)λ(A) ≤ Kn0(x,A×B),(3.2)

x ∈ S,A ∈ B(SX), B ∈ B(Rd).

In this case, K is said to satisfy the minorization condition.

Remark 3.2. If SX is countable, then (3b) is automatically satisfied
under assumption (3a). For the general case, useful sufficient conditions are
given in Proposition 3.1 of [26].
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Under the irreducibility assumption (3a), KX has a sub-invariant mea-
sure, which is denoted by π (e.g., see Section 5.2 of [28]). Namely, there
exists a measure π on SX such that

∫

SX

π(dx)K(x,A × SY ) ≤ π(A), A ∈ B(SX).(3.3)

Since
∑∞

n=0 2
−n−1πKn can be a maximal irreducible measure (see (2.1) on

page 10 and Proposition 2.4 of [28]), we choose π itself as a maximal irre-
ducible measure. Thus, (3.3) is equivalent to (3a). In Section 3.3, we use
stronger condition (3b), but our main results do not need this condition.

It follows from (3.3) that KX(x, ·) ≪ π for a.s. x with respect to π,
where µ≪ ν stands for µ to be absolutely continuous with respect to ν for
measures µ, ν on (SX ,B(SX)), that is, µ(A) > 0 implies ν(A) > 0 for all
A ∈ B(SX). Hence, by the Radon-Nikodym theorem, there exists a Markov
additive kernel K̃ such that

∫

A

π(dx)K(x,A′ ×B) =

∫

A′

π(dx′)K̃(x′, A×B),(3.4)

A,A′ ∈ B(SX), B ∈ B(SY ).

Since π is also the sub-invariant measure for K̃(·, · × SY ), K̃ is a sub-
stochastic kernel, i.e., K̃(x, SX × SY ) ≤ 1. This is formally verified by sub-
stituting A = SX and B = SY in the above formula, which yields

∫

A′

π(dx′)K̃(x′, SX × SY ) =

∫

SX

π(dx)K(x,A′ × SY ) ≤ π(A′),

A′ ∈ B(SX).

In particular, if π is an invariant measure, then K̃ is also stochastic. Simi-
larly, we can see that π is the invariant measure of K̃X ≡ {K̃(x,A × SY )}.
The additive kernel K̃ may depend on the choice of π. From these observa-

tions,
(̃
K̃
)
is identical to K if we choose the same π for K̃X . Based on these

facts, we introduce the following terminology.

Definition 3.1. Let {(X̃n, Ỹn)} be the Markov additive process gen-
erated by K̃ with respect to the sub-invariant measure π of KX . Then
{(X̃n, Ỹn)} is said to be a dual Markov additive process of {(Xn, Yn)} with
respect to π, dual MAP for short.

Remark 3.3. The minimal sub-invariant measure is known to be pro-
portional to an occupation measure, i.e., the expected sojourn time before
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returning to an appropriately chosen base set, so the sub-invariant measure
π can not be finite if K is transient, while any sub-invariant measure must
be invariant if K is recurrent (see [28] for details).

Define the transition kernel Q̃ for the Markov additive kernel K̃ as

Q̃g(x,u) =

∫

S

K̃(x, dy × dv)g(y,u + v), g ∈Mb(S), (x,u) ∈ S.

Then, Q̃ is the transition kernel of the dual MAP {(X̃n, Ỹn)}.
We now give a sample path construction of the dual MAP with Q̃ from the

original MAP {(Xn, Yn)}. The following fact is obvious, but a key for this
construction. For convenience of the reader, its proof is given in Appendix B.

Lemma 3.1. Let m be the Lebesgue measure on SY (= R
d), and π be the

sub-invariant measure of KX . Define the product measure of π and m as

π ⊗m(A×B) = π(A)m(B), A ∈ B(SX), B ∈ B(SY )

Then π ⊗ m is the sub-invariant measure of Q, which is invariant if and
only if π is invariant.

Remark 3.4. If the additive component Yn only takes values on a lattice,
i.e., the set of all (i1, . . . , id)a for all integers ij and some number a > 0,
then this lemma is valid for the uniform measure on the lattice instead of
m. Throughout the paper, we use m in this sense.

The following fact shows how a sample path of the dual MAP is obtained
from that of the original MAP under measure π ⊗m.

Lemma 3.2. For A,A′ ∈ B(SX) and B,B′ ∈ B(SY ), we have
∫

A×B

π(dx)m(du)Q((x,u), A′ ×B′)(3.5)

=

∫

A′×(−B′)
π(dx)m(du)Q̃((x,u), A× (−B)).

Hence, we have, for h ∈M+(S
n+1),

Eπ⊗m (h(X0, Y0,X1, Y1, . . . ,Xn, Yn))(3.6)

= Eπ⊗m

(
h(X̃n,−Ỹn, X̃n−1,−Ỹn−1, . . . , X̃0,−Ỹ0)

)
, n ≥ 1,

where Eµ represents the expectation under measure µ.
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Remark 3.5. From (3.5), Q((x,u), ·) ≪ π⊗m and Q̃((x,u), ·) ≪ π⊗m
for a.s. (x,u) with respect to π ⊗m.

The proof of Lemma 3.2 is deferred to Appendix C because it is just me-
chanical. From (3.6), we may set Ỹn = −Y−n for all n. This is the sample
path definition of the dual MAP. From this, one can see that Ỹn increases
in n only if Yn increases. So, the drift is unchanged under the dual opera-
tion. In view of K̃ and Q̃, it will be convenient to introduce the following
transpositions of kernels.

Definition 3.2. Let UX be a nonnegative kernel on (SX ,B(SX)). Let

ζX be a measure on (SX ,B(SX)). If there exists a nonnegative kernel U
t(ζX )
X

such that∫

SX

f1(x)(UXf2)(x)ζX (dx) =

∫

SX

f2(x)(U
t(ζX)
X f1)(x)ζX (dx),

f1, f2,∈M0
b (SX),

then U
t(ζX )
X is said to be a transposition of UX with respect to ζX . Similarly

with,

g−i (x,u) = gi(x,−u), i = 1, 2.(3.7)

the transposition U†(ζ) of the nonnegative kernel U on (S,B(S)) is defined
for a measure ζ on (S,B(S)) by
∫

S

g1(x,u)(Ug2)(x,u)ζ(dx× du) =

∫

S

g−2 (x,u)(U
†(ζ)g−1 )(x,u)ζ(dx× du),

g1, g2,∈M0
b (S).

We also define these transpositions for measures. For example, let ν be a
σ-finite measure on (S,B(S)), if there exists a measurable function ν†(ζ) on
S satisfying
∫

S

g(x,u)ν(dx× du) =

∫

S

g(x,−u)ν†(ζ)(x,u)ζ(dx× du), g ∈M0
b (S).

ν† is said to be a transpose of ν. Obviously, ν ≪ ζ, and ν†(ζ) is a Radon-
Nikodym derivative of ν with respect to ζ.

It is easy to see that (UXVX)t(ζX ) = V
t(ζX)
X U

t(ζX)
X and (UV )†(ζ) =

V †(ζ)U†(ζ) for kernels TX , UX and T,U on (SX ,B(SX)) and (S,B(S)), re-
spectively. It should be noted that transpose † involves sign changes concern-
ing the additive component through g−i while transpose t does not include
the additive component.
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3.2. Decomposition formula. We are interested in developing fluctuation
identities for the MAP, as the additive component of the MAP reaches a
certain level. This concept is clear in one dimension, but in general we need
to specify what we mean by the level. Therefore, we formally introduce the
concept of a level for the MAP.

Definition 3.3. Let ℓ be a real-valued, measurable function on SY (≡
R
d) such that ℓ(0) = 0. Then, ℓ is called a level function, and Jn ≡ ℓ(Yn)

is said to be a level for Zn. The level process {Jn} is called additive if ℓ is
additive, that is,

ℓ(v + u) = ℓ(u) + ℓ(v), u,v ∈ SY .

Let c = (c1, . . . , cd) be the vector in R
d with ‖c‖ = 1, and refer it as a

direction vector. Then, {Jn} is called partially additive in direction c if

ℓ(u+ tc) = ℓ(u) + tℓ(c), u ∈ SY , t ∈ R.

For convenience, we always put Jn = Yn when d = 1. That is, the level is
identical to the additive component for d = 1.

For our applications in Section 4, it is convenient to think of the level set,
{(x,u) ∈ S; ℓ(u) = t}, for each t ∈ R. We here introduce S+

t ≡ {(x,u) ∈
S; ℓ(u) > t}.

Example 3.1. Let ℓ(u) = u1 for u = (u1, . . . , ud). Then Jn is an additive
level. Another additive level is given by ℓ(u) =

∑d
i=1 ciui for a direction

vector c. On the other hand, let

ℓ(u) = min

{
ui
ci
; ci 6= 0, i = 1, . . . , d

}
(3.8)

for a direction vector c. Then, the level is partially additive in direction c

with ℓ(c) = 1. If ℓ1 is partially additive and if ℓ2 is additive, then ℓ1 + ℓ2
is partially additive. So, the partial additivity does not imply (3.8). In our
applications, (3.8) with c > 0 is important since the set {u ∈ SY ; ℓ(u) > 0}
is the positive orthant as we shall see in Section 4.

If the level is not additive, then Jn does depend on the initial additive
component Y0. This does not fit the traditional framework for the Wiener-
Hopf factorization of a Markov additive process (e.g., see Theorem 6.3 of [2]),
so we need to extend that framework. To this end, let τ0−y = inf{n ≥ 1;Jn−



FACTORIZATION FOR MULTIDIMENSIONAL MAP 79

J0 ≤ y}. For s ∈ (−1, 1), g ∈ Mb(S), and (x,u) ∈ S, define nonnegative
kernels by

H+(s)g(x,u) = E(x,u)

( τ0−0 −1∑

n=0

sng(Xn, Yn)

)
,

G0−(s)g(x,u) = E(x,u)

(
sτ

0−
0 g(Xτ0−0

, Yτ0−0
)
)
.

Clearly, τ0−y is a stopping time, but generally not a hitting time, as the set
that needs to be reached depends on the starting position. For convenience,
we write H+(s)g(x,u) for g(x,u) = 1((x,u) ∈ A×B) as H+(s)((x,u), A×
B). Similarly, G0−(s)((x,u),∈ A×B) is defined. We also represent G0−(s)
by probabilities:

G0−
• ((x,u), A ×B;n) = P(x,u)(Xn ∈ A,Yn ∈ B, τ0−0 = n),

n ≥ 1, (x,u) ∈ S.

Similar to this expression, we define R+
• and R+(s) as

R+
• ((x,u), A×B;n)

= P(x,u)(Xn ∈ A,Yn ∈ B, J0 < Jn ≤ min(J1, . . . , Jn−1)),

R+(s)g(x,u) =

∞∑

n=1

sn
∫

S

R+
• ((x,u), dy × dv;n)g(y,v).

We here use subscript • to indicate detailed probabilities for each time index
n. Similarly to the underline, we shall use this notation throughout the
paper. By R+, we denote R+(1), that is, the marginal of R+

• summing over
the time index. Similarly, G0− denotes G0−(1).

It should be noted that the kernels H+(s)g(x,u), G0−(s)g(x,u) and
R+(s)g(x,u) may depend on the initial value u of the additive compo-
nent in addition to the background state x unless the level process {Jn} is
additive. We first note the following fact, which is not used in this section,
but gives an interpretation of R+(s).

Lemma 3.3. For s ∈ [0, 1),

R+(s)g(x,u) = sQ|S+
ℓ(u)

(I −G0−(s))−1|S+
ℓ(u)

g(x,u), g ∈Mb(S),(3.9)

where T |Cg(x,u) =
∫
C
T ((x,u), dy×dv)g(y,v) for the kernel T on (S,B(S))

and C ∈ B(S).
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Since the proof of this lemma is rather mechanical, we defer it to Ap-
pendix D. From (3.9), R+(s) is interpreted as the mean discounted numbers
of visiting states above the initial level before going below this level. To give
another interpretation of R+(s), we use the dual MAP {(X̃n, Ỹn)}. Define
the level function ℓ̃ for this dual MAP by

ℓ̃(u) = −ℓ(−u),

and let J̃n = ℓ̃(Ỹn). Similarly to the case of the original MAP, we also
introduce the stopping time τ̃+0 = inf{n ≥ 1; J̃n − J̃0 > 0}, and define

G̃
+
(s)g(x,u) = E(x,u)

(
sτ̃

+
0 g
(
X̃τ̃+0

, Ỹτ̃+0

))
, (x,u) ∈ S, g ∈Mb(S).

Similarly, R̃
−
(s) is defined as the corresponding kernel with R+(s) in the

opposite direction for the dual MAP. The following result will be used to
verify our formulas for s = 1.

Lemma 3.4. Let π be the sub-invariant measure of KX , and let G̃
+
(s)

and R̃
−
(s) denote kernels corresponding with G+(s) and R−(s), respectively,

for the dual MAP with respect to π. Then, under the assumptions (3a), for
s ∈ [0, 1],

R+(s) = (G̃
+
(s))†(π⊗m),(3.10)

G−(s) = (R̃
−
(s))†(π⊗m).(3.11)

Hence, R+(s)((x,u), ·), G̃
+
(s)((x,u), ·), G−(s)†((x,u), ·) and

R̃
−
(s))†((x,u), ·) are absolutely continuous with respect to π⊗m for almost

all (x,u).

Proof. From (3.6) of Lemma 3.2, we have, for g1, g2 ∈M0
b (S),

Eπ⊗m(g1(X0, Y0)g2(Xn, Yn);J0 < Jn ≤ Jn′ , n′ = 1, . . . , n− 1)

= Eπ⊗m(g1(X̃n,−Ỹn)g2(X̃0,−Ỹ0); J̃0 < J̃n, J̃n−n′ ≤ J̃0, n
′ = 1, . . . , n− 1)

= Eπ⊗m(g−2 (X̃0, Ỹ0)g
−
1 (X̃n, Ỹn); τ̃

+
0 = n),

where g−i are defined by (3.7). Hence, applying the definition of the trans-
position †(π ⊗m), we have
∫

S

g1(x,y)R
+(s)g2(x,y)π(dx)m(y) =

∫

S

g−2 (x,y)G̃
+
(s)g−1 (x,y)π(dx)m(y)

=

∫

S

g1(x,y)(G̃
+
(s))†(π⊗m)g2(x,y)π(dx)m(y).
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Thus, we get (3.10) for s ∈ [0, 1) since π(dx) is positive almost everywhere

due to the irreducibility of KX . Since G̃0− ≡ G̃
0−

(1) is sub-stochastic, (3.11)
is also valid for s = 1. Similarly, (3.11) is obtained for s < 1.

We now present key identities.

Theorem 3.1. We have the following identities for kernels on (S,B(S)).
For s ∈ [0, 1),

H+(s) = (I −R+(s))−1,(3.12)

and, for s ∈ [0, 1],

I − sQ = (I − (G̃
+
(s))†(π⊗m))(I −G0−(s)).(3.13)

Remark 3.6. I −G0−(s) can be decomposed further. For this, let τ0y =
inf{n ≥ 1;Jn − J0 = y} and τ−y = inf{n ≥ 1;Jn − J0 < y}, and define

G0(s)g(x,u) = E(x,u)

(
sτ

0
0 g(Xτ00

, Yτ00 )
)
,

G−(s)g(x,u) = E(x,u)

(
sτ

−

0 g(Xτ−0
, Yτ−0

)
)
.

Since G−(s) = (I −G0(s))−1(G0−(s)−G0(s)), we have

I −G0−(s) = (I −G0(s))(I −G−(s)).(3.14)

Substituting this into (3.13) yields so called a symmetric decomposition.

Remark 3.7. In our applications, the case s = 1 is important. H+f
may diverge even for f ∈ M0

b (S), so we can not verify (3.12) for s = 1 in
general while (3.13) holds.

Remark 3.8. Equation (3.13) looks like the Wiener-Hopf factorization
of Arjas & Speed [2], but this is not a precise interpretation because the
additive components in R+(s), (G+(s))†(π⊗m) and G0−(s) may depend on
the initial value of the additive component. Thus, (3.13) is more close to the
factorization of Dinges [8]. However, we derive it using the same spirit as in
[2], so we still call it the Wiener-Hopf factorization.

Proof. We first derive (3.12). Decomposing the probability P(x,u)(τ
0−
0 ≥

n + 1, (Xn, Yn) ∈ A × B) by the last time when the minimum of the level
is attained during the time interval from 1 to n, we have, for n ≥ 1 and
(x,u) ∈ S,
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P(x,u)(τ
0−
0 ≥ n+ 1, (Xn, Yn) ∈ A×B)

= P(x,u)

(
J0 < min

1≤n′≤n
Jn′ ,Xn ∈ A,Yn ∈ B

)

=

n∑

k=1

P(x,u)

(
J0 < Jk ≤ min

1≤n′≤k−1
Jn′ , Jk < min

k+1≤n′≤n
Jn′ ,Xn ∈ A,Yn ∈ B

)

=

n∑

k=1

E(x,u)

(
1(J0 < Jk ≤ min

1≤n′≤k−1
Jn′)

×P
(
Jk < min

k+1≤n′≤n
Jn′ ,Xn ∈ A,Yn ∈ B

∣∣∣Fk

))

= R+
• ((x,u), A×B;n)

+
n−1∑

k=1

∫

S

R+
• ((x,u), dx

′ × du′; k)

×P(x′,u′)(τ
0−
0 ≥ n− k + 1, (Xn−k, Yn−k) ∈ dy × dv).

Multiplying both sides of the above equation with sn, summing over n ≥ 1,
and rearranging terms, we have

(I −R+(s))H+(s) = I.(3.15)

Similarly, decomposing the same probability by the last time when the level
is less than Jn, we have

H+(s)(I −R+(s)) = I.

This concludes (3.12) since H+(s) and R+(s) are nonnegative and H+(s)g
is finite for s ∈ [0, 1) and g ∈ Mb(S). We next prove (3.13). For this, we
apply Lemma 2.1 for τ = τ0−0 and Zn = (Xn, Yn). Then, (2.2) is

H+(s)(I − sQ) = I −G0−(s).(3.16)

This and (3.15) together with Lemma 3.4 yield (3.13).

3.3. Operator moment generating functions. We are interested in tail
asymptotics of some distributions connected to R+ ≡ R+(1) in our appli-
cations. This is the problem of large deviations, and it is well known that
exponential change of measure is useful for them (see, e.g., [9, 31]). In this
section, we introduce operators under exponential change of measure, which
will be useful in applications. For this, we rewrite the Wiener-Hopf factor-
ization (3.13) in terms of operator moment generating functions.
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Recall that the inner product of vectors a and b is denoted by 〈a, b〉. For
θ ∈ R

d
+, define K∗(θ) and Q∗(θ) as

K∗(θ)f(x) = E
(
e〈θ,(Y1−Y0)〉f(X1)

∣∣∣X0 = x
)
, x ∈ SX , f ∈Mb(SX),

Q∗(θ)g(x,u) = E(x,u)

(
e〈θ,(Y1−Y0)〉g(X1, Y1)

)
, (x,u) ∈ S, g ∈Mb(S),

as long as the right-hand side exists. Similarly, G+
∗ (s,θ), G

0−
∗ (s,θ), H+

∗ (s,θ)
and R+

∗ (s,θ) are defined. For example, for (x,u) ∈ S, g ∈Mb(S),

G+
∗ (s,θ)g(x,u) = E(x,u)

(
sτ

+
0 e

〈θ,(Y
τ
+
0
−Y0)〉

g(X
τ+0
, Y

τ+0
)
)
,

H+
∗ (s,θ)g(x,u) = E(x,u)

( τ0−0 −1∑

n=0

sne〈θ,(Yn−Y0)〉g(Xn, Yn)

)
.

Then, (3.10), (3.13) and (3.16) can be written as, for s ∈ [0, 1) and ℜθ = 0,

R+
∗ (s,θ) = (G̃

+
∗ (s,θ))

†(π⊗m),(3.17)

I − sQ∗(θ) = (I −R+
∗ (s,θ))(I −G0−

∗ (s,θ)),(3.18)

H+
∗ (s,θ)(I − sQ∗(θ)) = I −G0−

∗ (s,θ).(3.19)

Similarly to R+ and some others, we remove the underline in the above
notation for s = 1 in such a way that R+

∗ (θ) = R+
∗ (1,θ).

To consider those formulas under an exponential change of measure, we
need to find their domains concerning s and θ on which they are σ-finite
nonnegative kernels on (S,B(S)). For this, we will use a sub-invariant mea-
sure and superharmonic function for sK∗(θ). Following Nummelin [28], we
introduce some basic notions.

We define the irreducibility of a nonnegative kernel U on (SX ,B(SX))
similar to (3a) for KX . Assume that U is irreducible. Then, similar to (3.1)
for KX , there is a small function gs, that is, there are a positive integer m,
a nonnegative function gs on SX , a nonzero measure ν on (SX ,B(SX)) such
that

∫
gs(x)ψ(dx) > 0 for the irreducible measure ψ of U and

gs(x)ν(A) ≤ Um(x,A), x ∈ SX , A ∈ B(SX).

Let Ms(SX) be the set of all small functions on SX . Since the irreducibility
of U implies Ms(SX) 6= ∅ by Theorem 2.1 of [28], we can define cp(U) as

cp(U) = sup

{
z ≥ 0;

∞∑

n=0

znUngs(x) <∞,∀gs ∈Ms(SX),∃x ∈ SX

}
,

which is referred to as a convergence parameter of U (see Theorems 3.2 and
3.3 of [28]).
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The following lemma characterizes the convergence parameter by sub-
invariant measures or super-harmonic functions.

Lemma 3.5 (Propositions 5.2 and 5.7 of [28]). For a nonnegative irre-
ducible kernel U on (SX ,B(SX)), cp(U) ≥ s is equivalent to either one of
the following conditions.

(i) There is a measure µ such that sµU(A) ≤ µ(A) for all A ∈ B(SX).
(ii) There is a function h ∈ M+(SX) such that sUh(x) ≤ h(x) for all

x ∈ SX .

Remark 3.9. If (i) (or (ii)) holds, µ (or h) is called a sub-invariant
measure (or a super-harmonic function) of kernel sU .

We now consider the convergence parameter for K∗(θ). Since it is a non-
negative kernel and the irreducibility of KX implies that of K∗(θ), cp(K(θ))
is well defined. Thus, we define

C0(K) = {θ ∈ R
d; cp(K∗(θ)) > 0},

C0(K) = {(t,θ) ∈ R× SX ; tK∗(θ)h ≤ h, for some h ∈M+(SX)}.

Similarly, C0(K̃) and C0(K̃) are defined for K and K̃. Note that C0(K) may
be smaller than the convergence domain ofK(θ), that is, the set of all θ ∈ R

d

such that K(θ) is a σ-finite nonnegative operator. From (3.4), it follows that
∫

A

π(dx)(K∗(θ)h)(x) =

∫
π(dx′)h(x′)K̃∗(θ)(x

′, A), A ∈ B(SX).

This implies that, for each fixed t > 0, h is super-harmonic for tK∗(θ) if and
only if ν(A) ≡

∫
A
π(dx)h(x) is sub-invariant for tK̃∗(θ). Hence, Lemma 3.5

leads to the following lemma.

Lemma 3.6. θ ∈ C0(K) if and only if (t,θ) ∈ C0(K) for some t > 0.
Furthermore,

cp(K̃∗(θ)) = cp(K∗(θ)) = sup{t; (t,θ) ∈ C0(K)}.(3.20)

We further note the following facts.

Lemma 3.7. Λ(θ) ≡ − log cp(K∗(θ)) is a convex function on C0(K). If
(3b) holds, then Λ(θ) is lower semi-continuous. Furthermore,

cp(Q∗(θ)) ≥ sup
θ
′∈C0(K)

cp(K∗(θ
′)), θ ∈ C0(K),(3.21)

and therefore C0(K) ⊂ C0(Q).



FACTORIZATION FOR MULTIDIMENSIONAL MAP 85

Remark 3.10. The convexity and lower semi-continuity of Λ(θ) are es-
sentially known. For example, see Corollary 3.3 and Lemma 3.4 of [26], in
which finer results are obtained under extra conditions including (3b). On
the other hand, (3.21) may imply cp(Q

(t,θ)) > 1 for (t,θ) ∈ C0(K). This is
not surprising since the Markov additive process is generally transient.

Proof. We prove the convexity without condition (3b). Let θ1 and θ2

be arbitrarily chosen elements of C0(K). It follows from Lemma 3.6 and the
definition of Λ(θ) that there exist positive functions h1 and h2 such that

K∗(θi)hi ≤ eΛ(θi)hi, i = 1, 2,

where the variable with parenthesis (x) is omitted for simplicity. This con-
vention will be used below as long as there will be no confusion. For λ ∈
(0, 1), these inequalities imply

(K∗(θ1)h1)
λ(K∗(θ2)h2)

1−λ ≤ eλΛ(θ1)+(1−λ)Λ(θ2)hλ1h
1−λ
2(3.22)

By Hölder’s inequality with p = 1
λ
and q = 1

1−λ
, we have

∫

SX

K∗(λθ1 + (1− λ)θ2)(x, dy)h
λ
1 (y)h

1−λ
2 (y)(3.23)

=

∫

S

K(x, dy × du)(e〈θ1,u〉h1(y))
λ(e〈θ2,u〉h2(y))

1−λ

≤

(∫

S

K(x, dy × du)e〈θ1,u〉h1(y)

)λ

×

(∫

S

K(x, dy × du)e〈θ2,u〉h2(y)

)1−λ

= (K∗(θ1)h1(x))
λ(K∗(θ2)h2(x))

1−λ..

Hence, letting h(x) = hλ1 (x)h
1−λ
2 (x), inequalities (3.22) and (3.23) yield

K∗(λθ1 + (1− λ)θ2)h ≤ eλΛ(θ1)+(1−λ)Λ(θ2)h.

This and Lemma 3.5 imply that λθ1 + (1 − λ)θ2 ∈ C0(K), and therefore
Lemma 3.6 yields

eλΛ(θ1)+(1−λ)Λ(θ2) ≤ cp(K∗(λθ1 + (1− λ)θ2)) = e−Λ(λθ1+(1−λ)θ2)

Hence, we have the convexity of Λ:

Λ(λθ1 + (1− λ)θ2) ≤ λΛ(θ1) + (1− λ)Λ(θ2).



86 M. MIYAZAWA AND B. ZWART

We next assume (3b). In this case, Λ can be defined by (2.5) of [27], and it
can be shown that Λ is lower semi-continuous.

We next prove (3.21). For θ′ ∈ C0(K), let t = cp(K∗(θ
′)), then tK∗(θ

′)
has a super-harmonic function h, and therefore

tQ∗(θ)(h⊗ e(θ
′−θ))(x,u) = t

∫

S

Q((x,u), dx′ × du′)e〈θ,(u
′−u)〉h(x′)e〈θ

′−θ,u′〉

= t

∫

S

Q((x,u), dx′ × du′)e〈θ
′,u′−u〉h(x′)e〈θ

′−θ,u〉

= tK∗(θ
′)h(x)e〈θ

′−θ,u〉 ≤ h⊗ e(θ
′−θ)(x, u),

where e(θ)(u) = e〈θ,u〉. Hence, cp(Q∗(θ)) ≥ cp(K∗(θ
′)). This proves (3.21).

To derive the Wiener-Hopf factorization under change of measure, we will
use the following notation.

Definition 3.4. For (t,θ) ∈ C0(K), let h(t,θ) be the super-harmonic
function of tK∗(θ) and define kernelsK(t,θ) and Q(t,θ) on S as, for g ∈Mb(S),

K(t,θ)g(x) = (h(t,θ)(x))−1

∫

S

tK(x, dx′ × du′)e〈θ,u
′〉h(t,θ)(x′)g(x′,u′),

Q(t,θ)g(x,u)

= (h(t,θ)(x))−1

∫

S

tQ∗(θ)((x,u), dx
′ × du′)h(t,θ)(x′)g(x′,u′),

R(t,θ)+(t)g(x,u)

= (h(t,θ)(x))−1

∫

S

R+
∗ (st,θ)((x,u), dx

′ × du′)h(t,θ)(x′)g(x′,u′),

G(t,θ)0−(t)g(x,u)

= (h(t,θ)(x))−1

∫

S

G0−
∗ (st,θ)((x,u), dx′ × du′)h(t,θ)(x′)g(x′,u′).

These kernels are said to be twisted with parameter (t,θ). Similarly, K̃(t,θ)

and Q̃(t,θ) are defined for the dual kernels K̃ and Q̃.

Note that Q(t,θ) is the transition probability kernel of the Markov addi-
tive process generated by K(t,θ), and R+(s) and G0−(s) are transferred to
R(t,θ)+(s) and G(t,θ)0−(s) under this change of measure. Hence, the following
theorem is immediate from Theorem 3.1 and Lemmas 3.6 and 3.7.
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Theorem 3.2. For (t,θ) ∈ C0(K), we have, for s ∈ [0, 1],

R(t,θ)+(s) = (G̃(t,θ)+(s))†(π
(t,θ)⊗m),(3.24)

I − sQ(t,θ) = (I −R(t,θ)+(s))(I −G(t,θ)0−(s)),(3.25)

where π(t,θ) is the sub-invariant measure of K
(t,θ)
X . Furthermore, (3.17) and

(3.18) hold for (s,θ) ∈ C0(K).

Remark 3.11. In view of this theorem, we can see that Theorem 3.1
can be extended to any nonnegative and irreducible kernel {K(x,A × B)}.
In this case, the range of s in (3.13) is changed to s ∈ [0, cp(K)) and the
conjugate operation †(π ⊗m) must be appropriately modified.

We next specialize the decomposition (3.18) for additive and partially
additive cases.

3.4. Additive and partially additive levels. Assume that the level Jn is
additive, that is, ℓ is an additive function. In this case, H+

∗ (s,θ)|SX
g(x,u)

does not depend on u, so we denote it by H+
∗△(s,θ)g(x). Similarly, G̃

+
∗△(s,θ)

and R̃
+
∗△(s,θ) and some others are defined. For example,

G̃
+
∗△(s,θ)g(x) = Ex

(
sτ̃

+
0 exp(〈θ, Ỹ

τ̃+0
− Ỹ0〉)g(X̃τ̃+0

)
)
, g ∈Mb(SX),

where τ̃+0 = inf{n ≥ 1; J̃n > J̃0}. LetH
+
△
(s), G̃

+
△
(s) andR+

△
(s) be the kernels

on (S,B(S)) corresponding to [H+
∗△(s,θ)]SX

, [G̃
+
∗△(s,θ)]SX

and [R+
∗△(s,θ)]SX

,
respectively. In this notation system, K and K̃ can be written as Q△ and
Q̃△, respectively. For these kernels, we can naturally define convolutions. For
example, for g ∈Mb(SX),

(sQ̃△ ∗ G̃
+
△
(s))g(x)

=

∫

S

sQ̃△(x, dx
′ × du′)

∫

S

G̃
+
△
(s)(x′, dx′′ × du′′)g(x′′,u′ + u′′).

Since ℓ̃(u) = ℓ(u), the following formula is immediate from Lemma 3.4.

R+
∗△(s,θ) = (G̃

+
∗△)

t(π)(s,θ), (s,θ) ∈ C0(K).(3.26)

Since Q∗△(θ) = K∗(θ), Theorem 3.1 yields:

Corollary 3.1. If the level is additive, then, for (s,θ) ∈ C0(K),

I − sK∗(θ) = (I − (G̃
+
∗△)

t(π)(s,θ))(I −G0−
∗△ (s,θ)).(3.27)
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Remark 3.12. For ℜθ = 0 and s ∈ [0, 1), (3.27) is well known as the
Wiener-Hopf factorization for a Markov additive process (see Theorem 6.3
and Remark 6.6 of [2]). We here define the dual process and transpose oper-
ation in a slightly different way, which avoids the sign change that is needed
in [2]. Another different feature is expanding the set of possible (s,θ) within
nonnegative vector values, which is convenient for change of measure.

Remark 3.13. (3.27) is often derived for d = 1, s = 1 and ℜθ = 0 assum-
ing that S is a finite set. See Asmussen [3] for more about this type of Wiener-

Hopf factorization. The formulas replacing G̃
+
∗△ in (3.27) by R+

∗△(s,θ) is also
known as R-G decomposition when Yn is integer valued and SX is a finite
or countable set (e.g., see [13, 33]).

We next consider the case that the level is partially additive. Let c be
the direction of the partially additive level. Let Zn = Yn− ℓ(Yn)c. Since any
difference Jn′+1−Jn′ only depends on Yn′ through Zn′ ≡ Yn′ − ℓ(Yn)c ∈ SY ,
we take (Xn, Zn) as the background state instead of Xn and Jn as the
additive component. Let Kc((x,z), A× B), (x,z) ∈ S,A ∈ B(S), B ∈ B(R)
be the Markov additive kernel of the Markov additive process ((Xn, Zn), Jn).
Namely, Kc is defined by
∫

S×B

Kc((x,z), dx
′ × dz′ × du)g(x′,z′)

=

∫

S

K(x, dx′ × du)1(ℓ(u) ∈ B)g(x′,u+ z − ℓ(u+ z)c),

(x,z) ∈ S, g ∈Mb(S), B ∈ B(SY ).

Similarly to Lemma 3.1, we can see that π⊗m is a sub-invariant measure
of Kc. Since the additive component Jn is itself a level, the MAP ((Xn, Zn))
has an additive level process (Jn).

Hence, Corollary 3.1 yields

Corollary 3.2. If the level is partially additive in the direction c, we
have

I − sKc∗(θ) = (I − (G̃
+
∗c)

t(π⊗m)(s, θ))(I −G0−
∗c (s, θ)),(3.28)

(s,θ) ∈ C0(K),

where K∗c(θ) is the moment generating function operator of Kc, that is,

Kc∗(θ)g(x,u) = E(x,u)

(
eθ(J1−J0)g(X1, Y1 − J1c)

)
.

The operator generating functions G̃
+
∗c(s, θ) and G

0−
∗c (s, θ) are defined simi-

larly.
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4. Reflected Markov additive process. We now modify the Markov
additive process {(Xn, Yn)} in such a way that the level Jn is kept nonneg-
ative. For this, we change the level function ℓ to a level function ℓ̂ which
satisfies that, for each u ∈ SY ,

ℓ̂(u) > 0 if and only if ℓ(u) > 0.(4.1)

As long as this condition satisfied, ℓ̂(u) can be different from ℓ(u). Denote
this modified process by {(X̂n, Ŷn)}. To describe the state space for this
process, let

Ŝ0
Y = {u ∈ SY ; ℓ̂(u) = 0}, Ŝ+

Y = {u ∈ SY ; ℓ̂(u) > 0},

where SY = R
d. For an arbitrarily given measurable space (Ŝ0

X ,B(Ŝ
0
X)), we

put

Ŝ0 = Ŝ0
X × Ŝ0

Y , ŜY = Ŝ0
Y ∪ Ŝ+

Y , Ŝ+ = SX × ŜY .

The modified process has state space Ŝ ≡ Ŝ0∪ Ŝ+. We refer to Ŝ0 and Ŝ+ as
boundary and interior, respectively. Note that the background state space
at level 0 may be different from those at positive levels.

To describe the evolution of our process at the boundary, we assume the
following transition probabilities:

P (X̂n+1 ∈ A, Ŷn+1 ∈ B|X̂n = x, Ŷn = u)

=





K(x,A× (B − u)), (x,u) ∈ Ŝ+, A×B ∈ B(Ŝ+),

L0((x,u), A×B), (x,u) ∈ Ŝ0, A×B ∈ B(Ŝ),

L+0((x,u), A×B), (x,u) ∈ Ŝ+, A×B ∈ B(Ŝ0),

where L0 and L+0 are transition kernels such that

L0((x,u), Ŝ) = 1, (x,u) ∈ Ŝ0,

L+0((x,u), Ŝ0) +K(x, Ŝ+
Y − u) = 1, (x,u) ∈ Ŝ+.

The kernels L0 and L+0 can be arbitrarily given as long as the above con-
ditions are satisfied.

Often, the kernels L0 and L+0 can be expressed in terms of K, but this
is not necessary, which is common in the matrix analytic framework (see,
e.g., [25]). This modified process {Ẑn, n ≥ 0} ≡ {(X̂n, Ŷn)} is a discrete time
Markov process, and referred to as a Markov additive process with reflection
or a reflected Markov additive process, respectively; MAP with reflection or
reflected MAP for short. We will discuss about examples later.
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We now consider the stationary distribution of this MAP with reflection,
which is the main subject of this section. We construct this stationary dis-
tribution using Corollary 2.1 with τ = τ̂0−0 , where τ̂0−y = inf{n ≥ 1; Ĵn ≤ y}.
We also consider the time elapsed after leaving level 0. Let µ0 be a distri-
bution on Ŝ0 (to be chosen later), and define, for n ≥ 1,

ν0•(A×B;n)

=

∫

Ŝ0

µ0(dx× du)P̂(x,u)((X̂n, Ŷn) ∈ A×B, τ̂0−0 = n, Ĵ0 = 0),

ν+•(A×B;n)

=

∫

Ŝ0

µ0(dx× du)P̂(x,u)((X̂n, Ŷn) ∈ A×B, τ̂0−0 ≥ n+ 1, Ĵ0 = 0),

ν•(A×B;n) = ν0•(A×B;n) + ν+•(A×B;n).

We also define the measure ν0(s) as

ν0(s)g =

∞∑

n=1

sn
∫

Ŝ0

ν0•(dx× du;n)g(x,u), g ∈Mb(Ŝ).

In the same way, ν+(s) is defined for ν+•, and we set ν(s) = ν0(s)+ν+(s). As
usual, ν0(1), ν+(1) and ν(1) are simply denoted by ν0, ν+ and ν, respectively.

By Corollary 2.1, ν is the stationary measure of the reflected process {Ẑn}
if ν ≡ ν(1) is a measure and if µ0 = ν0, that is, for all A×B ∈ B(Ŝ0),

µ0(A×B)(4.2)

=

∫

Ŝ0

µ0(dx× du)P̂(x,u)(X̂τ̂0−0
∈ A, Ŷ

τ̂0−0
∈ B, τ̂0−0 <∞, Ĵ0 = 0).

Clearly, it is necessary for the existence of such µ0 that τ̂0−0 < ∞ with
probability 1, but even the finiteness of Eµ0(τ̂

0−
0 ) may not be sufficient. In

general, we have to work on each specific model individually (see e.g., [10,
11]). In queueing applications, it is often the case that the system becomes
empty with positive probability, which makes it relatively easy to see the
existence of µ0 (see e.g., [17]).

In what follows, we focus on obtaining expressions for ν, ν0(s) and ν+(s)
for µ0 satisfying (4.2). To consider them, we introduce some notation. Define

ν+∗(s,θ)g =
∞∑

n=1

sn
∫

Ŝ0

ν+•(dx× du;n)g(x,u)e〈θ,u〉, g ∈Mb(S).

In the same way, ν0∗(s,θ) is defined for ν0. Similarly to R+(s), we define

R0+(s)g(x,u) =

∞∑

n=1

snÊ(x,u)

(
g(X̂n, Ŷn)1(n ≤ τ̂−

Ĵn
, Ĵn > 0, Ĵ0 = 0)

)
.
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We also need the following notation.

L00 = L0|
Ŝ0 , L0+ = L0|

Ŝ+ .

Recall that T |Cf(x,u) =
∫
C
T ((x,u), dy× dv)f(y,v) for an operator T and

C ∈ B(Ŝ). The following fact can be proved in the exactly same way as
Lemma 3.3, so its proof is omitted.

Lemma 4.1. For s ∈ [0, 1),

R0+(s) = sL0+(I −G0−(s))−1|
Ŝ+,(4.3)

where (I −G0−(s))−1|
Ŝ+ means

∑∞
n=0G

0−(s)n|
Ŝ+ .

Similarly to R+
∗ (θ), we denote the operator moment generating function

of L00 and L0+, respectively, by L00
∗ (θ) and L0+

∗ (θ). Then, we have the
following representations.

Theorem 4.1. For any measure µ0 on (Ŝ0,B(Ŝ0)), we have, for s∈ [0, 1),

ν0(s) = sµ0L
00 + s2µ0R

0+(s)L+0,(4.4)

ν+(s) = µ0R
0+(s) + ν+(s)G̃

+
(s)†(π⊗m).(4.5)

Hence,

ν+(s) = µ0R
0+(s)(I − G̃

+
(s)†(π⊗m))−1,(4.6)

equivalently,

ν+(s) = µ0R
0+(s)(I −G0−(s))(I − sQ)−1.(4.7)

In particular, if µ0 satisfies

µ0 = µ0(L
00 +R0+L+0),(4.8)

and if µ0R
0+H+ is finite, where R0+ = R0+(1), then (4.4) and (4.5) are

valid for s = 1, and ν = ν0 + ν+ is the stationary measure of the reflected
MAP.

Remark 4.1. From (4.3) and (4.6), µ0L
0+ ≪ π ⊗ m implies ν+(s) ≪

π ⊗m.

Proof. The idea is to apply censoring at level 0. It follows from Corol-
lary 2.1 and the arguments in the proof of Theorem 3.1 that, for n ≥ 1,
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ν+•(A×B;n)

=

∫

SX

∫

Ŝ0
Y

µ0(dx, du)P̂(x,u)((X̂n, Ŷn) ∈ A×B,n ≤ τ̂−
Ĵn
, Ĵn > 0, Ĵ0 = 0)

+

n−1∑

n′=1

∫

SX

∫

Ŝ+
Y

ν+•(dx× du, n− n′)R+((x,u), A×B;n′).

Multiplying both sides with sn and summing over n, n ≥ 1 yields the fol-
lowing recursive equation

ν+(s) = µ0R
0+(s) + ν+(s)R

+(s).

This and Lemma 3.4 imply (4.5). Similarly, we have (4.4). If H+ is finite,
then R+g(x,u) is finite for all (x,u) ∈ S and g ∈ Mb(S) by Theorem 3.1.
So, (I − G0−)−1|

Ŝ+ must be finite as well. This implies that (4.6) is valid
for s = 1. As we already noted, if (4.4), equivalently, (4.8), holds, ν is the
stationary measure of the reflected MAP.

ComputingR0+(s) is generally complicated because L0+(I−G0−(s))−1|
Ŝ+

can not be simplified as well as involving with the boundary transition L0+.
There is a simpler case, which can be used for some queueing and risk models.

Corollary 4.1. If Ŝ0
X = SX and if

L0+((x,u), A×B) = K(x,A× (B + u)), u ∈ Ŝ0
Y .(4.9)

then R0+(s) = R+(s). Hence, (4.6) implies

ν+∗(s) = µ0R
+(s)(I −R+(s))−1.(4.10)

Furthermore, µ0 ≪ π ⊗m, then (4.10) implies that ν+∗(s) ≪ π ⊗m.

Proof. If ℓ(u) = 0, then (4.9) implies

R0+((x,u), A ×B) = P̂(x,u)((X̂n, Ŷn) ∈ A×B,n ≤ τ̂−
Ĵn
, Ĵn > 0)

= P(x,u)(Xn ∈ A,Yn ∈ B,n ≤ τ0−Jn , Jn > J0)

= R+((x,u), A×B).

This proves the corollary.

The following corollaries are immediate from Theorems 4.1 and 3.2 and
Corollary 3.1.
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Corollary 4.2. For (s,θ) ∈ C0(K), we have

ν0∗(s,θ) = sµ0∗(θ)L
00
∗ (θ) + s2µ0R

0+(s,θ)L+0
∗ (θ),(4.11)

ν+∗(s,θ) = µ0∗(θ)R
0+
∗ (s,θ)

(
I − [G̃

+
∗ (s,θ)]

†(π⊗m)
)−1

,(4.12)

and, if ν+∗(s,θ)|SX
is finite, then

ν+∗(s,θ)|SX
= µ0∗(θ)R

0+
∗ (s,θ)(I −G0−

∗ (s,θ))|SX
(I − sK∗(θ))

−1.(4.13)

Corollary 4.3. If ℓ is additive and if ν+∗(s,θ)|SX
is finite, then we

have, for (s,θ) ∈ C0(K),

ν0∗(s,θ)|SX
(4.14)

= sµ0∗(θ)|SX
[L00

∗ (θ)]SX
+ s2µ0[R

0+
∗ (s,θ)]SX

[L+0
∗ (θ)]SX

,

ν+∗(s,θ)|SX
(4.15)

= µ0∗(θ)|SX
[R0+

∗ (s,θ)]SX
(I − [G0−

∗ (s,θ)]|SX
)(I − sK∗(θ))

−1.

Remark 4.2. (4.13) and (4.15) can be considered as extensions of the
Pollaczek-Khinchine formula for the M/G/1 queue.

In computing the stationary distribution, it is often convenient to use the
recursive equation (4.5). It may be considered as a sort of Neuts’ matrix an-
alytic approach. In Neuts’ approach, a great effort is dedicated to compute
R+, equivalently, G̃+, under the assumption that s = 1 and the level is one
dimensional, i.e., additive. It also requires the further assumption that the
level is skip free or has exponentially distributed jumps at least in one direc-
tion when the level is integer valued or continuous, respectively. In our set-
ting, these problems can be reduced to solve the Wiener-Hopf factorization.

We illustrate a typical example of reflected MAP below, which is a gener-
alization of the 0-partially homogeneous chain studied in [5] (see also [22]).

Example 4.2 (RMAP with homogeneous boundary transitions). Under
the general setting with ŜY = R

d
+ in Section 4, we take as a level function

for reflection

ℓ̂(u) = min{ui; i = 1, 2, . . . , d}, for u = (u1, . . . .ud).(4.16)

For each subset F of D ≡ {1, 2, . . . , d}, let

ŜF
Y = {u ∈ ŜY ;ui > 0 for all i ∈ F, uj = 0 for all j ∈ F c}.

Then, ŜF ≡ Ŝ0
X × ŜF

Y stands for the boundary face for F 6= D. We refer to

it as the F -face. Obviously, Ŝ0 = ∪F 6=DŜ
F is the reflection boundary, and
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ŜD is the interior of the boundaries. Thus, we have a reflected MAP on the
nonnegative orthant with boundary faces ŜF with D 6= F .

To make this model more specific, we assume the boundary transitions
L0((x,u), A× (B−u)) and L+0((x,u), A× (B−u)) are independent of the
additive component u within each boundary face ŜF . This reflected MAP
is said to have homogenous boundary transitions at each boundary face. In
particular, if there is no background state, then this process is termed as a
0-partially homogenous chain in [5].

Example 4.3 (M/G/1-type model). Assume that SY = Z
d and Q is

skip free towards the boundary, which implies that L+0((x,y), A × B) =
Q((x,y), A × B) for x ∈ SX , ℓ̂(y) = 1, A ∈ SX and B ∈ Ŝ0, where ℓ̂ is
defined by (4.16). This model is referred to as M/GI/1-type since it is the
multi-dimensional version of theM/G/1-type queue (see, e.g., [20]). For this
model, the stationary equations can be written as

ν0 = ν0L
00 + ν+L

+0, ν+ = ν0L
0+ + ν+Q|

Ŝ+ .

Hence, summing up these equations, we have ν+(I −Q) = ν0(L
0 − I), and

therefore

ν+∗(θ) = ν0∗(θ)(L
0
∗(θ)− I)(I −Q∗(θ))

−1,(4.17)

as long as the right-hand side exists. This form looks to be simpler than the
corresponding formula (4.13), but they must be identical. When there is no
background state, (4.17) is nothing but the stationary equation, which is
stated in [22].

For the case of a continuous state space, it may be convenient to consider
densities rather than measures and distributions. In the rest of this section,
we consider those densities. Assume that µ0L

0+ ≪ π ⊗m, then there exist
densities

k+(s) ≡
dν+(s)

dπ ⊗m
≥ 0, k0(s) =

dµ0R
0+(s)

dπ ⊗m
,

by Remark 4.1. Hence, from (4.5), we have, using the notation k−+(x,u) ≡
k+(x,−u),
∫

S

k+(s)(x,u)g(x,u)π(dx)m(du)

=

∫

S

k0(s)(x,u)g(x,u)π(dx)m(du)

+

∫

S

∫

S

k+(s)(x,u)G̃
+
(s)†(π⊗m)g(x,u)π(dx)m(du)
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=

∫

S

k0(s)(x,u)g(x,u)π(dx)m(du)

+

∫

S

∫

S

g(x,−u)G̃
+
(s)†(π⊗m)k−+(s)(x,u)π(dx)m(du)

=

∫

S

k0(s)(x,u)g(x,u)π(dx)m(du)

+

∫

S

∫

S

g(x,u)G̃
+
(s)k−+(s)(x,−u)π(dx)m(du).

This concludes that, for (x,u) ∈ Ŝ,

k+(s)(x,u) = k0(s)(x,u) + G̃
+
(s)k−+(s)(x,−u), s ∈ [0, 1](4.18)

holds almost surely concerning π⊗m. This is a version of the Markov renewal

equation with kernel G̃
+
(s), cf. Alsmeyer [1]

We next specialize (4.18) to a one dimensional additive component, so
the level is additive and s = 1. In this case, letting k+ = k+(1) and u = u,
we have

G̃
+
(1)k−+(1)(x,−u) =

∫

S

G̃
+
(1)((x,−u), dy × dv)k+(x,−v)

=

∫

S

G̃+
△
(x, dy × dv)k+(y, u− v)

= (G̃+
△
∗ k+)(x, u).

Hence, (4.18) is written as

k+(x, u) = k0(x, u) + (G̃+
△
∗ k+)(x, u), u > 0,(4.19)

where k0 = k0(1). Thus, we have Markov renewal equations for the densi-
ties k+.

In the above arguments, we have considered the joint density k+(x, u).
However, we can also consider the tail probability for the additive compo-
nent. Namely, let

k+(x, t) =
µ0R

+(dx, [t,∞))

π(dx)
,

which denotes the Radon-Nikodym derivative of measure µ0R
+(A, [t,∞)) for

A ∈ B(SX) with respect to π. Similarly, we define Radon-Nikodym derivative
k0(x, t) for R0+, provided L0+ ≪ K. Then, from (4.18) and Corollary 3.1,
we have

k+(x, t) = k0(x, t) + (G̃+
△
∗ k+)(x, t), t > 0.(4.20)
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5. Light tail asymptotics for the stationary distribution. We
now apply our results in the previous sections to study tail asymptotics of
the stationary distribution of a reflected MAP, provided it exists. We here
produce this reflected MAP by the level function ℓ̂(u) = min(u1, . . . , ud).
An example of this reflected process is considered in Example 4.2. Thus, the
boundary and interior are given by

Ŝ0 = {(x,u) ∈ Ŝ;min(u1, . . . , ud) = 0}, Ŝ+ = {(x,u) ∈ Ŝ;u > 0}.

As we discussed in the first part of Section 4, we can consider another level
function ℓ̂ as long as it satisfies the compatibility condition (4.1). We define
the level process by the level function of (3.8) for each direction vector
c, which is denoted by ℓc. This enables us to consider the stationary tail
asymptotics in the direction c.

We are here only concerned with the light tail case. For this, we will
assume a condition on K∗(θ). In our formulation of the multidimensional
reflected process, there are two approaches to study the tail behavior of
its stationary distribution. The first approach is to reformulate the Markov
additive process to have one dimensional additive component by putting
all necessary information into the background state. In this case, a major
difficulty is that the Markov additive kernel K may be complicated.

The second approach is to directly consider the multidimensional additive
component. In this case, we can work with the original Markov additive
kernel. This simplifies descriptions, but we have to directly work on the
multidimensional reflected process. This creates another difficulty. In this
case, we only consider rough asymptotics for each finite set of background
states.

5.1. One dimensional formulation. We consider a simple situation such
that the reflected MAP is already formulated so as to have a one dimensional
additive component. So, we let ℓ̂(u) = ℓ(u) = u, that is, the level is identical
with the additive component. Let {(Xn, Yn)} be a real-valued MAP with a
general background state space S and Markov additive kernel K, and let
{(X̂n, Ŷn)} be its reflected process with boundary transition operators L0

and L+0. Thus, K, L0 and L+0 are primitive data to uniquely determine
the reflected MAP.

We first consider a general situation, assuming that the reflected MAP
has the stationary distribution ν, which is decomposed as ν0 and ν+. Then,
Corollary 4.3 yields the following result.

Proposition 5.1. Assume that the stationary distribution exists, and
denote a random vector subject to the stationary distribution of the reflected
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MAP with one dimensional additive component by (X̂, Ŷ ). Then,

lim sup
t→∞

1

t
log P (Ŷ > t) ≥ − sup{θ > 0; cp(K∗(θ)) ≥ 1}.(5.1)

Proof. Since G0−
∗ (1, θ)|SX

(A) < 1 for θ > 0 and any A ∈ B(SX), it
follows from (4.15) that, if ν+∗(1,θ)|SX

1 <∞, then

(I −K∗(θ))
−11 <∞.

This further implies that cp(K∗(θ)) ≥ 1. This yields (5.1) since its left-hand
side equals − sup{θ ≥ 0; ν+∗(θ)|SX

1 < ∞} by the continuous parameter
version of the well known Cauchy-Hadamard theorem (see, e.g., Theorem
16.1 of [19]).

This result can be sharpened in some cases.

Proposition 5.2. In addition to the assumptions of Proposition 5.1,
assume that the minorization condition (3b) is satisfied, SY = Z and {Yn}
is skip free in downward direction, that is, Yn is decreased at most by 1, then

lim inf
n→∞

1

n
logP (Ŷ > n) ≥ − sup{θ > 0; cp(K∗(θ)) ≥ 1}.(5.2)

The proof of this proposition is quite technical and the assumption on SX
can be relaxed. However, full discussions for them are complicated, so we
defer them in Appendix F.

We next consider to refine the above results to be so called exact asymp-
totics. For this, we use the following condition.

(5a) There exist a positive constant α, a positive measure η on (SX ,B(SX))
and positive and measurable function h from (SX ,B(SX)) to (R,B(R))
such that

ηK∗(α) = η,(5.3)

K∗(α)h = h.(5.4)

This condition is stronger than cp(K∗(α)) = 1, but it is still too weak for
us. We assume further conditions which enable us to extend the approach of
[24] that considers an integer-valued Markov additive process with a count-
able background state space.

(5b) The additive process {Yn} is non-lattice.
(5c) K∗(α+ ǫ) <∞ for some ǫ > 0.
(5d) ηh ≡

∫
SX

η(dx)h(x) <∞.
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(5e) The restriction of ν on level 0, that is, ν0, satisfies

ν0R
0+
∗ (α)h <∞.(5.5)

Remark 5.1. Since the one dimensional additive component is identi-
cal to the level (see Remark 3.13), R0+

∗ (α) is the same as R0+
∗△ (α). So, the

subscript “△” is omitted in this subsection.

Under the above conditions, we can define the operator K(α) as

K(α)(x, dy × du) = eαuK(x, dy × du)
h(y)

h(x)
.

That is, K(α) = K(1,α) in the notation of Section 3.3. The conditions (5b)
and (5d) are equivalent to K(α) being positive recurrent.

Note that K(α) has stationary measure η ◦ h(dx) ≡ η(dx)h(x), which is
finite by (5d). Namely,

∫

SX

η(dx)h(x)K(α)(x,A× R) =

∫

A

η(dx)h(x), A ∈ B(R).

Denote the Markov additive process generated by K(α) by {(X
(α)
n , Y

(α)
n )}.

The operators corresponding to R+, G0−, G+ are denoted by R(α)+, G(α)0−,
G(α)+, respectively.

We also define a dual Markov additive process {(X̃
(α)
n , Ỹ

(α)
n )} for {(X

(α)
n ,

Y
(α)
n )} using the dual kernel:

K̃(α)(x, dy × du) ≡
K(α)(y, dx× du)

η(dx)h(x)
h(y)η(dy)

= eαu
K(y, dx× du)

η(dx)
η(dy),

where K(y,dx×du)
η(dx) is the Radon-Nikodym derivative of measure {K(y,A ×

B);A ∈ B(SX)} with respect to η for each fixed y ∈ SX and B ∈ B(SY ). In
what follows, this convention for a Radon-Nikodym derivative will be used,
but we also use the conventional notation dη1

dη2
(x) for measures η1 and η2

such that η2 ≪ η1, that is, η2 is absolutely continuous with respect to η1.
The following lemma is a key to consider the asymptotic behavior of the
stationary distribution ν.

Lemma 5.1. Under the conditions (5a) and (5b),

G̃(α)+(x, dy × du) = eαu
R+(y, dx× du)

η(dx)
η(dy).(5.6)
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Furthermore, G̃(α)+(x, dy × (0,∞)) is a stochastic kernel and has the finite
invariant measure ξ given by

ξ = (η ◦ h)(I − R̃
(α)0−
∗ (0)),(5.7)

so it is positive recurrent.

We defer the proof of this lemma to Appendix E since it is similar to
Lemma 4.2 of [24]. We are now ready to present a main result of this sub-
section.

Theorem 5.1. Assume that the reflected MAP {(X̂n, Ŷn)} satisfies con-
ditions (5a)–(5e). Let

b(α) = α

∫ ∞

0
η(dx)K ′

∗(α)h(x).

Then b(α) is finite, and we have, for a.s. η,

lim
t→∞

eαt
ν(dx× [t,∞))

η(dx)
(5.8)

=
1

b(α)

∫ ∞

0
eαu

∫

SX

ν0R
0+(dx× [u,∞))

η(dx)
ξ(dx)du.

Furthermore, if L0+ ≪ K, then, for a.s. η ⊗m,

lim
t→∞

eαt
dν

dη ⊗m
(x, t) =

1

b(α)

∫ ∞

0
eαu

∫

SX

dν0R
0+

dη ⊗m
(x, u)ξ(dx)du,(5.9)

Proof. From (3.26) and (4.15) with s = 1, we have

ν+(dx× du)

= µ0R
0+(dx× du) +

∫ u

v=0

∫

SX

ν+(dy × dv)R+
△
(y, dx× (du− v))

= µ0R
0+(dx× du) +

∫ u

v=0

∫

SX

ν+(dy × du− v)R+
△
(y, dx× dv).

Integrating both sides concerning u over [t,∞), we have

ν+(dx× [t,∞))

= µ0R
0+(dx× [t,∞)) +

∫ t

v=0

∫

SX

ν+(dy × [t− v,∞))R+
△
(y, dx× dv).
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Let

ψ(x, t) = eαt
ν+(dx× [t,∞))

η(dx)
, ψ0(x, t) = eαt

µ0R
0+(dx× [t,∞))

η(dx)
.

Then, applying Lemma 5.1 to the above formula yields

ψ(x, t) = ψ0(x, t) +

∫ t

u=0

∫

SX

G̃
(α)+
△

(x, dy × du)ψ(y, t − u)

= ψ0(x, t) + (G̃
(α)+
△ ) ∗ ψ(x, t).

Hence, by the Markov renewal theorem, we have

lim
t→∞

ψ(x, t) =
1

b(α)

∫ ∞

u=0

∫

SX

ψ0(y, u)ξ(dy)du.

This yields (5.8) since ν = ν+ on SX × (0,∞). Since the assumption L0+ ≪
K implies ν ≪ η ⊗ m, similar arguments can be applied to the density

dν
dη⊗m

(x, t), and (5.8) is obtained. It remains to prove the finiteness of b(α).
This can be done similarly to the proof of Theorem 4.1 of [24].

Example 5.4. Let (Xn) be an AR(1) process, i.e., for some constant
a ∈ [0, 1), let Xn+1 = aXn+Bn+1, with (Bn) an i.i.d. sequence with negative
mean and moment generating function β(s) = E[exp{sB}]. Let the reflected
process (Ŷn,Xn) be given by

(5.10) Ŷn+1 = (Ŷn +Xn+1)
+.

Assume there exists a strictly positive solution to the equation E[exp{sB}] =
1 and E[exp{(s+ǫ)B}] <∞ for some ǫ > 0. For convenience, we also assume
that B has a continuous distribution. The associated free Markov additive
process (Yn,Xn) is defined by Yn = X1+ · · ·+Xn. Then, the n-th increment
of the additive component is identical with the n-th background state Xn,
and the Markov additive kernel is given by

K∗(θ)f(x) = eθaxE(eθBf(ax+B)), θ ≥ 0, f ∈M+(R),(5.11)

as long as it exists.
We now show that all five conditions of the above theorem hold with α > 0

satisfying β(α/(1 − a)) = 1. We first note that L0+ ≪ K is automatically
satisfied since the background process is unchanged at the boundary. Since
L0+((x, 0), [0, u]× [0, u]) = P (ax+B ≤ u), we can apply Corollary 4.1. The
conditions (5b) and (5c) follow from our assumption on the distribution of
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B. Set h(y) = exp{yαa/(1 − a)}, and let η be the distribution of a random
variable V which has moment generating function

(5.12) v(s) = E[esV ] =
∞∏

n=0

β(1−an+1

1−a
α+ ans)

β(1−an+1

1−a
α)

, s ∈ [0, s0),

where s0 = ǫ + a
1−a

α. Obviously, all individual components in this infinite

product are finite. To see its convergence, set cn = 1−an+1

1−a
α. Since β is log-

convex and β(s) is increasing around s = α/(1− a), for sufficiently large n,

0 ≤ log β(cn + ans)− log β(cn) ≤ ans
β′(cn + ans)

β(cn + ans)

This is converging to 0 exponentially fast as n → ∞, guaranteeing the
finiteness of the infinite product.

We show that these particular choices of α, η and h yield condition (5a).
Namely, we need to verify

∫ +∞

−∞
η(dx)E(e(s+α)(ax+B)) =

∫ +∞

−∞
η(dx)esx.

This is equivalent to

v((s + α)a)β(s + α) = v(s).

It can be verified by substitution or iteration that the solution of this equa-
tion is given by (5.12). Condition (5d) reduces to showing v(αa/(1−a)) <∞,
which follows from the expression for v(·) and the fact that

β

(
1− an+1

1− a
α+ an

αa

(1− a)

)
= β

(
α

1− a

)
= 1 <∞.

It remains to prove (5e). Recall that Corollary 4.1 can be applied, and (in
the stationary setting),

ν0(A) = P (Ŷn = 0,Xn ∈ A) ≤ π(A),

where π is the stationary distribution of the background process {Xn}.
Hence, it is sufficient to prove (5e) that πh < ∞, which indeed holds since
π∗(s) =

∏∞
n=0 β(a

ns), and

∫ +∞

−∞
π(dx)h(x) = π∗

(
aα

1− a

)
.

Here, we should note that the infinite product representation of π∗ is well
defined by similar reasons as before.



102 M. MIYAZAWA AND B. ZWART

Thus, Theorem 5.1 implies that the stationary distribution of the level
process is exponential with rate α, up to a function that converges to a con-
stant. This is an improvement of the logarithmic asymptotics which follows
from the standard framework of Glynn & Whitt [12]. A related model is
considered by Kim & Sohraby [15], who consider that a is a 0-1 random
variable, allowing the usage of more basic methods.

5.2. Multidimensional formulation. We next consider the case that the
additive component is multidimensional. One may expect that Proposi-
tion 5.1 can be extended. However, things are not so simple as it may look
since G0−

∗ (1,θ)|SX
(A) < 1 may not be true for θ ≥ 0. This is because some

of the additive components may be positive even if the level is below zero.
In this subsection, SY is either R

d or Z
d, and SX is arbitrary. However,

we mainly consider rough asymptotics of the additive component for each
fixed finite set of background states. This means that our results are useful
only for the background states which are atomic. This is particularly the
case when SX is finite or countable.

Definition 5.1. For a random element (X,Y ) ∈ SX × SY and a di-
rection vector c ≥ 0 such that ‖c‖ = 1, define αY (A, c) and αY (A, c) for
A ∈ B(SX) as

lim sup
t→∞

1

t
logP (X ∈ A,Y > tc) = −αY (A, c),

lim inf
t→∞

1

t
logP (X ∈ A,Y > tc) = −αY (A, c),

which are referred to as upper and lower decay rates, respectively, of Y in
the direction c given X = x.

From these definitions, we have, for sufficiently large t,

e−(αY (A,c)+ǫ)t ≤ P (X ∈ A,Y > tc) ≤ e−(αY (A,c)−ǫ)t.(5.13)

In the theory of large deviations, it typically occurs that αY (A, c) = αY (A, c).
However, there are few results for computing the decay rates from primitive
modeling parameters. Moreover, most of them are limited to the two dimen-
sional case without background state although exact asymptotics are also
obtained (e.g., see [5, 21, 22]). We are interested to find the rough asymp-
totics for the multidimensional reflected MAP which may have background
states, where reflection at the boundary may be arbitrarily given. In light
of the above discussions, it would be very hard even to compute the decay
rates. So, we consider to bound the decay rates.
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Let {(X̂n, Ŷn)} be the multidimensional reflected MAP with the level
function ℓ̂ of (4.16), and assume that it has the stationary distribution ν.
Let (X̂, Ŷ ) be a random vector subject to this distribution ν. Denote its
domain by

D
Ŷ
= {θ ∈ R

d; ν+∗(θ)|SX
g <∞,∃g ∈M+(SX)}.

Since t > 0 and Ŷ > tc imply

t inf
u>c

〈u,θ〉 ≤ 〈θ, Ŷ 〉,

we have

inf
u>c

et〈u,θ〉E(g(X̂)1(Ŷ > tc)) ≤ E(g(X̂)e〈θ,Ŷ 〉) = ν∗(1,θ)|SX
g.

Hence, if A is a finite set, then we have

min
x∈A

g(x)et infu>c〈u,θ〉P (X̂ ∈ A, Ŷ > tc) ≤ ν∗(1,θ)|SX
g

because et〈u,θ〉 is continuous in u ∈ R
d. Since the right-hand side is finite

for θ ∈ D
Ŷ

and h > 0, we have, for finite set A ∈ B(SX),

− αY (A, c) ≤ − sup
θ∈D

Ŷ

inf
u>c

〈u,θ〉.(5.14)

Thus, the domain D
Ŷ

is important to bound the decay rates. To consider
this domain, we introduce the following sets. Here, SX can be general.

C1(K) = {θ ∈ R
d; cp(K∗(θ)) > 1},

D0 = {θ ∈ R
d;µ0∗(θ)L

0+
∗ (θ)|SX

h <∞,∃h ∈ H(θ)},

where for each θ ∈ R
d,

H(θ) = {h ∈M+(SX); tK∗(θ)h ≤ h for some t > 0}.

We will use the following fact, which is proved in Appendix G.

Lemma 5.2. D0 is a convex set.

Note that C1(K) is a convex open set by Lemma 3.7. Hence, by Lemma 5.2,
C1(K) ∩ D0 is a convex set.

Theorem 5.2. For the reflected MAP satisfying the irreducibility as-
sumption (3a), if the stationary distribution exists, then, for any direction
vector c ≥ 0 and any finite set A ∈ B(SX),
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lim sup
t→∞

1

t
log P (X ∈ A,Y > tc) ≤ − sup

θ∈C1(K)∩D0

inf
u>c

〈u,θ〉.(5.15)

In particular, if C1(K) is bounded, then

lim sup
t→∞

1

t
log P (X ∈ A,Y > tc) ≤ − inf

u>c
sup

θ∈C1(K)∩D0

〈u,θ〉.(5.16)

Remark 5.2. If θ in (5.15) is limited in R
d
+, then (5.15) becomes

lim sup
t→∞

1

t
log P (X ∈ A,Y > tc) ≤ − sup

θ∈C1(K)∩D0∩Rd
+

〈c,θ〉.(5.17)

This is simpler, but less sharp than (5.15) as well as (5.16) in general.

Remark 5.3. If Q is irreducible, then K∗(tu)(x) diverges as t→ ∞ for
each non-zero u ∈ R

d and almost all x ∈ SX with respect to the subinvariant
measure π of KX , and therefore cp(K∗(tu)) converges to zero as t → ∞.
Hence, C1(K) is bounded, and we have (5.16). The irreducibility of Q means
that the Markov modulated random walk {Yn} eventually hits any bounded
open ball in R

d with positive probability, so it is relatively easily checked in
application.

Remark 5.4. In the large deviations context, C1(K) comes from the
Markov additive process without reflection, while D0 reflects the boundary
effect. They also correspond with (5a) and (5c) of the one dimensional case.
So, they are quite natural, and we conjecture that the interiors of D

Ŷ
and

C1(K)∩D0 are identical. We may also conjecture this upper bound is tight,
that is, identical with the decay rate.

Proof. Obviously 0 ∈ C1(K)∩D0. If there is no other vector in C1(K)∩
D0, (5.15) clearly holds with 0 in the right-hand side. So, we consider the
case that there is a nonzero vector in C1(K) ∩D0. By Lemma 4.1, it is easy
to see that

ν+(s)R
0+(s)f ≤ sν+(s)L

0+(I −G0−(s))−1f, f ∈M+(S),

and therefore (4.7) of Theorem 4.1 yields

ν+(s)f ≤ sµ0L
0+(I −G0−(s))−1(I −G0−(s))(I − sQ)−1f

= sµ0L
0+(I − sQ)−1f,
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where we have used the fact that

(I −G0−(s))(I − sQ)−1 = (I − G̃
+
(s)†(π⊗m))−1

is nonnegative. Thus, we have

ν+∗(s,θ)|SX
g ≤ sµ0∗(θ)L

0+
∗ (θ)|SX

(I − sK∗(θ))
−1g, g ∈M+(SX),(5.18)

as long as the right-hand side is finite. For any θ ∈ C1(K)∩D0, there exists
δ > 0 such that cp(K∗(θ)) ≥ 1 + δ. For this θ, there is a superharmonic
function h ∈ H(θ′) such that

µ0∗(θ)L
0+(θ)|SX

h <∞,

and cp(K∗(θ)) ≥ 1 + δ implies

(1 + δ)K∗(θ)h ≤ h.

Hence, (5.18) with g = h and s = 1 yields

ν+∗(1,θ)|SX
h ≤

(1 + δ)

δ
µ0∗(θ)L

0+
∗ (θ)|SX

h <∞,

which implies that −α
Ŷ
(A, c) ≤ −〈c,θ〉 since h(x) > 0. Thus, (5.15) is

obtained if C1(K) ∩ D0 6= ∅. Otherwise, we have the trivial bound 0.
If C1(K) is bounded, then C1(K) ∩D0 is a bounded convex set. Then, by

Corollary 37.3.2 of [30], we have

sup
θ∈C1(K)∩D0

inf
u>c

〈u,θ〉 = inf
u>c

sup
θ∈C1(K)∩D0

〈u,θ〉.

Thus, we get (5.16) from (5.15).

In light of Proposition 5.2 and Remark 5.4, we conjecture:

Conjecture 5.1. For the reflected MAP with general SX satisfying (3a)
and (3b), if the stationary distribution exists, then, for any direction vector
c ≥ 0 and A ∈ B(SX),

lim inf
t→∞

1

t
logP (X̂ ∈ A, Ŷ > tc) ≥ − sup{〈c,θ〉; cp(K∗(θ)) ≥ 1}.(5.19)

If there is no background state, this conjecture can be verified for the
two dimensional 0 partially chain of [5] and for multi-dimensional reflected
process with simple boundaries of [18]. However, it seems hard to prove it
for the case with background states.
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6. Concluding remarks. There are a number of possibilities for ex-
tensions of the present results.

1. The model of Example 5.4 may be extended to higher order autore-
gressive processes and/or more general background Markov chains.

2. The upper bound (5.15) may not be easy to use since it involves the
unknown factor µ0. There have been some studies to find bounds for
µ0∗(θ) for the two dimensional reflecting process without background
state (e.g., see [7, 21, 22, 23]).

3. We have only considered discrete time Markov additive process. Us-
ing an embedded process, it is possible to convert a continuous time
process to a discrete time process. This is particularly the case when
the additive component is monotone between embedded epochs. How-
ever, this is not always the case. So, it is still interesting to consider a
continuous time Markov additive process, and to find decomposition
formulas similar to the Wiener Hopf factorization and their extended
versions. There are some results on this problem, but they need strong
assumptions such that the additive component is one dimensional and
the background states are finitely many (e.g., see [14]). So far, it is also
very challenging to find such decomposition formulas for more general
continuous time processes.
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APPENDIX A: PROOF OF LEMMA 2.1

Similarly to the proof of Proposition 3.2 of [29], we use the following
identity for f ∈Mb(S).

∞∑

n=0

snf(Zn)1(τ > n) + sτf(Zτ )1(τ <∞)(A.1)

= f(Z0) +
∞∑

n=0

sn+1f(Zn+1)1(τ > n)

Since τ is a stopping time,

Ex(f(Zn+1)1(τ > n)) = Ex(E(f(Zn+1)|Fn)1(τ > n))

= Ex(E(f(Zn+1)|Zn)1(τ > n))

= Ex(1(τ > n)Qf(Zn)),

Taking the expectation of (A.1) with respect to Ex, we have (2.1).
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APPENDIX B: PROOF OF LEMMA 3.1

The subinvariance is equivalent to

∫

S

π(dx)m(du)Q((x,u), dx′ × du′)g(x′,u′)(B.1)

≤

∫

S

π(dx)m(du)g(x,u), g ∈M0
b (S).

Substituting the definition of Q, we have

The left-hand side of (B.1)

=

∫

S

π(dx)m(du)

∫

S

K(x, dx′ × du′)g(x′,u+ u′)

=

∫

S

π(dx)m(du)

∫

S

K(x, dx′ × (du′ − u))g(x′,u)

=

∫

S

π(dx)m(du)

∫

SX

K(x, dx′ × SY )g(x
′,u)

≤

∫

SY

m(du)

∫

SX

π(dx′)g(x′,u),

where the second equality is obtained since the Lebesgue measure is shift
invariant, and the last inequality is obtained from the subinvariance of π.
Thus we get (B.1).

APPENDIX C: PROOF OF LEMMA 3.2

We first prove (3.5). From the definition of Q and K̃, we have

The left-hand side of (3.5)(C.1)

=

∫

A×B

π(dx)m(du)K(x,A′ × (−u+B′))

=

∫

A′

π(dx)

∫

SY

m(du)K̃(x,A× (−u+B′))1(u ∈ B),

where u + B = {u + y;y ∈ B}. Since the Lebesgue measure m is shift
invariant, the integration with respect to m in the last term becomes

∫

SY

∫

A

m(du)K̃(x, dy × (−u+B′))1(u ∈ B)

=

∫

SY

∫

SY

∫

A

m(du)K̃(x, dy × dv)1(u ∈ B,v ∈ −u+B′)
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=

∫

SY

∫

SY

∫

A

m(du− v)K̃(x, dy × dv)1(u − v ∈ B,u ∈ B′)

=

∫

SY

m(du)

∫

SY

∫

A

K̃(x, dy × dv)1(v ∈ u−B,u ∈ B′)

=

∫

SY

m(−du)

∫

SY

∫

A

K̃(x, dy × dv)1(v ∈ −u−B,u ∈ −B′)

=

∫

−B′

m(du)K̃(x,A× (−u−B)).

Substituting this into (C.1), we have (3.5) since

Q̃1A×(−B)(x,u) =

∫

S

K̃(x, dy × dv)1(y ∈ A,u+ v ∈ −B)

= K̃(x,A× (−u−B)).

We can write (3.5) symbolically as

π(dx)m(du)Q((x,u), dy × dv) = π(dy)m(dv)Q̃((y,v), dx× du).

Repeatedly using this expression, we obtain

π(dx)m(du)Q((x,u), dy × dv)Q((y,v), dz × dw)

= π(dz)m(dw)Q̃((z,w), dy × dv)Q̃((y,v), dx × du).

We further repeat this computation post-multiplying Q for n− 2 times and
integrating h over it, to arrive at (3.6).

APPENDIX D: PROOF OF LEMMA 3.3

We first note that, for n ≥ 1,

R+((x,u), A×B;n)(D.1)

= P(x,u)(Xn ∈ A,Yn ∈ B, J0 < Jn ≤ min(J1, . . . , Jn−1))

= E(x,u)(P(X1,Y1)(Xn ∈ A,Yn ∈ B, ℓ(u) < Jn ≤ min(J1, . . . , Jn−1)))

=

∫

SX

∫

Ŝ
ℓ(u)+
Y

Q((x,u), dy × dv)

×P(y,v)(Xn−1 ∈ A,Yn−1 ∈ B ∩ Ŝ
ℓ(u)+
Y , Jn−1 ≤ min(J0, . . . , Jn−2)).

To compute the last probability term, we tentative use the following notation
for n ≥ 0.

U((x,u), A×B;n) = P(x,u)((Xn, Yn) ∈ A×B, Jn ≤ min(J0, . . . , Jn−1)).



FACTORIZATION FOR MULTIDIMENSIONAL MAP 109

Then, from the Markov property,

U((x,u), A×B;n)

=

n∑

n′=1

P(x,u)((Xn, Yn) ∈ A×B, τ0−0 = n′, Jn−1

≤ min(Jn′ , Jn′+1, . . . , Jn−2))

=
n∑

n′=1

∫

S

G0−((x,u), dy × dv;n′)U((y,v), A×B;n− n′), n ≥ 1.

Denote the moment generation function operator corresponding with U by
U(s). This yields U(s) = G0−(s) (I + U(s)), which concludes

U(s) = (I −G0−(s))−1.

Thus, summing (D.1) multiplied with sn over n ≥ 1, we have (3.9) for
s ∈ [0, 1).

APPENDIX E: PROOF OF LEMMA 5.1

From (3.26), it follows that

G̃(α)+(x, dy × du) = R(α)+(y, dx× du)
η(dy)h(y)

η(dx)h(x)
(E.1)

= eαuR+(y, dx× du)
η(dy)

η(dx)
.

Hence, we have (5.6). The Wiener-Hopf factorization (3.25) for d = 1 and
s = t = 1 can be written as

I −K
(α)
∗ (θ) = (I −R

(α)+
∗ (θ))(I −G

(α)0−
∗ (θ)), θ ≤ 0.(E.2)

Note that η ◦ h is the invariant measure of K
(α)
∗ (0), and G

(α)0−
∗ (0) with

α > 0 is strictly sub-stochastic. These imply that η ◦ h is also the invariant

measure of R
(α)+
∗ (0). Hence, from (E.1), we can see that G̃(α)+(x, S) = 1,

that is, G̃
(α)+
∗ (0) is stochastic.

Taking the transpose of both sides of (E.2), we have

I − K̃
(α)
∗ (θ) = (I − R̃

(α)0−
∗ (θ))(I − G̃

(α)+
∗ (θ)), θ ≤ 0.(E.3)

This yields

ξ = ξG̃
(α)+
∗ (0),
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for ξ of (5.7) since η is also the invariant measure of K̃
(α)
∗ (0). Since the total

variation of ξ is finite and G̃
(α)+
∗ (0) is stochastic, ξ must be the finite invari-

ant measure of G̃
(α)+
∗ (0) (see, e.g., the arguments in the proof of Lemma 4.2

of [24]). This proves Lemma 5.1.

APPENDIX F: PROOF OF PROPOSITION 5.1

We prove Proposition 5.2 under the multidimensional additive component
setting because preliminary results are obtained under such situation. For
this, we refer to the following results on large deviations of a Markov additive
process. They are given for the dual MAP {(X̃n, Ỹn)} for our convenience.

(L1) [Theorem 1 of [27]] If {(X̃n, Ỹn)} satisfies (3a) and there exist some
n0 ≥ 1, a family of measure {h̃(x, ·)} and a measure λ̃ on (Rd,B(Rd))
such that

h̃(x)λ̃(A×B) ≤ K̃n0(x,A×B), x ∈ S,A ∈ SX , B ∈ B(Rd),(F.1)

then large deviations lower bound for {Px(X̃n ∈ A, Ỹn ∈ nB)} with
open set B and π(A) > 0 is given by

lim inf
n→∞

1

n
logP(X̃0,Ỹ0)

(X̃n ∈ A, Ỹn ∈ nB) ≥ − inf
u∈G

Λ̃∗(u),(F.2)

where Λ̃∗(u) is the convex conjugate of Λ̃(θ) ≡ − log cp(K̃∗(θ)), that
is,

Λ̃∗(u) = sup
θ∈Rd

{〈θ,u〉 − Λ̃(θ)}.

(L2) [Lower bound part of Theorem 2.1 of [6]] Let σ̃+(n) = inf{m ≥
σ̃+(n−1); ℓc(Ỹm)−ℓc(Ỹσ̃+(n−1)) > 0} for n = 1, 2, . . ., where σ̃(0) = 0.
That is, σ̃+(n) is the n-th ascending ladder epoch of the dual MAP
{(X̃n, Ỹn)} with respect to level function ℓc. Then, apply the lower
bound part of Theorem 2.1 of [6] to the process {Ỹn1(X̃n ∈ A)}, which
satisfies the large deviations lower bound (F.2) with rate function Λ̃∗

for each A satisfying π(A) > 0. Hence, for nonnegative vector c ∈ R
d

and sufficiently large n0,

lim inf
n→∞

1

n
logP(X̃0,Ỹ0)

(X̃σ̃+(n′) ∈ A, Ỹσ̃+(n′) > nc, some n′ ≥ n0)(F.3)

≥ − inf
u>c

Ĩ(u),

where Ĩ(u) = supθ∈Rd{〈θ,u〉; Λ̃∗∗(θ) ≤ 0} for

Λ̃∗∗(θ) ≡ sup
u∈Rd

{〈θ,u〉 − Λ̃∗(u)}.
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Remark F.1. It should be noted that level function ℓc is used rather
than ℓ̃c in (L2), where ℓ̃c(u) = −ℓc(−u).

We now derive the following result from (L1) and (L2).

Lemma F.1. If (3b) is satisfied and if π(A) > 0, then, for c ≥ 0,

lim inf
t→∞

1

t
logP(X̃0,Ỹ0)

(∪∞
n=1{X̃σ̃+(n) ∈ A, Ỹσ̃+(n) > tc})(F.4)

≥ − sup
θ∈Rd

{〈θ, c〉; cp(K∗(θ)) ≥ 1}.

Proof. Since 〈θ, c〉 can be nonnegative for Λ̃(θ) ≤ 0, we have

inf
u>c

sup
θ∈Rd

{〈θ,u〉; Λ̃(θ) ≤ 0} = sup
θ∈Rd

{〈θ, c〉; Λ̃(θ) ≤ 0},

On the other hand, by Lemma 3.6, cp(K̃∗(θ)) = cp(K∗(θ)), so Λ̃(θ) ≤ 0 is
equivalent to cp(K∗(θ)) ≥ 1. By Lemma 3.7, Λ(θ) is convex and lower semi-
continuous, so Λ∗∗(θ) = Λ(θ). Furthermore, (3.b) implies (F.1). Hence, from
(L1) and (L2), we have (F.4).

Unfortunately, we can not use Lemma F.1 except for the one dimensional
case since the level functions ℓ and ℓ̃ are different. In the one dimensional
case, they are identical, and we have the following results, which includes
Proposition 5.2 as a special case.

Lemma F.2. For the reflected MAP with one dimensional additive com-
ponent, assume that it has the stationary distribution and (F.1) holds. If
there is a constant CA > 0 for each A ∈ B(SX) such that, for all u ∈
{Ỹτ̃+n − Ỹτ̃+n−1

;n = 1, 2, . . .},

dµ0R
0+

dπ ⊗m
(x, u) ≥ CA, (x, u) ∈ A× Ŝ+

Y a.s. π ⊗m,(F.5)

then we have

lim inf
n→∞

1

t
log P (X̂ ∈ A, Ŷ > t) ≥ − sup{θ; cp(K∗(θ)) ≥ 1}.(F.6)

Proof. From Lemma F.1, we get (F.6) if, for some constant b > 0 for
each A and some (x, v) ∈ S,

P (X̂ ∈ A, Ŷ > t) ≥ bP(x,0)(∪
∞
n=1{X̃σ̃+(n) ∈ A, Ỹσ̃+(n) > t}).(F.7)
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Let τ̃+(n) = inf{n′ ≥ τ̃+(n−1); ℓ̃1(Ỹn′)− ℓ̃1(Ỹτ̃+(n−1)) > 0} for n ≥ 1, where

τ̃(0) = 0. Since ℓ1(u) = ℓ̃1(u), we have

P(x,0)(∪
∞
n=1{X̃σ̃+(n) ∈ A, Ỹσ̃+(n) > t})

= P(x,−t)(∪
∞
n=1{X̃τ̃+(n) ∈ A, Ỹτ̃+(n) > 0})

≤
1

C A

∫

A

∫ ∞

u′=0

∞∑

n=0

(G̃+)n((x,−t), dx′ × du′)
dµ0R

0+

dπ ⊗m
(x′, u′),

where the 2nd inequality is obtained by (F.5). Taking the transposition of
(4.5) of Theorem 4.1, we have

ν
†(π⊗m)
+ (x, t) =

∞∑

n=0

(G̃+)n(µ0(R
0+)†(π⊗m)(x, t).

This can be written as
∫

S

g(x, u)ν+(dx× du)

=

∫

S

g(x,−u)
∞∑

n=0

(G̃+)n(µ0(R
0+)†(π⊗m)(x, u)π(dx)m(du).

Thus, letting g(x, u) = 1(x ∈ A, u > t), we have (F.7) with CA = b.

APPENDIX G: PROOF OF LEMMA 5.2

Assume that θi ∈ D0 for i = 1, 2. Let η∗(θ) = µ0∗(θ)L
0+
∗ (θ)|SX

. Then,
for i = 1, 2, we can find hi ∈M+(SX) such that

η∗(θi)hi <∞, K∗(θi)hi ≤ eΛ(θi)hi.

Let h(x) = hλ1 (x)h
1−λ
2 (x) for each fixed λ ∈ (0, 1). Then,

([K∗(λθ1)h1] (x))
λ ([K∗((1− λ)θ2)h2] (x))

1−λ

≤ eλΛ(θ1)+(1−λ)Λ(θ2)h1(x)
λh2(x)

1−λ.

By (3.23), this yields

[η∗(λθ1 + (1− λ)θ2)h] (x) ≤ eλΛ(θ1)+(1−λ)Λ(θ2)h(x).

Hence, h ∈ H(λθ1 + (1− λ)θ2), and therefore λθ1 + (1− λ)θ2 ∈ D0.
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