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Abstract: We study efficient nonparametric estimation of distribution
functions of several scientifically meaningful sub-populations from data con-
sisting of mixed samples where the sub-population identifiers are missing.
Only probabilities of each observation belonging to a sub-population are
available. The problem arises from several biomedical studies such as quan-
titative trait locus (QTL) analysis and genetic studies with ungenotyped
relatives where the scientific interest lies in estimating the cumulative dis-
tribution function of a trait given a specific genotype. However, in these
studies subjects’ genotypes may not be directly observed. The distribu-
tion of the trait outcome is therefore a mixture of several genotype-specific
distributions. We characterize the complete class of consistent estimators
which includes members such as one type of nonparametric maximum like-
lihood estimator (NPMLE) and least squares or weighted least squares
estimators. We identify the efficient estimator in the class that reaches the
semiparametric efficiency bound, and we implement it using a simple pro-
cedure that remains consistent even if several components of the estimator
are mis-specified. In addition, our close inspections on two commonly used
NPMLEs in these problems show the surprising results that the NPMLE
in one form is highly inefficient, while in the other form is inconsistent.
We provide simulation procedures to illustrate the theoretical results and
demonstrate the proposed methods through two real data examples.
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1. Introduction

In many scientific studies, data arise from a mixture of scientifically meaningful
distributions. For example, in a quantitative trait locus (QTL) study, the goal is
to identify, map and estimate effect of a QTL predisposing the trait. However,
the genomic location of the QTL is unknown, therefore subjects’ genotypes at
the QTL are not observed. Mixture models are widely used to map QTLs us-
ing location-known molecular markers such as single nucleotide polymorphisms
(SNPs) or microsatellite markers, see Lander and Botstein (1989) and Wu et al.
(2007).

Another example where mixture model is useful is genetic studies where geno-
types in relatives of an initial sample (probands) are not collected (Marder et al.,
2003; Wang et al., 2008). In these studies, of scientific interest is to estimate
the conditional distribution of a trait given a genotype (or penetrance, Khoury
et al., 1993). Genotype information in the initial sample of probands are col-
lected. However, it is common that due to high cost of administering in-person
interviews in relatives, their genotype information is not collected. For example,
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in Wacholder et al. (1998) and Wang et al. (2007, 2008), only the probands are
genotyped, but none of the first-degree relatives of the probands was genotyped.
Distribution of possible genotypes of a relative, however, can easily be obtained
given the relationship between the relative and the proband and the genotype
in the proband. The relatives’ disease history or trait information is usually
obtained by administering a systematic and reliable phone-interview (Marder
et al., 2003). Distribution of the trait in a relative is then a mixture of condi-
tional distribution of the trait given the relative’s genotype and these relatives
form the main analysis sample.

A concrete example of such genetic studies is an investigation of association
between the APOE gene and the LDL concentrations in young children (Shea
et al., 1999). There are three common alleles at the APOE locus (ε2, ε3, ε4). The
APOE ε3 is the most prevalent allele in the general population, with frequency
75% to 80%. Previous studies have suggested that the APOE ε4 allele may
be associated with higher LDL cholesterol levels in adults (Davignon et al.,
1988). Of interest is the association between APOE ε4 allele and LDL cholesterol
distribution in children.

Subjects included in the study were recruited from a cross-sectional biomarker
study of children conducted from 1994 to 1998 (Shea et al., 1999). Proband
children were recruited from lists of cardiac patients generated through the
Presbyterian Hospital Clinical Information System, private cardiology practices,
lipid clinics and pediatric practices. Families with at least one healthy child 4 to
25 years of age were eligible for participation. Siblings of proband children were
recruited to the study. The availability of the APOE genotype information of the
probands and the sibling relationship enables the calculation of each sibling’s
probability of carrying the ε4 allele. The cumulative distribution function of LDL
concentration for carriers of ε4 allele (carrying one or two copies of ε4) and for
the non-carriers (carrying zero copy of ε4) are of primary interest in this study.

Traditional statistical analysis of mixture data specifies a parametric form of
conditional distribution of an outcome given group membership (e.g., Gaussian
mixture model, Wu et al., 2007) and estimates mixture probabilities and pa-
rameters in the conditional distribution by maximum likelihood through an EM
algorithm (McLachlan and Peel, 2000). In this work, we provide nonparametric
estimation in the sense that we do not make any distributional assumption on
the conditional distributions. One common feature of the two examples intro-
duced before is that the mixture probabilities are easily calculated without using
the outcome data or are known, and the mixture populations are scientifically
meaningful (e.g., subjects carrying a certain genotype). Treating these mixture
probabilities as random variables, each observation in the data consists a vector
of mixture probabilities and a continuous outcome, and the observations are
assumed to be independent and identically distributed (i.i.d.).

To fix idea, let Q denote a p-dimensional vector of random mixture probabil-
ities, and let pQ denote the probability mass function of Q, which has a finite
support u1, . . . , um. Let S denote a random outcome, let L denote the unob-
served group membership (or genotype), and let f(s) denote the p-dimensional
conditional density of S given L. For simplicity, we assume that f(s) is sup-
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ported on a compact interval, say [T1, T2]. For the ith subject, i = 1, . . . , n, we
observe (qi, si), where the joint density of Q,S at Q = qi and S = si is

g(qi, si) = pQ(qi)q
T
i f(si). (1)

Here f(s) is a length p vector, where the jth component fj(s) represents the
conditional probability density function (PDF) of s given that it belongs to the
jth genotype group, j = 1, . . . , p. Each component of f(s), fj(s), is the PDF of
a trait at time t given the gene mutation status being the jth kind in a relative
(for example, j = 1 denotes carriers and j = 2 denotes non-carriers), or the
PDF of a quantitative trait given the QTL genotype being the jth kind. Let
F (·) denote the corresponding p dimensional cumulative distribution function
(CDF) of f(·). Our interest is in estimating F at any fixed time t. The vector
qi represents probabilities that a relative carries a certain genotype given the
proband’s genotype, or a vector of probabilities of a subject having a certain
QTL genotype given the flanking markers. Obviously

∑p
j=1 qij = 1. The dis-

tribution of qi (i.e., pQ) depends on study design and can be easily estimated
consistently from the empirical distribution of qi. For example, for a backcross
QTL experiment, qi takes four different values depending on the marker geno-
type frequencies (e.g., Table 10.3 of Wu et al., 2007). The vector of density
functions f is completely unspecified, thus f is an infinite-dimensional nuisance
parameter with length p.

Here, we characterize the complete class of consistent estimators which in-
cludes Fine et al. (2004) and Chatterjee and Wacholder (2001). We show that
any weighted least squares estimator is a member of this estimation class hence
yields a consistent estimator. In addition, we construct a special subclass which
obtains the minimum estimation variance and reaches the semiparametric ef-
ficiency bound. We inspect two types of widely used NPMLEs and report a
surprising finding that they are either inefficient or even inconsistent. Although
commonly applied in clinical studies (Sigurdson et al., 2004; Hauptmann et al.,
2003; Webb et al., 2006a,b; Hartge et al., 2002), the inconsistency of the second
type of NPMLE has not been discovered in the literature before.

The remaining of the paper is organized as follows. In Section 2, weighted least
squares estimators are introduced and a complete class of consistent estimators
encompassing the least squares is defined. The optimal member of the class is
identified and shown to reach the semiparametric efficiency bound. In Section 3,
an algorithm to implement the efficient estimator is developed and asymptotic
properties of the estimator are proved. In Section 4, two types of commonly used
NPMLE estimators are investigated and one type is found to be inefficient while
the other is inconsistent. In Section 5, simulation experiments are conducted to
investigate the finite sample performance of the developed methods, and several
estimators including the efficient estimator, the least squares estimators and the
NPMLEs are compared. In Section 6, the proposed methods are implemented
to analyze two data examples, one from a genetic linkage study of rice plant
height and the other from a study of association between plasma low-density
lipoprotein (LDL) cholesterol level and the apolipoprotein-E (APOE) gene. In
Section 7, possible extensions of the proposed methods are discussed.
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2. Estimation procedures

2.1. A class of weighted least squares estimators

Although the traditional approach to estimating F (t) is maximum likelihood
estimator for a parametric model or NPMLE for a nonparametric model, a very
simple weighted estimator can be used if we formulate the same problem from a
different angle. Observe that the model in (1) implies qTF (t) = E{I(S ≤ t)|q},
where I(·) denotes an indicator function. Therefore, viewing the qi’s as covariates
and I(Si ≤ t) as response variables, the covariates and the responses are linked
by F (t) via a familiar linear regression model

Yi ≡ I(Si ≤ t) = qTi F (t) + ei,

where E(ei|qi) = 0, i = 1, . . . , n. It is straightforward that the ei’s are inde-
pendent conditional on qi’s, and have the variances vi = qTi F (t){1 − qTi F (t)}.
Thus, weighted least squares based method can be used to estimate F (t). De-
note by M an arbitrary n × n diagonal matrix. Let A = (q1, . . . qn)

T ∈ Rn×p,
Y = (y1, . . . yn)

T ∈ Rn, and e = (e1, . . . , en)
T ∈ Rn. Then we obtain the general

WLS estimator

F̂ (t) = (ATMA)−1ATMY.

The simplest estimator is the OLS where we set M = In, also derived in Fine
et al. (2004) using a different formulation, while the most efficient WLS estima-
tor is obtained when we assignM to be a diagonal matrix with the ith diagonal
entry equals v−1

i . Standard iteratively re-weighted estimation procedure can be
used to obtain this optimal WLS (OWLS) estimator. The presence of the matrix
M also allows the flexibility to derive other WLS estimators to achieve desired
properties such as robustness.

2.2. The complete class of consistent estimators

Although simple to derive and easy to implement, it is unclear whether the
class of WLS is complete and whether OWLS is the optimal estimator among
all consistent estimators of F (t). To answer these questions and to provide easy
variance estimation for any consistent estimator, we perform a formal semipara-
metric analysis to characterize the complete class of consistent estimators. We
derive in Appendix A.1 that the family of all influence functions is

SIF =

{
φ(q, s) : φ(q, s) = b(q, s)− F (t)− C1p,

where

∫
b(q, s)qT pQ(q)dµ(q) = I(s ≤ t)Ip + C

}
, (2)

where Ip is a p-dimensional identity matrix, C is an arbitrary p × p constant
matrix, and 1p is a p-dimensional vector with all elements being one.
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For any qualified b-function as described in SIF , an estimator for F (t) is

F̂ (t) = n−1
n∑

i=1

b(qi, si)− Cb1p, (3)

where we use Cb =
∫
b(q, s)qT pQ(q)dµ(q) − I(s ≤ t)Ip to denote the constant

matrix corresponding to this b-function. For example, a convenient choice of
b(q, s) is

b(q, s) = I(s ≤ t)

{∫
h1(q, s)q

T pQ(q)dµ(q)

}−1

h1(q, s)

+B

{∫
h2(q, s)q

T pQ(q)dµ(q)

}−1

h2(q, s) + h3(q), (4)

where h1(q, s), h2(q, s), and h3(q) can be arbitrary functions in Rp such that∫
h1(q, s)q

T pQ(q)dµ(q) and
∫
h2(q, s)q

T pQ(q)dµ(q) are invertible, and B is an
arbitrary constant matrix. This characterization provides a simple construction
of a very rich class of estimators.

Since SIF contains all the influence functions, any regular asymptotic linear
(RAL, Newey, 1990) estimator can be written in the form of (3). For example,
we show in Appendix A.2 that the influence function of any WLS estimator is

φWLS = {E(WQQT )}−1wq
{
I(s ≤ t)− qTF (t)

}
.

Here, w is a weight variable. For the ith individual, w = wi is the ith diagonal
entry of M . We use W to denote the weight variable when it is considered as
a random variable. It is easy to see that this corresponds to choosing h1 = wq,
h2 = 0, and h3 = −{E(WQQT )}−1wqqTF (t) + F (t), hence any WLS is indeed
a member of SIF . In addition, comparing the form of φWLS and SIF indicates
that the WLS estimators are only a subset of consistent estimators that can
be constructed. To further study whether the optimal WLS estimator is the
most efficient among all the consistent estimators for F (t), we need to derive
the efficient influence function.

2.3. The semiparametric efficient estimator

Projecting an arbitrary influence function φ onto the tangent space ΛT yields an
efficient influence function (Newey, 1990). In Appendix A.3, we derive the form
of ΛT and its orthogonal complement, which enables us to derive the following
theorem.

Theorem 1. The efficient influence function is

φeff =
{I(s ≤ t)Ip −K}A−1(s)q

qT f(s)
,
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where

A(s) =

∫
qqT pQ(q)

qT f(s)
dµ(q),

and

K =

∫ T2

T1

I(s ≤ t)A−1(s)ds

{∫ T2

T1

A−1(s)ds

}−1

.

The proof of the Theorem 1 is in Appendix A.4.
It is straightforward to see that the construction of the efficient estimator

requires correct specification of the nuisance parameter f(s), which is not always
easy to obtain. If we unknowingly mis-specify f(s) as f∗(s) and follow the
same construction in Theorem 1 to obtain φ∗eff , then the result is no longer a

valid influence function. To see this, note that φ̌ = {I(s≤t)−K∗}A∗−1(s)q
qT f∗(s)

, where

A∗(s) =
∫ qqT pQ(q)

qT f∗(s) dµ(q), and K∗ =
∫
I(s ≤ t)A∗−1(s)ds

{∫
A∗−1(s)ds

}−1
. We

can then easily verify that E(φ̌) = F (t) −K∗1p, which is not necessarily zero.
We thus robustify the influence function by constructing

φ =
{I(s ≤ t)−K∗}A∗−1(s)q

qT f∗(s)
− F (t) +K∗1p. (5)

Regardless of the form of f∗, (5) always yields a valid influence function. In
addition, φ = φeff when f∗(s) = f0(s) and φ can be used to estimate F (t) via

F̂ (t) = n−1
n∑

i=1

{I(si ≤ t)−K∗}A∗−1(si)qi
qTi f

∗(si)
+K∗1p. (6)

Remark 1. In (6), we can replace K∗ by an arbitrary constant matrix. The
resulting estimator remains consistent, and the corresponding φ is still a valid
influence function. However, since differentK∗ corresponds to different influence
function, the estimators have different variances.

In practice, since f(s) is usually either proposed or estimated so that it may

be different from f0(t), it is always a safer choice to use (6) to obtain F̂ (t).
We will show in Section 3 that as long as f(s) is consistently estimated, the
estimator (6) is guaranteed to provide an efficient estimator for F (t).

2.4. Analytic comparison between OWLS and the efficient estimator

We are now ready to assess whether the OWLS is efficient. Comparing φeff with
φOWLS obtained in Appendix A.2, we find that although the OWLS is optimal
among the WLS family, it does not reach the semiparametric efficiency bound.
We prove this claim by contradiction. Suppose that the OWLS is efficient, then
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we would have φeff = φOWLS + op(1), which would imply that for all (q, s)
pairs,

{I(s ≤ t)−K}A−1(s)q

qT f(s)
=

[
E

QQT

QTF (t){1−QTF (t)}

]−1
q{I(s ≤ t)− qTF (t)}
qTF (t){1− qTF (t)} .

Denote B = E
(
QQT /[QTF (t){1−QTF (t)}]

)
, we then have

A−1(s)q

qT f(s)
=

B−1q

qTF (t){1− qTF (t)} and
KA−1(s)q

qT f(s)
=

B−1q

1− qTF (t)
,

which leads to qTF (t)A−1(s)q = KA−1(s)q. The left hand-side is a quadratic
function of q, while the right hand-side is linear, so the above equality will never
hold since q cannot be a constant vector of zero.

3. Efficient estimator and its asymptotic properties

As we have pointed out, the efficient influence function derived in Theorem 1
involves unknown nuisance parameters f(s) and therefore cannot be directly
used to construct an efficient estimator for F (t). Using (6) will provide a robust
and locally efficient estimator, in the sense that if f∗(s) = f0(s), the estimator is
indeed efficient, otherwise, the estimator is still guaranteed to be consistent. We
now propose a method to construct an estimator that is always efficient. This
method avoids estimating the p-dimensional PDF f(s) directly, and is simple
to implement.

3.1. Algorithm for implementing the efficient estimator

We propose to use the following procedure to construct the efficient estimator.

1. Randomly split the data into two sets. The second set has size n2 = n5/6,
and the first set has size n1 = n − n2. Assume that the first set contains
(q1, s1), . . . , (qn1

, sn1
) and the second set (qn1+1, sn1+1), . . . , (qn, sn).

2. Obtain the empirical estimator of qT f(s), q̂T f(s) from the second set of
sample with size n2. Recall that the random vector Q can take m different
vector values u1, . . . , um, so for each k = 1, . . . ,m, we can calculate a
kernel estimate for uTk f(s) as

ûTk f(s) =

∑n
i=n1+1 I(qi = uk)Kh(si − s)∑n

i=n1+1 I(qi = uk)
.

Here Kh is any kernel function with bandwidth h satisfying (n2h)
−1 =

o(1), n2h
5 ≤ O(1) as n2 → ∞, and Kh(·) = h−1K(·/h).

3. Calculate

A(s; q̂T f) =

∫
qqT pQ(q)

q̂T f(s)
dµ(q) = EQ

{
QQT

Q̂T f(s)

}
=

m∑

k=1

uku
T
k pQ(uk)

ûTk f(s)
,
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where EQ stands for expectation with respect to Q. We construct

K1(q̂T f) =

∫ T2

T1

I(s ≤ t)A−1(s; q̂T f)ds, K2(q̂T f) =

∫ T2

T1

A−1(s; q̂T f)ds

using numerical integration, and form K(q̂T f) = K1(q̂T f)K
−1
2 (q̂T f).

4. Form

ψ(Q,S; q̂T f) =
{I(S ≤ t)−K(q̂T f)}A−1(S; q̂T f)Q

Q̂T f(S)
+K(q̂T f)1p,

and let the estimator be

F̂ (t) = n−1
1

n1∑

i=1

ψ(qi, si; q̂T f). (7)

The estimation procedure described above is straightforward to implement.
Comparing to many other semiparametric problems where the efficient esti-
mator often involves solving integral equations (Rabinowitz, 2000) and iterative
procedures (Tsiatis and Ma, 2004), the estimator here is very simple. In addi-
tion, unlike most semiparametric problems where the nonparametric functions
have to be estimated at a certain rate, sometimes using an under-smoothed
bandwidth (Liang and Wang, 2005; Li and Liang, 2008) to reach optimality, we
do not have such estimation constraints. In fact, we will show that any consis-
tent estimation of f(s) will be as good as the true f(s) asymptotically. Since
consistency can be obtained with a wide range of bandwidth, typically one does
not have to go through the computationally intensive cross validation procedure
to choose an optimal bandwidth. Finally, we point out that the splitting of the
data is solely to facilitate the later theoretical proof and is not mandatory. In
reality, one can certainly use the whole data set to estimate f(s) and to form

F̂ (t) in (7).

3.2. Asymptotics and inferences

We present the asymptotic property of the proposed efficient estimator in the
following theorem:

Theorem 2. The estimator constructed in (7) achieves the semiparametric

efficiency bound. Specifically, for n → ∞,
√
n{F̂ (t) − F (t)} → N(0, V ) in dis-

tribution, where V = var(φeff ) and can be consistently estimated as

n−1
n∑

i=1

{ψ(qi, si; q̂T f)− F̂ (t)}{ψ(qi, si; q̂T f)− F̂ (t)}T .

Intuitively, the reason that (7) can reach the semiparametric efficiency is be-
cause it solves the estimating equation formed by summing over the robustified



Estimation with unobserved sub-population identifiers 719

influence functions (5) while replacing the unspecified quantities K∗, qT f∗(s)
and A∗ by their corresponding optimal choices which are, respectively, the non-
parametric estimates of K, qT f(s) and A(s, qT f). The rigorous proof of Theo-
rem 2 is in Appendix A.5.

Since we are able to construct the optimal estimators and estimate their
variances, it is straightforward to make inferences based on these results. For
example, we can construct a locally most powerful test for the hypothesis H0 :
F1(t) − F2(t) = δ0 versus H1 : F1(t) − F2(t) 6= δ0. Because of the explicit form

of F̂ (t), the Wald test is an obvious choice. Let D̂ = F̂1(t)− F̂2(t)− δ0, then the
test statistic is

T = nD̂2/v, (8)

where v = V11−V12−V21+V22, and Vij is the (i, j)th element of the covariance
matrix V stated in Theorem 2. It is straightforward that when n → ∞, T has
a chi-square distribution with one degree of freedom under H0. Under the local
alternative, say F1(t)−F2(t) = δ/

√
n, T has a noncentral chi-square distribution

with one degree of freedom and noncentrality parameter (δ − δ0)
2/v.

In some applications, one may be interested in testing whether F1(t)−F2(t) =
δt at several different t values simultaneously, say at t1, . . . , tJ . Letting a

T =
(1,−1){F (t1), . . . F (tJ )}−∆T

0 , where ∆0 = (δt1 , . . . , δtJ )
T . This can be written

as a problem of testing H0 : a = 0 versus H1 : a 6= 0, Under H0, a has a mul-
tivariate normal random distribution with mean zero and variance-covariance
matrix n−1Σ, where Σjk = (−1, 1)cov{F̂ (tj), F̂ (tk)}(−1, 1)T for j, k = 1, . . . , J .

Here, cov{F̂ (tj), F̂ (tk)} can be estimated using

n−1
n∑

i=1

{ψeff (qi, si; tj , q̂T f)− F̂ (tj)}{ψeff (qi, si; tk, q̂T f)− F̂ (tk)}T ,

where ψeff (qi, si, ; tj, q̂T f) and F̂ (tj) denote ψeff and F̂ evaluated at the ith
observation and calculated at time tj . Thus, we can construct the test statistic

T = naTΣ−1a. (9)

When n → ∞, under H0, T has a chi-square distribution with J degrees of
freedom. Under a local alternative, say a = ∆/

√
n for some length J vector

∆, T has a noncentral chi-square distribution with noncentrality parameter
∆TΣ−1∆.

4. Understanding the NPMLEs

For many nonparametric models, the NPMLE is a widely used estimation pro-
cedure. In the literature, two types of NPMLE have been proposed (Wacholder
et al., 1998; Chatterjee and Wacholder, 2001). The first type of NPMLE treats
each uTj f(s), j = 1, . . . ,m as an unknown PDF, while the second type treats
f(s) as a p-dimensional unknown PDF. To explain these two NPMLEs in detail,
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group the observations in such a way that the first r1 observations form a first
subset where each observation has the same q value that equals to u1, the next
r2 observations form a second subset with the same q values u2 and so on. As-
sume that the last rm observations form the mth subset and have the q values
equal to um. We use F̃ (t) to denote the type I NPMLE of F (t), and F̌ (t) the
type II NPMLE.

The type I NPMLE maximizes

n∑

i=1

log{qTi f(si)} =

m∑

j=1

n∑

i=1

log{qTi f(si)}I(qi = uj)

with respect to qTi f(si) for the ith subject in the jth subset subject to qTi f(si) ≥
0 and

∑n
i=1 q

T
i f(si)I(qi = uj) = 1 for j = 1, . . . ,m. This is essentially equiv-

alent to performing an empirical density estimation in each of the m groups,
where in each group the qi values are identical. Obviously, the resulting estima-
tion for qT f(s) in the jth group is an empirical PDF with weights r−1

j at the

observed values. The procedure then uses uTj F (t) = r−1
j

∑n
i=1 I(si ≤ t, qi = uj)

for j = 1, . . . ,m to recover F̃ (t) = (UTU)−1UTG(t), where we denote U =
(u1, . . . , um)T , and G(t) is a length m vector with the jth component equals
r−1
j

∑n
i=1 I(si ≤ t, qi = uj). It is not difficult to see that

UTU =
m∑

j=1

uju
T
j =

n∑

i=1

wiqiq
T
i ,

and UTG(t) =
m∑

j=1

ujr
−1
j

n∑

i=1

I(si ≤ t, qi = uj) =
n∑

i=1

wiqiI(si ≤ t),

where wi = r−1
j if qi = uj . Thus, the type I NPMLE belongs to the family

of WLS estimators (therefore a member of class (2)), where the weights are
taken to be r−1

j , the inverse of the number of observations in the jth group with
the same qi value. However, the weights of this WLS estimator are obviously
non-optimal. In addition, intuitively such choice of weights is not reasonable, be-
cause it down-weights the contributions from a larger subset. In fact, one would
rather downweight the contribution from the observations with less estimation
precision, while the quality of the estimation of F (t) from each observation has
no definitive link with its subset size.

The type II NPMLE maximizes the same log likelihood, but with respect to
f(si), subject to

∑n
i=1 f(si) = 1p and f(si) ≥ 0 component-wise. It is easy to

see that the maximum is obtained when the rj values of f(si) corresponding
to the same uj are the same. We denote this common f(si) value by hj, for
j = 1, . . . ,m. We thus maximize

m∑

j=1

rj log(u
T
j hj)
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with respect to hj ’s subject to
∑m

j=1 rjhj = 1p and hj ≥ 0 component-wise.
In general, no closed form solution exists for the hj ’s, and the EM algorithm
is often used to solve this optimization problem and to obtain the hj ’s. The
NPMLE then proceeds to form

F̌ (t) =

n∑

i=1

I(si ≤ t)f̂(si) =

m∑

j=1

n∑

i=1

I(si ≤ t, qi = uj)hj .

The type II NPMLE is different from the type I NPMLE in that here, the term
“nonparametric” refers to f(s), not to uTj f(s). In the literature, the type II
estimator is considered as an improvement of the type I NPMLE. However, our
careful investigation reveals that the type II NPMLE is not even consistent,
which is a rather counter intuitive result. In Appendix A.6, we give a detailed
calculation in a concrete case to explicitly illustrate the inconsistency and in
Section 5 we demonstrate the bias of the type II NPMLE in a moderately large
sample through simulations.

We now give a more general demonstration to show why the type II NPMLE
is inconsistent. Suppose the solution to the constrained maximization problem
is h1, . . . , hm, then the type II NPMLE is

F̌ (t) =

m∑

j=1

{
n∑

i=1

I(qi = uj)I(si ≤ t)

}
hj =

m∑

j=1

rjGj(t)hj = HG(t) = HUF̃ (t),

where H = (r1h1, . . . rmhm), and U,G(t), F̃ (t) are the same as defined before.

We already know that F̃ (t) is a consistent estimator of F (t). If F̌ (t) is also
consistent, then we would have HU → Ip when n→ ∞. This is a much stronger
condition than the original constraints of the maximization problem and is in
general not satisfied. In fact, this condition means that the type II NPMLE is
asymptotically equivalent to the type I NPMLE, which contradicts the original
goal of developing a type II estimator. In other words, as a distinct estimator
from the type I NPMLE, the type II NPMLE is inconsistent.

5. Simulations

To study the finite sample performance of the proposed estimators, we con-
ducted several simulation studies. In all the simulations, the dimension of F (t)
is p = 2, and the number of simulation iterations is 1000.

5.1. Three simulated examples

In the first simulation experiment, we investigate the performance of the various
estimators studied in Sections 2, 3 and 4. Here, qi’s can take six different values,
i.e. m = 6, while the group sizes rj , j = 1, . . . ,m, are randomly generated. The
six different qi values are respectively (0.3, 0.7)T , (0, 1)T , (0.7, 0.3)T , (0.8, 0.2)T ,
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Table 1

Bias, empirical standard error (emp se), average estimated standard error (est se), 95%
coverage (95% cov) of Simulation 1, sample size n = 300, 1000 simulations

F1(t) = 0.9295 F2(t) = 0.3199

Estimator bias emp se† est se∗ 95% cov bias emp se† est se∗ 95% cov

ORACLE 0.0003 0.529 0.538 94.9% −0.0013 0.704 0.684 93.8%

EFF 0.0007 0.540 0.549 94.3% −0.0017 0.726 0.704 92.5%

ROB1 0.0001 0.545 0.555 94.5% −0.0013 0.732 0.710 92.6%

ROB2 0.0001 0.545 0.555 94.5% −0.0013 0.732 0.710 92.6%

OWLS −0.0004 0.537 0.553 94.6% −0.0006 0.727 0.712 93.6%

OLS 0.0001 0.545 0.559 94.6% −0.0013 0.732 0.716 93.0%

NPMLE1 0.0001 0.570 0.581 95.0% −0.0010 0.753 0.738 93.4%

NPMLE2 −0.179 0.323 – – 0.2148 0.425 – –
†: Empirical standard error × 10
∗: Estimated standard error × 10

(0.5, 0.5)T , (0.6, 0.4)T . The two components in the true F (t) both have truncated
exponential form, since exponential function is a commonly used parametric
model in practice. Specifically, F1(t) = {1− exp(−t/3)}/{1− exp(−10/3)} and
F2(t) = 1− {1− exp(t/3− 10/3)}/{1− exp(−10/3)} on the interval (0, 10).

We studied eight different estimators. The efficient estimator with true f(s)
inserted (hence unrealistic) is denoted ORACLE, while with the estimated f(s)
inserted is denoted EFF. Thus EFF is the implemented efficient estimator. Two
different kinds of robust estimators are considered, where ROB1 had the f(t)
mis-specified, and ROB2 not only used a mis-specified f(t), but also had K = 0
plugged in. Specifically, in ROB1, we used the true f1(t) as the proposed model
for f2(t), and used the true f2(t) as the proposed model for f1(t). In ROB2,
we proposed uniform model for both f1(t) and f2(t). These two estimators are
expected to be consistent hence reflecting robustness to mis-specification of the
PDFs. We also investigated the proposed OWLS estimator. For comparison, we
implemented the OLS, NPMLE1 and NPMLE2 estimators that are used in the
literature. We implement the estimation procedures at t = 6.8. The resulting
estimation mean, sample and estimated standard errors and 95% coverage of
the confidence intervals are summarized in Table 1.

It can be seen that all the consistent estimators perform well in finite sam-
ples, and the estimated variances are very close to the empirical variances. This
indicates that the asymptotic results are relevant for a moderate sample size of
n = 300. It is very clear that the type II NPMLE yields very large bias. We
emphasize here that this bias is not a reflection of small sample size because the
bias persists when we increase the sample size to 1000.

We can also see that the type I NPMLE and OLS does not make a very
good choice of the weights, hence the estimation standard errors are both larger
than the OWLS. This is especially prominent for the type I NPMLE, in that it
performs even worse than the simple OLS estimator. The two robust estimator
(ROB1 and ROB2) perform very similarly, and both have minimal bias, reflect-
ing the desired robustness property with respect to the PDF estimation. Finally,
although in theory the efficient estimator (EFF) should outperform the OWLS
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Table 2

Type I error and power of test in Simulation 1, sample size n = 300, 1000 simulations

Type I error Power

Estimator 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

ORACLE 0.016 0.062 0.105 0.194 0.198 0.424 0.546 0.700

EFF 0.017 0.061 0.118 0.198 0.177 0.400 0.523 0.676

ROB1 0.018 0.062 0.117 0.200 0.167 0.391 0.529 0.680

ROB2 0.018 0.062 0.117 0.200 0.167 0.391 0.529 0.680

OWLS 0.018 0.057 0.119 0.197 0.170 0.396 0.529 0.681

OLS 0.018 0.061 0.113 0.198 0.162 0.388 0.521 0.673

NPMLE1 0.023 0.062 0.100 0.204 0.148 0.354 0.496 0.655

estimator, the performance of OWLS is as satisfactory as EFF. This appears to
be often the case in our other simulations not shown here. Thus, using either
proposed OWLS or EFF in practice is expected to be adequate.

We also studied the type I error and power of the test (8) in this situation,
and present the results in Table 2. The overall performance of the proposed
tests is satisfactory. From the left panel of Table 2, we see that all estimators
maintain correct size. From the right panel of the same table, we see that the
OLS and NPMLE1 have lower power compared to other estimators due to their
larger estimation variances.

The second simulation experiment is conducted to closely mimic a QTL map-
ping data analyzed in Section 6.1. We generated the data from a mixture of two
distributions. The first one is a uniform distribution on (3, 10), while the second
one has CDF c(1− e−t/2.5) on the interval (0, 10). The mixture probability has
four different values which are (0.02, 0.98)T , (0.2, 0.8)T , (0.1, 0.9)T , (0.98, 0.02)T ,
and the sample size is 100. Based on the performance of the various estimators
studied in the first simulation, here we used only the two best estimators, the
OWLS and the efficient estimator (EFF) to estimate the two CDFs. We also
implemented the type II NPMLE for comparison. We plot the true CDFs, the
mean of the estimated CDFs and the 95% pointwise confidence band for each
method in Figure 1. As expected, both OWLS and EFF give satisfactory re-
sults, while NPMLE2 is clearly biased. Again, we emphasize that the bias of
NPMLE2 is not caused by the moderate sample size. In fact, when we increased
the sample sizes to 1000, the bias became even more prominent.

Similarly, the third simulation is conducted to closely mimic the LDL data
analyzed in Section 6.2. The first CDF is c1/{1 + e−(t−3)/0.5} on the interval
(0, 6), and the second CDF is c2/{1 + e−(t−2.5)/0.2} on the interval (0, 7). Note
that these two CDFs cross. Here, the mixture probability distribution has three
different values which are (0.15, 0.85)T , (0.6, 0.4)T , (0.8, 0.2)T , and the sample
size is 300. Estimations based on OWLS, EFF and NPMLE2 are computed,
and the mean of the estimated CDFs, the 95% pointwise confidence band for
each method are presented in Figure 2 together with the true CDFs. Similar
to the second simulation, both OWLS and EFF perform well, while NPMLE2
shows large bias.
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Fig 1. Simulation 2. True CDF (solid) and the mean (dashed), 95% pointwise confidence
band (upper band dotted, lower band dash-dotted) of the estimated CDFs. The OWLS (left),
EFF (mid) and NPMLE2 (right) are plotted. The mean and true CDFs are undistinguishable
in OWLS and EFF estimators. Sample size is 100, and results are based on 1000 simulations.

6. Real data examples

6.1. Estimation from QTL mapping data

In QTL studies, the trait observations are assumed to be drawn from a mixture
of several QTL genotype groups and the mixture probabilities of a subject as-
suming a certain QTL genotype given flanking markers are calculated based on
the study design, the marker genotypes and the recombination fraction between
the location-known flanking markers and the putative QTL (Wu et al., 2007).
The first example that we use to illustrate our methods is a genetic linkage study
used to map QTLs for rice plant height and grain shape. The identified QTL can
be used to produce taller rice plants to increase yield. In Huang et al. (1997),
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Fig 2. Simulation 3. True CDF (solid) and the mean (dashed), 95% pointwise confidence
band (upper band dotted, lower band dash-dotted) of the estimated CDFs. The OWLS (left),
EFF (mid) and NPMLE2 (right) are plotted. The mean and true CDFs are undistinguishable
in OWLS and EFF estimators. Sample size is 300, and results are based on 1000 simulations.

a doubled haploid (DH) population of rice plants was derived from two inbred
lines (semi-dwarf IR64 and tall Azucena), creating 123 DH lines each genotyped
with 135 RFLP markers and 40 isozyme and RAPD markers. Several traits such
as grain shape and plant height were recorded. A DH population is equivalent to
a backcross population where the two marker genotypes have an approximately
1:1 distribution ratio. The mixture probabilities qi of a plant carrying a certain
QTL genotype given the flanking markers are computed based on the marker
genotypes and the recombination fraction between the marker and the QTL.
The details of qi computation can be found in Table 10.3 of Wu et al. (2007).

Using a Gaussian mixture model, Wu et al. (2007) analyzed the plant height
measured at 10 weeks after the rice was transplanted to the field and mapped
a QTL for this trait to 199cM on chromosome 1 between the markers RZ730
and RZ801. Here we estimate the cumulative distribution function of the rice
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Table 3

Data example 1. Estimated CDFs of plant height and their standard errors for QTL
genotypes bb (F̂1) and Bb (F̂2)

t Estimator F̂1(t) SE(F̂1) F̂2(t) SE(F̂2) p value∗

80 EFF 0.132 0.048 0 0.006 0.011
80 OWLS 0.126 0.048 0 0.001 0.011
110 EFF 0.895 0.05 0.095 0.062 <0.001
110 OWLS 0.927 0.043 0.098 0.062 <0.001
140 EFF 0.992 0.024 0.699 0.083 0.001
140 OWLS 1.000 0.006 0.684 0.082 0.000

*: p value for testing H0 : F1(t) = F2(t) based on (8)

plant height for each of the two QTL genotypes at the same locus (199cM on
chromosome 1) using the model (1).

There were 84 plant height measurements available. Table 3 presents the
estimated CDFs and their standard errors for each of the two QTL genotypes
at several values of the plant height. We present the efficient estimator (EFF)
and the optimal WLS (OWLS). We omitted OLS and the two NPMLEs due to
their respective deficiencies. The proposed OWLS and EFF lead to comparable
results. The test of H0 : F1(t) = F2(t) based on the test statistic (8) was
significant at 5% level for both estimators at three typical values of t, indicating
a difference in the distribution functions for the two QTL genotypes. In addition,
we tested the difference between the two distributions at the three t values
simultaneously by the test (9). The null distribution of the test statistic was
a chi-square with three degrees of freedom, and the p-value was less than 0.01
which indicates a significant difference.

Figure 3 presents the CDFs of rice plant heights for plants carrying each of the
two QTL genotypes estimated by the efficient estimator (EFF). It can be seen
that there is a large difference in the CDFs across the entire range of the plant
height and carrying a risk allele increases the plant height. For example, it was
estimated that 90.5% (CI: 78.3%, 100%) of the plants with Bb QTL genotype
will have plant heights greater than 110, compared to 10.5% (CI: 0.7%, 20.3%)
in the bb genotype group. This difference is highly significant (p < 0.001). These
results are consistent with the analysis conducted in Wu et al. (2007).

6.2. Estimation from the LDL data

In the LDL example introduced in Section 1, the association between the APOE
ε4 allele and the LDL concentrations in young children is our main research
interest. There were 230 subjects included in the data analyses. We show the
estimated cumulative distribution function of LDL concentration for carriers of
ε4 allele (carrying one or two copies of ε4) compared to non-carriers (carrying
zero copy of ε4) at several values of the LDL levels in Table 4. As in data example
1, we present the EFF and the OWLS. Both estimators yielded similar results.
The comparison of CDF for carriers versus non-carriers was not significant at
5% level at LDL= 100 or LDL= 260, but was significant at LDL= 180. Similar
to the QTL analysis, we tested the difference between two distributions at these
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Fig 3. Data example 1. Estimated cumulative distribution function (CDF) of plant height for
QTL genotype Bb (solid) and bb (dashed)

Table 4

Data example 2. Estimated CDFs of LDL levels and their standard errors of APOE ε4
carriers (F̂1) and non-carriers (F̂2)

t Estimator F̂1(t) SE(F̂1) F̂2(t) SE(F̂2) p value∗

100 EFF 0.719 0.108 0.619 0.054 0.496
100 OWLS 0.718 0.110 0.619 0.054 0.510
180 EFF 1.000 0.014 0.921 0.024 0.037
180 OWLS 1.000 0.014 0.922 0.024 0.035
260 EFF 1.000 0.006 0.984 0.011 0.364
260 OWLS 1.000 0.006 0.984 0.011 0.354

*: p value for testing H0 : F1(t) = F2(t) based on (8)

three typical t values simultaneously by (9). The p-value was 0.29, indicating a
non-significant overall difference of the two distributions at these values.

Figure 4 depicts the CDF of LDL for carriers and non-carriers estimated by
the efficient estimator, EFF. It can be seen that there is virtually no difference
of the two CDFs in the range from 45 to 130. The CDF for carriers is elevated
in the interval (130, 200) compared to non-carriers and the two functions merge
again for LDL greater than 200. Previous analyses in the literature focus on the
mean LDL concentration. Our analysis shows that the effect of APOE ε4 on
LDL manifests in the range of 130 to 200.
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Fig 4. Data example 2. Estimated CDF of LDL levels for carriers of APOE ε4 allele (solid)
and non-carriers (dashed)

7. Discussion

We have developed nonparametric estimation procedures for mixed samples
where the conditional distribution of the outcome given the group membership
is completely unspecified and the mixing probabilities are known or can be
calculated without using the outcome data. We propose an extremely simple
optimal weighted least squares estimator and derive an easy-to-compute efficient
estimator which reaches the semiparametric efficiency bound. We illustrate by
simulations that the OWLS estimator has good efficiency in many practical
situations. We investigate performances of two types of NPMLE and show the
surprising results that none of them is efficient and one of them is not even
consistent. This is in contrast to many other semiparametric problems where
the NPMLE is an efficient estimator.

Although the estimators are constructed for CDFs, it is straightforward to
adapt these procedures to estimate a quantile function F−1(τ). This is because
we can then express all the estimators in terms of solving for F (t) from an
estimating equation. When we denote t = F−1(τ), replace F (t) with τ in these
estimating equations, and solve for t from the known τ value instead of solving
for F (t) from the known t value, we can obtain estimators for the quantile
functions. For example, the efficient quantile estimator at τ can be obtained
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through solving for t from

n−1
n∑

i=1

{I(si ≤ t)−K(t, q̂T f)}A−1(si; q̂T f)qi
̂qTi f(si)

+K(t, q̂T f)1p = τ,

where K itself is now a function of t hence we use the notation K(t, q̂T f).
The CDFs estimated by the consistent estimators may not be monotone in-

creasing functions of t when the sample size is relatively small. In fact, the
type II NPMLE was originally proposed to address this issue, but it unfortu-
nately lead to inconsistency. One way to guarantee the monotonicity is though
reparametrization. For example, we could write f(t) = eg(t) exp{−

∫ t

0
eg(u)du},

and treat g(u) as a nuisance parameter, which will guarantee the range of

F (t) = 1 − exp{−
∫ t

0 e
g(u)du} to be monotone and within 0 and 1. However,

the additional complexity may not be worth the gain. Instead, we suggest to
use a post estimation adjustment, such as a pooled adjacent algorithm (Bar-
low et al., 1972) to modify the results to achieve monotonicity. For a detailed
description, see Wang et al. (2007).

Finally, we point out that one needs to be cautious in interpreting incon-
sistency of the type II NPMLE. The inconsistency occurs when a pure non-
parametric model is used. Parametric models and semiparametric models such
as Cox proportional hazards model with a nonparametric baseline or piecewise
exponential models are likely to be consistent. An extension of the proposed
methods to handle censoring based on full data influence functions discovered
here and inverse probability weighting is underway.
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Appendix

A.1. Derivation of the complete influence function family

To perform a formal semiparametric analysis (Bickel et al., 1993; Tsiatis, 2006),
we denote by θ the function that maps the nuisance parameter f(s) to the p-

dimensional parameter of interest, F (t), i.e., θ{f(s)} =
∫ t

T1

f(s)ds. We denote

the infinite dimensional nuisance parameter f(s) as η, i.e., η = f(x).
We now derive a general class of consistent estimators through characterizing

the complete influence function set. An influence function φ(q, s; θ, η) is a mean
zero function that satisfies

E(φST
γ ) = ∂θ(γ0)/∂γ

T (A.1)
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for any parametric submodel. A parametric submodel is a model where the
original unknown function f(s) is replaced by a parametric PDF model f(s; γ),
and it satisfies f(s; γ0) = f0(s). Here Sγ is the score function with respect to γ
evaluated at γ0,

Sγ =
∂log{pQ(q)qT f(s; γ)}

∂γ

∣∣∣
γ=γ0

and

θ(γ) ≡ θ{f(s; γ)} =

∫ t

T1

f(s; γ)ds.

The relation in (A.1) indicates that

∫ ∫ T2

T1

φqT
∂f(s; γ0)

∂γT
dspQ(q)dµ(q) =

∫ t

T1

∂f(s; γ0)

∂γT
ds,

where µ(q) is the counting measure of Q.
Given any parametric submodel of the form g(q, s; γ) = pQ(q)q

T f(s; γ), where
γ = (γ1, . . . , γp)

T , and f(s; γ) = {f1(s; γ1), . . . , fp(s; γp)}T , the parameter of
interest is

θ{f(s; γ)} =

{∫ t

T1

f1(s; γ1)ds, . . . ,

∫ t

T1

fp(s; γp)ds

}T

=

{∫ T2

T1

I(s ≤ t)f1(s; γ1)ds, . . . ,

∫ T2

T1

I(s ≤ t)fp(s; γp)ds

}T

.

On one hand, the partial derivative of the parameter of interest with respect to
γ is a block diagonal matrix of the form

∂θ{f(s; γ)}
∂γT

∣∣∣
γ=γ0

= diag

{∫ T2

T1

I(s ≤ t)f ′
1γ1

(s; γ10)ds, . . . ,

∫ T2

T1

I(s ≤ t)f ′
pγp

(s; γp0)ds

}
.

On the other hand, the score vector Sγ evaluated at the truth is

Sγ =

{
q1f

′T
1γ1

(s; γ10)

qT f(s)
, . . . ,

qpf
′T
pγp

(s; γp0)

qT f(s)

}T

.

Recall that (A.1) requires

∫ T2

T1

I(s ≤ t)f ′
jγj

(s; γj0)ds =

∫ ∫ T2

T1

φjqjf
′
jγj

(s; γj0)pQ(q)dsdµ(q)
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for j = 1, . . . , p, and

∫ ∫ T2

T1

φkqjf
′
jγj

(s; γj0)pQ(q)dsdµ(q) = 0

for k 6= j. Here φj is the jth component of φ. Because f(s) is completely unspeci-

fied, the function f ′
γ(s; γ0) can be any function that satisfies

∫ T2

T1

f ′
γ(s; γ0)ds = 0.

It then follows almost everywhere that
∫
φjqjpQ(q)dµ(q)−I(s ≤ t) is a constant

and
∫
φjqkpQ(q)dµ(q) is also a constant for k 6= j. These requirements can be

written concisely as

∫
φ(q, s)qT pQ(q)dµ(q) = I(s ≤ t)Ip + C. (A.2)

Note that a legitimate influence function also needs to have mean zero, hence

0 = E(φ) =

∫ T2

T1

∫
φ(q, s)qT pQ(q)dµ(q)f(s)ds = F (t) + C1p.

Thus, we can write φ(q, s) as φ(q, s) = b(q, s) − F (t) − C1p, where b satisfies
(A.2). This gives the desired family of influence functions described in (2).

A.2. Influence function of the WLS

Denote the ith diagonal entry in M as wi for i = 1, . . . , n. When we view the
weight wi as a random variable, we denote it as Wi. Since our arguments are
general for any i = 1, . . . , n, we often omit the subscript i, and use w or W for
the corresponding quantities. From

F̂ (t) =

(
1

n

n∑

i=1

wiqiq
T
i

)−1
1

n

n∑

i=1

wiqiI(si ≤ t),

we obtain

√
n{F̂ (t)− F (t)} =

1√
n

n∑

i=1





(
1

n

n∑

i=1

wiqiq
T
i

)−1

wiqiI(si ≤ t)



−

√
nF (t)

=
1√
n

(
1

n

n∑

i=1

wiqiq
T
i

)−1 n∑

i=1

{
wiqiI(si ≤ t)− wiqiq

T
i F (t)

}
.

Note that E
{
WiQiI(Si ≤ t)−WiQiQ

T
i F (t)

}
= 0, hence

√
n{F̂ (t)−F (t)}= 1√

n
{E(WQQT )}−1

n∑

i=1

{
wiqiI(si ≤ t)−wiqiq

T
i F (t)

}
+ op(1).
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So the influence function of WLS is

φWLS(q, s) = {E(WQQT )}−1wq
{
I(s ≤ t)− qTF (t)

}
.

Specifically, for the OLS and the optimal WLS estimators, the influence func-
tions are respectively

φOLS(q, s) = {E(QQT )}−1q
{
I(s ≤ t)− qTF (t)

}
,

and φOWLS(q, s) =

[
E

QQT

QTF (t){1−QTF (t)}

]−1
q
{
I(s ≤ t)− qTF (t)

}

qTF (t){1− qTF (t)} .

A.3. Derivation of ΛT and Λ⊥
T

We denote the collection of mean zero functions orthogonal to all the elements
in ΛT as Λ⊥

T . Consider the space of tangent vectors contributed from the jth
component fj(s) only, we obtain

Λj =

{
qjh(s)

qT f(s)
:

∫
h(s)ds = 0, h ∈ Rp

}
.

Combining the Λj ’s for j = 1, . . . , p, the nuisance tangent space is therefore

ΛT =

{
h(s)q

qT f(s)
:

∫
h(s)ds = 0, h ∈ Rp×p

}
.

Furthermore, it is easy to see that

Λ⊥
T =

{
r(q, s) :

∫
r(q, s)qT pQ(q)dµ(q) = C,C1p = 0

}
,

where C is a constant p× p matrix.

A.4. Proof of Theorem 1

We only need to verify that φeff given in Theorem 1 satisfies φeff = Π(φ|ΛT ) =
φ−Π(φ|Λ⊥

T ), where Π denotes an orthogonal projection.
To show this, we first point out that K1p = F (t). This is because from the

definition of A(s), we have

f(s) = A−1(s)

∫
qqT f(s)pQ(q)

qT f(s)
dµ(q) = A−1(s)

∫
qpQ(q)dµ(q).

Integrate the both sides of the above equation from T1 to T2 and from T1 to t
respectively, we obtain

1p =

∫ T2

T1

A−1(s)ds

∫
qpQ(q)dµ(q),

F (t) =

∫ T2

T1

I(s ≤ t)A−1(s)ds

∫
qpQ(q)dµ(q),

and the result follows.
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Now, letting h1(q, s) = h2(q, s) = A−1(s)q/qT f(s), h3(q) = K1p and B =
−K, we can easily verify that the corresponding b(q, s) in (4) has the form

beff = {I(s ≤ t)Ip −K}A
−1(s)q

qT f(s)
+K1p.

Since
∫
beff (q, s)q

T pQ(q)dµ(q) = I(s ≤ t)Ip −K +K1p

∫
qT pQ(q)dµ(q),

its corresponding influence function is

beff (q, s)− F (t)−
{
−K +K1p

∫
qT pQ(q)dµ(q)

}
1p

= beff (q, s)− F (t) +K1p −K1p

∫
qT 1ppQ(q)dµ(q)

= beff (q, s)− F (t).

Note that the above expression equals φeff . Thus, we have shown that φeff is
a valid influence function hence φeff ∈ ΛT .

Now, for any φ ∈ ΛT , we need to show φ− φeff ∈ Λ⊥
T . We have

∫
(φ− φeff ) q

T pQ(q)dµ(q)

=

∫ [
φ− {I(s ≤ t)Ip −K}A

−1(s)q

qT f(s)

]
qT pQ(q)dµ(q)

=

∫
φqT pQ(q)dµ(q) − {I(s ≤ t)Ip −K}

= −C − {F (t) + C1p}
∫
qT pQ(q)dµ(q) +K

is a constant matrix. In the last equality, we used the fact that an influence
function φ can be written as φ = b − F (t) − C1p, where

∫
dqT pQ(q)dµ(q) =

I(s ≤ t)Ip − C. From

[
−C −{F (t)+C1p}

∫
qT pQ(q)dµ(q)+K

]
1p = −C1p−{F (t)+C1p}+K1p=0

and follow the description of Λ⊥
T , we indeed have φ− φeff ∈ Λ⊥

T .

A.5. Proof of Theorem 2

First, we note that all the approximations are caused by q̂T f , which is estimated
using the second subset of the data. No other estimation or approximation is
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involved in our construction. From (7) we obtain

n
1/2
1

{
F̂ (t)− F (t)

}
= n

−1/2
1

n1∑

i=1

{ψ(qi, si; q̂T f)− F (t)}

= n
−1/2
1

n1∑

i=1

{ψ(qi, si; qT f)− F (t)} + n
−1/2
1

n1∑

i=1

{ψ(qi, si; q̂T f)− ψ(qi, si; q
T f)}.

Note that A(s; qT f) = A(s),K(qT f) = K, and K1p = F (t), hence

ψ(q, s; qT f)− F (t) =
{I(si ≤ t)−K}A−1(s)q

qT f(s)
+K1p − F (t) = φeff (q, s).

From (5), we see that ψ(q, s; q̂T f) − F (t) is an influence function. Thus, the

difference between ψ(q, s; q̂T f) and ψ(q, s; qT f) is the difference between a valid
influence functions and its projection on ΛT , hence is orthogonal to ΛT . Specif-
ically, we have

ψ(q, s; q̂T f)− ψ(q, s; qT f) = {ψ(q, s; q̂T f)− F (t)} − {ψ(q, s; qT f)− F (t)} ⊥ ΛT

and it has mean zero. Consequently, the estimator F̂ (t) is consistent and has
variance

var
[
n
1/2
1

{
F̂ (t)− F (t)

}]
= var(φeff ) + var{ψ(q, s; q̂T f)− ψ(q, s; qT f)}.

When n2 → ∞, the number of observations that satisfy qi = uk also goes
to infinity in probability due to the randomness of the data. Thus, the kernel

estimator for ûTk f(s) satisfies û
T
k f(s)−uTk f(s) = op(1) uniformly on any compact

set of s for each k ∈ {1, . . . ,m}. Therefore, q̂T f(s)− qT f(s) = op(1) as n→ ∞.
Note that ψ(q, s; qT f) is a pathwise differentiable function of qT f , it then follows

that var{ψ(q, s; q̂T f)− ψ(q, s; qT f)} = o(1). This proves that F̂ (t) is indeed an
efficient estimator.

A.6. Inconsistency of the type II NPMLE

Consider a very simple and explicit case where p = m = 2, u2 = (1, 0)T , while
u1 6= (1, 0)T and u1 6= (0, 1)T . This corresponds to the situation where there
exists two genotypes, and for the first r1 observations we know that they belong
to the first group with probability u11 and belong to the second group with
probability u12 = 1− u11; while for the last r2 observations, we know that they
are from the first group. Under this special case, the NPMLE becomes

max
h1,h2

(uT1 h1)
r1(uT2 h2)

r2 = (u11h11 + u12h12)
r1hr221

subject to r1h11 + r2h21 = 1, r1h12 + r2h22 = 1, and hij ≥ 0 for i, j = 1, 2.
Obviously, the maximum is obtained only when h12 = r−1

1 and h22 = 0.
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This can be written as f̂2(si) = r−1
1 I(qi = u1) for all i = 1, . . . , n. Hence

the NPMLE2 for the PDF f2(s) puts zero weights on observations that are
known to be drawn from the first group, and puts equal weights, r−1

1 , on other
observations. Such result is equivalent to the standard empirical likelihood es-
timation of a PDF when we are only given observations s1, . . . , sr1 drawn as
a random sample from this PDF. Hence its corresponding CDF estimation
F̂2(t) =

∑n
i=1 f̂2(si)I(si ≤ t) = r−1

1

∑r1
i=1 I(qi = u1)I(si ≤ t) is a consistent

estimate of the corresponding true CDF. However, s1, . . . , sr1 is a random sam-
ple from a mixture of two populations, where the mixture probability is u11 for
being from the first population and is u12 for the second population. In other
words, the estimator F̂2(t) is a consistent estimator of u11F1(t)+u12F2(t). Obvi-
ously, u11F1(t)+u12F2(t) does not equal to F2(t) unless u11 ≡ 0. Consequently,
the type II NPMLE is not consistent for this simple case.
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