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Abstract: This study introduces a new method of visualizing complex
tree structured objects. The usefulness of this method is illustrated in the
context of detecting unexpected features in a data set of very large trees.
The major contribution is a novel two-dimensional graphical representation
of each tree, with a covariate coded by color.

The motivating data set contains three dimensional representations of
brain artery systems of 105 subjects. Due to inaccuracies inherent in the
medical imaging techniques, issues with the reconstruction algorithms and
inconsistencies introduced by manual adjustment, various discrepancies are
present in the data. The proposed representation enables quick visual de-
tection of the most common discrepancies. For our driving example, this
tool led to the modification of 10% of the artery trees and deletion of 6.7%.
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406 B. Aydwn et al.

The benefits of our cleaning method are demonstrated through a statis-
tical hypothesis test on the effects of aging on vessel structure. The data
cleaning resulted in improved significance levels. Our second example anal-
yses brain artery images of healthy patients and patients with brain tumor.
Our visualization can identify tumor patients.

AMS 2000 subject classifications: Primary 62-09; secondary 62-07.

Keywords and phrases: Visualization, data cleaning, tree structure,
descendant-level view, brain arteries.
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1. Introduction

Most real life data sets contain a variety of challenging features, which can be
noise artifacts or other kinds of discrepancies. Elimination of these artifacts may
result in sharper statistical results. Relationships that were previously obscured
may become more clear.

Our motivation comes from a data set of brain artery systems of 105 subjects
collected by the CASILAB (casilab.med.unc.edu). The extraction of this data
set from raw Magnetic Resonance Angiography (MRA) images are summarized
in Section 2, and further details can be found in Aylward and Bullitt [2].

An earlier version of this data set consisting of 73 data points (Data Set 1)
was used to statistically analyze the effect of aging in brain vessel structure in
Wang and Marron [10] and Aydin et al. [1]. In the latter paper, the rich three
dimensional structure of the vessel systems are summarized by binary trees
which only keep connectivity information. The aim was to strip the features
other than branching from the data and obtain a simplified representation to
study the effect of aging on the branching structure of the vessels. Figure 1
shows the 3 — D image of a brain vessel system and one of the binary trees
extracted from it.

Since the original analysis, 34 more subjects were added to the study and two
low quality cases were deleted. Careful anatomical examination of each data tree
revealed some errors in the flow direction of vessels and revealed that starting
points were arbitrary depending on the head position in the scanner. The 3 di-
mensional trees (as in the left panel of Figure 1) in Data Set 1 were constructed
by an automatic vessel connection algorithm (see Aylward and Bullitt [2] for de-
tails) which occasionally resulted in anatomically incorrect connections. These
issues were addressed, in a painstaking case by case fashion, by manual reconnec-
tion of tree components. The head position problem was addressed by starting
each tree at the circle of Willis (well known, common component of human
brains). When there were more than four trees, trees were combined to result
in the best approximation of front, left, right, back flow systems. The resulting
data set is called Data Set 2. As shown in Aydin et al. [1], the same statisti-
cal methods applied to this new data set reveal a remarkable improvement in
significance levels. This demonstrates the value of improved data quality.

However, even after this cleaning process, many discrepancies are known to
remain in the data set. The details of 3 separate problems that we found in the
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Fic 1. On the left: Reconstructed set of trees of brain arteries. The colors indicate regions
of the brain: Back (gold), Right (blue), Front (red), Left (cyan). On the right: Binary tree
obtained from the back (gold tree) of the same subject. Only branching information is retained.

data are explained in Section 4. Some of these discrepancies are fundamental
in a way that they may change the observed structure of the vessel system.
Elimination of as many of these problems as possible will improve the quality
of a statistical analysis.

Another point of interest for this data set is the effect of various diseases on
the vessels. Bullitt et al. [3] studies these effects in detail. They identify three
patterns of anomalies in brain vessels and introduce metrics that can be used to
identify affected vessels. As a second example we focus here on Type III pattern.
Type III abnormalities are apparent in malignant brain tumors. These vessels
can be any length, and can be straight or curved. The underlying pattern is
that, near tumors, they exhibit high frequency coils.

The Type III anomalies associated with a tumor may be visible before the
tumor is large enough to be noticed in screenings. Therefore the ability to rec-
ognize these is a valuable input for a clinician. Bullitt et al. [3] uses the term
tortuosity to describe the coiling, twisting pattern of Type III. They introduce
the Sum of Angles Metric (SOAM) to measure tortuosity of vessels.

The full 3 dimensional tree structures, e.g. as shown in the left panel of Figure
1, contain a large amount of visual information. This makes it hard to see and
understand the relevant problems with the data. The right panel of Figure 1
shows a simplified, topology only structure, which enables focusing on purely
topological aspects. However, this representation only works to node level 10
to 11 where there is not space to display more nodes. A major contribution of
this paper is, due to the graphical representation that enables focusing on the
important aspects of each data tree, we are able to obtain a simplified view that
can be quickly inspected. This view carries the important information necessary
to spot problems and eliminates others.

One problem with the 3 — D representation is that, the amount of details
present in the set is very high. Examining this set thoroughly requires checking
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the linkage and position of each branch in each subject separately, an extremely
tedious job to process manually. It is important to reduce the level of complica-
tion without losing the aspects necessary to track down discrepancies.

Graphically representing each data tree can be a powerful method to both
understand the data and discover any problems. Carefully designing a visual
representation of the data provides efficient visual inspection of each of these
instances and may enable these discoveries without any further diagnostics. The
challenge is to clearly display the important aspects of the data and eliminate
the details that will not help with the diagnostics.

In this paper we propose a visualization method that enables the discovery
of discrepancies with ease through a concise summary which eliminates irrele-
vant details. The definition of concise summary is agreed upon after carefully
analyzing the structure of the problem, and the nature of common problems
in it. For our first example where we aim to flag structural discrepancies, we
recognized that the key aspects are:

e Number or descendants of a node in the tree,
e Level of a node,
e Vessel thickness.

For example, misconnections are easily seen as thick vessels appearing at a
low level or as a low level node with many descendants. For our second example,
along with structural properties of each node (number of descendants and level),
the tortuosity measure of each node is the key to discover possible tumors.

Our visualization could easily be modified to display additional properties
using node size, node shape, edge color and edge thickness, depending on the
nature of the data set to be displayed. We expect our method to be useful
for displaying any tree set where branching structure is of interest. Example
areas include social networks, evolutionary biology, and medical imaging. For
example, in the latter area, there are many branching structures in the human
body including vasculature, airways, lymph systems, etc.

Effective ways of visualizing trees have been previously proposed in the lit-
erature. A widely studied very special case is phylogenetic trees. Letunic and
Bork [5] and Huson et al. [4] are two recent studies, which include good litera-
ture surveys on the subject for the further interested reader. The main focus of
phylogenetic tree visualization studies is to clearly represent the relationships
between a given set of species, where each species is represented as a leaf on the
tree. The aim is to show the taxonomical hierarchies between species which is
revealed through the structure of the parent nodes.

These trees start out from an identified set of leaf nodes (species) and aim to
aid researchers in studying the possible evolutionary relationships through the
constructed phylogenetic tree’s structure. A key aspect for phylogenetic trees is
that, the leaf set for all the trees in one population is fixed (these are current
species). What changes from one tree to another is the structure above the
leaves. This structure represents the predicted ancestry relationship between
existing species.
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Our context is much more general than phylogenetic tree because the leaves
do not correspond to each other across the members of a population. In par-
ticular, the generating mechanisms of the structure lead to differing leaf sets.
Therefore the visualization methods developed to construct phylogenetic trees
are inadequate for our more general set of data objects.

In the context of very large trees, Nguyen and Huang [6] and Nguyen and
Huang [7] studied methods to visualize these in 2 dimensional space. They use
a concept called enclosure to partition the entire display space into a collection
of local regions that are assigned to each node of a tree. Their approach is
different from ours because they are dealing with very large trees, up to 50000
nodes. Because our trees are comparatively moderately sized (100 — 200 nodes),
our approach enables us to focus more on tree structure rather than on space
optimization.

Search trees generated by finite domain constraint programs have also been
investigated in the literature. Simonis and Aggoun [8] did a visualization study of
such trees, using a software tool they developed to debug algorithms through tree
visualizations. Though interesting, the nature of these trees are very different
from our data set, and methods to analyze them are not applicable to our
situation.

Finally, a recently popular approach is tree-maps. Tree-maps transform the
traditional branched tree view into a rectangle divided into sub-rectangles, ar-
ranged according to some properties of interest of the nodes. Shneiderman [9]
proposed the tree-map idea, and numerous variations have been studied in the
literature. This approach is useful with categorical data where a parent node
represents an attribute common to all its children. This approach again is not
suitable for our data set.

The organization of this paper is as follows: Section 2 gives a description of
how the binary trees used for statistical analysis are produced from the 3 — D
representations as shown in Figure 1. Section 3 develops the details of the pro-
posed visualization method. Section 4 indicates some problems that commonly
arise within the data set. Section 5 explains how the visualization method is
used to identify these problems. The results of the cleaning process together
with a comparative statistical analysis is also given in this section.

2. Extraction of binary trees from the raw data

Following Aydin et al. [1], the way the binary trees are extracted is as follows:
For each of the instances (brain scans), the back, left, right and front regions
are handled separately. Each of these subsystems usually consist of one main
(root) vessel entering the brain from below, and splitting into smaller branches
to feed that region of the brain. The portion of the root vessel until a branch
splits off is taken as the root node, and the two vessels that take place after the
split are the left and right children nodes of the root. The same procedure is
applied at each juncture point. In the end, a binary tree is obtained, where each
vessel trunk between two split points in the original structure corresponds to a
node.
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An issue is, whether a vessel splits into three or more branches at a single
point. In this data set splitting into more than two branches is very rare, and
these occurrences do not carry any important implications on structure. There-
fore keeping the simple binary structure seems more important than capturing
these rare occurrences. In the cases that this happens, one of the child vessels
is arbitrarily selected as the first one to split off, and the binary tree is created
accordingly.

In some of the instances, there can be two root vessels feeding one region.
In these cases, for simplicity, one phantom root node is added and the roots of
these two trees are connected to the phantom root node as children, so that a
single binary tree is obtained for each instance in the sub-populations. These
binary trees are called component trees.

3. Visualization

An example of our visualization can be seen in Figure 2. Each node is represented
with a colored dot and each parent-child couple is connected with a line segment,
revealing the connectivity. An important indicator of a node’s significance within
the structure is the number of descendants that it has. The nodes with the larger
number of descendant nodes are more central, and in our case, more crucial to
the blood flow, compared to the ones with a smaller number of descendants. For
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Fic 2. A wisual display of the right component tree of subject 60, Data Set 2.
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this reason we choose to use the y-coordinate to show the number of descendants
of each node. For compact summarization the logarithm (base 2) is used on
this axis. The x-axis shows the level of the node in the binary tree. The level
signifies how close each node is to the root node. Because of this axis selection,
the visualization is called the D-L view (Descendant-Level view). This view can
essentially be seen as a scatter plot of nodes connected to each other with respect
to their parent-child relations.

In the lower levels, many nodes have the same coordinates (number of de-
scendants and level). To avoid the over-plotting of these nodes, some jittering
(adding small amounts of random displacement for improved visual separation)
is applied at the lower levels.

In Figure 2, color is used to code thickness. Because the thickness of the
vessel segments is important to understand tree structures and potential errors,
the median thickness is coded by color when the aim is to identify structural
problems. This choice was made because the thickness measure of vessels in this
data set is a major indicator of data problems: nodes thicker than the normal
range or their parents usually point to a tracking or recording problem. In
addition, color coding enables quick visual scans and brings out the problematic
nodes even in crowded areas. For other kinds of data sets it is possible to reserve
color for another important variable, as in our brain tumor example.

In the brain vessel data set, thickness rarely exceeds 4 millimeters, so the
range of thickness used is [0, 4]. Thicker nodes are put in the top 4mm bin. This
range is linearly projected onto a color map which consists of 100 shades, or bins,
shown as the color bar on the right. The thicknesses close to 4mm correspond
to dark red shades. As vessels thin, the color follows a range through yellow,
green, to a dark shade of blue. The distribution of thicknesses is summarized in
a bar chart, indicating the counts of the nodes that fall into the range of each
bin, displayed on the right hand side of the figure. The numbers displayed on
the right top corner show the thickness range of the nodes for that particular
data tree, i.e. in Figure 2 the thinnest node has a thickness of 0.58mm.

4. Identification of common structural problems

Based on anatomical knowledge and experience, several types of discrepancies
that may exist in the data have been identified. Note that some natural noise
exists in this data along with tracking and labeling errors listed below. An
important aim of the D-Li view was to design a clear representation of the data
such that these errors can be told apart from the natural noise. In Figure 2, on
level 4, a vessel segment thicker than its parent exists, which is not a regular
occurrence. However, the thickness difference of that segment with its parent is
within measurement error range, so this instance is not flagged for checking.
The Data Set 2 is a result of a different, more anatomically based, case by
case clean up process and the addition of 34 more cases. That clean-up process
aimed to correct the cut off point problems of the vessel systems, by manually
going through each instance and examining them. This study is meant to develop
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Fic 3. The D-L view of the back component tree of subject 55. Red/yellow subtree starting
from level 6 is a possible misconnection.

a visual method to diagnose a wider range of problems without scrutinizing the
raw data form as shown in Figure 1, which is loaded with information and thus
is hard to examine. The methods explained here are applied to Data Set 2, as
presented in Section 5, to obtain Data Set 3.

We have identified the following major kinds of discrepancies that can be

corrected through inspection:

e Misconnections: Some vessels that are not anatomically connected ap-

pear connected in the representation seen in left panel of Figure 1, due to
being close to each other relative to the accuracy of the MRA image slices.
This error may result in misinterpretation of the blood flow of direction,
and one of these vessels is seen as an extension of the other in the model.
Normally, the vessel trunks that are connected to each other are expected
to have similar thicknesses, and this thickness should generally decrease
as one goes from root nodes to the leaves. A sudden jump in thickness
is an indication of misconnection, i.e. when a thinner parent node has a
much thicker sub-tree descending from it. Figure 3 shows an example of
this situation. Notice that the red/yellow subtree starting from level 6 is
much thicker than its parent vessel.

Starting Point Problems: Determining the point where a vessel enters
the brain highly depends on the cutoff point of the MRA images (depend-
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F1G 4. The D-L view of the right component tree of subject 28. The irregularities close to the
root node indicate a possible starting point problem.

ing on head position in the scanner). In some cases, this cutoff point is
mistakenly taken at a too low or too high level. It is also possible to mark
a child of a root as the root node. Figure 4 shows a tree with a possible
starting point problem. The initial series of thick red nodes suggest that
the MRA starting point was taken too low.

e Veins: The tracking system used to obtain the data trees is intended to
record only arteries in the brain. However, in some cases, veins that run
very close to an artery are mistakenly identified as an extension of that
artery. These veins are usually thicker than the parent artery, and show up
as red leaf nodes on the visualization. An example of this kind of problem
is displayed in Figure 5.

5. Solutions and results

5.1. Discovering structural discrepancies

Through a careful inspection of the visual displays of all points in the data
set, problematic instances are marked to be reviewed again. The numbers of

instances marked for review for each sub-population are given in the top row of
Table 1.
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F1Gc 5. The D-L view of the back component tree of subject 24. The red leaf on the third level
is identified as a possible vein.

TABLE 1
Numbers of instances marked for reviewing (top row) and numbers of instances manually
modified after raw data inspection (bottom row) for each kind of problem and for each tree
location

Misconnection Starting Point Vein

LIR|F|B|L|R|F|B L R | F
3142|3643 [18]16]23]9
2 13|02 |6]|4]3 4 1 5 1

NS Moy

Note that the 4 sub-populations contain a total of 420 data trees. The process
resulted in spotting 98 of them (24%) as potentially problematic instances that
may significantly benefit from manual review of the 3 — D raw data.

As a result of a careful study of the instances flagged, 7 cases were identified
as severely problematic (consistent with major errors in the scanning process),
and were excluded from the data set. For the remaining cases, the bottom row
of Table 1 shows the number of instances that were manually modified out of
each problem group.

Of the remaining marked component trees, 35 were selected for manual mod-
ification based on inspection of the raw data. The artifacts in the remaining 56
instances were manually determined to be consistent with the natural noise.

While our visual diagnostic found many errors among the tree data, it is not
perfect. In particular, one of the marked trees revealed an error different than
flagged by the diagnostic.
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Fic 6. The D-L view of the back component tree of subject 55 (Figure 3) after correction.
The misconnected subtree is deleted.

Next, our visualization of the cleaned version of each of the above three
example cases (with discrepancies) will be studied.

Figure 6 shows the corrected version of Case 55, back component tree (from
Figure 3). Notice that the red/yellow subtree that was incorrectly attached to
this tree has been removed.

Figure 7 shows the result of fixing the starting point problem with the Case
28 right component tree. Notice that the irregularity close to the root node (a
series of dark red nodes) has been corrected by changing the cut-off level to a
higher point.

Figure 8 shows that, after revision of subject 24’s back component tree, the
red leaf node seen in Figure 5 was indeed identified as a vein and was removed
from the data tree.

All of these modifications in the data resulted in Data Set 3. In particular, 7
high-problem cases have been removed from Data Set 2 and the 35 component
trees have been corrected.

An important question regarding the clean up study is that: does the elimi-
nation of several problems improve the data set in terms of age effect? In other
words, is the age effect more pronounced now or not? Wang and Marron [10] and
Aydin et al. [1] have previously used a statistical analysis tool called tree-line
analysis to measure the effect of aging on brain vessel structure in a smaller
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Case28 Right Corrected Thickness: [3.42,0.70]
4
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F1c 7. The D-L view of the right component tree of subject 28 (Figure 4), corrected by changing
the cut-off point of the root vessel.

TABLE 2
The slope p-values of first principal components obtained using the tree-line tool. Columns
compare the Data Sets 2 and 3. Smaller values point to greater significance level

| |Set3|Set2|

Back | 0.0318 | 0.0715
Front | 0.0296 | 0.0436
Right | 0.0685 | 0.0743
Left 0.0916 | 0.0493

data set (Data Set 1). The same tool is used here to compare Data Set 2 and
3 in terms of age effect.

Table 2 summarizes the slope p-value comparisons of two data sets (2&3) us-
ing the tree-line tool. It displays the the slope p-values obtained from first prin-
cipal components against the age variable. Smaller p-values point to a greater
statistical significance level, that is, a tighter relation between age and projected
tree sizes. According to the findings of this analysis, the significance level in-
creases (p-value decreases) in 3 out of 4 sub-populations with the cleaning. This
means the age effect on brain vessel structure gets more pronounced after the
cleaning process, in accordance with the expectations.

Although the cleaning process generated an improvement on age-projection
size relation, the change is not dramatic. It is clear that the visualization process
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Fic 8. The D-L view of the back component tree of subject 24 (Figure 5), corrected by the
deletion of a vein.

resulted in the correction of many instances and thus provided a more reliable
data set. However, most of these corrections are local compared to the sizes
of whole trees within the sub-populations. The effect of aging is related to the
general trend of branchiness within those trees, and this trend did not dramat-
ically change with our cleaning: data trees with many branches still have a lot
of branches and vice versa.

The visualization method is not claimed to detect all possible problems that
exist in the data sets. It relies on the irregular thickness differences of seem-
ingly adjacent nodes. It is possible that there are still instances in the data
set that contain for example misconnected vessels, but if those vessels wrongly
connected have similar thicknesses, they will show up as normal branches on
the visualization. However, there is no way of spotting those problems without
using anatomical knowledge and the raw data, which would be an enormously
time consuming task. The aim here is to provide a simple and quick new tool
for finding problem instances.

5.2. Identifying brain tumor patients

In this section we will illustrate the use of our method to visually inspect the
brain vessel system for a tumor marker (Type III tortuosity). In this example,
we use color to code the SOAM measure for each node rather than thickness.
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Case1 Right (Normal) mdSQAM: [40.90,0.00]
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F1¢ 9. The D-L view of a healthy subject where color expresses the SOAM measure for each
node.

Unlike the previous example, the coloring scheme is not linear. We have used
a spline function to project the SOAM measure of each node onto the color
range. Specifically, nodes with SOAM measures between 0 and 40 are linearly
projected onto the blue range, between 41 — 44 are cyan, 45 — 47 are yellow and
finally any measure at or above 48 are projected to the red region. This choice
comes from the nature of this measure. The normal range seems to be between
0 and 40, and possibly up to 44 depending on the location. Higher measures,
corresponding to yellow and red, should be watched out for.

Vessels around a tumor may not be adjacent in the D-L view, because physical
proximity is not represented. Only physically attached vessels will appear as
connected. Therefore the seemingly separate high tortuosity nodes seen in Figure
10 may be physically close, feeding a single tumor.

More example views of healthy subjects and tumor patients can be found in
supplementary materials in the journal’s web site. These shows similar lessons
as represented in Figures 9 and 10.

5.3. Conclusions

In conclusion, the contribution of the visualization method is clear. In our struc-
tural diagnostics example, 43% of the instances that are marked for inspection
revealed mistakes that it was appropriate to correct. As a result, the statistical



Visualizing the structure of large trees 419

Case25 Right (Tumor) mdSQAM: [49.36,0.00]
60 —

log2(#Descendants + 1)

F1c 10. The D-L view of a subject with brain tumor where color codes the SOAM measure.
The blue and cyan nodes have mormal tortuosity levels. The high tortuosity nodes, indicated
as red and yellow, imply these may be vessels feeding a tumor.

significance of age effect on vessel structure improved, pointing to a less noisy
data. The method provides an effective diagnostic for data clean up in similar
populations of binary trees. Our second example of comparison of healthy and
tumorous brain views illustrates how the D-L view can be used to inspect vessel
images for tumor markers.

References

[1] AypIiN, B., PaTaki, G., WanG, H., BurLitT, E., MARRON, J.S. (2009)
A Principal Component Analysis For Trees, Annals of Applied Statistics,
3, 1597-1615.

[2] AyLwARD, S. AND BuLLITT, E. (2002) Initialization, noise, singularities
and scale in height ridge traversal for tubular object centerline extraction,
IEEFE Transactions on Medical Imaging, 21, 61-75.

[3] BuLLiTT E, GERIG G, P1ZER SM, AYLWARD S. (2003) Measuring tortuos-
ity of the intracerebral vasculature from MRA images. IEEE-TMI 22:1163-
1171.



420

[4]

B. Aydwn et al.

Huson, D., RicHTER, D., RauscH, C., DEzULIAN, T., FrRANZ, M.,
Rupp, R. (2007) Dendroscope: An interactive viewer for large phyloge-
netic trees, BMC' Bioinformatics, 8, 460.

LETUNIC, 1., BORK, P. (2006) Interactive Tree of Life (iTOL): an online
tool for phylogenetic tree display and annotation, Bioinformatics Applica-
tions Note, 23-1, 127-128.

NGUYEN, Q., HuaNnG, M. (2002) A Space-Optimized Tree Visualization,
INFOVIS ’02: Proceedings of the IEEE Symposium on Information Visu-
alization (InfoVis’02), 85.

NGUYEN, Q., HuaNnG, M. (2007) Improvements of Space-Optimized Tree
for Visualizing and Manipulating Very Large Hierarchies, Pan-Sydney Area
Workshop on Visual Information Processing (VIP2002), Sydney, Australia,
Conferences in Research and Practice in Information Technology, Vol. 22.
SiMonts, H., AGGOUN, A. (2000) Search-Tree Visualization, Lecture Notes
In Computer Science, Vol. 1870, 191-208.

SHNEIDERMAN, B. (1998) Tree Visualization With Tree-Maps: 2-D Space
Filling Approach, ACM Trans. Graph, 11-1, 92-99.

WaNG, H. AND MARRON, J. S. (2007) Object oriented data analysis: Sets
of trees, The Annals of Statistics, 35, 1849-1873. MR2363955


http://www.ams.org/mathscinet-getitem?mr=2363955

	Introduction
	Extraction of binary trees from the raw data
	Visualization
	Identification of common structural problems
	Solutions and results
	Discovering structural discrepancies
	Identifying brain tumor patients
	Conclusions

	References

