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Abstract. We propose a model for lifetime data in which all units start out
susceptible to the event of interest but may move into a non-susceptible group
if another event intervenes. Practical examples include subjects dropping out
of a study by leaving the study area. It is supposed that the investigator is un-
aware of each subject’s status. The model results in the appearance of a cured
fraction (long-term survivors). It is shown that certain parametric models for
the lifetime and the intervening event are related to a cured fraction mixture
model even though the non-susceptible group is fixed from the outset in the
latter but not in the new model. A likelihood ratio test and a diagnostic plot
are proposed and examples of applications are provided.

1 Introduction

A standard feature of lifetime data is the presence of right censored observations of
the time until the event of interest. These could be described briefly as correspond-
ing to experimental units that have not undergone the event by the time that data
collection ceases, and this definition is adequate when the units are under close
observation as in a laboratory study. More generally, however, right censoring cor-
responds to the fact that the event of interest is not known to have occurred. This
includes two separate cases: either the event has not occurred, or it has occurred
but not been recorded. Apart from possible failure of the recording mechanism, the
latter case implies that because of some other intervening event, this unit was no
longer in fact under observation. Possible intervening events include participants
in a study leaving the area in which it is being carried out, or patients seeking
treatment from another health care provider with the result that the original inves-
tigator no longer receives their data. The occurrence of this intervening event is
unknown to the original investigator, otherwise these units could be simply right
censored at the time of the intervening event. Another way of looking at this situa-
tion, is to suppose that the study sample consists of two subgroups: one subgroup
is susceptible to the event of interest but the other is not, because the intervening
event has occurred. As we will discuss extensively later on, this description is sim-
ilar to “cured fraction” models which also contain susceptible and non-susceptible
groups (Maller and Zhou, 1996). A basic difference is that, in the situation we have
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described, units do not become “non-susceptible” unless and until the intervening
event occurs, whereas in a “cured fraction” model units are “cured” from the be-
ginning. It is common to both models that the investigator does not know to which
subgroup each unit belongs.

Actual examples of studies in which the proposed mechanism may be operating
include the following. Lawless et al. (2001) analysed data on repeated surgical pro-
cedures in a population of children. They acknowledged the possibility that failure
to return to the clinic after the last recorded visit did not necessarily indicate that
the child continued trouble-free: it could mean movement out of the study area or
to another treatment facility (Lawless et al., 2001, p. 452, p. 462). They handled
this possibility by carrying out a sensitivity analysis in which the data were reanal-
ysed after a chosen proportion of the right censored times based on the duration
of the study had been selected at random and replaced by times based on their last
observation time. Bring and Carling (2000) analysed unemployment durations and
established, by conducting further sampling, that a large proportion (45%) of peo-
ple who dropped out of unemployment registration (by failing to maintain contact
with the agency) actually dropped out because they had found employment (the
event of interest). Notice that in both of these examples, which are not in any way
unusual, data were collected only when the subjected attended the clinic or the
agency. Therefore, although the event of interest can be observed, the censoring
event can not. We believe therefore that the situation we are considering in this
paper arises rather commonly.

If units have, unknown to the investigator, moved into a non-susceptible group,
the effect on the data is that their times until the event of interest are bound to
appear as right censored, even though in some cases the event may have occurred
much earlier. If the simple model in which all units are susceptible continues to
be fitted to the data, it could be seriously affected by this inflation of event times.
Caroni (2011) has considered some tests for excessive right censored times in cer-
tain models.

2 The model

We formulate the model as follows. Let the random variable T represent the time
to the event E of interest. Another random variable R represents the time until
the occurrence of an unobservable competing risk D such as dropping out of the
study, for example, by moving out of the study area. Although we will refer to
“dropping out,” more generally the competing risk represents the transition from
the susceptible group to the non-susceptible group. We emphasize that D is always
unobservable; we will not consider the possibility that it is sometimes observed
and sometimes not. If D occurs before E, then it will be impossible to observe E.
However, the researcher does not know which group the individual belongs to, and
therefore continues to treat the individual as being under observation right up until
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Figure 1 Possible scenarios for the occurrence of the event of interest and dropping out.

the end of the experiment or data collection period. Let (0, t0) be the duration of
data collection. Then for an individual with (possibly latent) event times (ti, ri) for
the pair (T ,R), the data actually recorded are (t∗i , δi) where t∗i is defined as

t∗i =
{
ti , if ti < ri ∩ ti < t0,

t0, otherwise
(2.1)

and

δi = I
(
t∗i = ti

)
(2.2)

is the indicator taking the value δi = 1 when the event of interest E has been
observed and δi = 0 when it has not.

The data collection period (0, t0) could be different for each individual. Intro-
ducing a censoring time variable C, t∗i is now defined as

t∗i =
{
ti , if ti < ri ∩ ti < ci,

ci, otherwise,
(2.3)

where ci is the censoring time for the ith individual. The time C is always observed
if E has not occurred. Usually it will be the end of the study. The ci need not be
distinct and in fact they will all be identical if the subjects enter a study of fixed
duration at the same time.

This structure describes three different possibilities (Figure 1). First, Case I is
an uncensored observation. The other two cases cannot be distinguished from the
data, because they both result in censoring at ci for the event of interest. One (Case
II) is a drop out: ri < ti and the event of interest can no longer be recorded. This
characterization is irrespective of whether ri < ci or ri > ci . The other (Case III)
is a censored observation with ci < ti < ri .

3 Maximum likelihood estimation

Given a sample of n independent observations (t∗i , δi), i = 1, . . . , n, with t∗i as in
(2.3), the likelihood function under the proposed model is

L =
n∏

i=1

(
fT

(
t∗i

)
SR

(
t∗i

))δiP
(
T ∗ = ci

)1−δi (3.1)
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assuming independence between R and T . As is usually done in most models for
lifetime data, we assume that censoring is uninformative, in the sense of being
“missing at random” in the terminology of the literature on missing or incomplete
data. Consequently, we can avoid modelling the censoring process for inference
(Lawless, 2003). If the censoring time is common for all individuals, that is, ci =
t0, ∀i, then

L =
n∏

i=1

(
fT

(
t∗i

)
SR

(
t∗i

))δiP
(
T ∗ = t0

)1−δi . (3.2)

The last term in (3.1) is the probability that an observation appears to be right
censored at ci , and is given by

P
(
T ∗ = ci

) = P(drop out) + P(censored)

= 1 − P
(
T ∗ < ci

)
(3.3)

= 1 −
∫ ci

0
fT (t)SR(t) dt.

This can be found analytically in certain cases. First suppose that T follows a
Weibull distribution, which is a natural case to consider as this flexible distribution
is one of the most widely used distributions in survival and reliability studies. If
T ∼ Weibull(α,β) with p.d.f. given by

fT (t) = αβ(αt)β−1e−(αt)β (3.4)

and R ∼ Weibull(γ,β) (that is, with the same shape parameter as T but with a
different scale), then

P
(
T ∗ = ci

) = 1 − αβ

αβ + γ β

(
1 − e−(αβ+γ β)ci

β )
. (3.5)

Another tractable choice is the combination of a Gamma distribution for T and an
exponential for R. If T ∼ Gamma(λ,p) with p.d.f. given by

fT (t) = λptp−1e−tλ

�(p)
(3.6)

and R ∼ Exp(γ ) with survival function

SR(t) = e−γ t , (3.7)

then the probability of apparent censoring at ci is given by

P
(
T ∗ = ci

) = 1 −
(

λ

γ + λ

)p(
1 − �(p, (γ + λ)ci)

�(p)

)
. (3.8)

These expressions can be substituted in the likelihood function (3.1) or, with t0
replacing ci , in (3.2), as appropriate.
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4 Comparing the cured fraction mixture model and the proposed
model

In cured fraction mixture models it is assumed that there is a proportion πc of
subjects who will never experience the event of interest (failure, death etc.) because
they were not, at any time, actually at risk; see, for example, Maller and Zhou
(1996). The survival function in this case is given by

Sc(t) = πc + (1 − πc)STc(t), (4.1)

where STc(t) is the survival function of the random variable Tc which repre-
sents the time to the event of interest conditional on belonging to the suscepti-
ble group. The proportion of non-susceptibles πc is constant over time, expressing
the assumption that these subjects are “cured” from the beginning. It should be
noted that the same model can also be expressed as the improper survival func-
tion S(t) = exp(−θF (t)), where F is a distribution function (Chen et al., 1999,
Lambert, 2007). However, the motivation behind this alternative form is to con-
sider an individual’s event time to be generated as the minimum of an unknown
number N of independent and identically distributed competing risks (Chen et
al., 1999). The cured fraction, equal to e−θ , corresponds to individuals for whom
N = 0 so that they face no risks. Because each individual’s N is a characteris-
tic that is fixed from the outset, “cure” is determined from the beginning in this
formulation as well as in the simpler two-group mixture version.

In contrast, in our proposed model the size of the non-susceptible group (equiv-
alent to the “cured fraction”) grows continuously. The probability of belonging to
this group at time t is

π(t) = P(R < T ∩ R < t) =
∫ t

0

∫ ∞
r

fT (u)fR(r) dudr (4.2)

which can be expressed as

π(t) =
∫ t

0
fR(r)ST (r) dr. (4.3)

This is an increasing function of t with limt→0 π(t) = 0 and limt→∞ π(t) =
P(drop out).

In the model with T ∼ Weibull(α,β) and R ∼ Weibull(γ,β), π(t) is given by

π(t) = γ β

αβ + γ β

(
1 − e−(αβ+γ β)tβ )

(4.4)

while for the model with T ∼ Gamma(λ,p) and R ∼ Exp(γ ) it is given by

π(t) = 1 −
(

λ

γ + λ

)p

+ (λ/(γ + λ))p�(p, (γ + λ)t) − e−γ t�(p,λt)

�(p)
. (4.5)
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Although the proposed model and the cured fraction model differ in how they
conceive the nature of the group of subjects who will never experience the event of
interest, they turn out to be closely related in some cases. More specifically based
on the requirement that

πc = P(drop out)

—in other words, the same proportion of the population never experiences the
event of interest under both models—the following theorem holds.

Theorem 1. Suppose that the distribution G(α,β) of T under the proposed model
belongs to a scale family of probability distributions with p.d.f. of the form

fT (t) = fT (t;α,β) = e−ψ1(t;α,β)−ψ2(t;β)

�(α,β)
ξ(t), t > 0,

where ψ1(t;α,β) is a monotonically increasing function with respect to t with
ψ1(0;α,β) = 0 such that there is a w > 0

ψ1(t;x,β) + ψ1(t;y,β) = ψ1(t;w,β),

for every x > 0 and y > 0, ψ2(t;β) is a function not depending on the scale pa-
rameter α, ξ(t) is a non-negative function of t and �(α,β) is a normalizing fac-
tor. Further suppose that the survival function of the random variable R can be
expressed as

SR(t) = e−ψ1(t;γ,β).

Then the proposed model is equivalent to a cured fraction mixture model with dis-
tribution function of the time to event of interest belonging to the same distribution
family, with the same shape parameter but with different scale parameter αc.

Proof. In order to prove the theorem, we must prove that

fT (t)SR(t) = (1 − πc)fTc(t),

where fTc(t) is the p.d.f. of Tc under the cured fraction model. Since πc =
P(drop out) this relationship is equivalent to

fT (t)SR(t) = (
1 − P(drop out)

)
fTc(t)

or

fT (t)

1 − P(drop out)
SR(t) = fTc(t).

But G(α,β) belongs to a scale family of probability distributions, so we have that

FT (t) ≡ FT (t;α,β) = FT

(
αβt,1, β

)
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from which

fT (t)

1 − P(drop out)
SR(t) = 1

1 − P(drop out)
αβfT

(
αβt;1, β

)
SR(t)

= αβ

1 − πc

fT

(
αβt;1, β

)
SR(t)

= αβ∗ fT

(
(1 − πc)α

β∗ t;1, β
)
SR(t)

= 1

1 − πc

fT

(
t;α∗ β

√
1 − πc,β

)
SR(t),

where

αβ∗ = αβ

1 − P(drop out)
= αβ

1 − πc

.

But

SR(t) = e−ψ1(t;γ,β)

and so

fT (t)SR(t) = fT

(
t;α∗ β

√
1 − πc,β

)
e−ψ1(t;γ,β)

= e−ψ1(t;α∗ β
√

1−πc,β)−ψ2(t;β)

�(α∗ β
√

1 − πc,β)
ξ(t)e−ψ1(t;γ,β)

= e−[ψ1(t;α∗ β
√

1−πc,β)+ψ1(t;γ,β)]−ψ2(t;β)

�(α∗ β
√

1 − πc,β)
ξ(t)

= e−ψ1(t;αc,β)−ψ2(t;β)

�(α∗ β
√

1 − πc,β)
ξ(t),

where αc is such that

ψ1(t;αc,β) = ψ1
(
t;α∗ β

√
1 − πc,β

) + ψ1(t;γ,β).

But

�
(
α∗ β

√
1 − πc,β

)
EfT

(
e−ψ1(t;γ,β)) = �(αc,β)

and

EfT

(
e−ψ1(t;γ,β)) = EfT

(
SR(t)

)

=
∫ ∞

0
fT (t)SR(t) dt

=
∫ ∞

0

∫ ∞
t

fT (t)fR(u)dudt
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= P(R > T )

= 1 − P(R < T )

= 1 − P(drop out)

= 1 − πc.

Therefore, finally

fT (t)SR(t) = (1 − πc)
e−ψ1(t;αc,β)−ψ2(t;β)

�(αc,β)
ξ(t)

= (1 − πc)fTc(t)

as required. �

The two special cases that we considered earlier both satisfy the above theorem.
When T and R both follow Weibull distributions with the same shape parameter
then Tc also follows a Weibull distribution, still with the same shape but with scale
given by

αβ
c = αβ + γ β. (4.6)

When T follows a Gamma distribution and R an Exponential, then Tc follows
a Gamma distribution with the same shape as T but scale given by

λc = λ + γ. (4.7)

Some other common lifetime distributions, on the other hand, do not meet the
conditions of the theorem. For example, when we assume a Lognormal distribu-
tion for T , there is no distribution of R such that our model is equivalent to a
cured fraction mixture model in which the time to the event of interest Tc is also
Lognormal, with the same shape parameter but different scale parameter.

5 Diagnostic tools

We now consider ways of identifying the presence of unobserved drop-out. We will
consider one formal test and one diagnostic plot. Both are based on P(drop out),
the probability of never experiencing the event of interest, which is given by

P(drop out) =
∫ ∞

0
fR(t)ST (t) dt. (5.1)

For the model with T ∼ Weibull(α,β) and R ∼ Weibull(γ,β) model this is given
by

P(drop out) = γ β

αβ + γ β
(5.2)
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letting t → ∞ in (3.5). For the model with T ∼ Gamma(λ,p) and R ∼ Exp(γ )

model, it is

P(drop out) = 1 −
(

λ

γ + λ

)p

(5.3)

from (3.8).

5.1 Likelihood ratio test

A likelihood ratio (LR) test can be based on the fact that under the proposed model
P(drop out) > 0. Consequently, we may carry out a test of the null hypothesis

H0 :P(drop out) = 0 (5.4)

against

H1 :P(drop out) > 0. (5.5)

In both of the particular cases considered above (Weibull–Weibull and Gamma–
Exponential), these hypotheses are equivalent to

H0 :γ = 0, (5.6)

H1 :γ > 0, (5.7)

so that under the null hypothesis the survival function of R satisfies SR(t) =
1,∀t > 0.

Because the null value of γ lies on the boundary of the parameter space, the
asymptotic distribution of the LR statistic −2(
̂0 − 
̂1) under the null hypothesis is
expected to be a 50 : 50 mixture of a X2

1 distribution and a degenerate distribution
at zero (Self and Liang, 1987). We will denote this mixture distribution by X2

1:0.

5.2 Diagnostic plot

Suppose that data are collected over the period of time (0, t0). If the proposed
model is correct, then P(drop out) does not depend on t0. Therefore a different
t0 should not lead to a different estimate of P(drop out), apart from the effect of
sampling error. A diagnostic plot for the appropriateness of the model can be based
on this observation. For any chosen t0, we modify the data to what they would have
been with that stopping time. This means that known event times longer than t0 are
replaced by right censored values at t0 and censored observations at times longer
than t0 are treated as censored at t0. If units did not enter the experiment all at the
same time and some therefore have stopping times less than t0, these remain right
censored at their actual stopping times. Given that the assumed model is correct,
successive estimates of P(drop out) obtained by modifying the data in this way
for different choices of t0 should all be similar to each other.

The proposed diagnostic is a plot of estimates of P(drop out) against the t0 on
which they are based, and can be constructed by the following steps:
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1. Select a set of k times t01, . . . , t0k , where tk = t0 = max t∗i
2. Set j = k

3. Fit the model to obtain an initial estimate pk of P(drop out) using the original
data

4. Set j = j − 1
5. Define new data (t∗ij , δij ), i = 1, . . . , n as follows

• if t∗i < t0j then (t∗ij , δij ) = (t∗i , δi)

• if t∗i ≥ t0j then (t∗ij , δij ) = (t0j ,0)

6. Fit the model to the new data set and get the estimate of pj = P(drop out)
7. Plot (pj − pk) vs t0j , j = 1, . . . , k

If the plotted points are close to the horizontal axis, then the assumed model can
not be rejected. The idea of looking at the stability of estimates obtained from
modified sets of data for different time points was also used successfully for a
diagnostic plot by Economou and Caroni (2005).

6 Simulations

A detailed simulation study was carried out in order to evaluate the tests pre-
sented in the previous section. More specifically, the performance of the pro-
posed LR test was studied under various combinations of sample size (n =
20,50,100,200,350), shape parameter β of the null Weibull distribution (α =
0.03, β = 2/3,1,3/2) and censoring rate (30%, 50%). For each combination, 2000
samples of n event times ti were generated from the Weibull(0.03, β) distribution.
A censoring time ci for each observation in the sample was generated from the
uniform distribution on (0, x0) and if ci < ti then the event time was right cen-
sored at ci . The value of x0 was chosen so that the resulting samples had approxi-
mately 30% or 50% censored observations. Both a simple Weibull distribution and
the proposed Weibull–Weibull model were fitted to each sample, the LR test was
computed each time and its value was compared to the upper 2α% point of the
X2

1 distribution in order to carry out an α% level test under X2
1:0. Table 1 presents

the observed probability of exceeding this percentage point for the case α = 0.05.
The approximate binomial standard error of a proportion of about 5% is 0.5 for
2000 simulations. Apart from the combination of small sample size (n = 20) and
high proportion of censoring (50%), the size of the test is acceptably close to the
nominal level given by the asymptotic distribution. Results are systematically bet-
ter for lower censoring rate and for larger sample size, both of which are of course
expected, but do not appear to depend on the Weibull shape β except for small
sample sizes.

Figure 2 shows the estimated exceedance probabilities for the LR test plotted
against the nominal significance level for n = 350. This shows that the nominal
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Table 1 Simulated exceedance probabilities for the likelihood ratio test in the Weibull–Weibull
model, at nominal 5% significance level

Sample size n

β 20 50 100 200 350

30% censoring 2/3 0.0630 0.0640 0.0600 0.0555 0.0445
1.0 0.0615 0.0620 0.0495 0.0555 0.0495
3/2 0.0435 0.0480 0.0430 0.0455 0.0545

50% censoring 2/3 0.1005 0.0665 0.0555 0.0545 0.0470
1.0 0.0840 0.0650 0.0605 0.0595 0.0555
3/2 0.0730 0.0655 0.0565 0.0600 0.0480

Figure 2 Simulated exceedance probabilities (solid line) for the likelihood ratio test plotted against
nominal significance level, with sample size 350 observations, β = 2/3 (plots on the left), β = 1
(center), β = 1 (right) and approximately 30% (upper plots) and 50% (lower plots) censoring.

significance levels are accurate for all values of α of practical interest, and not
only for α = 0.05.

Further simulations were carried out to examine the power of the tests and the
accuracy of estimation of the parameters of the non-null model, with Weibull dis-
tributions for both T and R. Values of n, parameters α and β of the distribution of
T , and censoring rates were as above. The scale parameter γ of the distribution of
R was 0.005 or 0.01, producing proportions of drop out observations in the sam-
ples varying from a minimum of 0.0637 to a maximum of 0.3246. The censoring
times were generated by assuming a uniform distribution on (0, x0) where x0 was
determined so that the proportion of apparently censored observations (drop out
and true censored observations) in the samples would be approximately equal to
30% or 50%. The only exception was made in the case of β = 2/3, γ = 0.01 with
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censoring rate 30% in which no true censored observations were generated since
the proportion of the drop out observations was slightly larger than 30%.

Tables 2–4 show the means and standard deviations of the estimates of the pa-
rameters α, β and γ , obtained from 2000 simulated samples in each case. The
tendency is towards over-estimation of all parameters, but the size of this bias is
large only when the sample size is very small (n = 20 for 30% censoring, n = 50
for 50%). For larger samples, the bias is small and in fact estimation is in effect
unbiased for n = 200, or in many cases for n = 100. Table 5 shows the simulated
power of the LR test in the same simulation runs. There is strong dependence on
the underlying censoring rate.

In order to examine the behavior of the proposed diagnostic plot, samples were
generated under the Weibull–Weibull model for various combinations of sample
sizes and shape and scale parameters of the distributions. The parameter values
were selected to give samples with a wide range of proportions of observations
that were actually drop outs and not censored. Figure 3 presents a typical plot
obtained under the T ∼ Weibull(0.03,2/3)–R ∼ Weibull(0.01,2/3) model based
on a sample with 100 observations and a U(0,250) censoring distribution. The
behaviour of the proposed diagnostic plot was generally more clearly what was
predicted whenever the proportion of the drop out observation was larger in the
sample. Larger samples also resulted in better results, as expected.

7 Illustrative applications

In this section, the proposed model is applied to two data sets. The results are
discussed and compared to the cured fraction mixture model.

7.1 Breast cancer data

For a simple illustration of the application of the model to an easily available set of
data, we take data on breast cancer from Klein and Moeschberger (2003, page 7).
Of these 45 observations, 24 (46.7%) have long survival. Fitting the Weibull–
Weibull model by maximum likelihood gives


̂1 = −140.625, α̂ = 0.01246, β̂ = 2.428, γ̂ = 0.01178. (7.1)

The null (no drop out) Weibull model fit is


̂0 = −148.945, α̂ = 0.00575, β̂ = 1.1441. (7.2)

Hence the LR test statistic takes the value 16.64, which has p-value 0.000045
compared to X2

1 and therefore half of this compared to X2
1:0. The estimate of

P(drop out) is 0.4661. The diagnostic plot is shown in Figure 4 and the fit of the
proposed model (along with the Kaplan–Meier survival estimate is in Figure 5).

This is not intended as a serious analysis of these data but it is offered as an
illustration of the method for the following reason. The description of the data says
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Table 2 Performance of the MLEs applied to samples simulated from the Weibull(α = 0.03, β = 2/3)–Weibull(γ,β = 2/3) model: 2000 samples of
size n with approximately 30% and 50% censored observations (drop out and true censored observations). The mean and the standard deviation (in
parentheses) of the estimate of each parameter are shown

α̂ β̂ γ̂

Censoring rate Censoring rate Censoring rate

n 30% 50% 30% 50% 30% 50%

γ = 0.005 20 0.0352 (0.0180) 0.0453 (0.0291) 0.7409 (0.1959) 0.8328 (0.3245) 0.0081 (0.0091) 0.0238 (0.0410)
P(drop out) = 0.2324 50 0.0317 (0.0098) 0.0355 (0.0161) 0.6941 (0.1069) 0.7282 (0.1670) 0.0060 (0.0042) 0.0129 (0.0162)

100 0.0311 (0.0068) 0.0330 (0.0114) 0.6773 (0.0733) 0.6947 (0.1062) 0.0055 (0.0028) 0.0096 (0.0107)
200 0.0304 (0.0046) 0.0313 (0.0085) 0.6707 (0.0495) 0.6799 (0.0773) 0.0052 (0.0018) 0.0075 (0.0075)
300 0.0304 (0.0039) 0.0308 (0.0069) 0.6706 (0.0413) 0.6752 (0.0646) 0.0052 (0.0015) 0.0068 (0.0059)

γ = 0.01 20 0.0361 (0.0182) 0.0424 (0.0302) 0.7566 (0.1823) 0.8085 (0.3030) 0.0139 (0.0108) 0.0258 (0.0376)
P(drop out) = 0.3246 50 0.0321 (0.0098) 0.0342 (0.0159) 0.6926 (0.0993) 0.7187 (0.1561) 0.0111 (0.0046) 0.0161 (0.0163)

100 0.0312 (0.0068) 0.0323 (0.0115) 0.6777 (0.0654) 0.6899 (0.1074) 0.0105 (0.0032) 0.0132 (0.0110)
200 0.0306 (0.0045) 0.0306 (0.0080) 0.6732 (0.0443) 0.6737 (0.0747) 0.0103 (0.0021) 0.0113 (0.0077)
300 0.0304 (0.0037) 0.0305 (0.0065) 0.6724 (0.0380) 0.6711 (0.0608) 0.0102 (0.0017) 0.0107 (0.0062)
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Table 3 Performance of the MLEs applied to samples simulated from the Weibull(α = 0.03, β = 1)–Weibull(γ,β = 1): 2000 samples of size n with
approximately 30% and 50% censored observations (drop out and true censored observations). The mean and the standard deviation (in parentheses) of
the estimate of each parameter are shown

α̂ β̂ γ̂

Censoring rate Censoring rate Censoring rate

n 30% 50% 30% 50% 30% 50%

γ = 0.005 20 0.0323 (0.0103) 0.0377 (0.0157) 1.1195 (0.2923) 1.2433 (0.4592) 0.0066 (0.0069) 0.0155 (0.0200)
P(drop out) = 0.1429 50 0.0305 (0.0062) 0.0332 (0.0093) 1.0404 (0.1645) 1.0961 (0.2332) 0.0056 (0.0041) 0.0099 (0.0113)

100 0.0305 (0.0045) 0.0316 (0.0065) 1.0204 (0.1122) 1.0469 (0.1520) 0.0053 (0.0028) 0.0075 (0.0077)
200 0.0301 (0.0031) 0.0308 (0.0049) 1.0088 (0.0778) 1.0246 (0.1094) 0.0052 (0.0020) 0.0064 (0.0058)
300 0.0301 (0.0020) 0.0305 (0.0041) 1.0067 (0.0625) 1.0139 (0.0897) 0.0051 (0.0016) 0.0060 (0.0049)

γ = 0.01 20 0.0332 (0.0107) 0.0360 (0.0165) 1.1258 (0.2900) 1.2004 (0.4318) 0.0123 (0.0076) 0.0175 (0.0205)
P(drop out) = 0.2500 50 0.0309 (0.0058) 0.0321 (0.0096) 1.0389 (0.1478) 1.0646 (0.2184) 0.0105 (0.0039) 0.0128 (0.0115)

100 0.0306 (0.0042) 0.0310 (0.0067) 1.0233 (0.0981) 1.0363 (0.1526) 0.0103 (0.0027) 0.0115 (0.0083)
200 0.0302 (0.0030) 0.0302 (0.0050) 1.0131 (0.0684) 1.0126 (0.1098) 0.0102 (0.0019) 0.0102 (0.0059)
300 0.0302 (0.0024) 0.0304 (0.0042) 1.0065 (0.0572) 1.0103 (0.0905) 0.0102 (0.0015) 0.0106 (0.0051)
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Table 4 Performance of the MLEs applied to samples simulated from the Weibull(α = 0.03, β = 3/2)–Weibull(γ,β = 3/2): 2000 samples of size n with
approximately 30% and 50% censored observations (drop out and true censored observations). The mean and the standard deviation (in parentheses) of
the estimate of each parameter are shown

α̂ β̂ γ̂

Censoring rate Censoring rate Censoring rate

n 30% 50% 30% 50% 30% 50%

γ = 0.005 20 0.0313 (0.0060) 0.0342 (0.0082) 1.6773 (0.4332) 1.8698 (0.6580) 0.0052 (0.0064) 0.0107 (0.0132)
P(drop out) = 0.0637 50 0.0304 (0.0039) 0.0317 (0.0052) 1.5470 (0.2250) 1.6308 (0.3065) 0.0049 (0.0041) 0.0078 (0.0084)

100 0.0301 (0.0026) 0.0310 (0.0037) 1.5302 (0.1592) 1.5711 (0.2155) 0.0049 (0.0029) 0.0064 (0.0066)
200 0.0301 (0.0019) 0.0305 (0.0027) 1.5086 (0.1105) 1.5348 (0.1463) 0.0049 (0.0020) 0.0055 (0.0052)
300 0.0300 (0.0015) 0.0304 (0.0023) 1.5074 (0.0883) 1.5274 (0.1201) 0.0049 (0.0016) 0.0053 (0.0046)

γ = 0.01 20 0.0310 (0.0063) 0.0330 (0.0091) 1.6772 (0.4205) 1.8073 (0.6276) 0.0106 (0.0068) 0.0132 (0.0138)
P(drop out) = 0.1600 50 0.0306 (0.0039) 0.0312 (0.0053) 1.5543 (0.2227) 1.6204 (0.3179) 0.0103 (0.0038) 0.0112 (0.0088)

100 0.0302 (0.0027) 0.0304 (0.0040) 1.5260 (0.1492) 1.5398 (0.2083) 0.0101 (0.0026) 0.0101 (0.0067)
200 0.0302 (0.0019) 0.0301 (0.0029) 1.5169 (0.1058) 1.5209 (0.1518) 0.0101 (0.0018) 0.0098 (0.0051)
300 0.0301 (0.0016) 0.0300 (0.0023) 1.5107 (0.0856) 1.5157 (0.1223) 0.0100 (0.0015) 0.0099 (0.0041)
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Table 5 Simulated power of the LR test based on 2000 simulated samples from the Weibull(α =
0.03, β)–Weibull(γ,β) model of size n with approximately 30% and 50% censored observations
(drop out and true censored observations)

Censoring rate Censoring rate

n 30% 50% n 30% 50%

β = 2/3 γ = 0.005 20 0.5375 0.1540 γ = 0.01 20 0.9985 0.2135
P(drop out) = 0.2324 50 0.8410 0.1560 P(drop out) = 0.3246 50 1.0000 0.2895

100 0.9860 0.2130 100 1.0000 0.4440
200 1.0000 0.3005 200 1.0000 0.6425
300 1.0000 0.3930 300 1.0000 0.7975

β = 1 γ = 0.005 20 0.2840 0.1310 γ = 0.01 20 0.9095 0.1705
P(drop out) = 0.1429 50 0.5250 0.1370 P(drop out) = 0.2500 50 0.9995 0.2390

100 0.7910 0.1375 100 1.0000 0.3590
200 0.9600 0.1985 200 1.0000 0.5400
300 0.9940 0.2570 300 1.0000 0.7055

β = 3/2 γ = 0.005 20 0.2000 0.1075 γ = 0.01 20 0.6510 0.1590
P(drop out) = 0.0637 50 0.3635 0.0940 P(drop out) = 0.1600 50 0.9430 0.2140

100 0.5595 0.1075 100 0.9985 0.2815
200 0.8110 0.1345 200 1.0000 0.4445
300 0.9235 0.1610 300 1.0000 0.5790

Figure 3 Typical diagnostic plot under the proposed model.

that patients required a minimum 10-year follow up for inclusion. Consequently,
all the censored times are necessarily large and hence the data give a very strong
impression of the existence of a cured fraction. Because of this, even though the
sample is small, our methods worked very effectively.

Under the cured fraction mixture model the estimated distribution of the survival
time T among the population group that will experience the event of interest in
some point is a Weibull distribution with scale parameter equal to 0.01613 and
shape parameter equal to 2.428 (see Theorem 1 and Eq. (5.2)). Meanwhile, under
the drop out model it is a Weibull distribution with the same shape parameter but
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Figure 4 Diagnostic plot for the breast cancer data.

Figure 5 Breast cancer data: Kaplan–Meier survival estimate (horizontal line segments), fitted sur-
vival under the drop out model (solid line) and fitted survival under a simple Weibull model (broken
line).

different scale equal to 0.01246. This difference is important and has a significant
effect on all the characteristics of the survival time of the vulnerable group. For
example, under the cured fraction model the expected value of the survival time
of a member of the group that will experience the event of interest at some time
is 55.0 months while under the drop out model it is 71.2 months, a substantial
difference of more than 16 months greater than the expected lifetime given by the
cured fraction model.

7.2 Recidivism data

The second illustration takes part of a set of data on the recidivism of offenders
released from detention in North Carolina in 1978 and 1980. Various analyses of
these data can be found in Chung et al. (1991) and earlier papers that are cited
there. From the Kaplan–Meier estimate (Figure 6), it is evident that the survival
function (meaning, in this case, the probability of staying out of prison) does not
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Figure 6 Recidivism data: Kaplan–Meier survival estimate (horizontal line segments), fitted sur-
vival under the drop out model (solid line) and fitted survival under a simple Weibull model (broken
line).

Figure 7 Diagnostic plot for the recidivism data.

tend to zero. For this reason, the models that have been tried include cured frac-
tion mixture models, called split-population models by those authors. We fitted
our Weibull–Weibull model to the subset of 1540 cases which had been randomly
selected by the original authors to form the estimation sample from the 1978 data.
The event time observations of 970 (63%) of these people were right censored,
meaning that they had not been recorded as re-entering prison by the end of the
study six years after its start. The data were obtained from the Inter-university
Consortium for Political and Social Research (www.icpsr.umich.edu).

The value of the LR test statistic was 121.0 which is of course statistically highly
significant, as expected given the appearance of the survival curve and the large
sample. Parameter estimates for the Weibull–Weibull model were α̂ = 0.0164, β̂ =
1.2475, γ̂ = 0.0240, with P(drop out) estimated as 0.6168. The fitted curve is
shown in Figure 6. The parameter estimates for the equivalent cured fraction model
are α̂c = 0.0155, β̂c = 1.2475, π̂ = 0.6168. The diagnostic plot (Figure 7) supports
the model.

http://www.icpsr.umich.edu


A hidden competing risk model for censored observations 351

Although, as we have seen, the two models are mathematically equivalent, they
differ in the interpretation of the nature of the group that will never experience
the event of interest (in this case returning to a prison in North Carolina). The
cured fraction mixture model implies that, for some offenders, it is already fixed
at the time of release that they will never return to prison. On the other hand, our
model implies that throughout time there is always a chance of joining the group
that will never re-offend, so long as you have avoided re-offending so far. The two
models also differ in the distribution of the survival time of the group that will
eventually, at some point, experience the event of interest. Because of the different
scale estimates in the fitted Weibull distributions, the expected time to the event
conditional on its occurrence is 60.3 months under the cured fraction model but
only 56.9 months under the drop out model.

8 Comments

As stated in the Introduction, we believe that the model here corresponds to an
important feature of the data that are collected in many studies. However, we are
aware that this is only the first step in the analysis of the problem. In particular,
most practical analyses of lifetime data include covariates. Consequently, the next
stage should be to introduce covariates into our model too.
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