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This research is dedicated to Erich L. Lehmann, the thesis advisor of one of us
and “grand thesis advisor” of the others. It is a work in which we try to develop
nonparametric methods for doing inference in a setting, unlabeled networks, that

he never considered. However, his influence shows in our attempt to formulate
and develop a nonparametric model in this context. We also intend to study to

what extent a potentially “optimal” method such as maximum likelihood can be
analyzed and used in this context. In this respect, this is the first step on a road he

always felt was the main one to stick to.

Probability models on graphs are becoming increasingly important in
many applications, but statistical tools for fitting such models are not yet well
developed. Here we propose a general method of moments approach that can
be used to fit a large class of probability models through empirical counts
of certain patterns in a graph. We establish some general asymptotic proper-
ties of empirical graph moments and prove consistency of the estimates as
the graph size grows for all ranges of the average degree including �(1).
Additional results are obtained for the important special case of degree dis-
tributions.

1. Introduction. The analysis of network data has become an important com-
ponent of doing research in many fields; examples include social and friendship
networks, food webs, protein interaction and regulatory networks in genomics,
the World Wide web and computer networks. On the algorithmic side, many algo-
rithms for identifying important network structures such as communities have been
proposed, mainly by computer scientists and physicists; on the mathematical side,
various probability models for random graphs have been studied. However, there
has only been a limited amount of research on statistical inference for networks,
and on learning the network features by fitting models to data; to a large extent,
this is due to the gap between the relatively simple models that are analytically
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tractable and the complex features of real networks not easily reproduced by these
models.

Probability models on infinite graphs have a nice general representation based
on results [Aldous (1981), Hoover (1979), Kallenberg (2005), Diaconis and Janson
(2008)], analogous to de Finetti’s theorem, for exchangeable matrices. Here, we
give a brief summary closely following the notation of Bickel and Chen (2009).
Graphs can be represented through their adjacency matrix A, where Aij = 1 if
there is an edge from node i to j and 0 otherwise. We assume Aii = 0, that is, there
are no self-loops. Aij ’s can also represent edge weights if the graph is weighted,
and for undirected graphs, which is our focus here, Aij = Aji . For an unlabeled
random graph, it is natural to require its probability distribution P on the set of
all matrices {[Aij ], i, j ≥ 1} to satisfy [Aσiσj

] ∼ P , where σ is an arbitrary per-
mutation of node indices. In that case, using the characterizations above one can
write

Aij = g(α, ξi, ξj , λij ),(1.1)

where α, ξi and λij are i.i.d. random variables distributed uniformly on (0,1),
λij = λji and g is a function symmetric in its second and third arguments. α as in
de Finetti’s theorem corresponds to the mixing distribution and is not identifiable.
The equivalent of the i.i.d. sequences in de Finetti’s theorem here are distributions
of the form Aij = g(ξi, ξj , λij ). This representation is not unique, and g is not
identifiable. These distributions can be parametrized through the function

h(u, v) = P[Aij = 1|ξi = u, ξj = v].(1.2)

The function h is still not unique, but it can be shown that if two functions h1
and h2 define the same distribution P , they can be related through a measure-
preserving transformation, and a unique canonical h can be defined, with the prop-
erty that

∫ 1
0 hcan(u, v) dv is monotone nondecreasing in u; see Bickel and Chen

(2009) for details. From now on, h will refer to the canonical hcan. We use the
following parametrization of h: let

ρ =
∫ 1

0

∫ 1

0
h(u, v) dudv(1.3)

be the probability of an edge in the network. Then the density of (ξi, ξj ) condi-
tional on Aij = 1 is given by

w(u, v) = ρ−1h(u, v).(1.4)

With this parametrization, it is natural to let ρ = ρn, make w independent of n and
control the rate of the expected degree λn = (n − 1)ρn as n → ∞. The case most
studied in probability on random graphs is λn = �(1) [where an = �(bn) means
an = O(bn) and bn = O(an)]. The case of λn = 1 corresponds to the so-called
phase transition, with the giant connected component emerging for λn > 1.
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Many previously studied probability models for networks fall into this class.
It includes the block model [Holland, Laskey and Leinhardt (1983), Snijders and
Nowicki (1997), Nowicki and Snijders (2001)], the configuration model [Chung
and Lu (2002)] and many latent variable models, including the univariate [Hoff,
Raftery and Handcock (2002)] and multivariate [Handcock, Raftery and Tantrum
(2007)] latent variable models, and latent feature models [Hoff (2007)]. In fact,
dynamically defined models such as the “preferential attachment” model [which
seems to have been first mentioned by Yule in the 1920s, formally described by
de Solla Price (1965) and given its modern name by Barabási and Albert (1999)]
can also be thought of in this way if the dynamical construction process contin-
ues forever producing an infinite graph; see Section 16 of Bollobás, Janson and
Riordan (2007).

Bickel and Chen (2009) pointed out that the block model provides a natural
parametric approximation to the nonparametric model (1.2), and the block model
is the main parametric model we consider in this paper; see more details in Sec-
tion 3. The block model can be defined as follows: each node i = 1, . . . , n is as-
signed to one of K blocks independently of the other nodes, with P(ci = a) = πa ,
1 ≤ a ≤ K ,

∑K
a=1 πa = 1, where K is known, and c = (c1, . . . , cn) is the n × 1

vector of labels representing node assignments to blocks. Then, conditional on c,
edges are generated independently with probabilities P[Aij = 1|ci = a, cj = b] =
Fab. The vector of probabilities π = {π1, . . . , πK} and the K × K symmetric ma-
trix F = [Fab]1≤a,b≤K together specify a block model. The block model is typ-
ically fitted either in the Bayesian framework through some type of Gibbs sam-
pling [Snijders and Nowicki (1997)] or by maximizing the profile likelihood using
a stochastic search over the node labels [Bickel and Chen (2009)]. Bickel and
Chen (2009) also established conditions on modularity-type criteria such as the
Newman–Girvan modularity [see Newman (2006) and references therein] give
consistent estimates of the node labels in the block model, under the condition
of the graph degree growing faster than logn, where n is the number of nodes.
They showed that the profile likelihood criterion satisfies these conditions.

The block model is very attractive from the analytical point of view and useful
in a number of applications, but the class (1.2) is much richer than the block model
itself. Moreover, the block model cannot deal with nonuniform edge distributions
within blocks, such as the commonly encountered “hubs,” although a modification
of the block model introducing extra node-specific parameters has been recently
proposed by Karrer and Newman (2011) to address this shortcoming. It may also
be difficult to obtain accurate results from fitting the block model by maximum
likelihood when the graph is sparse.

In this paper, we develop an alternative approach to fitting models of type (1.2),
via the classical tool of the method of moments. By moments, we mean empiri-
cal or theoretical frequencies of occurrences of particular patterns in a graph, such
as commonly used triangles and stars, although the theory is for general patterns.
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While specific parametric models like the block model can be fitted by other meth-
ods, the method of moments applies much more generally, and leads to some gen-
eral theoretical results on graph moments along the way. We note that related work
on the method of moments was carried out for some specific parametric models in
Picard et al. (2008).

A well-studied class of random graph models where moments play a big role is
the exponential random graph models (ERGMs). ERGMs are an exponential fam-
ily of probability distributions on graphs of fixed size that use network moments
such as number of edges, p-stars and triangles as sufficient statistics. ERGMs were
first proposed by Holland and Leinhardt (1981) and Frank and Strauss (1986) and
have then been generalized in various ways by including nodal covariates or forc-
ing particular constraints on the parameter space; see Robins et al. (2007) and ref-
erences therein. While the ERGMs are relatively tractable, fitting them is difficult
since the partition function can be notoriously hard to estimate. Moreover, they of-
ten fail to provide a good fit to data. Recent research has shown that a wide range of
ERGMs are asymptotically either too simplistic, that is, they become equivalent to
Erdös–Renyi graphs, or nearly degenerate, that is, have no edges or are complete;
see Handcock (2003) for empirical studies and Chatterjee and Diaconis (2011) and
Shalizi and Rinaldo (2011) for theoretical analysis.

The rest of the paper is organized as follows. In Section 2, we set up the notation
and problem formulation and study the distribution of empirical moments, proving
a central limit theorem for acyclic patterns. We also work out examples for several
specific patterns. In Section 3 we show how to use the method of moments to fit
the block model, as well as identify a general nonparametric model of type (1.2).
In Section 4, we focus on degree distributions, which characterize (asymptotically)
the model (1.2). Section 5 discusses the relationship between normalized degrees
and more complicated pattern counts that can be used to simplify computation of
empirical moments. Section 6 concludes with a discussion. Proofs and additional
lemmas are given in the Appendix.

2. The asymptotic distribution of moments.

2.1. Notation and theory. We start by setting up notation. Let Gn be a random
graph on vertices 1, . . . , n, generated by

P(Aij = 1|ξi = u, ξj = v) = hn(u, v) = ρnw(u, v)I (w ≤ ρ−1
n ),(2.1)

where w(u, v) ≥ 0, symmetric, 0 ≤ u, v ≤ 1, ρn → 0. We cannot, unfortunately,
treat ρn and w as two completely free parameters, as we need to ensure that h ≤ 1.
We can either assume that the sequence ρn is such that ρnw ≤ 1 for all n, or restrict

our attention to classes where wn(u, v) = w(u, v)I (w(u, v) ≤ ρ−1
n )

L2→ w(u, v). In
either case, we can ignore the weak dependence of wn on ρn and effectively replace
wn with w.
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Let T : L2(0,1) → L2(0,1) be the operator defined by

[Tf ](u) ≡
∫ 1

0
h(u, v)f (v) dv.

We drop the subscript n on h, T when convenient. Similarly, let Tw : L2(0,1) →
L2(0,1) be defined by w. Let

Di = ∑
j

Aij , D̄ = 1

n

n∑
i=1

Di = 2L

n
.

Thus Di is the degree of node i, D̄ is the average degree and L is the total number
of edges in Gn.

Let R be a subset of {(i, j) : 1 ≤ i < j ≤ n}. We identify R with the vertex
set V (R) = {i : (i, j) or (j, i) ∈ R for some j} and the edge set E(R) = R. Let
Gn(R) be the subgraph of Gn induced by V (R). Recall that two graphs R1 and R2
are called isomorphic (R1 ∼ R2) if there exists a one-to-one map σ of V (R1) to
V (R2) such that the map (i, j) → (σi, σj ) is one-to-one from E(R1) to E(R2).

Throughout the paper, we will be using two key quantities defined next:

Q(R) = P
(
Aij = 1, all (i, j) ∈ R

)
,

P (R) = P
(
E(Gn(R)) = R

)
.

Next, we give a proposition summarizing some simple relationships between P

and Q. The proof, which is elementary, is given in the Appendix. Similar results
are implicit in Diaconis and Janson (2008).

PROPOSITION 1. If Gn is a random graph, and R a subset of {(i, j) : 1 ≤ i <

j ≤ n}, then

P(R) = E

{ ∏
(i,j)∈R

h(ξi, ξj )
∏

(i,j)∈R̄

(
1 − h(ξi, ξj )

)}

= Q(R) − ∑{
Q

(
R ∪ (i, j)

)
: (i, j) ∈ R̄

}
(2.2)

+ ∑{
Q

(
R ∪ {(i, j), (k, l)}) : (i, j), (k, l) ∈ R̄

} − · · · ,
where R̄ = {(i, j) /∈ R, i ∈ V (R), j ∈ V (R)}. Further,

Q(R) = ∑{P(S) :S ⊃ R,V (S) = V (R)}.(2.3)

Here R ⊂ S refers to S ⊂ {(i, j) : i, j ∈ V (R)}.
The quantities P(R) and Q(R) are unknown population quantities which we

can estimate from data, that is, from the graph Gn. Define, for R ⊂ {(i, j) : 1 ≤ i <

j ≤ n} with |V (R)| = p,

P̂ (R) = 1(n
p

)
N(R)

∑{1(G ∼ R) :G ⊂ Gn},
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where N(R) is the number of graphs isomorphic to R on vertices 1, . . . , p. For
instance, if R is a 2-star consisting of two edges (1,2), (1,3), then N(R) = 3.
Further, let

Q̂(R) = ∑{P̂ (S) :S ⊃ R,V (S) = V (R)}.
Here we use R and S to denote both a subset and a subgraph. Evidently,

EP̂ (R) = P(R), EQ̂(R) = Q(R).

The scaling here is controlled by the parameter ρn, the natural assumption for
which is ρn → 0. In that case, P(R) → 0 for any fixed R with a fixed number
of vertices p. Therefore we consider the following rescaling of P(R) and Q(R):
writing |R| for |E(R)|, let

P̃ (R) = ρ−|R|
n P (R), Q̃(R) = ρ−|R|

n Q(R).

Then we have

P̃ (R) = E

∏
(i,j)∈R

wn(ξi, ξj ) + O

(
λn

n

)
(2.4)

since

ρ−|R|
n E

∏
(i,j)∈R

hn(ξi, ξj )

[ ∏
(i,j)∈R̄

(
1 − hn(ξi, ξj )

) − 1
]

= O(ρn) = O

(
λn

n

)
,

if
∫

w2(|R|+1)(u, v) dudv < ∞.
Next, we define the natural sample estimates of the population quantities P̃ and

Q̃ by

P̌ (R) = ρ̂−|R|
n P̂ (R), Q̌(R) = ρ̂−|R|

n Q̂(R),

where ρ̂n = D̄
n−1 = 2L

n(n−1)
is the estimated probability of an edge. For these

rescaled versions of P and Q, we have the following theorem.

THEOREM 1. Suppose
∫ 1

0
∫ 1

0 w2(u, v) dv du < ∞.

(a) If λn → ∞, then

ρ̂n

ρn

→P 1,(2.5)

√
n

(
ρ̂n

ρn

− 1
)

⇒ N (0, σ 2)(2.6)

for some σ 2 > 0. Suppose further R is fixed, acyclic with |V (R)| = p and∫
w2|R|(u, v) dudv < ∞. Then,

P̌ (R) →P P̃ (R),
(2.7) √

n
(
P̌ (R) − P̃ (R)

) ⇒ N (0, σ 2(R)).
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More generally, for any fixed {R1, . . . ,Rk} as above with |V (Rj )| ≤ p,
√

n
(
(P̌ (R1), . . . , P̌ (Rk)) − (P̃ (R1), . . . , P̃ (Rk))

) ⇒ N (0,	(R)).(2.8)

(b) Suppose λn → λ < ∞. Conclusions (2.5)–(2.8) continue to hold save that
σ 2(R), 	(R) depend on λ as well as R.

(c) Even if R is not necessarily acyclic, the same conclusions apply to Q̌ and
Q̃ if λn is of order n1−2/p or higher, and to P̌ and P̃ under the same condition
on λn.

The proof is given in the Appendix.

Remarks. (1) Note that part (b) yields consistency and asymptotic normality of
acyclic graph moment estimates across the phase transition to a giant component,
that is, for λ < 1 as well as λ ≥ 1.

(2) Note that we are, throughout, estimating features of the canonical w. Unnor-
malized P and Q are trivially 0 if λn is not of order n.

(3) In view of (2.4), we can use P̌ (R) as an estimate of Q̃(R) if R is acyclic
and λn = o(n1/2), since in this case the bias of P̌ is of order o(n−1/2). The reason
for not using Q̌(R) directly even if R is acyclic is that by (2.3), there may exist
S ⊃ R which are not acyclic, and we can therefore not conclude that the theorem
also applies to Q̌ unless we are in case (c).

(4) Part (c) of the theorem shows that for graphs with λn = �(n), Q̌ always
gives

√
n-consistent estimates of any pattern while P̌ is not consistent unless we

assume acyclic graphs, since the bias is of order O(λn/n) = O(1). In the range
λn = o(n1/2) to �(n), what is possible depends on the pattern. For instance, if

 = {(1,2), (2,3), (3,1)}, a triangle, P̌ (
) = Q̌(
) (because there is no other
graph on three nodes containing 
), and P̌ is

√
n-consistent if λn ≥ εn1/3 by part

(c) but otherwise only consistent if λn → ∞.

2.2. Examples of specific patterns. Next we give explicit formulas for several
specific R. Our main focus is on wheels (defined next), which, as we shall see, in
principle can determine the canonical w.

DEFINITION 1 (Wheels). A (k, l)-wheel is a graph with kl + 1 vertices and
kl edges isomorphic to the graph with edges {(1,2), . . . , (k, k + 1); (1, k + 2),

. . . , (2k,2k + 1); . . . , (1, (l − 1)k + 2), . . . , (lk, lk + 1)}.
In other words, a wheel consists of node 1 at the center and l “spokes” connected

to the center, and each spoke is a chain of k edges. We consider only k ≥ 2. The
number of isomorphic (k, l)-wheels on vertices 1, . . . , p is N(R) = (kl + 1)!/l!.

If the graph R is a (k, l)-wheel, the theoretical moments have a simple form and
can be expressed in terms of the operator T as follows:

Q(R) = E(T k(1)(ξ1))
l.(2.9)
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This follows from

Q(R) = E

(
E

(∏{h(ξi, ξj ) : (i, j) ∈ E(R)}|ξ1

))

=
(∫ 1

0
· · ·

∫ 1

0
h(ξ1, ξ2) · · ·h(ξk, ξk+1) dξ2 · · ·dξk+1

)l

= E(T k(1)(ξ1))
l,

where the first equality holds by the definition of Q and the second by the structure
of a (k, l)-wheel.

For a (k, l)-wheel R, from our general considerations, EP̌ (R) = P̃ (R) =
Q̃(R) + o(1) if λn = o(n) and in view of (2.8), P̌ (R) always consistently esti-
mates Q̃(R). However,

√
n-consistency of P̌ (converging to Q̃) holds in general

only if λn = o(n1/2). By part (c) Q̌ is
√

n consistent for Q̃ only if λn is of order
larger than n1−2/(kl+1). In the λn range between O(n1/2) and O(n1−2/(kl+1)), we
do not exhibit a

√
n-consistent estimate though we conjecture that by appropri-

ate de-biasing of P̌ such an estimate may be constructed. However, λn = o(n1/2)

seems a reasonable assumption for most graphs in practice, and then we can use
the more easily computed P̌ .

DEFINITION 2 (Generalized wheels). A (k, l)-wheel, where k = (k1, . . . , kt ),
l = (l1, . . . , lt ) are vectors and the kj ’s are distinct integers, is the union R1 ∪ · · · ∪
Rt , where Rj is a (kj , lj )-wheel, j = 1, . . . , t , and the wheels R1, . . . ,Rt share a
common hub but all their spokes are disjoint.

A (k, l)-wheel has a total of p = ∑
j lj kj + 1 vertices and

∑
j lj kj edges. For

example, a graph defined by E = {(1,2); (1,3), (3,4); (1,5), (5,6); (1,7), (7,8),
(8,9)} is a (k, l)-wheel with k = (1,2,3) and l = (1,2,1). The number of distinct
isomorphic (k, l)-wheels on p vertices is N(R) = p!(∏j lj !)−1.

We can compute, defining A(R) = ∏{Aij : (i, j) ∈ R},

Q(R) = P

(
t⋂

j=1

[A(Rj ) = 1]
)

= E

{
t∏

j=1

P
(
A(Rj ) = 1|Hub

)}
(2.10)

= E

t∏
j=1

[T kj (ξ)]lj .

Thus (k, l)-wheels give us all cross moments of T m(ξ), m ≥ 1. Note that all (k, l)-
wheels are acyclic.
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We are not aware of other patterns for which the moment formulas are as simple
as those for wheels. For example, if R is a triangle, then

Q(R) =
∫ 1

0

∫ 1

0

∫ 1

0
h(u, v)h(v,w)h(w,u)dudv dw

=
∫ 1

0

∫ 1

0
h(2)(u,w)h(w,u)dudw,

where h(2)(u,w) = ∫ 1
0 h(u, v)h(v,w)dv corresponds to T 2f ≡ ∫ 1

0 h(2)(u, v) ×
f (v) dv.

In general, unions of (k, l)-wheels are also more complicated. If R1,R2 are
(k1, l1), (k2, l2)-wheels which share a single node [V (R1)∩V (R2) = {a}], we can
compute P(R1 ∪ R2) = EP(R1|ξa)P (R2|ξa). If a is the hub of both wheels, then
evidently R1 ∪ R2 is itself a generalized wheel, and (2.10) applies. Otherwise, the
formula, as for triangles, is more complex. However, such unions of (k, l)-wheels
are acyclic.

3. Moments and model identifiability. We establish two results in this sec-
tion: identifiability of block models with known K using {P̌ (R) :R a (k, l)-wheel,
1 ≤ l ≤ 2K − 1,2 ≤ k ≤ K}, and the general identifiability of the function w from
{P̌ (R)} using all (k, l)-wheels R.

3.1. The block model. Let w correspond to a K-block model defined by pa-
rameters θ ≡ (π,ρn, S), where πa is the probability of a node being assigned to
block a as before, and

Fab ≡ P(Aij = 1|i ∈ a, j ∈ b) = ρnSab, 1 ≤ a, b ≤ K.

Recall that the function h in (1.2) is not unique, but a canonical h can be de-
fined. For the block model, we use the canonical h given by Bickel and Chen
(2009). Let Hab = Sabπaπb. Let the labeling of the communities 1, . . . ,K satisfy
H1 ≤ · · · ≤ HK , where Ha = ∑

b Hab is proportional to the expected degree for a
member of block a. The canonical function h then takes the value Fab on the (a, b)

block of the product partition where each axis is divided into intervals of lengths
π1, . . . , πK . Let F ≡ ‖Fab‖.

In view of (2.6), we will treat ρn as known. Let {Wkl : 1 ≤ l ≤ 2K − 1,2 ≤ k ≤
K} be the specified set of (k, l)-wheels, and let

τkl = ρ−klP (Wkl) = P̃ (Wkl), τ̌kl = P̌ (Wkl).

Let f :� → R
(2K−1)(K−1) be the map carrying the parameters of the block model

θ ≡ (π,S) to τ ≡ ‖τkl‖. � here is the appropriate open subset of R
K(K+3)/2−2.

Note that the number of free parameters in the block model is K − 1 for π and
K(K + 1)/2 for F , but S only has K(K + 1)/2 − 1 free parameters, to account
for ρ.



METHOD OF MOMENTS FOR NETWORKS 2289

THEOREM 2. Suppose θ = (π,S) defines a block model with known K ,
and the vectors π,Fπ, . . . ,FK−1π are linearly independent. Suppose ε ≤ λn =
o(n1/2). Then:

(a) {τkl : l = 1, . . . ,2K − 1, k = 2, . . . ,K} identify the K(K + 3)/2 − 2 param-
eters of the block model other than ρ (i.e., the map f is one to one).

(b) If f has a gradient which is of rank K(K+3)
2 − 2 at the true (π0, S0), then

f −1(P (τ̌ )) is a
√

n-consistent estimate of (π0, S0), where τ̌ = ‖τ̌kl‖ and P(τ̌ ) is
the closest point in the range of f to τ̌ .

Note that the linear independence condition rules out all matrices F that have 1
as an eigenvector. In particular, it rules out the case of Faa equal for all a, Fab

equal for all a �= b, which was studied in detail by Decelle et al. (2011). Using
physics arguments, they showed that in that particular case, when λ = O(1), there
are regions of the parameter space where neither the parameters nor the block
assignments can be estimated by any method.

Part (b) shows
√

n-consistency of nonlinear least squares estimation of (π,S)

using τ̌ to estimate τ̃ (θ, S). The variance of τ̌kl is proportional asymptotically to
that of E{∏(i,j)∈S w(ξi, ξj )|ξ1}, where ξ1 corresponds to the hub, which we expect
increases exponentially in p = kl + 1. If we knew these variances, we could use
weighted nonlinear least squares. In Section 5, we suggest a bootstrap method by
which such variances can be estimated, but we do not pursue this further in this
paper.

3.2. The nonparametric model. In the general case, we express everything in
terms of the operator Tw ≡ T/ρn induced by the canonical w. We require that:

(A) the joint distribution of {T l
w(1)(ξ) : l ≥ 1} is determined by the cross mo-

ments of (T l1
w (ξ), . . . , T lk

w (ξ)), for l1, . . . , lk arbitrary.

A simple sufficient condition for (A) is |w| ≤ M < ∞. A more elaborate one is
the following:

(A′)
Eeswk(ξ1,ξ2) < ∞, 0 ≤ |s| ≤ ε all k some ε > 0.

PROPOSITION 2. Condition (A′) implies (A).

The proof is given in the Appendix.
Let w characterize Tw , where

∫ 1
0 w2(u, v) dudv < ∞. By Mercer’s theorem,

w(u, v) = ∑
j

λjφj (u)φj (v),(3.1)

where the φj are orthonormal eigenfunctions and the λj eigenvalues,
∑

λ2
j < ∞.



2290 P. J. BICKEL, A. CHEN AND E. LEVINA

THEOREM 3. Suppose
∫ 1

0
∫ 1

0 w2(u, v) dudv < ∞. Assume the eigenvalues
λ1 > λ2 > · · · of Tw are each of multiplicity 1 with corresponding eigenfunc-
tion φj , and

∫ 1
0 φj (u) du �= 0 for all j . The joint distribution of (Tw(1)(ξ), . . . ,

T m
w (1)(ξ), . . .) then determines, and is determined by, w(·, ·).

Note again that interesting cases are ruled out by the condition that all eigen-
functions of T are not orthogonal to 1. The general analogue to the block model
case is that P(Aij = 1|ξi) cannot be constant for all i and j . Constancy can be
interpreted as saying that Aij and the latent variable ξi associated with vertex i

are independent. The proof of Theorem 3 is given in the Appendix. The almost
immediate application to wheels is stated next.

THEOREM 4. Suppose assumption (A) and the conditions of Theorem 3 hold.
Let τkl = P̃ (Skl) where Skl is a (k, l)-wheel. Then S ≡ {τkl: all k, l} determines T .
If τ̌kl ≡ P̌ (Skl), τ̌kl are

√
n-consistent estimates of τkl, provided that λn = o(n1/2).

PROOF. Since Tl ≡ (T (1)(ξ), . . . , T l(ξ)) has a moment generating function
converging on 0 < |s| ≤ εl , the moments (including cross moments) determine the
distribution of the vector. By (2.10), the τkl give all moments of the vector Tl for
all l. By Theorem 1, the τ̌kl are

√
n-consistent. �

4. Degree distributions. The average degree D̄ is, as we have seen in Theo-
rem 1, a natural data dependent normalizer for moment statistics which eliminates
the need to “know” ρn. In fact, as we show in this section, the joint empirical
distribution of degrees and what we shall call m degrees below can be used in esti-
mating asymptotic approximations to w(·, ·) in a somewhat more direct way than
moment statistics. They can also be used to approximate moment estimates based
on (k, l)-wheels in a way that potentially simplifies computation.

We define the m-degree of i, D
(m)
i , as the total number of loopless paths of

length m between i and other vertices. Note that the D
(m)
i can be interpreted as

the “volume” of the radius m geodesic sphere around i. As for regular degrees, we
normalize and consider D

(m)
i /D̄m, i = 1, . . . , n, and the empirical joint distribu-

tion of vectors D(m)
i ≡ (Di

D̄
,

D
(2)
i

D̄2 , . . . ,
D

(m)
i

D̄m ), i = 1, . . . , n. The generalized degrees
can be computed as follows: for all entries of Am, eliminate all terms in the sum
defining each entry in which an index appears more than once to obtain a modi-
fied matrix Ã(m) = [Ã(m)

ij ]; then the D
(m)
i are given by row sums of Ã(m). In other

words, letting AE(R) = ∏
(i,j)∈E(R) Aij we can write

Ã
(m)
ij = ∑{

AE(R) :R = {(i, i1), (i1, i2), . . . , (im−1, j)},
i, i1, . . . , im−1, j distinct

}
.

The complexity of this computation is O((n + m)λm
n ) (first term is for comput-

ing the row sums of Am and the second for eliminating the loops).
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Define the empirical distribution of the vector of normalized degrees

F̂m(x) = 1

n

n∑
i=1

1
(
D(m)

i ≤ x
)
.

Further, recall the Mallows 2-distance between two distributions P and Q, de-
fined by M2(P,Q) = minF {(E‖X − Y‖2)1/2 : (X,Y ) ∼ F,X ∼ P,Y ∼ Q}. A se-

quence of distribution functions Fn converges to F in M2 (Fn
M2→ F ) if and

only if Fn ⇒ F in distribution, and Fn, F have second moments such that∫ |x|2 dFn(x) → ∫ |x|2 dF(x).

THEOREM 5. Suppose λn → ∞ and |w2m| < ∞. Then F̂m
M2→ Fm as n → ∞,

where Fm is the distribution of θm(ξ) = (τw(ξ), . . . , T m−1
w (τw)(ξ)), and τw(ξ) =∫ 1

0 w(ξ, v) dv is monotone increasing. Moreover, if Ĝm(x,y) is the empirical dis-

tribution of (D(m)
i , θm(ξi)), then∫

|x − y|2 dĜm(x,y)
P→ 0.(4.1)

The proof is given in the Appendix.
There is an attractive interpretation of the last statement of Theorem 5. If

λn → ∞, λn = o(n1/(m−1)), m ≥ 2, then Di/λn can be identified with τ(ξi) in
the following sense: While ξi is unobserved but Di/D̄ is, on average, τ(ξi) and
Di/D̄ are close. Since τ is monotone increasing in ξ , that is, is a measure of ξ on
another scale, we can treat Di/λn as the latent affinity of i to form relationships.

Bollobás, Janson and Riordan (2007) show that if m = 1, λn = O(1), then the
limit of the empirical distribution of the degrees can be described as follows: given
ξ ∼ U (0,1), the limit distribution is Poisson with mean τw(ξ). The limit of the
joint degree distribution in this case can be determined but does not seem to give
much insight.

Remark. Theorem 5 shows that the normalized degree distributions can be
used for estimation of parameters only if λn → ∞. If that is the case we can pro-
ceed as follows:

(1) Let τ̂1, . . . , τ̂n be the empirical quantiles of the normalized 1-degree distri-
bution, and let T̂ m(τ̂k) be the m-degree of the vertex with normalized degree τ̂k .

(2) Fit smooth curves to (τ̂k, T̂
m(τ̂k)) viewed as observations of functions at τ̂k ,

k = 1, . . . , n, for each m, and call these T̂ m(·) (on R). By Theorem 5, T̂ m(t) →
T m−1(τ )(τ−1(t)) for all t . If T m−1(τ−1(·)) are smooth, the convergence can be
made uniform on compacts.

(3) From the fitted functions T̂ m(·), we can estimate the parameters of block
models of any order consistently by replacing vm in the proof of identifiability of
block models by fitting the T̂ m(t) by T m(t) of the type specified by block models
and then using the corresponding v̂m. We only need the conditions of Theorem 5.
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5. Computation of moment estimates and estimation of their variances.
General acyclic graph moment estimates including those corresponding to pat-
terns arising from (k, l)-wheels are computationally difficult. For (k, l)-wheels
with small k and l, we can use brute force counting, but unfortunately, the com-
plexity of moment computation even for (k, l)-wheels appears to be O(nλk

n). Note
that we need to count the sets of loopless paths of length k, Sia, for each i, where
Sia is the set of all paths of length k originating at node i which intersect another
such path at a1 < · · · < am, 1 ≤ m ≤ k, and Si0 is the set of all paths of length
k from i which do not intersect. The number of (k, l)-wheels with hub i is then
the number of l-tuples of such paths selected so that elements from Sia appear
at most once, with the remaining paths coming from Si0. This is computationally
nontrivial.

For very sparse graphs, however, intersecting paths can be ignored up to a cer-
tain order, and the wheel counts can be related to normalized m-degrees via a
following approximation. If the conditions of Theorem 5 hold and λn = o(nα) for
all α > 0, then

τ̂kl = 1

n

n∑
i=1

(D
(k)
i )l

D̄kl
+ oP (n−1/2).(5.1)

A similar formula holds for τ̂kl.
The heuristic argument for (5.1) is that the expected number of paths of lengths

k from i is O(λk
n). The expected number of pairs of such paths which intersect at

least once is

O(λ2k
n )P[two specified paths intersect at least once]

= O
(
λ2k

n

(
1 − (1 − λn/n)k

)) = O

(
kλ2k+1

n

n

)
= o(1),

if λn = o(nα) for all α > 0. Note that for K-block models this condition is not
necessary for all α, since we only need to count a finite number of (k, l)-wheels.

Estimation of variances of moment estimates even for (k, l)-wheels involve the
counting of more complicated patterns. However, we propose the following boot-
strap method:

(i) Associate with each vertex i the counts of (k, l)-wheels for which it is a
hub, Si = {nikl: all k, l}, i = 1, . . . , n.

(ii) Sample without replacement m vertices {i1, . . . , im}, and let

D̄∗ = 1

m

m∑
j=1

Dij .

For R a (k, l)-wheel, define

P̂ ∗(R) = (n/m)
∑m

j=1 nij kl(n
p

)
N(R)

,
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P̌ ∗(R) = P̂ ∗(R)

(
D̄∗

m

)−|R|
.

(iii) Repeat this B times to obtain P̌ ∗
1 , . . . , P̌ ∗

B , and let

σ̂ 2 = m

n

1

B

B∑
b=1

(P̌ ∗
b − P̌ ∗· )2.

Then σ̂ 2 is an estimate of the variance of P̌ (R) if m
n

→ 0,m → ∞.

This scheme works if λn → ∞ since, given that the first term of P̌ (R) − P̃ (R)

is of lower order given ξ1, . . . , ξn, each P̃ ∗(R) corresponds to a sample without
replacement from the set of possible {ξi}. We conjecture that this bootstrap still
works if λn = O(1). A similar device can be applied to approximation (5.1).

6. Discussion.

6.1. Estimation of canonical w generally. Our Theorem 4 suggests that we
might be able to construct consistent nonparametric estimates of wCAN . That is,
τM = {τkl : |k| ≤ M, |l| ≤ M} can be estimated at rate n−1/2 for all M < ∞.
But {τM,M ≥ 1} determines Tw , and thus in principle we can estimate Tw ar-
bitrarily closely using {τ̂kl}. This appears difficult both theoretically and practi-
cally. Theoretically, one difficulty seems to be that we would need to analyze the
expectation of moments or degree distributions when the block model does not
hold, which is doable. What is worse is that the passage to w from moments is
very ill-conditioned, involving first inversion via solution of the moment problem,
and then estimation of eigenvectors and eigenvalues from a sequence of iterates
Tw(1), T 2

w(1), etc. If we assume λn → ∞ so that we can use consistency of the
degree distributions, we bypass the moment problem, but the eigenfunction esti-
mation problem remains. A step in this direction is a result of Rohe, Chatterjee
and Yu (2011) which shows that spectral clustering can be used to estimate the
parameters of k block models if λ → ∞ sufficiently, even if k → ∞ slowly. Un-
fortunately this does not deal with the problem we have just discussed, how to pick
a block model which is a good approximation to the nonparametric model. For rea-
sons which will appear in a future paper, smoothness assumptions on w have to be
treated with caution.

While λn → ∞ has not occurred in practice in the past, networks with high
average degrees are now appearing routinely. In particular, university Facebook
networks have λ of 15 or more with n in the low thousands. In any case λn →
∞ can still be useful as an asymptotic regime that can help us understand some
general patterns, in the same way that the sample size going to infinity does in
ordinary statistics. Note that most of the time we do not specify the rate of growth
of λn, which can be very slow.



2294 P. J. BICKEL, A. CHEN AND E. LEVINA

6.2. Adding covariates and directed graphs. In principle, adding covariates
Xi at each vertex or Xij at each edge simply converts our latent variable model,
w(·, ·) into a mixed model

Pθ (Aij = 1|Xi,Xj ,Xij , ξi, ξj ) = wθ(ξi, ξj ,Xi,Xj ,Xij ),

which can be turned into a logistic mixed model. Special cases of such models
have been considered in the literature; see Hoff (2007) and references therein. We
do not pursue this here. The extension of this model to directed graphs is also
straightforward.

6.3. Dynamic models. Many models in the literature have been specified dy-
namically; see Newman (2010). For instance, the “preferential attachment” model
constructs an n graph by adding 1 vertex at a time, with edges of that vertex to
previous vertices formed with probabilities which are functions of the degree of
the candidate “old” vertex. If we let n → ∞, we obtain models of the type we
have considered whose w function can be based on an integral equation for τ(ξ),
our proxy for the degree of the vertex with latent variable ξ . We shall pursue this
elsewhere also.

APPENDIX: ADDITIONAL LEMMAS AND PROOFS

PROOF OF PROPOSITION 1. The first line of (2.2) is immediate, conditioning
on {ξ1, . . . , ξn}. The second line in (2.2) follows by expanding the second product.
Finally, (2.2) follows directly from the definitions of P and Q. �

The following standard result is used in the proof of Theorem 1.

LEMMA 1. Suppose (Un,Vn) are random elements such that,

L(Un) −→ L(U),

L(Vn|Un) −→ L(V )

in probability. Then Un, Vn are asymptotically independent,

L(Vn) −→ L(V ).

PROOF OF THEOREM 1. By definition, E( L
nλn

) = 1
2 . Moreover,

Var
(

1

nλn

∑{Aij : all 1 ≤ i < j ≤ n}
)

= (nλn)
−2

E

(
Var

(∑
i<j

Aij |ξ
))

+ ρ2
n(nλn)

−2 Var
(∑

i<j

w(ξi, ξj )

)

≡ Var(T1) + Var(T2),
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where

T1 = (nλn)
−1

∑
i<j

(
Aij − ρnw(ξi, ξj )

)
,

T2 = ρn(nλn)
−1

∑
i<j

w(ξi, ξj ) − 1

2
.

Since λn = (n − 1)ρn, the first term is

(nλn)
−2

E

∑{
h(ξi, ξj )

(
1 − h(ξi, ξj )

)
all i, j

}

≤ ρnn
2

2n2λ2
n

= O((n2ρn)
−1) = O((nλn)

−1).

The second term is a U -statistic of order 2, which is well known to be O(n−1).
Thus, (2.5) follows in case (a).

To establish (2.6) and (b), we note that the conditional distribution of
√

nλnT1
given ξ is that of a sum of independent random variables with conditional variance

1

nλn

∑
i<j

ρnw(ξi, ξj )
(
1 − ρnwn(ξi, ξj )

) = 1

n2

∑
i<j

w(ξi, ξj )
(
1 + oP (1)

) P→ 1

2
.

This sum is approximated by a U -statistic of order 2. Note that Ew(ξi, ξj ) = 1.
Since the max of the summands in

√
nλnT1 is 1√

nλn
→ 0, by the Lindeberg–Feller

theorem, the conditional distribution tends to N (0, 1
2) in probability. We can sim-

ilarly apply the limit theorem for U -statistics [see Serfling (1980)] to conclude
that

√
nT2 ⇒ N (0,Var(τ (ξ))).

Applying Lemma 1, we see that if λn = O(1), (b) follows. On the other hand, if
λn → ∞,

√
nT1 is negligible, and the Gaussian limit is determined by T2.

The proof of (2.7) and (2.8) is similar. We shall decompose P̌ (R) as U1 + U2
as we did L

nλn
. If λn → ∞, it is enough to prove that

√
n
(
P̌ (R) − P̃ (R)

) ⇒ N (0, σ 2(R))

since replacing D̄ by nρn = λn gives a perturbation of order (nλn)
−1/2 = o(n−1/2).

In case (b), it is enough to show that the joint distribution of
√

n((P̂ (R) −
P(R))ρ

−|R|
n , T1, T2) is Gaussian in the limit, since in view of (2.5) and (2.6) we

can apply the delta method to P̌ (R). Let p ≡ |V (R)|, q ≡ |R|. Each term in P̌ (R)

is of the form

T (S) ≡ 1(n
p

)
N(R)

∏{Ailjl
: (il, jl) ∈ E(S), S ∼ R}.



2296 P. J. BICKEL, A. CHEN AND E. LEVINA

Condition on ξ = {ξ1, . . . , ξn}. Then terms T (S), as above, yield

E(P̂ (R)|ξ ) = 1(n
p

)
N(R)

∑
S∼R

( ∏
(i,j)∈E(S)

[w(ξi, ξj )]
)

+ O(n−1λn).(A.1)

Thus,

U2 = E(P̂ (R)|ξ)ρ−q
n − P(R),

U1 = ρ−q
n

∑{T (S) − E(T (S)|ξ) :S ∼ R}.
We begin by considering Var(U1|ξ) which we can write as∑

cov(T (S1), T (S2)|ξ)ρ−2q
n ,

where the sum ranges over all S1 ∼ R, S2 ∼ R.
If E(S1) ∩ E(S2) = φ the covariance is 0. In general, suppose the graph S1 ∩

S2 has c vertices and d edges. Since R is acyclic any subgraph is acyclic. By
Corollary 3.2 of Chartrand, Lesniak and Behzad (1986) for every acyclic graph,
|V (S)| ≥ |E(S)| + 1. Now,

ρ−2q
n cov(T (S1), T (S2)|ξ) ≤ n−2pρ−d

n

∏
(i,j)∈S1∪S2

wn(ξi, ξj )(A.2)

since, if d ≥ 1,

E

[∏{Aij : (i, j) ∈ S1 ∩ S2}
∏{A2

ij : (i, j) ∈ S1 ∩ S2}|ξ
]

(A.3)
= ρ2q−d

n

∏{wn(ξi, ξj ) : (i, j) ∈ S1 ∪ S2}.
There are O(n2p−c) terms in (A.1) which have c vertices in common. Therefore
by (A.2) the total contribution of all such terms to Var(U1) is

O

(
n−cρ−d

n

∫
w2q(u, v) dudv

)
,

after using Hölder’s inequality on E
∏{w(ξi, ξj ) : (i, j) ∈ S1 ∪S2}. From (A.3) and

our assumptions we conclude that

Var(U1) = O(n−1λ−d
n ) = o(n−1),

if λn → ∞. On the other hand

U2 = 1(n
p

)
N(R)

∑
S∼R

{ ∏
(i,j)∈S

w(ξi, ξj )
∏

(i,j)∈S̄

(
1 − hn(ξi, ξj )

) − P̃ (S)

}

is a U -statistic. Its kernel∏
S

w(ξi, ξj )
∏
S̄

(
1 − hn(ξi, ξj )

) − P̃ (S)
L2→ ∏

S

w(ξi, ξj ) − E

∏
S

w(ξi, ξj ).
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Thus,
√

n(U1,U2) are jointly asymptotically Gaussian; see, for instance, Serfling
(1980).

Since if λn → ∞, T1,U1 = oP (n−1/2), the result follows if λn → ∞. If
λn = O(1), we note that

√
n(T1,U1) are sums of q dependent random variables in

the sense of Bulinski [see Doukhan (1994)] and hence, given ξ , are jointly asymp-
totically Gaussian. It is not hard to see that the limiting conditional covariance ma-
trix is independent of ξ , as it was for T1 marginally. By Lemma 1 again (T1,U1)

and (T2,U2) are asymptotically independent and (a) and (b) follow.
Finally we prove (c). To have n−1/2 consistency for P̌ (R), P̃ (R) and hence for

Q̌(R), Q̃(R) by (2.3) we need to argue that if S ⊂ R, c ≡ |S| ≤ p |E(S)| = d , then
for a universal M ,

n−cρ−d ≤ Mn−1.

Since ρ = λn

n
we obtain

nc

(
λn

n

)d

≥ n, λn ≥ n1−(c−1)/d .

For fixed c ≥ 1 this is maximized by d = c(c−1)
2 and n1−2/c is maximized for c ≤ p

by c = p. �

PROOF OF THEOREM 2. Since T corresponds to the canonical h,

T (1)(ξ) = v(1), 0 ≤ ξ ≤ π1,

T (1)(ξ) = v(j),

j−1∑
k=1

πk ≤ ξ ≤
j∑

k=1

πk, 1 ≤ j ≤ K,

where v(1) < · · · < v(k) are the ordered {vj }, vj = ∑K
i=1 πiFij . By a theorem of

Hausdorff and Hamburger [Feller (1971)], the distribution of the random variable
T (1)(ξ1) which takes on only K distinct values above is completely determined
and uniquely so by its first 2K − 1 moments E(T (1)(ξ1))

l , l = 1, . . . ,2K − 1.
Therefore for our model π1, . . . , πK are completely determined since T (1)(ξ1)

takes values vj with probability πj , j = 1, . . . ,K .
Let v(1) = (v(1), . . . , v(K))

T = Fπ . Note that E(T 2(1)(ξ1))
l, l = 1, . . . ,2K −1,

similarly determines the distribution of T 2(1)(ξ1). Hence,

v(2) = Fv(1).

Continuing we see that the (K − 1)(2K − 1) moments {τkl : 2 ≤ k ≤ K,1 ≤ l ≤
2K − 1} yield

v(j) = Fv(j−1)(A.4)

for j = 1, . . . ,K where v(0) ≡ π .
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Given π,v(1), . . . , v(K) linearly independent, we can compute F since by (A.4),
we can write

FK×KV
(1)
K×K = V

(2)
K×K,

where V (1) = (v(0), . . . , v(K−1))T and V (2) = (v(1), . . . , v(K))T and hence

F = V (2)[V (1)]−1
.

Consistency and
√

n-consistency follow from Theorem 1 and the delta method.
�

PROOF OF PROPOSITION 2. Note that

E exp sT l(1)(ξ) = E exp sE
(
w(ξ, ξ1) · · ·w(ξl−1, ξl)|ξ )

(A.5)
≤ E exp s

(
w(ξ, ξ1) · · ·w(ξl−1, ξl)

)
.

Taking ξ = ξ0,

(A.5) ≤ E exp |s|
(

1

l

l∑
j=0

wl(ξj , ξj+1)

)
(A.6)

by the arithmetic/geometric mean and Minkowski inequalities. By Hölder’s in-
equality (A.6) is bounded by

l∏
j=0

[E exp |s|wl(ξj , ξj+1)]1/l .

It is easy to show that (A′) implies that E exp{∑m
j=1 sjT

j (1)(ξ)} converges for
0 < |s| < ε for some ε depending on m and hence by a classical result that (A′)
implies (A). �

PROOF OF THEOREM 3. Clearly w determines the joint distribution of mo-
ments. We can take τw(ξ) = Tw(1)(ξ) monotone, corresponding to the canoni-
cal w, to be the quantile function of the marginal distribution of Tw(1)(ξ). Now
the joint distribution of (Tw(1)(ξ), T 2

w(1)(ξ)) determines τw(·), Twτw(·), except
on a set of measure 0. Continuing this argument, we can determine the entire se-
quence of functions τw , Twτw , T 2

wτw, . . . . Since Tw is bounded self-adjoint, these

functions are all in L2. Let g
(1)
k (·) = Tw(

g
(1)
k−1

|g(1)
k−1|

), g
(1)
0 (·) = 1, where |f | and (f, g)

are, respectively, the norm and the inner product in L2. Then gk →L2 λ1φ1 where
λ1 is the first eigenvalue, φ1 the first eigenfunction and gk|gk | → φ1. This is just
the “powering up” method applied to the function 1 with convergence guaranteed
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since λ1 is unique, and 1 is not orthogonal to φ1 or any other eigenfunction. So λ1

and φ1 are also determined. Thus we can compute g
(2)
0 ≡ 1 − (1, φ1)φ1. Further,

g
(2)
1 = Tw

(
g

(2)
0

|g(2)
0 |

)
= Tw1(·) − λ1(1, φ1)φ1

|1 − (1, φ1)φ1|
is computable since we know Tw1(·) and the eigenfunction φ1 and eigenvalue λ1.
More generally, T k

wg
(2)
1 , |g(2)

k−1| can be similarly determined. Then, by the same

argument as before, using 1 not orthogonal to φ2, we obtain g
(1)
k →L2 λ2φ2 and

g
(1)
k /|g(1)

k | →L2 φ2. Now form g
(3)
0 ≡ 1 − λ1(1, φ1)φ1 − λ2(1, φ2)φ2 and proceed

as before, and continue to determine λk,φk for all k. This and (3.1) complete the
proof. �

PROOF OF THEOREM 5. Note first that (4.1) implies that the M2 distance
between F̂m and the empirical distribution of {θm(ξi)} tends to 0. The first conclu-
sion of the theorem now follows by the Glivenko–Cantelli theorem and the Law of
Large Numbers.

To show (4.1), note that

1

n

n∑
i=1

∣∣D̃(m)
i − θm(ξi)

∣∣2 P→ 0,(A.7)

where D̃
(m)
i ≡ (Di

D̄
, . . . ,

D
(m)
i

D̄m )T . By Theorem 1, we can replace D̄ by λn if λn ≥ ε.
Then (A.7) is implied by

1

n

n∑
i=1

E

∣∣∣∣∣
n∑

j=1

Ã
(m)
ij

λm
n

− θm(ξi)

∣∣∣∣∣
2

→ 0.(A.8)

Now,

n∑
j=1

E

(Ã
(m)
ij

λm
n

∣∣∣ξ)

= 1

nm

∑{
wE(R) :R = {(i, i1), . . . , (im−1, j)},(A.9)

all vertices distinct
}
,

where wE(R) = ∏
(a,b)∈E(R) w(ξa, ξb). Further, (A.9) is a U -statistic of order m

under |w2m| < ∞ and

E

∣∣∣∣∣
n∑

j=1

E

(Ã
(m)
ij

λm
n

∣∣∣ξ)
− E

(
wE(R)|ξi

)∣∣∣∣∣
2

≤ C|w2m|
n

by standard theory [Serfling (1980)].
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Since E(wE(R)|ξi) = θm(ξi), we can consider

E

(
1

n

n∑
i=1

∣∣∣∣∣
n∑

j=1

Ã
(m)
ij − E(Ã

(m)
ij |ξ)

λm
n

∣∣∣∣∣
2)

(A.10)

≤ max
i

E|∑n
j=1(Ã

(m)
ij − E(Ã

(m)
ij |ξ))|2

λ2m
n

.

Note that R = {(i, i1), (i1, i2), . . . , (im−1, j)} is acyclic if all vertices are distinct.
As in the proof of Theorem 1, all nonzero covariance terms in (A.10) are of order
ρ2m−dn2m−c where c ≥ d since the intersection graphs all have i in common but
are otherwise acyclic. The largest order term corresponds to c = d = m, so that

E

∣∣∣∣∣
n∑

j=1

(
λ−m

n Ã
(m)
ij − θm(ξi)

)∣∣∣∣∣
2

≤ Cλ−m
n ,

where C depends on |w2m| only. Thus (A.8) holds if λn → ∞. �
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