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COUNTERFACTUAL ANALYSES WITH GRAPHICAL MODELS
BASED ON LOCAL INDEPENDENCE1

BY KJETIL RØYSLAND

University of Oslo

We show that one can perform causal inference in a natural way for
continuous-time scenarios using tools from stochastic analysis. This provides
new alternatives to the positivity condition for inverse probability weighting.
The probability distribution that would govern the frequency of observations
in the counterfactual scenario can be characterized in terms of a so-called
martingale problem. The counterfactual and factual probability distributions
may be related through a likelihood ratio given by a stochastic differential
equation. We can perform inference for counterfactual scenarios based on the
original observations, re-weighted according to this likelihood ratio. This is
possible if the solution of the stochastic differential equation is uniformly in-
tegrable, a property that can be determined by comparing the corresponding
factual and counterfactual short-term predictions.

Local independence graphs are directed, possibly cyclic, graphs that rep-
resent short-term prediction among sufficiently autonomous stochastic pro-
cesses. We show through an example that these graphs can be used to identify
and provide consistent estimators for counterfactual parameters in continu-
ous time. This is analogous to how Judea Pearl uses graphical information to
identify causal effects in finite state Bayesian networks.

1. Introduction. While randomized controlled trials are the gold standard for
determining the effects of public health interventions or medical treatments, there
are many situations where such trials are unethical, and it is tempting to turn to
registry data or observational studies for quality assessment of treatments. How-
ever, data from such sources is subject to various selection effects from drop-out
due to underlying health problems to selection of the treatment itself. These prob-
lems have motivated the development of the field of causal inference, including
in particular the area of marginal structural models [24, 25] which have seen ap-
plications, for instance, in HIV cohort studies [28]. The underlying idea is that
observational data can be used to mimic a relevant hypothetical controlled trial or
counterfactual scenario.

In this paper, our primary concern is the possibility of estimating parameters in
a model for the observations from a counterfactual scenario involving a relevant

Received December 2011; revised July 2012.
1Supported by The Research Council of Norway, Project: 191460/V50, and The Norwegian Cancer

Society, Project 2197685.
MSC2010 subject classifications. 92D30, 62N04, 60G44, 60G55.
Key words and phrases. Causal inference, stochastic analysis, event history analysis, marked

point processes, change of probability measures, local independence.

2162

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/12-AOS1031
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


COUNTERFACTUAL ANALYSES AND LOCAL INDEPENDENCE 2163

hypothetical randomized controlled trial. While the specification of an appropriate
model for the counterfactual observations is an important topic in itself, we will
focus solely on a situation in which such a counterfactual model has been specified
correctly. It is common to re-weight the observational data in order to mimic ob-
servations coming from the counterfactual scenario. This is usually referred to as
inverse probability weighting. Such re-weighting has occasionally been reported
to be too unstable, even inconsistent, for various purposes; see [7]. It is therefore
of great interest to understand when this strategy actually works. We will provide
some rigorous conditions for such re-weighting to be achievable. A similar expo-
sition has not been carried out in the literature before, except partly in [25] and [7].

A probability distribution on the underlying sample space that would govern
the frequency of observations in the counterfactual scenario can be characterized
in terms of a so-called martingale problem. Short-term predictions provide dy-
namical characterizations of the various involved modules. A hypothetical direct
intervention on a module would change its dynamics. The nondirectly intervened
modules on the other hand, should have the same dynamical characterization as in
the factual scenario. Martingale problems have been thoroughly studied in stochas-
tic analysis; to us one would mean that there would exist well-developed tools for
determining the feasibility of the previous re-weighting methods. An immediate
application of these tools yields, for instance, that the probability distribution that
would govern the frequencies of events in the counterfactual situation is unique if
it exists; see Theorem 4 in the Appendix.

If the re-weighting is feasible, is it then at all possible to estimate the parameters
of interest in the counterfactual model from the re-weighted observations? In other
words, are these parameters identifiable? Pearl’s strategy [21] is to take advantage
of graphical structure, in terms of conditional independences, for identification of
causal effects. It was shown in [12, 27] and [10] that this strategy gives a com-
plete theory in the simpler setting of finite state or Gaussian–Bayesian networks.
For more complicated settings, this problem is far from solved. Some results in
this direction for time series were given in [11]. We show that it is possible to
take advantage of local independence graphs for identification of causal effects in
continuous-time settings. Note, as this general problem is very hard, we do not pro-
vide a complete theory for identification of causal effects, only an example which
slightly extends [19].

The idea that the counterfactual situation can be assigned probabilities in a
way that is consistent with a purely observational scheme, is not new. It has also
been considered in the general context of marked point processes in [3, 4, 8,
20] and [25]. We choose a martingale-based approach, similar to [25]. Note also
that graphical models based on local independence and doubly stochastic Poisson
processes were studied thoroughly in [9]. Continuous-time counterfactual inter-
ventions were also considered by Lok in [18]. She considered structural nested
models in continuous time and applied ideas from structural equation modeling to
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survival data. Her strategy differs from ours in that we take a purely nonparametric
point of view, through change of probability measures.

In Section 2 we describe models for the factual scenario. We then proceed in
Section 3 with a description of counterfactual variables and distributions. In Sec-
tion 4, we give a sufficient condition for such a counterfactual distribution to exist,
and also a construction based on martingale methods. In Section 5, we introduce
local independence graphs that play the same role as directed acyclic graphs usu-
ally do in the literature on causal inference. In Section 6, we consider an example
where we can identify consistently estimate controlled direct effects in event his-
tory analysis. Finally, in the Appendix, we summarize some properties of dual
predictable projections and consider uniqueness of counterfactual distributions.

2. The observational regime and autonomous modules. Eventually, we
will consider statistical analyses based on observations of several i.i.d. individ-
uals, but first we will consider models for one “generic” individual. We aim
to investigate complex systems for each individual formed by finitely many au-
tonomous modules that develop and influence each other throughout time. We will
not provide a detailed recipe for building appropriate models, but simply assume a
stochastic model for a generic individual that has some specific properties.

2.1. The underlying probability space and marked point processes. We let V
denote the finite set of modules that form the system of interest. The possible
outcomes of these modules are supposed to be realized on a probability space
(�, F ,Q) with some additional structure that we will now describe. Note that
we do not assume that the actual frequencies of outcomes will be governed by
the probability measure Q. This measure will only play a role as a “reference
measure.” The possible “initial” outcomes of each module V are given by the
outcomes of a corresponding random variable V0. The random variables in this
family, which we denote by V0, are mutually independent with respect to Q. The
intital outcome of each V ∈ V occurs at a, possibly unknown, time point T (V0) ≤
0. The ordering of these time points is assumed to be known. We moreover let

p(V0) := {
V ′

0 ∈ V0|T (
V ′

0
)
< T (V0)

}
,(2.1)

and sometimes refer to this set as the past of V0.
The outcomes in the follow-up are driven by a multivariate point process N

[13] on a finite time interval [0, T ]. Let J denote the mark space of N . This space
is supposed to be Lusin, that is, a Borel subset in a compact metric space, and
equipped with the Borel σ -algebra J . We assume that for every module V , there
exists a JV ∈ J such that

Vt(ω) = V0(ω) +
∫
JV

∫ t

0
h(ω, s, x)N(ω,ds, dx),(2.2)
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where h is a bounded process on [0, T ] × J that is predictable with respect to
the filtration generated by N |JV

and V0. We also assume that V0 ⊥⊥Q N and
that

∐
V ∈V JV defines a partition of J such that the restricted point processes

{N |JV
}V ∈V are mutually independent with respect to Q.

For each subset W := {V 1, . . . , V d} ⊂ V , let F W
t denote the filtration that is

generated by V0 and N |JV
for every V ∈ W and also satisfies the usual conditions;

see [14]. We let PW denote the predictable σ -algebra generated by F W
t [14]. For

notational simplicity, we will also write F V
t or PV instead of F {V }

t or P{V }, as
well as Ft or P instead of F V

t or PV .

2.2. The factual distribution. The actual frequencies of outcomes in the model
are not assumed to be governed by Q, but another probability measure P such that
P � Q and

V0 ⊥⊥P T −1T (V0) \ {V0}|p(V0)(2.3)

for every V0 ∈ V0, that is, every V0 is independent w.r.t. its simultaneous variables,
conditionally on the past. We will refer to property (2.3) as contemporaneous inde-
pendence; see [11]. This is useful to us since it provides at least one enumeration
{V 1

0 , . . . , V n
0 } = V0 such that T (V i

0 ) ≥ T (V
j
0 ) whenever i > j and

EP

[
f
(
V k

0
)|V k−1

0 , . . . , V 1
0
] = EP

[
f
(
V k

0
)|p(V k

0
)]

,(2.4)

whenever f is a bounded and measurable function and 1 ≤ k ≤ n.
The processes in V are not necessarily mutually independent with respect to P ,

but are still sufficiently autonomous for our purpose. As an immediate manifesta-
tion of this autonomy, note that the modules may not “switch” states simultane-
ously P -a.s. The reason is that the processes in V are associated to disjoint subsets
in the mark space J , which cannot occur simultaneously. We will refer to P as the
factual measure. Note, however, as some of the processes in V may be latent, the
factual measure P is also assumed to govern the frequency of events that may be
unobserved.

2.3. The factual likelihood ratio and its factorization. The autonomy imposes
a factorization of the likelihood ratio dP

dQ
that will prove to be important to us.

First note that a repeated use of the Radon–Nikodym theorem provides a fam-
ily {ZV

0 }V ∈V of nonnegative random variables such that each ZV
0 is F p(V )∪{V }

0 -
measurable and

EQ

[
ZV

0 |F p(V )
0

] = 1 and
dP |F0

dQ|F0

= ∏
V ∈V

ZV
0 , Q-a.s.(2.5)

There is a similar factorization of dP
dQ

. Let U denote the dual predictable projec-
tion of N with respect to Q onto the filtration Ft as in [13]. By Lemma A.2 in the
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Appendix there exists a nonnegative and P ⊗ J -measurable process λ such that

EP

[∫
J

∫ T

0
h(s, x)N(ds, dx)

]
= EP

[∫
J

∫ T

0
h(s, x)λ(s, x)U(ds, dx)

]
for every bounded and P ⊗ J -measurable process h. As common practice, we
mostly omit ω from equations in order to be notationally less overwhelming.

We now define the processes

HV (t) := 1 + U({t}, JV ) − ∫
JV

λ(t, x)U({t}, dx)

1 − U({t}, JV )

and

KV
t :=

∫
JV

∫ t

0
λ(s, x) − HV (s)

(
N(ds, dx) − U(ds, dx)

)
.(2.6)

By (A.3), we see that that {KV }V ∈V defines a family of local Q-martingales with
respect to the filtration Ft such that[

KV ,KV ′] = 0, Q-a.s. for V �= V ′.(2.7)

The solution of the SDE

Zt = Z0 + ∑
V ∈V

∫ t

0
Zs− dKV

s(2.8)

defines a Q-martingale with respect to the filtration Ft such that

Zt = dP |Ft

dQ|Ft

, Q-a.s.

for every t ∈ [0, T ]. This follows directly from [13], Theorem 5.1.
We now obtain directly from Yor’s additive formula [23], Theorem II 38, that

Zt = ∏
V ∈V

ZV
t ,(2.9)

where each ZV solves an SDE

ZV
t := ZV

0 +
∫ t

0
ZV

s− dKV
s .(2.10)

3. Actions and counterfactual distributions. We assume that we may di-
rectly intervene on a subset of modules A ⊂ V such that their outcomes are
changed. This intervention does not directly affect the outcomes of the modules
in X := V \ A. The latter set of modules will only be affected indirectly: The
conditional distributions of their short-term behavior, given the past, will remain
the same, while the change of previous outcomes yields a change of the back-
ground these distributions depend on. We will limit our discussion to actions that
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are deterministically dependent on the past. These are sometimes referred to as
conditional actions. Every conditional action will be represented by a measurable
transformation θ of the generic state space (�, F ). We think of θ(ω) as the direct
consequence in the “counterfactual universe” where the action θ was performed.

Whenever P ′ is a probability measure on (�, F ), we let θP ′ denote the push-
forward measure over θ , that is, θP ′(F ) := P ′(θ−1(F )) for every F ∈ F . When-
ever H is an F -measurable random variable, we let θ∗H denote the transformed
variable, where θ∗H(ω) := H(θ(ω)) for every ω ∈ �. We assume that θ is “con-
tinuous” in the sense that the reference measure Q is quasi-invariant with respect
to θ , that is,

θQ � Q.(3.1)

3.1. Actions and counterfactual distributions at baseline. Let V ∈ V and sup-
pose η is an F V

0 -measurable random variable, and h is a bounded and F p(V )
0 -

measurable random variable. We assume that the outcomes of the not directly in-
tervened part of the system are left invariant by the transformation at baseline, that
is,

θ∗η = η(3.2)

for every η and every V ∈ X . We furthermore assume that the action depends de-
terministically on the past outcomes in the nonintervened system, that is, whenever
V ∈ A, then

θ∗η is F p(V )∩X
0 -measurable(3.3)

for every η.
A probability distribution Pθ on (�, F ) defines a counterfactual distribution at

baseline if, whenever V ∈ A, then

EPθ [hη] = EPθ

[
hθ∗η

]
,(3.4)

and, whenever V ∈ X , then

EPθ [hη] = EPθ

[
hθ∗EP

[
η|F p(V )

0

]]
(3.5)

for every η.
Equation (3.5) means that the short-term behavior of a directly intervened vari-

able is simply given by the transformed variable. Its outcome is deterministically
regulated by the past. Equation (3.5) means that the conditional distribution of an
outcome of a not directly intervened variable in the counterfactual scenario, given
its past, coincides with the corresponding distribution from the factual scenario.

Note that Pearl’s do(X = x) may also be interpreted as a transformation on
sample space that fixes X constantly equal to x and leaves the remaining variables
invariant. This means that our characterization of probability measures on (�, F )

that would govern the frequencies of events in our system if we, contrary to the
fact, had applied the hypothetical intervention strategy, is a reformulation of Pearl’s
do-operator on Bayesian networks [21]. The present approach, however, translates
more or less directly to continuous-time settings.
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3.2. Actions and counterfactual distributions in the follow-up period. When-
ever Z is a stochastic process on �, we let θ∗Z denote the process given by the
transformed variables {θ∗Zt }t∈[0,T ]. We assume that θ∗N defines a marked point
process that is adapted to the history {Ft }t∈[0,T ]. The action θ is thought to force
the outcomes N |[0,T ]×JA into the outcomes of θ∗N |[0,T ]×JA , which will only de-
pend on the strictly previous behavior of the not directly intervened system, that
is, whenever B ∈ JA, then

θ∗Nt(B) is predictable w.r.t. Ft
X .(3.6)

The outcomes of the not directly intervened part of the system are left invariant by
the transformation during follow-up, that is,

θ∗N |[0,T ]×JX = N |[0,T ]×JX .(3.7)

We will say that Pθ defines a counterfactual distribution if it defines a coun-
terfactual distribution at baseline, and if whenever X is process on the form (2.2)
and � is an Ft -predictable process of finite variation such that

EP

[∫ T

0
hs dXs

]
= EP

[∫ T

0
hs d�s

]
for every bounded and Ft -predictable process h, then

EPθ

[∫ T

0
hs dXs

]
= EPθ

[∫ T

0
hs dθ∗�s

]
if V ∈ X(3.8)

and

EPθ

[∫ T

0
hs dXs

]
= EPθ

[∫ T

0
hs dθ∗Xs

]
if V ∈ A.(3.9)

Note that (3.8) means that θ∗� defines the compensator of X if V ∈ X , and (3.9)
means that θ∗X defines the compensator of X, otherwise. This offers an analogous
interpretation as in the baseline setting. Compensators provide a notion of short-
term behavior, analogously to the previous conditional distributions. The short-
term behavior of a not directly intervened process in the counterfactual scenario,
based on the past, coincides with the transformed short-term behavior from the
factual scenario. The short-term behavior of a directly intervened process is given
entirely by the transformation.

Following [22], we will say that a model consisting of a factual scenario, an ac-
tion and a corresponding counterfactual distribution, defines a causal model if the
counterfactual distribution would fit the actual corresponding counterfactual sce-
nario. That Pθ actually would govern the frequency of observations for this hypo-
thetical scenario is generally not testable, and mostly comes down to the question
of no unmeasured confounding [22].
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4. Construction of counterfactual distributions.

4.1. Construction at baseline. We will now construct the counterfactual dis-
tribution in a situation with no follow-up period. The construction is then closely
related to Pearl’s framework [21]. The next result is important and says heuris-
tically that if the conditional probability, given the past, of observing outcomes
that coincide with counterfactually enforced ones are not too small, then there ex-
ists a counterfactual distribution. Equation (4.2) then offers a useful description
of the distribution. Note that this is a measure theoretical version of the truncated
factorization formula from [21], (3.10).

THEOREM 1. If there exists a nonnegative K ∈ L1(F0,P ) such that

dθQ|F0

dQ|F0

≤ K
∏

V ∈A
ZV

0 , P -a.s.,(4.1)

then ∏
V ∈X

ZV
0 · θQ|F0(4.2)

defines a counterfactual distribution on F0 that is absolutely continuous with re-
spect to P |F0 and imposes contemporaneously independent outcomes.

PROOF. First note that for every bounded F0-measurable random variable η,

EP

[
η
dθQ|F0

dQ|F0

∏
V ∈A

1

ZV
0

]
= EQ

[
η
dθQ|F0

dQ|F0

∏
V ∈X

ZV
0

]
= EθQ

[
η
∏

V ∈X
ZV

0

]
≤ EP [ηK].

This shows that (4.2) defines a finite measure Pθ on F0 such that Pθ � P |F0 .
We choose an enumeration V1, . . . , Vm of the variables in X such that j < k

implies that T (Vj ) ≤ T (Vk). If Vk ∈ X and η is a bounded F {Vk}∪p(Vk)
0 -measurable

random variable, then

EQ

[
θ∗η|F {V1,...,Vk−1}

0

] = θ∗EQ

[
η|F p(V )

0

]
, Q-a.s.(4.3)

To see this, we let η1 be an F Vk

0 -measurable and bounded random variable and let

η2 be an F p(Vk)
0 -measurable and bounded variable and compute

EQ

[
θ∗(η1η2)|F {V1,...,Vk−1}

0

] = EQ

[
η1|F {V1,...,Vk−1}

0

]
θ∗η2

= θ∗(EQ

[
η1|F {V1,...,Vk−1}

0

]
η2
)

= θ∗(EQ

[
η1|F p(Vk)

0

]
η2
)

= θ∗EQ

[
η1η2|F p(Vk)

0

]
, Q-a.s.
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Equation (4.3) now follows from the monotone class lemma. Especially, this means
that for every k ≤ m,

EQ

[
θ∗ZVk

0 |F {V1,...,Vk−1}
0

] = θ∗EQ

[
Z

Vk

0 |F p(Vk)
0

] = 1, Q-a.s.(4.4)

and

EθQ

[
Z

V1
0 · · ·ZVk

0

] = EQ

[
θ∗ZV1

0 · · · θ∗ZVk−1
0 EQ

[
θ∗ZVk

0 |F {V1,...,Vk−1}
0

]]
= EQ

[
θ∗ZV1

0 · · · θ∗ZVk−1
0

] = EθQ

[
Z

V1
0 · · ·ZVk−1

0

]
.

That Pθ defines a probability measure on F0 follows by induction.
To see that (3.5) and (3.4) are satisfied, suppose Vk ∈ X , and let η,h be bounded

random variables such that η is F Vk

0 -measurable and h is F p(Vk)
0 -measurable. We

see that

EPθ [ηh] = EθQ

[(
k−1∏
j=1

Z
Vj

0

)
ηhZ

Vj

0

]

= EQ

[(
k−1∏
j=1

θ∗ZVj

0

)
θ∗hEQ

[
θ∗ηZ

Vk

0 |F {V1,...,Vk−1}
0

]]

= EQ

[(
k−1∏
j=1

θ∗ZVj

0

)
θ∗hθ∗EQ

[
ηZ

Vk

0 |F p(Vk)
0

]]

= EPθ

[
hθ∗EP

[
η|F p(V )

0

]]
.

If Vk ∈ A, then

EPθ [ηh] = EθQ

[(
k−1∏
j=1

Z
Vj

0

)
ηhZ

Vj

0

]

= EQ

[(
k−1∏
j=1

θ∗ZVj

0

)
θ∗hθ∗ηEQ

[
Z

Vk

0 |F {V1,...,Vk−1}
0

]]

= EQ

[(
k−1∏
j=1

θ∗ZVj

0

)
θ∗hθ∗η

]

= EPθ

[
hθ∗η

]
. �

4.2. Construction for the follow-up period. Condition (3.1) can be made
somewhat more concrete if the processes, that may be directly intervened on, only
are allowed to jump at a given finite sequence of predictable times. This behavior
is very different from that of Poisson processes. More formally, we assume that
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there exists a bounded and Ft -predictable multivariate counting measure ŨA on
[0, T ] × JA such that

N |[0,T ]×JA
� ŨA(4.5)

for every A ∈ A. We can now show the reference measure Q is quasi-invariant
if the probability of an outcome that coincides with the counterfactually enforced
outcome at short-term is not too small.

PROPOSITION 1. Suppose that θ is an F -measurable transformation on �

that satisfies (3.2)–(3.6) and assume (4.5). If there exists a bounded and P-
measurable process Ỹ such that:

(1) θQ|F0 � Q|F0 ;
(2) ∫

JA

∫ T

0
h(s, x)θ∗N(ds, dx) =

∫
JA

∫ T

0
h(s, x)Ỹ (s, x)UA(ds, dx)(4.6)

Q-a.s. for every A ∈ A and bounded and P-measurable process h;
(3) there exists a constant c > 0 such that

1 − θ∗N
({s}, JA

) ≤ c · (1 − UA({s}, JA

))
, Q-a.s.(4.7)

for every s ∈ [0, T ],
then θQ � Q.

PROOF.
The integral equation∫

J

∫ T

0
h(s, x)Uθ(ds, dx)

= ∑
A∈A

∫
JA

∫ T

0
h(s, x)θ∗N(ds, dx) + ∑

V ∈X

∫
JA

∫ T

0
h(s, x)UV (ds, dx)

defines an Ft - predictable random measure Uθ on [0, T ] × J .
Let B ⊂ J be a measurable subset, and define NB

t := ∫ t
0
∫
B N(ds, dx). If B ⊂

JA for an A ∈ A and S is a Ft -adapted stopping time, then

EθQ

[
NB

S − Uθ
S

(
B, [0, t])] = EθQ

[
NB

S − θ∗NB
S

] = EθQ

[
θ∗NB

S − θ∗NB
S

] = 0.

This means that Nt − Uθ
t (B, [0, t]) defines a local Q-martingale with respect to

the filtration Ft . Similarly, if B ⊂ JX , note that

EθQ

[∫ T

0
hs dNB

s

]
= EQ

[∫ T

0
θ∗hs dNB

s

]

= EQ

[∫ T

0
θ∗hs dU(ds,B)

]

= EθQ

[∫ T

0
hs dUθ(ds,B)

]
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for every bounded and F -predictable process h. Now, N([0, t],B)−Uθ([0, t],B)

defines a local θQ-martingale with respect to the filtration {Ft }t∈[0,T ]. This means
that

EθQ

[∫
J

∫ T

0
h(s, x)N(ds, dx)

]
= EθQ

[∫
J

∫ T

0
h(s, x)Uθ(ds, dx)

]
for every bounded and P ⊗ J -measurable process h.

We define the processes

HA(t, x) := Ỹ (t, x) − 1 − U({t}, JA) − θ∗N({t}, JA)

1 − U({t}, JA)
I
(
U
({t}, JA

) �= 1
)
,

ζA
t :=

∫
JA

∫ t

0
HA(s, x)

(
N(ds, dx) − U(ds, dx)

)
,

and let ζ := ∑
A∈A ζA.

By [14], Proposition I 3.13, there exists a P-measurable and nonnegative
stochastic process γ A such that γ A ≤ 1 and∫

JA

∫ T

0
h(s, x)UA(ds, dx) =

∫
JA

∫ T

0
h(s, x)γ A(s, x)ŨA(ds, dx)

Q-a.s. for every bounded and P-measurable stochastic process h.
A computation shows that the predictable variation process for ζ with respect

to Q satisfies

〈ζ, ζ 〉t = ∑
A∈A

〈
ζA, ζA〉

t

= ∑
A∈A

∫
JA

∫ t

0
HA(s, x)2γ A(s, x)

(
1 − γ A(s, x)

)
ŨA(ds, dx),

which is Q-a.s. uniformly bounded. Now, [17], Theorem II.1, implies that the SDE

ρt = dθQ|F0

dQ|F0

+
∫ t

0
ρs− dζs(4.8)

defines a uniformly integrable Q-martingale with respect to the filtration Ft . This
means that

Q̃ := ρT · Q
defines a probability measure on (�, F ).

A computation shows that if B ⊂ JV for some V ∈ V , then

NB
t − Ut

([0, t],B)−
∫ t

0
ρ−1

s− d
〈
NB − UB,ρ

〉
s = NB

t − Uθ ([0, t],B)
.(4.9)

Girsanov’s Theorem [14], Theorem III 1.21, implies that

E
Q̃

[∫
J

∫ T

0
h(s, x)N(ds, dx)

]
= E

Q̃

[∫
J

∫ T

0
h(s, x)Uθ(ds, dx)

]
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for every bounded and P ⊗ J -measurable process h. Finally, [13], Theorem 3.4,
implies that there exists only one probability measure which has Uθ as a dual
predictable projection for N . Therefore θQ = Q̃ � Q. �

The next result is important and says that if the probability of observing an
outcome that coincides with the counterfactually enforced outcome at short-term
is not too small, then there exists a counterfactual distribution for the follow-up
period. The counterfactual distribution can then be obtained by re-weighting the
factual distribution, that is, Pθ � P . Note that (4.12) provides a continuous-time
analogy of the truncated factorization formula for Bayesian networks [21], (3.10).

THEOREM 2. Suppose that the conditions of Theorem 1 are satisfied and that
there exists a bounded and P-measurable process Y such that:

(1) ∫
JA

∫ T

0
h(s, x)θ∗N(ds, dx) =

∫
JA

∫ T

0
h(s, x)Y (s, x)λ(s, x)U(ds, dx)(4.10)

P -a.s. for every A ∈ A and bounded and P-measurable process h;
(2) there exists a constant c > 0 such that

1 − θ∗N
({s}, JA

) ≤ c
(
1 − λ · U ({s}, JA

))
, P -a.s.(4.11)

for every s ∈ [0, T ].
Then there exists a counterfactual distribution Pθ such that Pθ � P . We also

have that Pθ � θQ and

Xt := ∏
V ∈X

ZV
t ,(4.12)

where ZV is the process defined in (2.10), defines a θQ-martingale with respect to
the filtration {Ft } that satisfies the SDE

Xt = ∏
V ∈X

ZV
0 + ∑

V ∈X

∫ t

0
Xs− dKV

s(4.13)

and
dPθ

dθQ
= XT .(4.14)

PROOF. We follow the proof of Proposition 1 and define the processes

GA(t, x) := Y(t, x) − 1 − λ · U({t}, JA) − θ∗N({t}, JA)

1 − λ · U({t}, JA)
I
(
λ · U ({t}, JA

) �= 1
)
,

ξA
t :=

∫
JA

∫ t

0
GA(s, x)

(
N(ds, dx) − λ · U(ds, dx)

)
,

ξ := ∑
A∈A

ξA.
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By [14], Proposition I 3.13, there exists a P-measurable and nonnegative
stochastic process γ A such that γ A ≤ 1 and∫

JA

∫ T

0
h(s, x)λ(s, x)U(ds, dx) =

∫
JA

∫ T

0
h(s, x)γ A(s, x)ŨA(ds, dx)

Q-a.s. for every bounded and P-measurable stochastic process h.
A computation shows that the predictable variation process for ξ with respect

to P satisfies

〈ξ, ξ〉t = ∑
A∈A

〈
ξA, ξA〉

t

= ∑
A∈A

∫
JA

∫ t

0
GA(s, x)2γ A(s, x)

(
1 − γ A(s, x)

)
ŨA(ds, dx),

which is Q-a.s uniformly bounded. Now, [17], Theorem II.1, implies that the SDE

Wt = dPθ |F0

dP |F0

+
∫ t

0
Ws− dξs(4.15)

defines a uniformly integrable P -martingale with respect to the filtration Ft . This
means that

Pθ := ZT · P
defines a probability measure on (�, F ).

The integral equation∫
J

∫ T

0
h(s, x)νθ (ds, dx)(4.16)

=
∫
JX

∫ T

0
h(s, x)λ(s, x)U(ds, dx) +

∫
JA

∫ T

0
h(s, x)θ∗N(ds, dx)(4.17)

defines a predictable and nonnegative random measure νθ on [0, T ] × J such that

ξt =
∫
J

∫ t

0

(
Y(s, x) − 1 − Uλ · ({s}, J ) − νθ ({s}, J )

1 − λ · U({s}, J )

× I
(
λ · U ({s}, J ) �= 1

))
N(ds, dx) − λ · U(ds, dx).

We obtain from [13], Theorem 5.2, that

EPθ

[∫
J

∫ T

0
h(s, x)N(ds, dx)

]
= EPθ

[∫
J

∫ T

0
h(s, x)νθ (ds, dx)

]
for every bounded and P ⊗ J -measurable process h; that is, Pθ defines a coun-
terfactual distribution.
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We may compute that

�ζA
s =

∫
JA

Ỹ (s, x)N
({s}, dx

)− θ∗N
({s}, JA

)
+ (

Ũ
({s}, JA

)− θ∗N
({s}, JA

)
I
(
U
({s}, JA

) �= 1
))

× (
Ũ
({s}, JA

)− N
({s}, JA

))
and that

�ξA
s =

∫
JA

Y (s, x)N
({s}, dx

)− θ∗N
({s}, JA

)
+ (

Ũ
({s}, JA

)− θ∗N
({s}, JA

)
I
(
λ · U ({s}, JA

) �= 1
))

× (
Ũ
({s}, JA

)− N
({s}, JA

))
.

We moreover define a process χ as follows:

χt := ∑
s≤t

�ξs − �ζs

�ζs + 1
I (�ζs �= −1).

One can show that χ only jumps at the jump times of Ũ and that �χ is uniformly
bounded. This means that the SDE

πt := dθQ|F0

dQ|F0

∏
A∈A

1

ZA
0

+
∫ t

0
πs− dχs(4.18)

defines a P semi-martingale with respect to the filtration Ft . Note that �ζs = −1
implies that �ξs = −1, so

ζ + [ζ,χ ] + χ = ξ, P -a.s.(4.19)

Yor’s additive formula [23], Theorem II 38, then implies that

πtρt = dPθ |F0

dP |F0

+
∫ t

0
πs−ρs− dξs.(4.20)

This implies that W = ρπ , and hence

EPθ [h] = EP [hWT ] = EQ[hZT ρT πT ] = EθQ[hZT πT ]
for every bounded and FT -measurable random variable h, so Pθ � θQ. Fi-
nally [13], Theorem 5.1, shows that the likelihood ratio dPθ

dθQ
is given by the

SDE (4.13), and hence Yor’s additive formula provides identity (4.12). �

Note that since Pθ � θQ = θ2Q, the counterfactual distribution Pθ is actually
invariant with respect to the action θ , that is,

θPθ = Pθ .(4.21)
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5. Local independence.

5.1. Identifiability and short-term dependence. A causal effect is identifiable
if it can be uniquely obtained from the factual distribution of the observable vari-
ables. This is generally very hard to determine and may also require further para-
metric assumptions. We show that it is possible to take advantage of graphical
structure, in terms of local independence graphs, to do this. Such graphs are useful
when deciding in which situations causal effects are identifiable, and also which
factors we might adjust for.

We will say that V ∈ V is locally independent of a subset B ⊂ V at baseline,
conditionally on V ′ ⊂ V , if the conditional density of V0, given the past, does not
depend on the baseline information from B. More precisely, for every integrable
and F V

0 -measurable random variable η, there exists a random variable η̃ that is

F p(V )∩(V ′\B)
0 -measurable and such that if h is F p(V )∩V ′

0 -measurable, then

EP [ηh] = EP [η̃h].(5.1)

A process V ∈ V is locally independent of B ⊂ V during follow-up, condition-

ally on V ′, if for every process X on the form (2.2), there exists an F {V }∪V ′\B
t -

predictable process � with finite variation such that

EP

[∫ T

0
hs dXs

]
= EP

[∫ T

0
hs d�s

]
(5.2)

for every bounded and F {V }∪V ′
t -predictable process h. If V is locally independent

of B, conditionally on V ′, both at baseline and during follow-up, we will say that
V is locally independent of B, conditionally on V ′. This will sometimes be written
B � V |V ′. A local independence graph is a directed graph G = (V ′, E ) for V ′ ⊂ V
such that the absence of an arrow from a subset B ⊂ V ′ to a process V ∈ V ′ means
that B � V |V ′. Note that local independence graphs are also refered to as local
independence graphs (see [1, 9]) and were introduced in [26].

Given time points {T (V0)}V ∈V at baseline and a local independence graph G =
(V, E ), we can pick a linear ordering of V0 that satisfies (2.4) and therefore yields

V i
0 ⊥⊥P

{
V 1

0 ,V 2
0 , . . . , V i−1

0

}|F pa(V i)
0(5.3)

for every i ≤ n. Property (5.3) is known as the ordered directed Markov Property
and was shown to be equivalent to the local directed Markov property in [16],
Theorem 2.11. This means that Bayesian networks and local independence graphs
are two descriptions of the same structure when the nodes correspond to single
variables. Note that local independence graphs, where the nodes are allowed to be
families of variables or processes, are allowed to be cyclic.
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5.2. Measurability of intensities. Local independence during the follow-up is
closely related to the measurability of intensities.

LEMMA 1. Suppose that V is locally independent of B at baseline, condition-
ally on V ′, then B � V |V ′ if and only if there exists a nonnegative and P{V }∪V ′\B -
measurable process λV such that

EP

[∫
JV

∫ T

0
h(s, x)N(ds, dx)

]
= EP

[∫
JV

∫ T

0
h(s, x)λV (s, x)U(ds, dx)

]
(5.4)

for every bounded and P{V }∪V ′
-measurable process h.

PROOF. If there exists a process λV as in (5.4), then B � V |V ′ follows di-
rectly. Conversely, suppose that B � V |V ′ and let D ⊂ JV be a measurable subset.
Now, ND

t := N([0, t],D) defines a processes on the form (2.2), so there must exist
a corresponding predictable increasing process �D of finite variation such that

EP

[∫ T

0
hs dND

s

]
= EP

[∫ T

0
hsd�D

s

]
for every bounded and F {V }∪V ′

t -predictable process h.
The Radon–Nikodym theorem now provides an F {V }∪V ′\B -measurable and

nonnegative process λ(D) such that

EP

[∫ T

0
hs dND

s

]
= EP

[∫ T

0
hsλ

(D)
s U(ds,D)

]
(5.5)

for every bounded and F {V }∪V ′
t -measurable process h.

Since J is a Lusin space, we may construct a nonnegative and P{V }∪V ′
-

measurable process λV that satisfies (5.4) as a limit of processes that are finite
linear combinations of processes on the form f · JD , where D is a measurable

subset in JV , and f is a bounded F {V }∪V ′\B
t -measurable process. �

5.3. Markovian factorization property. The local Markov property implies the
Markovian factorization property; see [21], (1.33) and [16], (2.10). We will now
see that a local independence graph yields a similar factorization for the follow-
up period. We use the following notation from graph theory: whenever V ∈ V , let
cl(V ) ⊂ V denote the set formed by V and its parents in G.

THEOREM 3. If G = (V, E ) is a local independence graph with respect to P ,
then there exists an F cl(V )

t -adapted P -indistinguishable version of each process
ZV from Theorem 2.9 where

Z = ∏
V ∈V

ZV , P -a.s.
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PROOF. Let F pa(V )
0 := ∨

V ′∈pa(V ) F V ′
0 and F cl(V )

0 := ∨
V ′∈cl(V ) F V ′

0 and let

YV :=
dP |F pa(V )

0

dQ|F pa(V )
0

.

Now

P |F cl(V )
0

� YV · Q|F cl(V )
0

,(5.6)

so there exists, by the Radon–Nikodym theorem, an F cl(V )
0 -measurable random

variable Z̃V
0 such that

P |F cl(V )
0

= Z̃V
0 YV · Q|F cl(V )

0
.(5.7)

We then have, for every bounded and measurable function h, that

EP

[
h(V0)|F p(V )

0

] = EP

[
h(V0)|F pa(V )

0

] = EQ

[
h(V0)Z̃

V
0 |F pa(V )

0

]
= EQ

[
h(V0)Z̃

V
0 |F p(V )

0

]
.

The contemporaneous independence at baseline and a simple monotone class ar-
gument shows that

EP [η] = EZ

[
η
∏
V ∈V

Z̃V
0

]
(5.8)

for every bounded and F0-measurable random variable η.
For the follow-up, note that by Lemma 1 there exists a nonnegative and Pcl(V )-

measurable process λV such that

EP

[∫
JV

∫ T

0
h(s, x)N(ds, dx)

]
= EP

[∫
JV

∫ T

0
h(s, x)λV (s, x)U(ds, dx)

]
for every bounded and P-measurable process h.

We may now form KV , ZV and Z as in Theorem 2.9 using λV instead of λ.
Following the short argument in [6], Theorem II T12, we see that any other choice
of a nonnegative and P-measurable process λ that satisfies the previous equation
would necessarily give∫

JV

∫ T

0
I
(
λ(s, x) �= λV (s, x)

)
N(ds, dx) = 0, P -a.s.(5.9)

This means that the corresponding versions of the process KV from (2.6) would
be P indistinguishable. Furthermore, this also means that the version correspond-
ing to λV provides an F cl(V )

t -adapted solution of the SDE (2.10) which is P -
indistinguishable version from ZV . �
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6. An example: Controlled direct effects. We now illustrate how local inde-
pendence graphs can be used to identify causal effects by an example with cancer
patients. Suppose each patient is offered one of two different surgical treatments,
a1 or a2. The patient is subject to an examination after surgery where some mea-
surements are taken. These measurements might depend on the chosen surgical
procedure and some underlying health condition that is not directly observed. Af-
ter the surgery, the patient is given further treatment in order to prevent relapse. The
chosen post surgery treatment strategy might depend on the surgical procedure and
the measurements.

We consider a generic model for the patients in this scenario. The relevant
outcomes are provided by the family of random variables V = {W,A,L,K,B}.
As in Section 2, we consider a probability measure Q such that these variables
are independent and a probability measure P that governs the frequency of out-
comes in the factual scenario and such that P � Q. Let the random variable A

denote the choice of surgery, let W denote the latent health condition, let L take
the value of the measurements after surgery, let K denote the post surgery treat-
ment strategy and let B denote the status of relapse. We furthermore assume that
T (W) < T (A) < T (L) < T (K) < T (B) and that the following local independen-
cies are satisfied:

A L W

K

B

How much of the treatment effect is due to the choice of surgical procedure
alone, that is, not due to the choice of post surgery treatment? Pearl [21], Sec-
tion 4.5.3, showed that it is possible to identify the controlled direct effect from
surgery on the risk of relapse, even without any observations of W . We rephrase
his argument slightly:

PROPOSITION 2. If θ∗K is F L
0 -measurable, θ∗A is constant, L, W and B are

θ -invariant, there exists a constant c > 0 such that

P
(
A = θ∗A

)
> 0 and P

(
K = θ∗K|A = θ∗A,L

) ≥ c, P -a.s(6.1)

and h is a bounded and measurable function, then there exists a unique counter-
factual distribution Pθ such that Pθ � P and

EPθ

[
h(B)

] = θ∗EP

[
θ∗EP

[
h(B)|F {L,A,K}

0

]|F A
0
]
, Pθ -a.s.(6.2)
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Let F̃0 := F {L,A,K,B}
0 and suppose that Z̃B is a nonnegative and F̃0-measurable

random variable and Z̃L is a nonnegative F A
0 -measurable random variable such

that

EP

[
h(B)|F {A,L,K}

0

] = EQ

[
h(B)Z̃B |F {A,L,K}

0

]
,

EP

[
h(L)|F A

0
] = EQ

[
h(L)Z̃L|F A

0
]

P -a.s. Now,

EPθ [H ] = EθQ

[
HZ̃LZ̃B](6.3)

for every F̃0-measurable random variable H , that is,

dPθ |F̃0

dθQ|F̃0

= Z̃LZ̃B.(6.4)

PROOF. Note that (6.1) means that (4.1) is satisfied, that is, we obtain a coun-
terfactual distribution Pθ from Theorem 1.

Whenever h1, h2 are bounded and measurable functions, then

EPθ

[
h1(B)h2(L)

] = EP

[
W0h1(B)h2(L)

]
= EP

[
W0EP

[
h(B)|F A,K,L

0

]
h(L)

]
= EPθ

[
EP

[
h(B)|F A,K,L

0

]
h(L)

]
= EPθ

[
θ∗EP

[
h(B)|F A,K,L

0

]
h(L)

]
by (4.21).

This shows that EPθ [h1(B)|F L
0 ] = θ∗EP [h1(B)|F {A,L,K}

0 ] Pθ -a.s. Moreover, note
that

EPθ

[
h2(L)

] = EPθ

[
θ∗EP

[
h2(L)|F A,W

0

]]
= EPθ

[
θ∗EP

[
h2(L)|F A

0
]]

= θ∗EP

[
h2(L)|F A

0
]
, Pθ -a.s.

Combining these computations, we obtain

EPθ

[
h(B)

] = EPθ

[
EPθ

[
h(B)|F L

0
]]

= EPθ

[
θ∗EP

[
h(B)|F L,A,K

0

]]
= θ∗EP

[
θ∗EP

[
h(B)|F L,A,K

0

]|A]
Pθ -a.s. for every bounded and measurable function h.
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To see that equation (6.3) is satisfied, note that by the monotone class lemma,

EPθ [H ] = θ∗EP

[
θ∗EP

[
H |F {A,L,K}

0

]|F A
0
]

= θ∗EQ

[
θ∗EQ

[
HZ̃B |F {A,L,K}

0

]
Z̃L|F A

0
]

= EθQ

[
EQ

[
HZ̃B |F {A,L,K}

0

]
Z̃L]

= EθQ

[
HZ̃BZ̃L]. �

If we consider actions θ1 and θ2 such that θ∗
i A = ai and θ∗

1 K = θ∗
2 K , Q-a.s.

then the relative direct risk of relapse is given by

Pθ1(B = 1)

Pθ2(B = 1)
= EP [θ∗

1 EP [h(B)|F {A,L,K}
0 ]|A = a1]

EP [θ∗
2 EP [h(B)|F {A,L,K}

0 ]|A = a2]
.(6.5)

6.1. Incomplete observations and time dependent treatments. We have not
yet taken into account that the patient observations could be censored during the
follow-up period. There might be several reasons for such censoring. This might
be due to the end of study period, drop-out due to the underlying health or because
of other reasons. The risk of having an observed relapse will typically be smaller
than the risk of having a relapse. We will work in the framework of event history
analysis in order to provide a reasonable effect measure subject to such incom-
plete observations. This will also allow us to consider time dependent post surgery
strategies K .

6.1.1. A dynamic model. We proceed with the previous setup, but where B

and K are represented by processes and every patient may be censored during the
follow-up period. The factors A,L and W are as in the previous example. B is
represented by a counting process that jumps from 0 to 1 at the time of the event.
The censoring of the individual is represented by a counting process C that jumps
from 0 to 1 at the time of censoring.

We suppose that the baseline treatment A may be of two different types; hence A

takes value in {0,1}. Moreover, we suppose that additional post-surgery treatment
is given to the patient at the jumps of the counting process K . This treatment may
be given recursively, but only at a series of Ft -predictable times; that is, (4.5) must
be satisfied. We furthermore suppose that θ∗Ks is constant for every s P -a.s. and
suppose that B0 = 0, K0 = 0 and C0 = 0 P -a.s.

Let T1, . . . , Tn denote the potential post-treatment times, and let UK
t :=∑

i I (Ti ≤ t). The counting process UK is predictable and νK
t = ∫ t

0 P(�Ks �=
0|Fs−) dUK

s . By Theorem 2, we see that there exists a counterfactual distribution
if P(A = θ∗A) > 0 and there exist c1, c2 > 0 such that

1 − c1P(�Ks = 0|Fs−) ≤ �θ∗Ks ≤ c2P(�Ks �= 0|Fs−)(6.6)

for every s P -a.s.
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We suppose that the following local independence graph is satisfied with respect
to the factual distribution P :

A L W

C K

B

Especially, this means that the short-term behavior of the censoring may not de-
pend on other variables than A.

6.1.2. Restriction to Aalen’s additive hazard model. If we assume that the
event process satisfies Aalens’s additive hazard model [2], it is actually possible to
identify, and also consistently estimate the direct effect from surgery. Every out-
come after the time of censoring is supposed to be unobserved. In addition, we
assume that we are not able to observe the variable W .

We consider the censored process

B̃t := B0 +
∫ t

0
(1 − Cs−) dBs

and let F̃t denote the filtration that is generated by A,K,L,C and B . Furthermore
let Yt denote the factual “at-risk” process, that is, Yt = I (Bt− = Ct− = 0). We
assume that there exist measurable and bounded functions ψ0,ψK,ψL and ψA

such that

EP

[∫ T

0
hs dB̃s

]
= EP

[∫ T

0
hsYs

(
ψ0

s + AψA
s + LψL

s + K̃s−ψK
s

)
ds

]
(6.7)

for every bounded and F̃t -predictable process h.
We are now able to identify the controlled direct effect from surgery. Note that

this is just a slight variation of the model considered in [19].

LEMMA 2. If σ 1 and σ 2 are two F A
0 ∨ F B̃

t -predictable processes such that

EP

[
L

∫ T

0
htYt exp

(∫ t

0
K−sψ

K
s ds

)
dt

]
= EP

[∫ T

0
htσ

1
t dt

]
,

EP

[∫ T

0
htYt exp

(∫ t

0
K−sψ

K
s ds

)
dt

]
= EP

[∫ T

0
htσ

2
t dt

]
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for every F A,B,C
0 -predictable and bounded process h, then

EPθ

[∫ T

0
gtYt dBt

]
(6.8)

= EPθ

[∫ T

0
gtYt

(
ψ0

t + ψL
t θ∗ σ 1

t

σ 2
t

+ θ∗AψA
t + θ∗Kt−ψK

t

)
dt

]
for every F B,C

t -predictable and bounded process g.

SKETCH OF PROOF. By Theorem 1, there exist an F A
0 -measurable random

variable W 1
0 and an F A,K,L

0 -measurable random variable W 2
0 such that

dPθ |F0

dP |F0

= W 1
0 W 2

0 and
dPθ |F L,A

0

dP |F L,A
0

= W 1
0 .

If H1 is F L
0 -measurable, H̃1 := EP [H1|F A

0 ] and H2 is F A
0 -measurable, then

EPθ [H1H2] = EP

[
H1H2W

1
0
] = EP

[
H̃1H2W

1
0
] = EPθ [H̃1H2].(6.9)

Similarly, let h be a bounded and F̃t -predictable process, and let μB
s := Ỹs(ψ

0
s +

AψA
s + LψL

s + Ks−ψK
s ), and note that

EPθ

[∫ T

0
hs dBs

]
= EP

[∫ T

0
hs dBsWT

]

= EP

[∫ T

0
hsWs− dBs

]
+ EP

[∫ T

0
hsd[B,W ]s

]

= EP

[∫ T

0
hsWs− dBs

]

= EP

[∫ T

0
hsWs−μB

s ds

]

= EP

[∫ T

0
hsμ

B
s dsWT

]
by [14], Proposition I 3.14

= EPθ

[∫ T

0
hsμ

B
s ds

]
.

One can show that there exists an intermediate probability measure P̃ on F̃T

such that:
(1)

Pθ |F̃T
� P̃ � P |F̃T

.

(2) For every bounded and Borel-measurable function h:
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• E
P̃
[h(A)] = h(θ∗A), P̃ -a.s.;

• E
P̃
[h(L)|F A

0 , ] = EP [h(L)|F A
0 ];

• E
P̃
[h(K0)|F A,L

0 ] = EP [h(K0)|F A,L
0 ];

• E
P̃
[h(B0)|F A,L,K

0 ] = EP [h(B0)|F A,L,K
0 ].

(3) Whenever h is a bounded and F̃t -predictable process, then:
•

E
P̃

[∫ T

0
hs dBs

]
= E

P̃

[∫ T

0
hsμ

B
s ds

]
;

• if μK and μC are F̃t -predictable processes such that

EP

[∫ T

0
hs dKs

]
= EP

[∫ T

0
hsμ

K
s dUK

s

]
,

EP

[∫ T

0
hs dCs

]
= EP

[∫ T

0
hsμ

C
s dUC

s

]
,

then

E
P̃

[∫ T

0
hs dKs

]
= E

P̃

[∫ T

0
hsμ

K
s dUK

s

]
,

E
P̃

[∫ T

0
hs dCs

]
= E

P̃

[∫ T

0
hsμ

C
s dUC

s

]
.

Note that by [13], Proposition 4.3, there exists an F A,L,B
t -adapted P̃ -martingale

� such that

�T =
dPθ |F A,L,B,C

T

dP̃ |F A,L,B,C
T

, [B,�] = 0

and

Y�− = Y exp
(
−
∫ ·

0
θ∗Krψ

K
r dr

)
.(6.10)

Bayes’s formula with predictable projections shows that

E
P̃

[
L

∫ T

0
Yshs ds

]
= E

P̃

[∫ T

0
Yshs

σ 1
s

σ 2
s

ds

]
(6.11)

for every bounded and F A,B,C
t -predictable process h. Now,

EPθ

[∫ T

0
LhsYs ds

]
= E

P̃

[∫ T

0
LhsYs ds�T

]

= E
P̃

[∫ T

0
�s−LhsYs ds

]
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= E
P̃

[∫ T

0
�s−hsYs

σ 1
s

σ 2
s

ds

]
by (6.10)

= E
P̃

[∫ T

0
hsYs

σ 1
s

σ 2
s

ds�T

]

= EPθ

[∫ T

0
hsYs

σ 1
s

σ 2
s

ds

]
for every bounded F A,B,C

t -predictable process h, which implies that (6.9) holds.
�

6.1.3. Consistency of the modified sequential G-estimator. We are now able to
show that the modified sequential G-estimator suggested in [19] is uniformly con-
sistent, also when we consider a time-dependent mediating treatment K . Let θ1, θ2
be two actions as in the previous proposition, but where θ∗

1 A = 0 and θ∗
2 A = 1

and consider corresponding F A,B,C
t -predictable processes γ 1 and γ 2 as the frac-

tions in (6.11). Furthermore, we assume that our observations consist of the event
histories for n independent equally distributed individuals, following the current
generic model. We will also slightly misuse the notation and let N , from now on,
denote the corresponding counting process that is aggregated over the n indepen-
dent individuals.

LEMMA 3. Let �̂0, �̂A, �̂L and �̂K denote the usual additive regression es-
timators of Aalen, let Ỹ := YB

t YC
t and define

M̃t := NB
t −

∫ t

0
μB

s ds, γ t :=
(

γ 1
t

γ 2
t

)
, �t :=

⎛⎜⎝ �0
t +

∫ t

0
ρ1

s d�L
s

�A
t +

∫ t

0
ρ2

s − ρ1
s d�L

s

⎞⎟⎠ ,

Ĥt := diag

⎛⎜⎜⎜⎜⎜⎝
Ỹ 1

t exp
(∫ t

0
K1

s− d�̂K
s

)
...

Ỹ n
t exp

(∫ t

0
Kn

s− d�̂K
s

)
⎞⎟⎟⎟⎟⎟⎠ ,

Ht := diag

⎛⎜⎜⎜⎜⎜⎝
Ỹ 1

t exp
(∫ t

0
K1

s− d�K
s

)
...

Ỹ n
t exp

(∫ t

0
Kn

s− d�K
s

)
⎞⎟⎟⎟⎟⎟⎠ ,

Zt := Ỹt ·
⎛⎜⎝1 A1

...

1 An

⎞⎟⎠ , ZĤ
s− := (

ZT
s−Ĥs−Zs−

)−1
ZT

s−Ĥs−,
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ZH
s− := (

ZT
s−Hs−Zs−

)−1
ZT

s−Hs− and

�̂t :=
∫ t

0
ZĤ

s− dNs −
∫ t

0
ZĤ

s−Ks− d�̂K
s .

We have that

lim
n→∞P

(
sup
t≤T

|�̂t − �t | ≥ δ
)

= 0(6.12)

for every δ > 0.

PROOF. Note that

�̂t − �t =
∫ t

0
ZĤ

s− dNs −
∫ t

0
ZĤ

s−Ks− d�̂K
s − �t(6.13)

=
∫ t

0
ZĤ

s− − ZH
s− dNs +

∫ t

0

(
ZH

s− − ZĤ
s−
)
Ks− d�K

s(6.14)

+
∫ t

0
ZH

s− dM̃s +
∫ t

0
ZĤ

s−Ks− d
(
�K

s − �̂K
s

)
(6.15)

+
∫ t

0
ZH

s− (Zs− Ls− ) d

⎛⎝ �0
s

�A
s

�L
s

⎞⎠− �t .(6.16)

Let

V =
(

1 0
−1 1

)
.

We have that V T ZT
s−Hs−Zs−V = St− where St− is a 2×2-diagonal matrix. More-

over, (ZT
s−Hs−Zs−)−1 = V St−V T .

Note that | ∫ ·
0 ZH

s− dM̃s |22 is Lenglart dominated by Tr〈∫ ·
0 ZH

s− dM̃s〉 and

Tr
〈∫ ·

0
ZH

s− dM̃s

〉
T

=
∫ T

0
Tr
(
ZT

s−Hs−Zs−
)−1

ZT
s−Hs− diagμHs−Zs−

(
ZT

s−Hs−Zs−
)−1

ds

≤
∫ T

0
Tr
(
ZT

s−Hs−Zs−
)−1‖diagμHs−‖op ds,

which converges in probability to 0. By Lenglart’s inequality [14], we obtain that∫ ·
0 ZH

s− dM̃s converges uniformly to 0 in probability with respect to P .
Since

lim
δ→∞P

(
sup

s
|ZsKs | ≥ δ

)
= 0 and lim

δ→∞P
(
sup

s
|ẐsKs | ≥ δ

)
= 0,
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and �̂K converges uniformly in probability to �K , we also have that∫ t

0
ZĤ

s−Ks− d
(
�K

s − �̂K
s

)
and

∫ t

0

(
ZH

s− − ZĤ
s−
)
Ks− d�K

s

converge uniformly in probability to 0 w.r.t. P . This shows that (6.15) converges
uniformly in probability to 0 w.r.t. P as well.

We have that

ZH
s−Ls− = V S−1

s−

⎛⎜⎜⎜⎜⎝
n∑

i=1

Hi
s−Li

s−
(
1 − Ai)

n∑
i=1

Hi
s−Li

s−Ai

⎞⎟⎟⎟⎟⎠ = V

⎛⎜⎜⎜⎝
∑n

i=1 Hi
s−Li

s−(1 − Ai)∑n
i=1 Hi

s−(1 − Ai)∑n
i=1 Hi

s−Li
s−Ai∑n

i=1 Hi
s−Ai

⎞⎟⎟⎟⎠ .

The law of large numbers implies that ZH
s−Ls− converges in P -probability to

V γ (s). Now, (6.16) equals ∫ t

0
ZH

s−Ls− − V γ (s) d�L
s(6.17)

and

EP

[
sup

t

∣∣∣∣∫ t

0
ZH

s−Ls− − V γ (s) d�L
s

∣∣∣∣]
(6.18)

≤
∫ T

0
EP

[∣∣(ZH
s−Ls− − V γ (s−)

)∣∣]∣∣ψL
s

∣∣ds.

Therefore (6.16) converges uniformly in probability w.r.t. P .
A computation shows that | ∫ ·

0 ZĤ
s− − ZH

s− dNs |1 is Lenglart dominated by

‖V ‖1

∫ ·
0

∑
j

∣∣∣∣ Ĥ j
s−(1 − Aj)μ

j
s∑

i Ĥ
i
s−(1 − Ai)

− H
j
s−(1 − Aj)μ

j
s∑

i H
i
s−(1 − Ai)

∣∣∣∣
+
∣∣∣∣ Ĥ j

s−Ajμ
j
s∑

i Ĥ
i
s−Ai

− H
j
s−Ajμ

j
s∑

i H
i
s−Ai

∣∣∣∣ds.

This process converges uniformly in probability to 0, so we see that (6.14) also
converges uniformly in probability to 0. This means that �̂ − � converges uni-
formly in probability to 0, so �̂ actually converges to � in the similar sense. �

The cumulative Pθi
-hazard of B̃ is given by

�
θi
t =

∫ t

0
ψ0

s + θ∗
i AψA

s + θ∗
i Ksψ

K
s + γsψ

L
s ds.(6.19)

Since stochastic integrals are continuous with respect to uniform convergence
on compacts in probability, we see that

lim
δ→0

P

(
sup

t

∣∣∣∣∫ t

0
(1, θ∗

i A, θ∗
i Ks− )

(
d�̂s

d�̂K
s

)
− �

θi
t

∣∣∣∣ ≥ δ

)
= 0,
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that is, we obtain a consistent estimator of �
θi
t . A consistent estimator for the

controlled direct effect of A on B is given by the second component of �̂.

7. Discussion. The primary concern in this paper is the possibility of estimat-
ing parameters for the counterfactual situation from the observational data, given
that the counterfactual model is correct. This comes mainly down to whether the
counterfactual probability is absolutely continuous with respect to the factual prob-
ability and whether the counterfactual parameters of interest are identifiable. The
previously mentioned related works by Arjas and Parner, [3] and [4], construct
counterfactual probability distributions by piecing stochastic intervals together as
in [13], Section 3. Unlike Parner and Arjas, we take a more martingale oriented
approach, also based on the seminal paper [13]. This enables us to apply directly
already well-established methods from stochastic analysis and martingale theory.
In fact, surprisingly much causal inference can be well understood in terms of mar-
tingale measures, Bayes’s rule and Girsanov’s theorem. This approach translates
directly the problem about data re-weighting into a thoroughly studied problem
in the literature, that is, whether the stochastic exponential of a local martingale
defines a martingale, see [17] and [15].

Another difference from the work of Arjas and Parner is that we consider an
explicit intervention in terms of a transformation θ on sample space. While not
being absolutely necessary, it still provides additional clarification, as it makes the
notion of counterfactual outcomes more explicit, or perhaps even demystified. The
notation do(X = x), [21], is simply interpreted as the measurable transformation
on the sample space that forces every outcome of X into x and leaves the remaining
observations unchanged. When the action becomes more complex than just forcing
a variable into a fixed value, this interpretation becomes even more appealing.

The introduction of the transformation θ sheds some light on another aspect:
One may in fact think of a causal inference problem as a stochastic control prob-
lem, or a decision problem, where the assumptions about the model are kept as
modest as possible. The main objective in stochastic control theory is to find an op-
timal intervention strategy and compute the corresponding expected payoff. Causal
inference appears as a special case of this, in the sense that there one mostly con-
siders only one intervention strategy, namely the transformation θ , and aims to
compute the expected payoff.

One is often confronted with latent factors in epidemiological settings. This
lack of information typically yields nonidentifiable effects. In special situations,
one can use graphical arguments to ensure identifiability of counterfactual param-
eters and also provide exact formulas for these. Such examples are the back-door
formula, front-door formula and sequential back-door formula [21], Section 3.3.1,
3.3.2, 4.4.3 and [11]. We show that we may take advantage of the local indepen-
dence graphs to identify causal effects in event-history analysis.

When the counterfactual effect is possibly unidentifiable, one may try to com-
pute upper and lower bounds for this. This can also be thought of as a control
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problem where “the nature” is allowed to control the latent factors in order to
maximize or minimize counterfactual effects. This corresponds to an optimization
problem under constraints. The latent variables may only be altered in such a way
that the observable factors maintain the same joint distribution and also such that
some given directed graph constantly defines a local independence graph. Let S
denote the set of counterfactual distributions corresponding to these constraints.
The “causal effect” would then be sandwiched by infP ′∈S EP ′ [η] ≤ EPθ [η] ≤
supP ′′∈S EP ′′ [η].

The set S may have a somewhat complicated geometry. If one instead considers
the convex hull, we obtain other, not necessarily, tight bounds.

inf
P ′∈conv(S)

EP ′ [η] ≤ EPθ [η] ≤ sup
P ′′∈conv(S)

EP ′′ [η].

These bounds may be computed by allready developed linear programing tech-
niques. This approach was for instance taken in [5], but is likely to generalize to
more complicated continuous-time scenarios as well.

APPENDIX

Uniqueness of counterfactual distributions.

LEMMA A.1. There exists at most one counterfactual distribution Pθ on F0
that imposes contemporaneously independent outcomes.

PROOF. Let T1, . . . , Tm be an enumeration of {T (V )}V ∈V such that j < k im-
plies Tj < Tk .

Assume that P ′ and P ′′ are two counterfactual distributions that have contem-
poraneously independent outcomes and η is an F Vk

0 -measurable random variable.
Let {Xi}i be an enumeration of {V ∈ X |T (V ) = T1} and let {Aj }j be an enu-
meration of {V ∈ A|T (V ) = T1}. Whenever {hi}i and {gj }j are two families of
bounded and measurable functions, then

EP ′
[∏

i

hi(Xi)
∏
j

gl(Aj )

]
= EP ′

[∏
i

hi(Xi)

]
EP ′

[∏
j

gj (Aj )

]

= ∏
i

EP ′
[
hi(Xi)

]
EP ′

[∏
j

gj (Aj )

]

= ∏
i

EP ′′
[
hi(Xi)

]
EP ′′

[∏
j

gj (Aj )

]

= EP ′′
[∏

i

hi(Xi)

]
EP ′′

[∏
j

gj (Aj )

]

= EP ′′
[∏

i

hi(Xi)
∏
j

gj (Aj )

]
.



2190 K. RØYSLAND

This shows that if η is a bounded random variable that only depends on the infor-
mation at T1, then EP ′ [η] = EP ′′ [η]. We continue with an induction argument and
assume that EP ′ [η] = EP ′′ [η] for every bounded and random variable η that only
depends on {V ∈ V|T (V ) < Tk} and aim to prove that this also holds if η depends
on the information at time Tk . Let {Xi}i be an enumeration of {V ∈ X |T (V ) = Tk},
and let {Aj }j be an enumeration of {V ∈ A|T (V ) = Tk}. Whenever {hi}i and {gj }j
are two families of bounded and measurable functions, then

EP ′
[
η
∏
i

hi(Xi)
∏
j

gj (Aj )

]

= EP ′
[
ηEP ′

[∏
i

hi(Xi)
∣∣∣F p(V1)

0

]∏
j

θ∗gj (Aj )

]

= EP ′
[
η
∏
i

EP ′
[
hi(Xi)|F p(V1)

0

]∏
j

θ∗gj (Aj )

]

= EP ′′
[
η
∏
i

EP ′′
[
hi(Xi)|F p(V1)

0

]∏
j

θ∗gj (Aj )

]

= EP ′′
[
ηEP ′′

[∏
i

hi(Xi)
∣∣∣F p(V1)

0

]∏
j

θ∗gj (Aj )

]

= EP ′′
[
η
∏
i

hi(Xi)
∏
j

gj (Aj )

]
.

This proves the induction hypothesis, that is, EP ′ [η] = EP ′′ [η] whenever η de-
pends on {V ∈ A|T (V ) ≤ Tk}. �

THEOREM 4. There exists at most one probability measure on FT that simul-
taneously satisfies (3.4), (3.5), (3.8) and (3.9).

PROOF. Recall definition (4.16). (3.8) and (3.9) imply that

EPθ

[∫
J

∫ T

0
h(s, x)N(ds, dx)

]
= EPθ

[∫
J

∫ T

0
h(s, x)νθ (ds, dx)

]
.(A.1)

Now [13], Theorem 3.4, implies that there exists at most one probability measure
on FT that coincides with Pθ on F0 and satisfies (A.1). �

Dual predictable projections.

LEMMA A.2. Let U denote the dual predictable projection of N with respect
to Q onto the filtration Ft .
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(1) If h is a bounded and PV measurable processes, then∫
JV

∫ ·
0

h(s, x)U(ds, dx)

defines an F V
t -predictable process of finite variation.

(2) If h and h′ are bounded and P ⊗ J measurable processes, then[∫
JV

∫ ·
0

h(s, x)U(ds, dx),

∫
JV ′

∫ ·
0

h′(s, x)U(ds, dx)

]
= 0,(A.2)

[∫
JV

∫ ·
0

h(s, x)U(ds, dx),

∫
JV ′

∫ ·
0

h′(s, x)N(ds, dx)

]
= 0(A.3)

Q-a.s. whenever V �= V ′.
(3) There exists a nonnegative and P ⊗ J -measurable process λ such that

EP

[∫
J

∫ T

0
h(s, x)N(ds, dx)

]
= EP

[∫
J

∫ T

0
h(s, x)λ(s, x)U(ds, dx)

]
for every bounded and P ⊗ J -measurable process h.

PROOF. The integral equation∫
J

∫ T

0
h(s, x)NV (ds, dx) =

∫
JV

∫ T

0
h(s, x)N(ds, dx)(A.4)

defines a multivariate point process NV with mark space J which only jumps at
marks in JV . [13], Theorem 2.1, provides a dual predictable projection UV of NV

with respect to the reference measure Q onto the filtration F V
t .

Let h be a bounded and P ⊗ J measurable process. [14], Theorem I 2.2.ii and
a monotone class argument provides a bounded and PV -measurable process hV

such that

h̃(·, ·) = EQ

[
h(·, ·)|F V

T

]
, Q-a.s.

Now,

EQ

[∫
JV

∫ T

0
h(s, x)U(ds, dx)

]
= EQ

[∫
JV

∫ T

0
h(s, x)N(ds, dx)

]

= EQ

[∫
J

∫ T

0
h(s, x)NV (ds, dx)

]

= EQ

[∫
J

∫ T

0
h̃(s, x)NV (ds, dx)

]

= EQ

[∫
J

∫ T

0
h̃(s, x)UV (ds, dx)

]

= EQ

[∫
J

∫ T

0
h(s, x)UV (ds, dx)

]
,
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which proves the first claim.
To prove (A.2), let W ⊂ JV and W ′ ⊂ JV ′ be measurable subsets and consider

the corresponding counting processes

NW
t := N

([0, t],W )
and NW ′

t := N
([0, t],W ′)

and let

UW
t := U

([0, t],W )
and UW ′

t := U
([0, t],W ′).

Following [13], Proposition 2.3, we see that

�UW
s = EQ

[
�NW

s |Fs−
]

and �UW ′
s = EQ

[
�NW ′

s |Fs−
]
, Q-a.s.

Now,

0 ≤ EQ

[[
UW,UW ′]

T

] = EQ

[∑
s≤T

�UW
s �UW ′

s

]

≤ ∑
s≤T

EQ

[
�UW

s �UW ′
s

]
by Fatou’s lemma

= ∑
s≤T

EQ

[
EQ

[
�NW

s |Fs−
]
EQ

[
�NW ′

s |Fs−
]]

= ∑
s≤T

EQ

[
�NW

s �NW ′
s

]
= 0,

so [UW,UW ′ ] = 0, Q-a.s.
Whenever f and f ′ are bounded and Ft -predictable processes, we have[∫ ·

0
fs dUW

s ,

∫ ·
0

f ′
s dUW ′

s

]
=

∫ ·
0

fsf
′
s d

[
UW,UW ′]

s = 0, Q-a.s.(A.5)

Equation (A.2) is therefore satisfied in the special case with h = f · χW and h′ =
f ′ · χW ′ . The general case now follows from an application of the Monotone class
theorem. Equation (A.3) follows from an almost similar argument.

For the last claim, let ν denote the dual predictable projection of N with respect
to P onto the filtration Ft and note that ν � U since P � Q. The existence of λ

then follows directly from [13], Theorem 4.1. �
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