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NONCOMMUTATIVE BENNETT AND ROSENTHAL INEQUALITIES

BY MARIUS JUNGE1 AND QIANG ZENG

University of Illinois at Urbana-Champaign

In this paper we extend the Bernstein, Prohorov and Bennett inequalities
to the noncommutative setting. In addition we provide an improved version of
the noncommutative Rosenthal inequality, essentially due to Nagaev, Pinelis
and Pinelis, Utev for commutative random variables. We also present new
best constants in Rosenthal’s inequality. Applying these results to random
Fourier projections, we recover and elaborate on fundamental results from
compressed sensing, due to Candes, Romberg and Tao.

0. Introduction. Rosenthal’s inequality [42] was initially discovered to con-
struct some new Banach spaces. However, Rosenthal’s inequality gives a very nice
bound for the p-norm of independent random variables and has found many gener-
alizations and applications. The martingale version of Rosenthal’s inequality was
discovered almost simultaneously by Burkholder [4]. Since then, the order of the
constants in these inequalities has been studied extensively, in particular by John-
son, Schechtman and Zinn [20]. The correct order in the martingale version has
been established by Hitczenko [19], based on fundamental work of Kwapień and
Woyczyński [27]. Nowadays, easy proofs of Rosenthal inequalities can be found
with the help of Bernstein, Prohorov and Bennett’s inequalities; see [3, 39] and the
references therein. Historically, Bernstein’s inequality was first established in the
1920s, according to the references in [3]. Later on, Prohorov improved Bernstein’s
inequality in [39]. Then, Bennett, who seemed to be unaware of Prohorov’s work,
strengthened Bernstein’s results directly in [3], which provided an even more pre-
cise bound than Prohorov’s inequality. We will extend Bennett’s inequalities to
the noncommutative setting, and then obtain the noncommutative Bernstein and
Prohorov inequalities as consequences.

Let us recall that the classical Rosenthal inequality says that for independent
mean 0 random variables, we have(
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According to [20], the order of the best constant here is c(p) = p/(1 + logp). In
this paper we separate the two terms and ask for
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.(0.2)

The central limit theorem immediately implies A(p) ≥ c
√

p for every choice
of B(p). Problem (0.2) is by no means new. Nagaev and Pinelis [32] obtained
a very precise bound on the tail behavior of Sn = ∑n

k=1 Xk which implies that
(A(p),B(p)) = C(

√
p,p) is possible. Pinelis and Utev showed that in some

sense A(p) = C
√

p and B(p) = Cp are also best. In Section 3, we will revisit
this problem and show that assuming A(p) ≤ Cpm for some m > 1/2, we must
have

B(p) ≥ c
p

1 + logp
.

This is exactly consistent with (A(p),B(p)) = C(p/(1 + logp),p/(1 + logp)).
Moreover, we show that the worst case is obtained for independent random selec-
tors fk = (δk − λ) with expectation λ > 0.

We will prove a vast generalization of (0.2) in the noncommutative setting for
conditionally independent random variables with A(p) = c

√
p and B(p) = Cp.

This improves the corresponding results from [25] of the form A(p) = B(p) =
Cp. Our new results are motivated by applications in compressed sensing for ran-
dom selectors with matrix valued coefficients. More precisely, we have to consider
rank-one operators

aj = [
x̄j (l)xj (r)

]
1≤l,r≤n

such that |xk(j)| ≤ D. Then the aim is to estimate∥∥∥∥∥1

k

n∑
j=1

δjf ajf − f

∥∥∥∥∥
B(�n

2)

≤ ?(0.3)

for independent selectors δj ∈ {0,1} with Eδj = k/n and a projection f . As in
the foundational paper on compressed sensing by Candes, Romberg and Tao [6],
it is tempting to use moment estimates, or equivalently, estimates of the Schatten
p-norm of these matrices. In fact, the improved Rosenthal inequality allows us to
recover the famous estimates in [6].

Let us recall that the noncommutative Lp space associated with the trace on
B(�2) is given by

‖x‖p = [
tr

(|x|p)]1/p =
(∑

j

sj (x)p
)1/p

,
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where the singular number sj (x) = λj (|x|), that is, the eigenvalues of the positive
matrix |x| = √

x∗x. Thus a good estimate of (0.3) can certainly be obtained from
an estimate of the form(
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.

Let us now describe the more general setup which allows us to prove results in
noncommutative probability which includes all the statements above. Indeed, we
assume that M is a von Neumann algebra equipped with a normal faithful tracial
state τ : M → C, that is, τ(1) = 1 and τ(xy) = τ(yx). Then Lp(M, τ ) is the
completion of M with respect to ‖x‖p = [τ(|x|p)]1/p . It is well known (see, e.g.,
[15, 38]) that ‖ · ‖p is a norm for 1 ≤ p ≤ ∞. In particular, ‖ · ‖∞ = ‖ · ‖. Here
and in the following, ‖ · ‖ will always denote the operator norm. Let N ⊂ M be
a von Neumann subalgebra. Then there exists a unique conditional expectation
EN : M → N such that EN (1) = 1 and

EN (axb) = aEN (x)b, a, b ∈ N and x ∈ M.

We say that two subalgebras N ⊂ A,B ⊂ M are independent over N if

EN (ab) = EN (a)EN (b), a ∈ A,b ∈ B.

In particular, we say that x, y ∈ M are independent if the algebras they gener-
ate, respectively, are independent over C. A sequence of subalgebra A1, . . . ,An

are called successively independent over N if Ak+1 is independent of the algebra
M(k) generated by A1, . . . ,Ak . Our noncommutative Bennett inequality reads as
follows.

THEOREM 0.1. Let N ⊂ Aj ⊂ M be successively independent over N and
aj ∈ Aj be self-adjoint such that:

(i) EN (aj ) = 0; (ii) EN (a2
j ) ≤ σ 2

j ; (iii) ‖aj‖ ≤ Mj .

Then for t ≥ 0,

τ

(
1[t,∞)

(
n∑

j=1

aj

))
≤ exp

(
−

∑n
j=1 σ 2

j

supj=1,...,n M2
j

φ

(
t supj=1,...,n Mj∑n

j=1 σ 2
j

))
,

where φ(x) = (1 + x) log(1 + x) − x.

Here we used 1I (a) = ∫
I dEt for the spectral projection given by the spectral

decomposition a = ∫
t dEt . We should mention that the key new ingredient in this
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theorem is the Golden–Thompson inequality, which has already played a crucial
role in Ahlswede and Winter’s paper [1], Gross’s paper [16] and Oliveira’s pa-
per [33]. The best constants for random matrices probability inequalities so far are
due to Tropp [47] by using Lieb’s theorem [28]. However, it seems Lieb’s theorem
does not apply to the fully noncommutative setting. In our approach we allow gen-
eral randomness via independence not necessarily given by classical filtrations.
Indeed, all the other works we mentioned only considered the semicommutative
case or the random matrix case where operators with classical randomness act on
a finite-dimensional Hilbert space. We invite the reader to rewrite the inequality
for conditionally independent copies xj with σ = σj , Mj = M . Note that in the
commutative context,

τ
(
1[t,∞)(a)

) = Prob(a ≥ t).

In the future we will simply take this formula as a definition. Then our Bernstein
and Prohorov inequalities for noncommutative random variables reads as follows.

COROLLARY 0.2. Under the same hypothesis of Theorem 0.1, we have

Prob

(
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j=1
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)
≤ exp

(
− t2

2
∑n

j=1 σ 2
j + (2t/3) supj=1,...,n Mj

)
(0.5)

and
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)

(0.6)

≤ exp
(
− t

2 supj=1,...,n Mj

arcsinh
(
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2
∑n

j=1 σ 2
j

))
.

It is now rather standard to derive Rosenthal’s inequality from Bernstein’s in-
equality (0.5).

COROLLARY 0.3. Let 2 ≤ p < ∞ and aj satisfy the hypothesis of Theo-
rem 0.1. Then ∥∥∥∥∥

n∑
j=1

aj

∥∥∥∥∥
p

≤ C

((
p

n∑
j=1

σ 2
j

)1/2

+ p sup
j=1,...,n

Mj

)
.

For unbounded operators and fixed p, we can prove a similar inequality. Here
we have to make a slightly stronger assumption. Let us recall that (Aj )

n
j=1 are fully

independent over N if for every subset I ⊂ {1, . . . , n} the algebra M(I ) generated
by

⋃
i∈I Ai is independent from M(I c) over N .
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THEOREM 0.4. Let (Ai) be fully independent over N , 1 ≤ p < ∞, xi ∈
Lp(Ai) with EN (xi) = 0. Then

∥∥∥∥∥
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xj
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p
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.

If moreover, p ≥ 2.5, then∥∥∥∥∥
n∑

j=1
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p
∥∥(xj )

∥∥
Lp(�∞)

}
.

According to [36] and [21], the norm of (xj ) in Lp(�∞) is given by inf{‖a‖2p ×
‖b‖2p} such that

xj = ayjb with ‖yj‖∞ ≤ 1.

Clearly, the orders
√

p and p in the above theorem are optimal because they are
already optimal in commutative probability. Note that in this version Theorem 0.4
improves on Corollary 0.3 for p large enough. The passage from first assertion to
the second follows from an argument in [25]. After we put this paper on arXiv.org
and submitted it for publication, S. Dirksen, being aware of our work, showed us
his different proof of (0.7) and (0.9) with slightly better constants (private commu-
nication). Two months later, J. A. Tropp informed us that he obtained a particular
case (i.e., the random matrix version) of (0.7) with several coauthors independently
by using a different method in a later paper [31]. In fact, Rosenthal inequalities in
the noncommutative setting have been successively explored in [23, 24] and [25].
The martingale situation is completely settled due to the work of [40] which shows
that for noncommutative martingales,∥∥∥∥∑

j

dj

∥∥∥∥
p

≤ Cp

(∥∥∥∥
(∑

k

Ek−1
(
dkd

∗
k + d∗

k dk

))1/2∥∥∥∥
p

+
(∑

k

‖dk‖p
p

)1/p)
,

where (dk) is a sequence of martingale differences given by Ek(x) = ENk
(x) and

dk = dk(x) = Ek(x) − Ek−1(x) for a filtration (Nk) ⊂ M. As observed in [24],
the constant Cp gives the correct order.

Let us return to the situation in compressed sensing. Here we obtain the follow-
ing result.

http://arxiv.org/
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COROLLARY 0.5. Let xj ∈ N be positive operator, τ a normalized trace such
that:

(i) 1
m

∑m
j=1 xj = 1; (ii) ‖xj‖ ≤ r .

Let δj be independent selectors such that Eδj = k/m. Then for p ≥ 2.5,(
E

∥∥∥∥∥1

k

m∑
j=1

δjxj − 1

∥∥∥∥∥
p

Lp(τ)

)1/p

≤ C max
{√

pr

k
,
pr

k

}
.(0.9)

Moreover, if tr is a trace on N such that

‖x‖L∞(tr) ≤ ‖x‖Lp(tr)

and r/k = ε2, then, for t2 ≥ 2.5C2e and t ≥ 2.5Ceε, we have

Prob

(∥∥∥∥∥1

k

m∑
j=1

δjxj − 1

∥∥∥∥∥
L∞(tr)

> tε

)
≤ tr(1)

{
e−t2/(2C2e), if tε ≤ C,
e−t/(2Ceε), if tε ≥ C.

(0.10)

Here C is an absolute constant.

These results are closely related to the matrix Bernstein inequality from Tropp’s
paper [47] and operator Bernstein inequality from [16]. Their application to prob-
lem in compressed sensing will be explained in Section 4. Section 1 provides the
proof of the Bennett’s inequality and its consequences. An application to large
deviation inequalities and how noncommutative Gaussian random variables may
violate the classical equalities are discussed in Section 2. The improved Rosenthal
inequality is proved in Section 3.

1. Noncommutative Bennett inequality. Let us first recall some back-
ground. For a self-adjoint operator a ∈ M, we have the spectral decomposition
a = ∫

t dEt , where Et is the spectral measure of a. For any Borel set A ⊂ R, we
define μ(A) = τ(E(A)). Then μ is a scalar-valued spectral measure for a and
μ(R) = 1. By the measurable functional calculus (see, e.g., [11], Section IX.8),
there exists a ∗-homomorphism π :L∞(μ) → M depending on a such that for all
f ∈ L∞(μ),π(f ) = f (a) and

τ
(
f (a)

) =
∫

f (t)μ(dt).(1.1)

In particular, for f = 1[t,∞), we have the exponential Chebyshev inequality

τ
(
1[t,∞)(a)

) = Prob(a ≥ t) ≤ e−t τ
(
ea)

.(1.2)

Our proof of Bennett’s inequality relies on the well-known Golden–Thompson
inequality. For the usual trace on B(H) we may refer to Simon’s book [45]. The
fully general case is due to Araki [2]. A transparent proof for semifinite von Neu-
mann algebras can be found in Ruskai’s paper ([44], Theorem 4).



NONCOMMUTATIVE BENNETT AND ROSENTHAL INEQUALITIES 4293

LEMMA 1.1 (Golden–Thompson inequality). Suppose that a, b are self-
adjoint operators, bounded above and that a + b are essentially self-adjoint (i.e.,
the closure of a + b is self-adjoint). Then

τ
(
ea+b) ≤ τ

(
ea/2ebea/2)

.

Furthermore, if τ(ea) < ∞ or τ(eb) < ∞, then

τ
(
ea+b) ≤ τ

(
eaeb)

.(1.3)

Note that if a, b ∈ M are self-adjoint, the hypotheses in Lemma 1.1 are auto-
matically satisfied. Therefore we have (1.3). With the help of (1.2) and (1.3), we
can prove the noncommutative Bennett inequality following the commutative case
given in [3].

PROOF OF THEOREM 0.1. (1.2) implies for λ ≥ 0,

Prob

(
n∑

i=1

ai ≥ t

)
≤ e−λt τ

(
eλ

∑n
i=1 ai

)
.(1.4)

Since (ai) are successively independent, we deduce from (1.3) that

τ
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∑n
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) ≤ τ
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))
(1.5)
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(
EN

(
eλ

∑n−1
i=1 ai

)
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))
.

Expanding, we obtain
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(
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( ∞∑
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k
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λk

k! EN
(
ak
n

)

= 1 +
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k=2
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k! EN
(
a2
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k−2
n

) ≤ 1 +
∞∑

k=2

λk

k! M
k−2
n σ 2

n

= 1 + σ 2
n

M2
n

(
eλMn − 1 − λMn

) ≤ exp
(

σ 2
n

M2
n

(
eλMn − 1 − λMn

))
.

Note that the function f (x) := exp(x−2(eλx − 1 − λx)) is increasing for x > 0. It
follows that

EN
(
eλan

) ≤ exp
(

σ 2
n

C2

(
eλC − 1 − λC

))
,

where C = supi=1,...,n Mi . Iterating n − 2 times, we obtain

τ
(
eλ

∑n
i=1 ai

) ≤ exp
(∑n

i=1 σ 2
i

C2

(
eλC − 1 − λC

))
.
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This yields

Prob

(
n∑

i=1

ai ≥ t

)
≤ exp

(
−λt +

∑n
i=1 σ 2

i

C2

(
eλC − 1 − λC

))
.(1.6)

By differentiating we find the minimizing value λ = C−1 log(1 + tC/(
∑n

i=1 σ 2
i )).

Then (1.6) yields the assertion. �

PROOF OF COROLLARY 0.2. Note that φ(x) ≥ x2/(2 + 2x/3) and that
φ(x) ≥ (x/2) arcsinh(x/2) for x ≥ 0. Then the corollary follows by relaxing the
bound in Bennett’s inequality. �

In the following we use Corollary 0.2 to prove Corollary 0.3. Let a ∈ M be
positive. Recall that Prob(a > t) is an analog of the classical distribution function
of a. In particular, we may use it to compute the Lp norm of a. Indeed, by the
same argument as commutative case, for p > 0 and positive a ∈ M, we have

‖a‖p
p = p

∫ ∞
0

tp−1 Prob(a > t) dt.(1.7)

Recall that the Gamma function is defined as 
(p) = ∫ ∞
0 e−r rp−1 dr , and the

incomplete Gamma function is defined as 
(α,p) = ∫ ∞
p e−t tα−1 dt . We need an

elementary estimate for 
(α,p). Note that for t ≥ p ≥ 2(α − 1), we have
(
e−t tα−1)′ = −e−t tα−1

(
1 − α − 1

t

)
≤ −1

2
e−t tα−1.

This gives the following lemma.

LEMMA 1.2. If p ≥ 2α − 2, then 
(α,p) ≤ 2e−ppα−1.

PROOF OF COROLLARY 0.3. First note that symmetry and Corollary 0.2 im-
ply

Prob

(∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
∑n

i=1 σ 2
i + (2t/3) sup1≤i≤n Mi

)
.

Put S = ∑n
i=1 σ 2

i and R = supi=1,...,n Mi . By (1.7), we have∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
p

p

≤ 2p

∫ ∞
0

exp
(
− t2

2S + 2tR/3

)
tp−1 dt

= 2p

∫ 3S/R

0
exp

(
− t2

2S + 2tR/3

)
tp−1 dt

+ 2p

∫ ∞
3S/R

exp
(
− t2

2S + 2tR/3

)
tp−1 dt

= 2p(I + II),
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where

I =
∫ 3S/R

0
exp

(
− t2

2S + 2tR/3

)
tp−1 dt

and

II =
∫ ∞

3S/R
exp

(
− t2

2S + 2tR/3

)
tp−1 dt.

We first estimate I . Since t ≤ 3S/R, we have

I ≤
∫ 3S/R

0
e−t2/(4S)tp−1 dt = 2p−1Sp/2

∫ 9S/(4R2)

0
e−r rp/2−1 dr.

For 9S/(4R2) ≤ p, we have I ≤ 2p−1Sp/2 ∫ p
0 e−r rp/2−1 dr ≤ 2pSp/2pp/2−1. For

9S/(4R2) > p, we have

I ≤ 2p−1Sp/2
(∫ p

0
e−r rp/2−1 dr +

∫ 9S/(4R2)

p
e−r rp/2−1 dr

)

≤ 2pSp/2pp/2−1 + I2,

where I2 = 2p−1Sp/2 ∫ ∞
p e−r rp/2−1 dr , and by Lemma 1.2, I2 ≤ 2pSp/2pp/2−1 ×

e−p . Hence, we obtain

I ≤ 2p+1Sp/2pp/2−1.

To estimate II, since 2S < 2tR/3, we have

II ≤
∫ ∞

3S/R
e−3t/(4R)tp−1 dt =

(
4

3
R

)p ∫ ∞
9S/(4R2)

e−r rp−1 dr

≤
(

4

3
R

)p


(p) ≤
(

4

3
Rp

)p

.

Combining all the inequalities together, we find ‖∑n
i=1 ai‖p

p ≤ 2p+2Sp/2pp/2 +
2(4R/3)ppp+1. Hence, we obtain

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
p

≤ 4
√

Sp + 4
√

2

3
e1/eRp ≤ 4(

√
Sp + Rp).

�

We remark that the constant in the above inequality is explicit and quite small,
which may be good for numerical purpose.
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2. Large deviation principle. Bennett’s inequality is a large deviation type
inequality giving an upper bound for the tail probability. In the commutative setting
lower bounds have been analyzed intensively in large deviation theory. Despite
the fact that our arguments in the previous section are almost commutative, lower
bounds for noncommutative random variables are very different. Let us start with
Cramér’s theorem. We consider a sequence of fully independent and identically
distributed (i.i.d.) τ -measurable (see, e.g., [15]) noncommutative random variables
(ai)i∈I .

Let �(λ) = log τ(eλa1). Following [12] we define the Fenchel–Legendre trans-
form of �(λ) for x ∈ R

�∗(x) = sup
λ∈R

[
λx − �(λ)

]
.(2.1)

If (ai) is a commutative i.i.d. sequence, then Cramér’s theorem ([12], Theo-
rem 2.2.3) says that (ai) satisfies the large deviation principle (LDP) with rate
function �∗, which implies [12], Corollary 2.2.19,

lim sup
n→∞

1

n
log Prob

(
n∑

i=1

ai ≥ nt

)
= − inf

s≥t
�∗(s).(2.2)

The upper bound remains valid in the noncommutative setting.

PROPOSITION 2.1. Let (ai)i≥1 be an i.i.d. sequence in (M, τ ) such that
τ(ai) = 0 for all i ≥ 1. Then for any t > 0,

lim sup
n→∞

1

n
log Prob

(
n∑

i=1

ai ≥ nt

)
≤ − inf

s≥t
�∗(s).

PROOF. Thanks to the Golden–Thompson inequality, we can follow the proof
in the commutative case in [12]. Using (1.4) and (1.5), we obtain

Prob

(
n∑

i=1

ai ≥ nt

)
≤ e−λnt

n∏
i=1

τ
(
eλai

) = e−n(λt−�(λ)).

This implies

1

n
log Prob

(
n∑

i=1

ai ≥ nt

)
≤ −�∗(t) ≤ − inf

s≥t
�∗(s).

�

REMARK 2.2. Although we assumed ai ’s are in (M, τ ), using truncation and
approximation, we can also prove the previous proposition for symmetric Gaus-
sians. To be more precise, for independent symmetric Gaussian random variables
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a and b, let aN = a1{|a|<N} and bN = b1{|b|<N}. Then the monotone conver-
gence theorem implies that τ(eaN ) → τ(ea), τ (ebN ) → τ(eb). Since the symmet-
ric Gaussian random variable is in

⋂
p≥1 Lp(M, τ ), the triangle inequality implies

τ((aN + bN)p) → τ((a + b)p). By symmetry, we have

τ
(
eaN+bN

) → τ
(
ea+b)

.

In the following we give two examples which violate the LDP for noncommu-
tative random variables.

EXAMPLE 2.3 (Noncommutative semicircular law [48]). Recall that the semi-
circular law centered at a ∈ R and of radius r > 0 is the distribution γa,r : C[X] →
C defined by

γa,r (P ) = 2

πr2

∫ a+r

a−r
P (t)

√
r2 − (t − a)2 dt.

Here C[X] is the algebra of complex polynomials in one variable.
Let us recall that copies of semicircular random variables can be constructed on

the full Fock space; see, for example, [48], Section 2.6. We find a sequence of the
so-called free (thus fully independent) Gaussian random variables {si}i∈I with the
identical distribution γ0,2. By rotation invariance of the free functor, we deduce
from [48], Section 3.4, that

ŝn = 1√
n

n∑
i=1

si ∼ γ0,2,(2.3)

which means that the distribution of ŝn is γ0,2. Since γ0,2 is supported in [−2,2],
for any t > 0,

lim
n→∞

1

n
log Prob

(
n∑

i=1

si ≥ nt

)
= lim

n→∞
1

n
log Prob(ŝn ≥ √

nt) = −∞.

On the other hand, by the integral representation of the modified Bessel function I1
([46], (9.46)), the moment generating function of γ0,2 is given by

M(λ) = 1

2π

∫ 2

−2
eλt

√
4 − t2 dt = I1(2λ)

λ
.

Using the series representation of I1 ([46], (9.28)), we have for λ > 0,

M(λ) =
∞∑

n=0

λ2n

(n + 1)!n! ≥
∞∑

n=0

λ2n

2(2n)! = eλ + e−λ

4
≥ 1

4
eλ.

We find �(λ) = logM(λ) ≥ λ− log 4. Since τ(a1) = 0, by [12], Lemma 2.2.5, for
x ≥ 0,

�∗(x) = sup
λ≥0

[
λx − �(λ)

]
.
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Therefore,

�∗(1) = sup
λ≥0

[
λ − �(λ)

] ≤ log 4 < ∞,

which shows that the sequence (si) violates the LDP lower bound in (2.2). We
have proved the following result.

PROPOSITION 2.4. The semicircular sequence (sn)n∈N does not satisfy
LDP (2.2).

The counterexample works in free probability because s1 is bounded. In order to
motivate the next example, we first clarify the relationship between the logarithmic
moment generating function � and the rate function I of the LDP.

REMARK 2.5. Suppose that an i.i.d. sequence (an) satisfies the LDP with rate
function I (x) and that �(λ) is well defined. Then the Fenchel–Legendre transform
of I (x) coincides with �(λ), that is,

I ∗(λ) = �(λ).

Indeed, by Hölder’s inequality �(λ) is convex, and by Fatou’s lemma for τ -
measurable operators ([15], Theorem 3.5), �(λ) is lower semicontinuous. Then
Cramér’s theorem and the duality lemma ([12], Lemma 4.5.8) yield the assertion.
In particular, if (an) satisfies the LDP with rate function I (x) and �(λ) exists,
then I (x) = x2/2 implies �(λ) = I ∗(λ) = λ2/2; that is, the sequence (an) follows
standard normal distribution. This means in classical probability the distribution
of an i.i.d. sequence can be recovered from the rate function given by the LDP.
The next proposition will show that this is no longer the case in the noncommu-
tative setting. Therefore, a literal translation of the LDP is not to be expected in
noncommutative probability.

PROPOSITION 2.6 (Gaussian family). Let θ ∈ (0,1). There exists an i.i.d. se-
quence (ξn)n≥1 of noncommutative Gaussian random variables with logarithmic
moment generating function �θ(λ) such that:

(i) (ξn) satisfies the LDP with rate function Iθ (x) = x2/2;
(ii) |�θ(λ) − λ2

2 − log(1 − θ)| ≤ θ
1−θ

e2λ−λ2/2.

In particular, I ∗
θ (λ) = λ2/2 
= �θ(λ). Therefore, the law of (ξn) cannot be recov-

ered from the LDP rate function.

Before going to the proof, we remark that the failure of recovering the law
�θ(·) from rate function Iθ (·) is because Cramér’s theorem is no longer true in
the noncommutative setting. Indeed, since �0(λ) = λ2/2 is the logarithmic mo-
ment generating function of standard normal distribution and �∗

0(x) = x2/2, if
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Cramér’s theorem were true, we would have �∗
θ (x) = Iθ (x) = x2/2 = �∗

0(x).
But �θ(λ) 
= �0(λ) as stated above, this contradicts the injectivity of Fenchel–
Legendre transform.

PROOF OF PROPOSITION 2.6. For θ ∈ (0,1), given a noncommutative stan-
dard Gaussian random variable g0 (with probability density function e−x2/2/

√
2π )

and a noncommutative semicircular random variable g1 ∼ γ0,2, there exists a non-
commutative random variable gθ such that

τ
(
gk

θ

) = (1 − θ)τ
(
gk

0
) + θτ

(
gk

1
)
.

This implies by approximation (see [22])

τ
(
f (gθ )

) = (1 − θ)τ
(
f (g0)

) + θτ
(
f (g1)

)
for all measurable function f . In particular, for any Borel set A ⊂ R,

τ
(
1A(gθ )

) = (1 − θ)τ
(
1A(g0)

) + θτ
(
1A(g1)

)
(2.4)

and for all λ ∈ R,

τ
(
eλgθ

) = (1 − θ)τ
(
eλg0

) + θτ
(
eλg1

)
.(2.5)

Moreover, for every real Hilbert space H there exists an algebra Nθ (H), together
with a map u :H → Nθ (H) and a family of trace preserving automorphisms
αo : Nθ (H) → Nθ (H) indexed by the contractions o of H such that

αo

(
u(h)

) = u
(
o(h)

)
.

We apply this for H = �2(N) and define ξi = u(ei) where ξ1 has the same distribu-
tion as gθ . Using the permutations, we see that ξi = α(i1)(ξ1), and hence these vari-
ables are identical distributed. Using the conditional expectations onto Nθ(�2(I )),
I ⊂ N, we see that (ξi) is a fully independent sequence. Using a real unitary which
maps e1 to 1√

n

∑n
i=1 ei , we deduce that ξ1 and 1√

n

∑n
i=1 ξi have the same distribu-

tion, that is,

1√
n

n∑
i=1

ξi
D= ξ1

D= gθ ;(2.6)

see [10, 17, 18] for more details. Following [12], Section 2.2, we define Sn =
1
n

∑n
k=1 ξk and μn(A) = τ(1A(Sn)). By the invariance property (2.6), we have

μn(A) = τ(1√
nA(

√
nSn)) = τ(1√

nA(gθ )). Using (2.4), we find

μn(A) = τ
(
1√

nA(gθ )
) = (1 − θ)τ

(
1√

nA(g0)
) + θτ

(
1√

nA(g1)
)
.(2.7)

We aim to establish an LDP for (μn). Let A be a Borel set and Iθ (x) = x2/2. Note
that the support of the distribution of g1 is [−2,2]. We consider the following two
cases:
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(1) 0 ∈ cl(int(A)), the closure of interior of A. If there exists an interval
(−δ, δ) ⊂ cl(int(A)), then limn→∞ τ(1√

nA(g1)) = 1. If no such interval exists,
0 is a boundary point of cl(int(A)), then limn→∞ τ(1√

nA(g1)) = 1/2. In any case,
we have

lim
n→∞

1

n
logμn(A) = 0 = − inf

x∈int(A)
Iθ (x) = − inf

x∈cl(A)
Iθ (x).

(2) 0 /∈ cl(int(A)). In this case, int(
√

nA ∩ [−2,2]) will eventually be empty
for n large enough. Then we have limn→∞ τ(1√

nA(g1)) = 0. First we assume
int(A) 
= ∅ and without loss of generality, we assume int(A) ⊂ R+. Let x =
inf{intA} and (x, T ) be an interval contained in A. Then we have∫ √

nT

√
nx

e−t2/2 dt ≤
∫
√

nA
e−t2/2 dt ≤

∫ ∞
√

nx
e−t2/2 dt.

Since τ(1√
nA(g0)) = 1√

2π

∫√
nA e−t2/2 dt , straightforward computation shows that

−x2

2
≤ lim inf

n→∞
1

n
log τ

(
1√

nA(g0)
) ≤ lim sup

n→∞
1

n
log τ

(
1√

nA(g0)
) ≤ −x2

2
.

This fact together with (2.7) yields

− inf
x∈int(A)

Iθ (x) ≤ lim
n→∞

1

n
logμn(A) ≤ − inf

x∈cl(A)
Iθ (x).(2.8)

Note that if int(A) = ∅, (2.8) is trivial.

According to [12], (1.2.4), we have shown that (μn) or (ξn) satisfies the LDP with
rate function Iθ (x) = x2/2. On the other hand, if we put �θ(λ) = log τ(eλgθ ) and
let ν denote the probability measure of g1, then (2.5) implies

�θ(λ) = log
(
(1 − θ)eλ2/2 + θ

∫ 2

−2
eλtν(dt)

)

= log
(
(1 − θ)eλ2/2

(
1 + θe−λ2/2

1 − θ

∫ 2

−2
eλtν(dt)

))

≤ log
(
(1 − θ)eλ2/2

(
1 + θe−λ2/2e2λ

1 − θ

∫ 2

−2
ν(dt)

))

≤ log(1 − θ) + λ2

2
+ log

(
1 + θ

1 − θ
e2λ−λ2/2

)

and similarly,

�θ(λ) ≥ log(1 − θ) + λ2

2
+ log

(
1 + θ

1 − θ
e−2λ−λ2/2

)
.
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Combining these two inequalities, we obtain

∣∣∣∣�θ(λ) − λ2

2
− log(1 − θ)

∣∣∣∣ ≤ log
(

1 + θ

1 − θ
e2λ−λ2/2

)
(2.9)

≤ θ

1 − θ
e2λ−λ2/2,

which implies limλ→∞ �θ(λ) − λ2/2 = log(1 − θ). In particular, �θ(λ) 
= λ2/2.
Since I ∗

θ (λ) = λ2/2 
= �θ(λ), we have proved that the law �θ(·) of (ξn) cannot be
recovered from the LDP rate function Iθ (·). �

3. Improved noncommutative Rosenthal’s inequality. We prove the im-
proved noncommutative Rosenthal inequality and show that the coefficients cannot
be improved in this section. In order to prove Theorem 0.4, we will follow and re-
fine the standard iteration procedure given in [25], used before by Lust-Piquard
[29] and Pisier, Gilles and Xu [38].

PROOF OF THEOREM 0.4. Instead of proving (0.7) directly, we prove the fol-
lowing equivalent inequality:

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
p

≤ Dp max

{√
p

∥∥∥∥∥
(

n∑
j=1

EN
(
x∗
j xj

))1/2∥∥∥∥∥
p

,

(3.1)
√

p

∥∥∥∥∥
(

n∑
j=1

EN
(
xjx

∗
j

))1/2∥∥∥∥∥
p

,p

(
n∑

j=1

‖xj‖p
p

)1/p}
,

and we assume at the moment that Dp is the best constant which may depend on
the range of p. By [25], Theorem 2.1, (3.1) is true for 1 ≤ p ≤ 4. This is the starting
point of our iteration argument. Assume p > 2. We only need to show “p ⇒ 2p.”
Let xi ∈ L2p(M, τ ). Write the conditional expectation operator E = EN in the
following proof. Put

A =
√

2p

∥∥∥∥∥
(

n∑
i=1

E
(
x∗
i xi

))1/2∥∥∥∥∥
2p

and B = 2p

(
n∑

i=1

‖xi‖2p
2p

)1/(2p)

.

Using [23], Lemma 1.2, and the noncommutative Khintchine inequality in [36]
with the right order of best constant, we have

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2p

≤ 2E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
2p

≤ c
√

p max

{∥∥∥∥∥
n∑

i=1

x∗
i xi

∥∥∥∥∥
1/2

p

,

∥∥∥∥∥
n∑

i=1

xix
∗
i

∥∥∥∥∥
1/2

p

}
,
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where (εi) is a sequence of Rademacher random variables, and E denotes the cor-
responding expectation. Let yi = x∗

i xi − E(x∗
i xi). Then∥∥∥∥∥

n∑
i=1

x∗
i xi

∥∥∥∥∥
p

≤ 2 max

{∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
p

,

∥∥∥∥∥
n∑

i=1

E
(
x∗
i xi

)∥∥∥∥∥
p

}
.

Applying the induction hypothesis, we obtain∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
p

≤ Dp max

{√
p

∥∥∥∥∥
(

n∑
i=1

E
(
y2
i

))1/2∥∥∥∥∥
p

,p

(
n∑

i=1

‖yi‖p
p

)1/p}
.

Note that

E
(
y2
i

) = E
(|xi |4) − (

E
(|xi |2))2 ≤ E

(|xi |4)
.

By [23], Lemma 5.2, we obtain∥∥∥∥∥
n∑

i=1

E
(|xi |4)∥∥∥∥∥

p/2

≤
∥∥∥∥∥

n∑
i=1

E
(|xi |2)∥∥∥∥∥

(p−2)/(p−1)

p

(
n∑

i=1

‖xi‖2p
2p

)1/(p−1)

= (
A2/2p

)(p−2)/(p−1)
(B/2p)2p/(p−1)

= A(2p−4)/(p−1)B2p/(p−1)(2p)−(3p−2)/(p−1).

On the other hand, since E is a contraction on Lp(M, τ ), we have(
n∑

i=1

‖yi‖p
p

)1/p

=
(

n∑
i=1

∥∥x∗
i xi − E

(
x∗
i xi

)∥∥p
p

)1/p

≤ 2

(
n∑

i=1

∥∥x∗
i xi

∥∥p
p

)1/p

= 2

(
n∑

i=1

‖xi‖2p
2p

)1/p

= B2

2p2 .

This gives∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
p

≤ Dp max
{√

pA(p−2)/(p−1)Bp/(p−1)(2p)−(3p−2)/(2p−2),
pB2

2p2

}

≤ Dp max
{

2−(3p−2)/(2p−2)A(p−2)/(p−1)Bp/(p−1)p−1−1/(2p−2),
B2

2p

}
.

Hence, we find∥∥∥∥∥
n∑

i=1

x∗
i xi

∥∥∥∥∥
p

≤ max
{

2−p/(2p−2)DpA(p−2)/(p−1)Bp/(p−1)p−1−1/(2p−2),

(3.2)
DpB2

p
,
A2

p

}
.
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Young’s inequality for products implies

A(p−2)/(2p−2)Bp/(2p−2) ≤ (p − 2)A

2p − 2
+ pB

2p − 2
≤ max{A,B}.(3.3)

Note that 2−p/(4p−4) ≤ 2−1/4 and p−1/(4p−4) ≤ 1. Equations (3.2) and (3.3) yield

√
p

∥∥∥∥∥
n∑

i=1

x∗
i xi

∥∥∥∥∥
1/2

p

≤ max
{
2−1/4

√
Dp max{A,B},

√
DpB,A

} ≤
√

Dp max{A,B}

=
√

Dp max

{√
2p

∥∥∥∥∥
(

n∑
i=1

E
(
x∗
i xi

))1/2∥∥∥∥∥
2p

,2p

(
n∑

i=1

‖xi‖2p
2p

)1/(2p)}
.

Applying the same argument to xix
∗
i , we obtain

√
p

∥∥∥∥∥
n∑

i=1

xix
∗
i

∥∥∥∥∥
1/2

p

≤
√

Dp max

{√
2p

∥∥∥∥∥
(

n∑
i=1

E
(
xix

∗
i

))1/2∥∥∥∥∥
2p

,2p

(
n∑

i=1

‖xi‖2p
2p

)1/(2p)}
.

Hence, (3.1) is true for 2p with constant c
√

Dp . It follows that

D2p ≤ c
√

Dp,

and thus Dp ≤ c2 which is independent of p. Therefore, the iteration argument is
complete, and we have proved the first assertion. As mentioned in the Introduction
of this paper, the interpolation argument from [25], Section 4, shows that the first
assertion can be improved to the second assertion with a singularity as p tends
to 2. Thus for p ≥ 2.5 the assertion holds with an absolute constant. �

REMARK 3.1. The improved Rosenthal inequality allows us to extend Lust-
Piquard’s noncommutative Khintchine inequality [29, 30] in a twisted setting. We
refer to [9] for unexplained notion on the Gaussian measure space construction.
The starting point is a discrete group acting on a real Hilbert space H . This
means we fix an isometry b :H → L2(�,�,μ) such that b is linear, and b(h)

is a centered Gaussian random variable with variance ‖h‖2. For example, for
H = L2(0,∞) and Bt = b(1[0,t]) we recover a well-known method to construct
Brownian motion. We may assume that � is the minimal sigma algebra generated
by the random variables b(H). Then the action of G extends to a family of measure
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preserving automorphism α :G → Aut(L∞(�,�,μ)) such that

αg

(
b(h)

) = b(g.h).

This allows us to form the crossed product M = L∞(�)�G. The crossed product
is spanned by random variables of the form

x = ∑
g

fgλ(g).

Here λ(g) refers to the regular representation of group. The algebraic structure is
determined by λ(g)f λ(g−1) = αg(f ). The twisted Gaussian random variables are
of the form

B = ∑
g

b(hg)λ(g), hg ∈ H.

In order to formulate the Khintchine inequality, we have to recall that there exists
trace preserving conditional expectation E :M → L(G). Here L(G) is the von
Neumann subalgebra generated by the image λ(G) and the trace is given by

τ

(∑
g

fgλ(g)

)
=

∫
f1 dμ.

Then we can deduce from Theorem 0.4 that for p ≥ 2,

‖B‖p ≤ c
√

p
∥∥E(

B∗B + BB∗)1/2∥∥
p.(3.4)

Moreover, the span of the generalized Gaussian random variables is comple-
mented, and the inequality remains true with additional vector valued coefficients.
This is a key fact in proving noncommutative Riesz transforms. To illustrate (3.4)
let us assume that the action is trivial. Let (ek) be a basis and

B = ∑
k,g

a(k, g)b(ek) ⊗ λ(g) = ∑
k

b(ek) ⊗ ak.

Then we find

E
(
BB∗) = ∑

k

aka
∗
k , E

(
B∗B

) = ∑
k

a∗
k ak.

Thus the right-hand side gives exactly the square function we expect for Gaussian
variables. However, with nontrivial additional group action BB∗ and B∗B look
quite different, and the group action interferes significantly.

Using (0.8), we can prove Corollary 0.5 which will play a central role in the
application to compressed sensing in the next section.
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PROOF OF COROLLARY 0.5. By Jensen’s inequality, we have(
Eδ

∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
p

Lp(N ,τ )

)1/p

=
(

Eδ

∥∥∥∥∥1

k

m∑
i=1

δixi − 1

k
Eδ′

(
m∑

i=1

δ′
ixi

)∥∥∥∥∥
p

Lp(N ,τ )

)1/p

≤
(

Eδ

(
Eδ′

∥∥∥∥∥1

k

m∑
i=1

(
δi − δ′

i

)
xi

∥∥∥∥∥
Lp(N ,τ )

)p)1/p

≤
(

Eδ,δ′

∥∥∥∥∥1

k

m∑
i=1

(
δi − δ′

i

)
xi

∥∥∥∥∥
p

Lp(N ,τ )

)1/p

,

where (δ′
i) is a sequence of independent selectors with the same distribution as δi’s.

In order to apply Theorem 0.4, it is crucial to choose appropriate probability space.
Let (�, F ,P) be the probability space generated by (δi, δ

′
i). We consider the non-

commutative probability space as the algebra M = L∞(P) ⊗ N . Then we have a
normalized trace τ̃ = E ⊗ τ on M. We identify E as the conditional expectation
E : M → N . Clearly, ((δi − δ′

i)xi)
n
i=1 are fully independent over N . Note that

E
(
δi − δ′

i

)2 = 2k

m

(
1 − k

m

)
≤ 2k

m
and sup

i=1,...,m

∣∣δi − δ′
i

∣∣ ≤ 1.

Since xi is positive, x∗
i xi = x2

i . Using (0.8), we obtain(
E

∥∥∥∥∥
m∑

i=1

(
δi − δ′

i

)
xi

∥∥∥∥∥
p

Lp(N ,τ )

)1/p

=
∥∥∥∥∥

m∑
i=1

(
δi − δ′

i

)
xi

∥∥∥∥∥
Lp(M,τ̃ )

≤ C max

{√
p

∥∥∥∥∥
m∑

i=1

E
((

δi − δ′
i

)2
x2
i

)∥∥∥∥∥
1/2

Lp/2(N ,τ )

,

p
∥∥∥ sup
i=1,...,m

∣∣δi − δ′
i

∣∣xi

∥∥∥
Lp(M,τ̃ )

}
.

Since τ(1) = 1 and xi ≤ r , we obtain ‖|δi − δ′
i |xi‖Lp(M,τ̃ ;�∞) ≤ r , and∥∥∥∥∥

m∑
i=1

E
(
δi − δ′

i

)2
x2
i

∥∥∥∥∥
Lp/2(N ,τ )

≤ 2kr

∥∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥∥
Lp/2(N ,τ )

= 2kr.

Therefore, we find(
E

∥∥∥∥∥1

k

m∑
i=1

(
δi − δ′

i

)
xi

∥∥∥∥∥
p

Lp(N ,τ )

)1/p

≤ C max
{√

2pr

k
,
pr

k

}
.
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We have completed the proof of (0.9) with constant
√

2C. For the “moreover” part,
we use the additional norm assumption and obtain∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
L∞(tr)

≤
∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
Lp(tr)

.

Then by Chebyshev’s inequality and (0.9) for trace τ(x) = tr(x)/tr(1), we have

P

(∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
L∞(tr)

≥ tε

)
≤ (tε)−p

E

∥∥∥∥∥1

k

m∑
i=1

(
δi − δ′

i

)
xi

∥∥∥∥∥
p

Lp(tr)

≤ tr(1)max
{√

C2pr

kt2ε2 ,
Cpr

ktε

}p

.

Let us first assume tε ≤ C. Optimize the first term in p and find p = t2ε2k/(C2re).
Recall that k = rε−2. Then the first term becomes e−t2/(2C2e). Using tε ≤ C, this
choice of p gives an upper bound of e−t2/(C2e) for the second term. Now assume
tε ≥ C. The optimal choice for the second term is obtained for p = ktε/(Cre).
Then the second term becomes e−t/(Ceε) and, thanks to tε ≥ C, the first term is
less than e−t/(2Ceε). The additional assumption on t guarantees that p ≥ 2.5 in
both cases. Therefore,

P

(∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
L∞(tr)

≥ tε

)
≤ tr(1)

{
e−t2/(2C2e), if tε ≤ C,
e−t/(2Ceε), if tε ≥ C.

The constant C is the same as the constant in the first assertion. �

REMARK 3.2. In this context it is useful to compare our different generaliza-
tions of Rosenthal’s inequality. We observe that with Corollary 0.3, we can only
obtain (

E

∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
p

Lp(τ)

)1/p

≤ C

(√
pr2

k
+ pr

k

)
,

and with inequality (0.7) we obtain(
E

∥∥∥∥∥1

k

m∑
i=1

δixi − 1

∥∥∥∥∥
p

Lp(τ)

)1/p

≤ C

(√
pr

k
+ pr

k1−1/p

)
.

Both estimates are worse than inequality (0.9).

The following two examples are meant to justify the optimality of
√

p and p.
We refer the reader to [35] for a more detailed discussion on this topic in the
framework of classical probability. We will use the standard notation for compar-
ing orders of functions as p → ∞. Recall that f (p) = O(g(p)) if there exists
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a constant C such that f (p) ≤ Cg(p) asymptotically, f (p) = �(g(p)) if there
exists a constant c such that f (p) ≥ cg(p) asymptotically, f (p) = �(g(p)) if
there exist constants c and C such that cg(p) ≤ f (p) ≤ Cg(p) asymptotically,
and f (p) ∼ g(p) if limp→∞ f (p)/g(p) = 1.

EXAMPLE 3.3 (The optimality of
√

p in Theorem 0.4). Let us assume that∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≤ A(p)

(
n∑

i=1

‖xi‖2

)1/2

+ B(p)

(
n∑

i=1

‖xi‖p

)1/p

(3.5)

for some functions A(p) and B(p). We use xi = gi . Here (gi) is a sequence of
i.i.d. normal random variables with mean 0 and variance 1. We know E|g1|p =
2p/2√

π

(

p+1
2 ). By Stirling’s formula, we obtain for large p,

‖g1‖p ∼
√

p

e
.

This yields that there exist absolute constants c and C such that c
√

p ≤ ‖g1‖ ≤
C

√
p for all p ≥ 2. Hence, we obtain

c
√

p ≤ ‖g1‖p =
∥∥∥∥∥ 1√

n

n∑
i=1

gi

∥∥∥∥∥
p

≤ A(p) + CB(p)
√

pn1/p−1/2.

Sending n → ∞, we have

A(p) ≥ c
√

p for p > 2.

This shows that one cannot reduce the order of A(p), even at the expense of in-
creasing the order of B(p).

EXAMPLE 3.4 (The optimality of p in Theorem 0.4). Following Corol-
lary 0.5, we do a random selector on � = {1}, that is, xi = 1 and Eδi = λ = k/m,
and then we shall assume that(

E

∣∣∣∣∣1

k

m∑
i=1

δi − 1

∣∣∣∣∣
p)1/p

≤ C

√
p

k
+ f (p)

k

for some function f (p). Here we choose m = p and k = ap for some very small a.
Then we find that for every 1 ≤ j ≤ m,∣∣∣∣jk − 1

∣∣∣∣
(

m

j

)1/m

λj/m(1 − λ)1−j/m ≤ C

√
m

k
+ f (m)

k
.

Let us first fix j = �γm� and assume that γ ≥ 1/4 and 1/2m < a ≤ 1/8. This gives
j
k

≥ γ
a

≥ 1
4a

≥ 2 and hence ∣∣∣∣jk − 1
∣∣∣∣ ≥ 1

8a
.
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Note that 1 ≤ (m
j

)1/m ≤ 2 so that we cannot expect any help here. Thus we find

1

16
aγ−1(1 − a)1−γ ≤ 1

8
aγ−1+1/m(1 − a)1−γ ≤ Ca−1/2 + f (p)

ap
.

Let us now fix γ = 1/4 and choose a such that

2Ca−1/2 ≤ 1

16

(
1 − a

a

)3/4

or equivalently,

32Ca1/4 ≤ (1 − a)3/4.

However, a ≤ 1/8 implies 1 − a ≥ 7/8. Thus

a ≤
(

7

8

)3 1

(32C)4

will do. Then we find (
a1/4 (7/8)3/4

32

)
p ≤ f (p).

Choose a = (7/8)3/(32C)4. Then we have
c0

C
p ≤ f (p)(3.6)

for an absolute constant c0 = (7/8)3/2/322. This shows that one cannot reduce the
order of f (p), as long as we keep A(p) ≤ C

√
p in (3.5).

REMARK 3.5. In fact, Example 3.4 provides more information. Instead of
fixing γ , by sending γ → 0 and choosing a ≤ γ /2 appropriately, we can find a
different behavior. Indeed, then we have |j/k − 1| ≥ γ /(2a) and

γ

4
aγ−1(1 − a)1−γ ≤ Ca−1/2 + f (p)

ap
,

and since a < γ and (1 − γ )1−γ ≥ e−1, we need 8eCa−1/2 ≤ γ aγ−1 or

a1/2−γ ≤ γ

8eC
.

Note that (
γ

8eC
)2/(1−2γ ) ≤ γ /2 for γ ≤ 1. Hence with

a ≤
(

γ

8eC

)2/(1−2γ )

,

we have

γ aγ

8e
p ≤ f (p).
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Put a = (
γ

8eC
)2/(1−2γ ). Then we obtain(

γ

8eC

)1/(1−2γ )

Cp ≤ f (p).

Optimizing the left-hand side in γ , we obtain 2γ log(8e2C) − 2γ log(γ ) = 1 and(
16eC log

8e2C

γ

)−1−1/log(8eC/γ )

Cp ≤ f (p).

Since γ logγ → 0 as γ → 0, we choose

γ = 1

2 log(8e2C)
.

In order to obtain a lower bound for f (p), we need to assume 8C ≥ 1 so that
γ ≤ 1/4. This yields for C ≥ 1.5,

f (p) ≥ 1

32
√

2e3/2+2/e log(8e2C)
p ≥ p

c1 logC
(3.7)

for some absolute constant c1. Compare (3.7) with (3.6). Estimate (3.7) is better
for large C. Let us now fix p and put C = pα . Example 3.3 shows that α has to be
nonnegative. (3.7) implies that for α > 0,

f (p) ≥ p

c1α logp
.

In particular, for C = √
p/logp, we obtain f (p) ≥ 2c−1

1 p/ logp, which recovers
the best constants obtained in [20].

Example 3.3 and Remark 3.5 yield the following result.

THEOREM 3.6. Under the hypotheses of Theorem 0.4, assume that∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≤ A(p)

∥∥∥∥∥
(

n∑
j=1

EN
(
xjx

∗
j + x∗

j xj

))1/2∥∥∥∥∥
p

+ B(p)

(
n∑

j=1

‖xj‖p
p

)1/p

for some functions A(p) and B(p). Then we have:

(i) The best possible order of the lower bound for A(p) is
√

p, which cannot
be improved, even if the order of B(p) is increased.

(ii) If �(p/ logp) = A(p) = O(pβ) where β ≥ 1, then the best possible order
of B(p) is p/ logp.

The point here is that the random selector model attains the worst case in the
noncommutative Rosenthal inequality. In the commutative case, (i) was proved by
Pinelis and Utev in [35]. Later, Pinelis proved much stronger results which give
different combinations of best constants in the martingale version of Rosenthal
inequality in the context of Banach spaces. We refer the interested reader to [34]
for more details. We thank Pinelis for pointing this out to us.
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4. Illustration in compressed sensing. At the time of this writing there is
a large body of work relating tools originating from noncommutative probabil-
ity to estimates from compressed sensing; see [31, 47] for more details. Since
our improvement of the Rosenthal inequality was motivated by problems in com-
pressed sensing, we want to describe this relation toward compressed sensing. Let
us briefly recall the background here following [6, 8, 43]. We want to reconstruct
an unknown signal f ∈ C

n from linear measurements �f ∈ C
k , where � is some

known k × n matrix called the measurement matrix. The reconstruction problem
is stated as

min
∥∥f ∗∥∥

0 subject to �f ∗ = �f,(4.1)

where ‖f ‖0 = |suppf | is the number of nonzero element of f . Since this problem
is computationally expensive, we consider its convex relaxation instead.

min
∥∥f ∗∥∥

1 subject to �f ∗ = �f,(4.2)

where ‖f ‖p = (
∑n

j=1 |fj |p)1/p denotes �p norm throughout this section. Exact
reconstruction means that the solutions to (4.1) and (4.2) are both equal to f . f is
assumed to be s-sparse, that is, |suppf | ≤ s. We refer to [6, 43] for why (4.2) is
a good substitute of (4.1). However, the restricted isometry property (RIP) on �

is an extremely important tool for exact reconstruction due to Candes and Tao [7];
see also [5]. Let �T denote the k × |T | matrix consisting of the columns of �

indexed by T . The RIP constant �s is defined to be the smallest positive number
such that the inequality

C(1 − �s)‖x‖2
2 ≤ ‖�T x‖2

2 ≤ C(1 + �s)‖x‖2
2

holds for some number C > 0 and for all x ∈ �2 and all subsets T ⊂ {1, . . . , n} of
size |T | ≤ s. Candes and Tao proved the following theorem [5, 7]:

THEOREM 4.1. Let f be an s-sparse signal and � be a measurement matrix
whose RIP constant satisfies

�3s + 3�4s ≤ 2.

Then f can be recovered exactly.

Since �s is nondecreasing in s, in order to verify RIP, it suffices to show that

�4s ≤ 1
2

or simply �s ≤ 1
2 by adjusting constant if necessary. In this section, we apply

Corollary 0.5 to study the problem of reconstruction from Fourier measurements.
Two cases will be considered. In the first case, we fix the support T of f . In the
second case we allow it to vary. In the following, C will always denote the constant
in Corollary 0.5, and C

m will always denote the m-dimensional complex Euclidean
space equipped with �2 norm.
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EXAMPLE 4.2 (Fourier measurements). We consider the discrete Fourier
transform f̂ = �f where � is a matrix with entries

�ω,t = 1√
n
e−i2πωt/n, ω, t ∈ {0, . . . , n − 1}.

We want to reconstruct an s-sparse signal f ∈ C
n from linear measurements

�f ∈ C
�, where � ⊂ {0, . . . , n − 1} is a uniformly random subset with average

cardinality k and the measurement matrix � is a submatrix of � consisting of ran-
dom rows with indices in �. This is the Fourier measurement matrix considered
in [6, 8, 43]. We can formulate this random subset precisely using the Bernoulli
model. Let (δi)

n−1
i=0 be a sequence of independent selectors with Eδi = k/n, for

i = 0, . . . , n − 1. Then

� = {j : δj = 1}
and k = E|�|.

Let yi be the ith row of � and T the support of f . Write yT
i for the restriction

of yi on the coordinate in the set T . For x, y, z ∈ C
n, we define the tensor x ⊗ y as

the rank-one linear operator given by (x ⊗ y)(z) = 〈x, z〉y. Then

�∗� = ∑
i∈�

yT
i ⊗ yT

i =
n−1∑
i=0

δiy
T
i ⊗ yT

i .

Let xj = nyT
j ⊗ yT

j . Then

1

n

n−1∑
i=0

xi = idCT = IT and ‖xj‖ = n
∥∥yT

j ⊗ yT
j

∥∥ = n
∥∥yT

j

∥∥2
2 ≤ s.

The next proposition follows easily from Corollary 0.5.

PROPOSITION 4.3. Assume that the average cardinality of a random set � is
k = ε−2s. Then for tε ≤ C,

P

(∥∥∥∥∥n

k

n−1∑
i=0

δiy
T
i ⊗ yT

i − idCT

∥∥∥∥∥ ≥ tε

)
≤ se−t2/(2C2e),(4.3)

where ‖ · ‖ is the operator norm.

Define

H = idCT − n

|�|
n−1∑
i=0

δiy
T
i ⊗ yT

i .

Then �∗� = |�|
n

(IT − H). By the classical Bernstein inequality, k/2 ≤ |�| ≤
3k/2 with high probability; see [8], Lemma 6.6. Therefore, by choosing tε < 1,
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we find that the matrix IT − H is invertible with high probability. The precise
meaning of “high probability” will become clear in a moment. This proposition
is an analog of [6], Theorem 3.1, and [43], Theorem 3.3, with a single set T . We
compare our results with previous results in the following remark. It is easy to
show that P(k/2 ≤ |�| ≤ 3k/2) given by Bernstein’s inequality dominates 1 −
se−t2/(2C2e) for the value of k given below. Hence we only need to consider (4.3)
for the probability of success.

REMARK 4.4. (i) For a single set T our result is more general than previ-
ous results on the invertibility of �∗� obtained by Candes, Romberg and Tao
in the breakthrough paper [6]. In particular, if we put tε = 1/2 and ε−2 =
8C2e(M logn + log s) for some M > 0, then we obtain k = cMs logn for some
constant cM , and IT − H is invertible with probability at least 1 − O(n−M). This
gives [6], Theorem 3.1. Together with [6], Lemma 2.3, or following verbatim the
end of the proof of Theorem 4.2 ([41], Section 7.3), we recover the main results
of [6].

(ii) Allowing arbitrary choices of k and p, we recover [41], Theorem 7.3, and we
would like to thank H. Rauhut for bringing this to our attention. His proof requires
considerably more technology. Both proofs are based on the optimal constant in
the noncommutative Khintchine inequality (used in Rudelson’s lemma) which was
discovered independently by the first named author and Pisier; see [37] for more
historic comments. We believe that our proof is more direct. Moreover, Rauhut es-
tablished the exact reconstruction results based on his version of (4.3) cited above,
which shows that an estimate like (4.3) is the key to the exact reconstruction prob-
lem.

We now investigate the case with multiple choices of T . First, it is clear that
(4.3) remains valid for polynomially many sets T . In general, we have

P

(
sup

|T |≤s

∥∥∥∥∥n

k

n−1∑
i=0

δiy
T
i ⊗ yT

i − idCT

∥∥∥∥∥ ≥ tε

)
≤ |S|se−t2/(2C2e),(4.4)

where |S| denotes the number of set T with |T | ≤ s. Note that

�s = inf
α>0

sup
|T |≤s

∥∥∥∥α ∑
i∈�

yT
i ⊗ yT

i − idCT

∥∥∥∥.
It follows that

P(�s ≥ tε) ≤ P

(
sup

|T |≤s

∥∥∥∥∥n

k

n−1∑
i=0

δiy
T
i ⊗ yT

i − idCT

∥∥∥∥∥ ≥ tε

)
.

Assume s ≤ n/2. Since |S| ≤ s
(n
s

) + 1 ≤ s(ne/s)s , if

2 log s + s log
ne

s
<

t2

2C2e
,(4.5)
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then with probability at least 1 − s2(ne/s)se−t2/(2C2e), we can recover all s-sparse
signal f from its Fourier measurements �f . From here we are able to obtain differ-
ent bounds for k and the corresponding probabilities of success. As an illustration,
we have the following result.

PROPOSITION 4.5. Assume s ≤ n/2. Let M > 0 be a precision constant and
n be a large integer such that

2 log s + s log
ne

s
< (M + 1)s log

n

s
.

Then a random subset � of average cardinality

k = 8C2e(M + 1)s2 log
n

s
= cMs2 log

n

s
(4.6)

satisfies RIP with probability at least 1 − s2es(n/s)−Ms .

PROOF. Put tε = 1/2 in (4.4). Since k = sε−2, we obtain t2 = 2e(M +
1)s log(n/s). Thanks to the assumption on n, (4.5) is true. Then

P

(
�s ≥ 1

2

)
≤ s2es

(
n

s

)−Ms

.

We have proved the assertion. �

REMARK 4.6. We can relax the bound for k a little to obtain polynomial prob-
ability of success. Indeed, the same argument as Proposition 4.5 yields that a ran-
dom subset � of average cardinality

k = 8C2e(M + 1)s2 logn = cMs2 logn(4.7)

satisfies RIP with probability 1 − s2−sesn−Ms .

The good aspect of Proposition 4.5 is that k is linear in logn. Unfor-
tunately, this is weaker than Rudelson and Vershynin’s results in [43] k =
O(s logn log(s logn) log2 s) for fixed probability 1 − ε of success, which was
strengthened to super-polynomially probability of success by Rauhut following
their ideas; see [41]. These results are obtained by using deep Banach spaces tech-
niques. We added our results just for comparison. Of course, simple applications
of Khintchine’s inequality are not expected to replace either majorizing measure
techniques or the iterative methods of [43] for the uniform estimates required for
RIP. It seems known in the compressed sensing community that the tails bounds
alone are not good enough. To conclude this section, we restate a conjecture on the
best bound of k; see [43] (and [41] for further background).

CONJECTURE 4.7. A random subset � ⊂ {0,1, . . . , n − 1} of average cardi-
nality k = O(s logn) satisfies RIP with high probability.
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[27] KWAPIEŃ, S. and WOYCZYŃSKI, W. A. (1989). Tangent sequences of random variables: Basic
inequalities and their applications. In Almost Everywhere Convergence (Columbus, OH,
1988) 237–265. Academic Press, Boston, MA. MR1035249

[28] LIEB, E. H. (1973). Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv.
Math. 11 267–288. MR0332080

[29] LUST-PIQUARD, F. (1986). Inégalités de Khintchine dans Cp (1 < p < ∞). C. R. Acad. Sci.
Paris Sér. I Math. 303 289–292. MR0859804

[30] LUST-PIQUARD, F. and PISIER, G. (1991). Noncommutative Khintchine and Paley inequali-
ties. Ark. Mat. 29 241–260. MR1150376

[31] MACKEY, L., JORDAN, M. I., CHEN, R. Y., FARRELL, B. and TROPP, J. A. (2012).
Matrix concentration inequalities via the method of exchangeable pairs. Available at
arXiv:1201.6002.

[32] NAGAEV, S. V. and PINELIS, I. F. (1978). Some inequalities for the distribution of sums of
independent random variables. Theory Probab. Appl. 22 248–256.

[33] OLIVEIRA, R. I. (2009). Concentration of the adjacency matrix and of the Laplacian in random
graphs with independent edges. Available at arXiv:0911.0600.

[34] PINELIS, I. (1994). Optimum bounds for the distributions of martingales in Banach spaces.
Ann. Probab. 22 1679–1706. MR1331198

[35] PINELIS, I. F. and UTEV, S. A. (1985). Estimates of moments of sums of independent random
variables. Theory Probab. Appl. 29 574–577.

[36] PISIER, G. (1998). Non-commutative vector valued Lp-spaces and completely p-summing
maps. Astérisque 247 vi+131. MR1648908

[37] PISIER, G. (2003). Introduction to Operator Space Theory. London Mathematical Society Lec-
ture Note Series 294. Cambridge Univ. Press, Cambridge. MR2006539

[38] PISIER, G. and XU, Q. (1997). Non-commutative martingale inequalities. Comm. Math. Phys.
189 667–698. MR1482934

http://www.ams.org/mathscinet-getitem?mr=0840845
http://www.ams.org/mathscinet-getitem?mr=2815834
http://www.ams.org/mathscinet-getitem?mr=1911186
http://www.ams.org/mathscinet-getitem?mr=1893849
http://www.ams.org/mathscinet-getitem?mr=1071816
http://www.ams.org/mathscinet-getitem?mr=0770640
http://www.ams.org/mathscinet-getitem?mr=1916654
http://www.ams.org/mathscinet-getitem?mr=2268491
http://www.ams.org/mathscinet-getitem?mr=1964955
http://www.ams.org/mathscinet-getitem?mr=2119024
http://www.ams.org/mathscinet-getitem?mr=2448025
http://arxiv.org/abs/1207.0235
http://www.ams.org/mathscinet-getitem?mr=1035249
http://www.ams.org/mathscinet-getitem?mr=0332080
http://www.ams.org/mathscinet-getitem?mr=0859804
http://www.ams.org/mathscinet-getitem?mr=1150376
http://arxiv.org/abs/1201.6002
http://arxiv.org/abs/0911.0600
http://www.ams.org/mathscinet-getitem?mr=1331198
http://www.ams.org/mathscinet-getitem?mr=1648908
http://www.ams.org/mathscinet-getitem?mr=2006539
http://www.ams.org/mathscinet-getitem?mr=1482934


4316 M. JUNGE AND Q. ZENG

[39] PROHOROV, Y. V. (1959). An extremal problem in probability theory. Theory Probab. Appl. 4
201–203.

[40] RANDRIANANTOANINA, N. (2007). Conditioned square functions for noncommutative mar-
tingales. Ann. Probab. 35 1039–1070. MR2319715

[41] RAUHUT, H. (2010). Compressive sensing and structured random matrices. In Theoretical
Foundations and Numerical Methods for Sparse Recovery. Radon Ser. Comput. Appl.
Math. 9 1–92. de Gruyter, Berlin. MR2731597

[42] ROSENTHAL, H. P. (1970). On the subspaces of Lp (p > 2) spanned by sequences of inde-
pendent random variables. Israel J. Math. 8 273–303. MR0271721

[43] RUDELSON, M. and VERSHYNIN, R. (2008). On sparse reconstruction from Fourier and Gaus-
sian measurements. Comm. Pure Appl. Math. 61 1025–1045. MR2417886

[44] RUSKAI, M. B. (1972). Inequalities for traces on von Neumann algebras. Comm. Math. Phys.
26 280–289. MR0312284

[45] SIMON, B. (2005). Trace Ideals and Their Applications, 2nd ed. Mathematical Surveys and
Monographs 120. Amer. Math. Soc., Providence, RI. MR2154153

[46] TEMME, N. M. (1996). Special Functions: An Introduction to the Classical Functions of Math-
ematical Physics. Wiley, New York. MR1376370

[47] TROPP, J. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput.
Math. 12 389–434.

[48] VOICULESCU, D. V., DYKEMA, K. J. and NICA, A. (1992). Free Random Variables: A Non-
commutative Probability Approach to Free Products with Applications to Random Matri-
ces, Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series
1. Amer. Math. Soc., Providence, RI. MR1217253

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ILLINOIS

URBANA, ILLINOIS 61801
USA
E-MAIL: junge@math.uiuc.edu

zeng8@illinois.edu

http://www.ams.org/mathscinet-getitem?mr=2319715
http://www.ams.org/mathscinet-getitem?mr=2731597
http://www.ams.org/mathscinet-getitem?mr=0271721
http://www.ams.org/mathscinet-getitem?mr=2417886
http://www.ams.org/mathscinet-getitem?mr=0312284
http://www.ams.org/mathscinet-getitem?mr=2154153
http://www.ams.org/mathscinet-getitem?mr=1376370
http://www.ams.org/mathscinet-getitem?mr=1217253
mailto:junge@math.uiuc.edu
mailto:zeng8@illinois.edu

	Introduction
	Noncommutative Bennett inequality
	Large deviation principle
	Improved noncommutative Rosenthal's inequality
	Illustration in compressed sensing
	Acknowledgments
	References
	Author's Addresses

