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SCALING LIMIT OF THE INVASION PERCOLATION CLUSTER
ON A REGULAR TREE

BY OMER ANGEL1, JESSE GOODMAN1 AND MATHIEU MERLE2

University of British Columbia, Univertiteit Leiden and Université Paris Diderot

We prove existence of the scaling limit of the invasion percolation cluster
(IPC) on a regular tree. The limit is a random real tree with a single end. The
contour and height functions of the limit are described as certain diffusive
stochastic processes.

This convergence allows us to recover and make precise certain asymp-
totic results for the IPC. In particular, we relate the limit of the rescaled level
sets of the IPC to the local time of the scaled height function.

1. Introduction and main results. Invasion percolation on an infinite con-
nected graph is a random growth model which is closely related to critical perco-
lation, and is a prime example of self-organized criticality. It was introduced in the
eighties by Wilkinson and Willemsen [18] and first studied on the regular tree by
Nickel and Wilkinson [16]. The relation between invasion percolation and critical
percolation has been studied by many authors (see, e.g., [5, 11]). More recently,
Angel, Goodman, den Hollander and Slade [2] have given a structural representa-
tion of the invasion percolation cluster on a regular tree, and used it to compute the
scaling limits of various quantities related to the IPC such as the distribution of the
number of invaded vertices at a given level of the tree.

Fixing a degree σ ≥ 2, we consider T = Tσ : the rooted regular tree with in-
dex σ , that is, the rooted tree where every vertex has σ children. Invasion per-
colation on T is defined as follows: edges of T are assigned weights which are
i.i.d. and uniform on [0,1]. The invasion percolation cluster on T , denoted IPC,
is grown inductively starting from a subgraph I0 consisting of the root ∅ of T .
At each step In+1 consists of In together with the edge of minimal weight in the
boundary of In. The invasion percolation cluster IPC is the limit

⋃
In.

1.1. Convergence of trees. We consider the IPC as a metric space with respect
to graph distance dgr. Since IPC is already infinite, taking its scaling limit amounts
to replacing dgr by 1

k
dgr.
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THEOREM 1.1. The rescaled rooted invasion percolation cluster (IPC, 1
k
dgr,

∅) has a scaling limit w.r.t. the pointed Gromov–Hausdorff topology, which is a
random R-tree.

Here, an R-tree means a topological space with a unique rectifiable simple
path between any two points. Note that, because the IPC is infinite, we must
work with the pointed Gromov–Hausdorff topology (see, e.g., [14], Section 2).
For present purposes this means we must show that, for each R > 0, the ball
{v ∈ IPC : 1

k
dgr(∅, x) ≤ R} about the root converges in the Gromov–Hausdorff

sense.
A key point in our study is that the contour function (as well as height function

and Lukaciewicz path, see Section 5.4 below) of an infinite tree does not generally
encode the entire tree. If the various encodings of trees are applied to infinite trees,
they describe only the part of the tree to the left of the leftmost infinite branch. We
present two ways to overcome this difficulty. Both are based on the fact (see [2])
that the IPC has a.s. a unique infinite branch. Following Aldous [1], we define a
sin-tree to be an infinite one-ended tree (i.e., with a single infinite branch).

The first approach is to use the symmetry of the underlying graph T and ob-
serve that the infinite branch of the IPC (called the backbone) is independent of
the metric structure of the IPC. Thus, for all purposes involving only the metric
structure of the IPC, we may as well assume (or condition) that the backbone is
the rightmost branch of T . We denote by R the IPC under this condition. The
various encodings of R encode the entire tree.

The second approach is to consider a pair of encodings, one for the part of the
tree to the left of the backbone, and a second encoding the part to the right of
the backbone. This is done by considering also the encoding of the reflected tree
IPC. The reflection of a plane tree is defined to be the same tree with the reversed
order for the children of each vertex. The uniqueness of the backbone implies that
together the two encodings determine the entire IPC.

In order to describe the limits, we first define the process L(t) which is the lower
envelope of a Poisson process on (R+)2. Given a Poisson process P of intensity 1
in the quarter plane, L(t) is defined by

L(t) = inf{y : (x, y) ∈ P and x ≤ t}.
Our other results describe the scaling limits of the various encodings of the trees

in terms of solutions of

Yt = Bt −
∫ t

0
L(−Y s) ds,(E (L))

where Y s = inf0≤u≤s Yu is the infimum process of Y and Bt is a standard Brownian
motion. The reason for the notation is that we also consider solutions of equations
E (L/2) where, in the above, L is replaced by L/2. Note that by the scale invariance
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of the Poisson process, kL(kt) has the same law as L(t). Hence, the scaling of
Brownian motion implies that the solution Y has Brownian scaling as well.

We work primarily in the space C(R+,R
+) of continuous functions from R

+
to itself with the topology of locally uniform convergence. We consider three well
known and closely related encodings of plane trees, namely, the Lukaciewicz path,
and the contour and height functions (all are defined in Section 2.3 below). The
three are closely related and, indeed, their scaling limits are almost the same. The
reason for the triplication is that the contour function is the simplest and most direct
encoding of a plane tree, whereas the Lukaciewicz path turns out to be easier to
deal with in practice. The height function is a middle ground.

THEOREM 1.2. For the IPC conditioned on the backbone being on the right,
let VR, HR and CR denote its Lukaciewicz path, height function and contour
function, respectively. Then we have the following weak limits in C(R+,R):

(k−1VR(k2t))t≥0 → (
γ 1/2(Yt − Y t)

)
t≥0,(1)

(k−1HR(k2t))t≥0 → (
γ −1/2(2Yt − 3Y t )

)
t≥0,(2)

(k−1CR(2k2t))t≥0 → (
γ −1/2(2Yt − 3Y t )

)
t≥0(3)

as k → ∞, where

γ = σ − 1

σ

and (Yt )t≥0 is the solution of (E (L)) (and is the same solution in all three limits).

To put this theorem into context, recall that the Lukaciewicz path of a critical
Galton–Watson tree is an excursion of random walk with i.i.d. steps. From this it
follows that the path of an infinite sequence of critical trees scales to Brownian
motion. The height and contour functions of the sequence are easily expressed in
terms of the Lukaciewicz path and, assuming the branching law has second mo-
ments, are seen to scale to reflected Brownian motion (cf. Le Gall [13]). Duquesne
and Le Gall generalized this approach in [8], and showed that the genealogical
structure of a continuous-state branching process is similarly coded by a height
process which can be expressed in terms of a Lévy process, and that this is also
the limit of various Galton–Watson trees with heavy tails.

The case of sin-trees is considered by Duquesne [7] to study the scaling limit of
the range of a random walk on a regular tree. His techniques suffice for analysis
of the IIC, but the IPC requires additional ideas, the key difficulty being that the
Lukaciewicz path is no longer a Markov process. The scaling limit of the IIC turns
out to be an illustrative special case of our results, and we will describe its scaling
limit as well (in Section 4.6).

For the unconditioned IPC we define its left part IPCG to be the subtree consist-
ing of the backbone and all vertices to its left. The right part IPCD is defined as the
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left part of the reflected IPC. We can now define VG and VD to be, respectively,
the Lukaciewicz paths for the left and right parts of the IPC, and similarly define
HG,HD,CG,CD (see also Section 2.4 below).

THEOREM 1.3. We have the following weak limits in C(R+,R):

k−1(VG(k2t),VD(k2t))t≥0 → γ 1/2(Yt − Y t , Ỹt − Ỹ t )t≥0,(4)

k−1(HG(k2t),HD(k2t))t≥0 → γ −1/2(Yt − 2Y t , Ỹt − 2Ỹ t )t≥0,(5)

k−1(CG(2k2t),CD(2k2t))t≥0 → γ −1/2(Yt − 2Y t , Ỹt − 2Ỹ t )t≥0(6)

as k → ∞, where (Yt )t≥0 and (Ỹt )t≥0 are independent solutions of E (L/2).

1.2. Level sizes and volumes. From the convergence results above we can es-
tablish asymptotics for level sizes and volumes in the invasion percolation cluster.
In [2], it was proved that the size of the nth level of the IPC, rescaled by a factor n,
converges to a nondegenerate limit. Similarly, the volume up to level n, rescaled by
a factor n2, converges to a nondegenerate limit. The Laplace transforms of these
limits were expressed as functions of the L-process. However, formulas (1.20)–
(1.23) of [2] do not provide insight into the limiting variables. With our conver-
gence theorem for height functions of R, we can express the limit in terms of the
continuous limiting height function.

For x ∈ R+ we denote by C[x] the number of vertices of the IPC at height [x].
We let C[0, x] = ∑[x]

i=0 C[i] denote the number of vertices of the IPC up to
height [x]. Write Ht = γ −1/2(2Yt − 3Y t ) for the limit of HR in Theorem 1.2,
and la∞(H) for the standard local time at level a of H .

THEOREM 1.4. For every a > 0 we have the distributional limits

1

n2 C[0, an]−−−→
n→∞

∫ ∞
0

1[0,a](Hs) ds(7)

and

1

n
C[an]−−−→

n→∞
γ

4
la∞(H).(8)

In the case of the asymptotics of the levels, we also provide an alternative way
of expressing the limit directly as a sum of independent variables. Write e{c} for
an exponential variable of rate c.

THEOREM 1.5. Let S be a point process such that, conditioned on the L-
process, S is an inhomogeneous Poisson point process on [0, a

√
γ ], with intensity

2L(s) ds

exp((a
√

γ − s)L(s)) − 1
.
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Then, conditionally on L, and in distribution,

1

n
C[an]−−−→

n→∞

√
γ

2

∑
s∈S

e
{

L(s)

1 − exp(−(a
√

γ − s)L(s))

}
,(9)

where the terms in the sum are independent.

From this representation and properties of the L-process, it is straightforward
to recover the representation of the asymptotic Laplace transform of level sizes,
(1.21) of [2]. Also, as the proof of the theorem will show, a.s. only a finite number
of distinct values of L contribute to the sum in (9).

1.3. Application to the incipient infinite cluster. The proofs of Theorems 1.1–
1.5 also apply to the incipient infinite cluster (IIC), whose structure and similarity
to the IPC we outline in Section 2.2. Stated briefly, the IIC corresponds to the IPC
in the simpler case where the process L(t) is replaced by 0. As a consequence,
some elements of the proofs (such as the right-grafting constructions in Section 5)
are not needed to handle the IIC. For comparison, we summarize the results for the
IIC in the following theorems.

THEOREM 1.6. The rescaled rooted incipient infinite cluster (IIC, 1
k
dgr,∅)

has a scaling limit w.r.t. the pointed Gromov–Hausdorff topology, which is a ran-
dom R-tree.

For the IIC conditioned on the backbone being on the right, let V IIC
R , H IIC

R and
CIIC

R denote its Lukaciewicz path, height function and contour function, respec-
tively. Then we have the following weak limits in C(R+,R):

(k−1V IIC
R (k2t))t≥0 → (

γ 1/2(Bt − Bt)
)
t≥0,(10)

(k−1H IIC
R (k2t))t≥0 → (

γ −1/2(2Bt − 3Bt)
)
t≥0,(11)

(k−1CIIC
R (2k2t))t≥0 → (

γ −1/2(2Bt − 3Bt)
)
t≥0(12)

as k → ∞, where Bt is a standard Brownian motion.
For the IIC with unconditioned backbone, the Lukaciewicz paths, height func-

tions and contour functions of its left and right parts have the following weak limits
in C(R+,R):

k−1(V IIC
G (k2t),V IIC

D (k2t))t≥0 → γ 1/2(Bt − Bt, B̃t − B̃t )t≥0,(13)

k−1(H IIC
G (k2t),H IIC

D (k2t))t≥0 → γ −1/2(Bt − 2Bt, B̃t − 2B̃t )t≥0,(14)

k−1(CIIC
G (2k2t),CIIC

D (2k2t))t≥0 → γ −1/2(Bt − 2Bt, B̃t − 2B̃t )t≥0(15)

as k → ∞, where Bt and B̃t are independent Brownian motions.
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Note that up to constant factors, the scaling limits in (10) and (13) are reflected
Brownian motions, while the scaling limits in (14) and (15) are three-dimensional
Bessel processes. The scaling limit in (11) and (12), however, is not a standard
process.

THEOREM 1.7. Write H IIC
t = γ −1/2(2Yt − 3Y t ) for the limit of H IIC

R in (11),
and la∞(H) for the standard local time at level a of H . Then for every a > 0 we
have the distributional limits

1

n2 C[0, an]−−−→
n→∞

∫ ∞
0

1[0,a](Hs) ds(16)

and

1

n
C[an]−−−→

n→∞
γ

4
la∞(H).(17)

Moreover, if SIIC is an inhomogeneous Poisson point process on [0, a
√

γ ] with
intensity 2(a

√
γ − s)−1 ds, then

1

n
C[an]−−−→

n→∞

√
γ

2

∑
s∈S

e
{(

a
√

γ − s
)−1}(18)

in distribution, where the terms in the sum are independent.

2. Background and overview.

2.1. Structure of the IPC. We now give a brief overview of the IPC structure
theorem from [2], which is the basis for the present work. First of all, the IPC con-
tains a single infinite branch, called the backbone and denoted BB. The backbone
is a uniformly random branch in the tree (in the natural sense). From the backbone
emerge, at every height n and on every edge away from the backbone, subcritical
percolation clusters with parameter Ŵn < pc = σ−1.

The parameters Ŵn are nondecreasing and satisfy Ŵn −−−→
n→∞ pc. Moreover,

(Ŵn)
∞
n=0 forms a Markov chain with dynamics of the following kind. The ini-

tial value Ŵ0 is distributed on [0,pc] according to a certain density function f .
Given Ŵn = ŵ, the next value Ŵn+1 is, with probability g(ŵ), a new value chosen
according to the density f conditioned to be larger than ŵ; or else, with probabil-
ity g(Ŵn), the value ŵ. For our purposes, it will suffice to know that the functions
f and g satisfy

lim
ŵ↗pc

f (ŵ) > 0, g(ŵ) ∼ σ(pc − ŵ) = 1 − σŵ(19)

as ŵ ↗ pc. (These asymptotics follow from [2], Sections 2.1.2 and 3.1, since
(Ŵn)

∞
n=0 is the image of the Markov chain (Wn)

∞
n=0 under w 
→ ŵ.)
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We will primarily be concerned with the scaling limit of Ŵn, which is given
by the lower envelope process L(t) defined above. Writing [x] for the integer part
of x, we have, for any ε > 0,(

k
(
1 − σŴ[kt]

))
t≥ε −−−→

k→∞ (L(t))t≥ε(20)

with respect to the Skorohod topology (see [2], Proposition 3.3 and Corollary 3.4).
Indeed, L(t) is the continuous-time process that jumps, at rate L(t), to a value
uniformly chosen between 0 and L(t); this reflects the asymptotics given in (19).

The process Lt diverges as t → 0, which somewhat complicates the study of
the IPC close to the root.

2.2. Structure of the IIC. The incipient infinite cluster (IIC) embodies the no-
tion of a percolation cluster that is both critical and infinite. It was originally de-
fined and discussed by Kesten [12] (see also [3]). The IIC can be obtained through
a variety of limiting constructions—for instance, by conditioning a critical perco-
lation cluster to extend at least distance R and sending R → ∞, or by examining
the neighborhood of a faraway point in the IPC (see [11] and [2], Theorem 1.2). In
the present context, we note that the IIC on a regular tree has a structure similar to
the IPC; see [2], Section 2.1.

Specifically, the IIC contains a single infinite branch, the backbone, which is a
uniformly random branch in the tree. From the backbone emerge, at every height
and on every edge away from the backbone, critical percolation clusters.

Note that setting Ŵn ≡ pc in the above description gives rise to the IIC, on the
one hand, while in the scaling limit L is replaced by 0. This enables us to use a
common framework for both clusters.

The convergence Ŵn −−−→
n→∞ pc explains why the IPC and IIC resemble each

other far above the root. However, the analysis of [2] shows that the convergence
of the parameter of the attached clusters is slow enough that r-point functions and
other measurable quantities such as level sizes possess different scaling limits.

2.3. Encodings of finite trees. For completeness we include here the definition
of the various tree encodings we are concerned with. We refer to Le Gall [13] for
further details in the case of finite trees and to Duquesne [7] in the case of sin-trees
discussed below.

A rooted plane tree θ (also called an ordered tree) is a tree with a description
as follows. Vertices of θ belong to

⋃
n≥0 N

n. By convention, ∅ ∈ N
0 is always

a vertex of θ which is called the root. For a vertex v ∈ θ , we let kv = kv(θ) be
the number of children of v and whenever kv = k > 0, these children are denoted
v1, . . . , vk. In particular, the ith child of the root is simply i, and if vi ∈ θ , then
∀1 ≤ j < i, vj ∈ θ as well. Edges of θ are the edges (v, vi) whenever vi ∈ θ .
Note that the set of edges of θ are determined by the set of vertices and vice-versa,
which allows us to blur the distinction between a tree and its set of vertices. The
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kth generation of a tree contains every vertex v ∈ θ ∩N
k , so that the 0th generation

consists exactly of the root. Define #θ to be the total number of vertices in θ .
Let (vi)0≤i<#θ be the vertices of θ listed in lexicographic order, so that v0 = ∅.

The Lukaciewicz path V of θ (sometimes known as the depth-first path) is the
continuous function (Vt = V θ

t , t ∈ [0,#θ ]) defined as follows: for n ∈ {1, . . . ,#θ}

Vn = V θ
n :=

n−1∑
i=0

(kvi − 1),

and between integers V is interpolated linearly.3

The values Vn are also given by the following right-hand description of the
Lukaciewicz path. This description is simpler to visualize, though we do not know
of a reference for it. For v ∈ θ , consider the subtree θv ⊂ θ formed by all the
vertices which are smaller or equal to v in the lexicographic order. Let n(v, θ) be
the number of edges connecting vertices of θv with vertices of θ \ θv . Then

V (k) = n(vk, θ) − 1.

The reason we call this the right-hand description is that n(v, θ) is also the number
of edges attached on the right-hand side of the path from ∅ to v. It is straightfor-
ward to check that this description is consistent with other definitions.

The height function is the second encoding we wish to consider. We also define
it to be a piecewise linear function4 with H(k) the height of vk above the root. It
is related to the Lukaciewicz path by

H(n) = #
{
k < n :Vk = min{Vk, . . . , Vn}}.(21)

Finally, the contour function of θ is obtained by considering a walker exploring
θ at constant unit speed, starting from the root at time 0, and going from left to
right. Each edge is traversed twice (once on each side), so that the total time before
returning to the root is 2(#θ − 1). The value Cθ(t) of the contour function at time
t ∈ [0,2(#θ − 1)] is the distance between the walker and the root at time t .

It is straightforward to check that the Lukaciewicz path, height function and
contour function each uniquely determine—and hence represent—any finite tree θ .
Figure 1 illustrates these definitions, as they are easier to understand from a picture.

At times it is useful to encode a sequence of finite trees by a single function. This
is done by concatenating the Lukaciewicz paths or height function of the trees of

3In [8, 13], the Lukaciewicz path is defined as a piecewise constant, discontinuous function, but
there the case when the scaling limit of this path is discontinuous is also treated. Note that only the
values of Vn,n ∈ {1, . . . ,#θ}, are needed to recover the tree θ . Moreover, in our case, supt≥0 |Vt+1 −
Vt | is bounded by σ , so that the eventual scaling limit will be continuous. The advantage of our
convention is that it allows us to consider locally uniform convergence of the rescaled Lukaciewicz
paths in a space of continuous functions.

4Again, in [13], the height function of a nondegenerate tree is discontinuous.
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FIG. 1. A finite tree and its encodings.

the sequence. Note that when coding a sequence of trees, jumping from one tree to
the next corresponds to reaching a new integer infimum in the Lukaciewicz path,
while it corresponds to a visit to 0 in the height process.

2.4. Encoding sin-trees. While the definitions of Lukaciewicz path, and
height and contour functions, extend immediately to infinite (discrete) trees, these
paths generally no longer encode a unique infinite tree. For example, all the trees
containing the infinite branch {∅,1,11,111, . . .} would have the identity function
for height function, so that equal paths correspond to distinct infinite trees. In fact,
the only part of an infinite tree which one can recover from the the height and
contour functions is the subtree that lies left of the leftmost infinite branch. The
Lukaciewicz path encodes additionally the degrees of vertices along the leftmost
infinite branch.

However, if we restrict the encodings to the class of trees whose only infinite
branch is the rightmost branch, then the three encodings still correspond to unique
trees. In particular, observe that IPCG and R are fully encoded by their Luka-
ciewicz paths (as well as by their height, or contour functions). That is the reason
we begin our discussion with these conditioned objects.

Not surprisingly, it is possible to encode any sin-tree, such as the IIC and IPC, by
using two coding paths, one for the part of the tree lying to the left of the backbone,
and one for the part lying to its right. More precisely, suppose T is a sin-tree, and
BB denotes its backbone. The left tree is defined as the set of all vertices on or to
the left of the backbone:

TG := ⋃
v∈BB

T v = {x ∈ T :∃v ∈ BB, x ≤ v}.
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We do not define the right-tree of T as the set of vertices which lie on or to the
right of the backbone. Rather, in light of the way the encodings are defined, it
is easier to work with the mirror-image of T , denoted T and defined as follows:
since a plane tree is a tree where the children of each vertex are ordered, T may be
defined as the same tree but with the reverse order on the children at each vertex.
We then define

TD = (T )G.

Obviously, only the rightmost branches of TG, TD are infinite, so the Luka-
ciewicz paths VG,VD , of TG, TD , do encode uniquely each of these two trees (and
so do the height functions HG,HD and the contour functions CG,CG). Therefore,
the pair of paths (VG,VD) encodes T [and so do the pairs (HG,HD), (CG,CD)].
Note that HG,CG are also, respectively, the height and contour functions of T
itself, while HD,CD are, respectively, the height and contour functions of T .

2.5. Overview. Let us try to give briefly, and heuristically, some intuition of
why Theorem 1.2 holds. For t > 0, the tree emerging from BB[kt] is coded by
the [kt]th excursion of V above 0. Except for its first step, this excursion has the
same transition probabilities as a random walk with drift σŴ[kt] − 1, which, by
the convergence (20), is approximately −L(t)/k. Additionally, by [2], Proposi-
tion 3.1, Ŵn is constant for long stretches of time. It is well known (see, e.g., [10],
Theorem 2.2.1) that a sequence of random walks with drift c/k, suitably scaled,
converges as k → ∞ to a c-drifted Brownian motion. Thus, we expect to find seg-
ments of drifted Brownian paths in our limit. According to the convergence (20),
the drift is expressed in terms of the L-process. This is what the definition of Y

expresses.
Thus, the idea when dealing with either the conditioned or the unconditioned

IPC is to cut these sin-trees into pieces corresponding to stretches where Ŵ is
constant, and to look separately at the convergence of each piece. Since we deal
extensively with codings of trees by paths, we call these pieces of trees segments,
although in the terminology of [6, 9, 15] and other works they are known as the
ponds of the IPC.

In Section 3 we establish existence and uniqueness results for equation (E (L)).
In Section 4 we look at the convergence of the rescaled paths coding a sequence

of such segments for well chosen, fixed values of the Ŵ -process. In fact, we con-
sider slightly more general settings which allows us to treat the case of the IIC as
well as the various flavors of the IPC.

In Section 5 we prove Theorem 1.2 and Theorem 1.3 by combining segments.
To deal with the fact that Ŵ is random and exploit the convergence (20), we use a
coupling argument (see Section 5.2). We then prove that the segments fall into the
family dealt with in Section 4. Because of the divergence of the L-process at the
origin, we only perform the above for subtrees above certain levels, and bound the
resulting error separately. The proof of Theorem 1.1 follows from Theorem 1.2.
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Finally, in Section 6 we apply our convergence results to establish asymptotics
for level and volume estimates of the IPC, to recover and extend results of [2].

3. Solving (E(L)).

CLAIM 3.1. Solutions to (E (L)), E (L/2) are unique in law.

Curiously, we were unable to determine whether the solutions to (E (L)) are a.s.
pathwise unique (i.e., whether strong uniqueness holds). For our purposes unique-
ness in law suffices.

PROOF OF CLAIM 3.1. We prove this claim for equation (E (L)). The proof
for equation E (L/2) is identical.

Let Y be a solution of (E (L)). Since L is positive, Yt ≤ Bt . Since L is non-
increasing,

∫ t
0 L(−Y s) ds ≤ ∫ t

0 L(−Bs)ds. For any fixed ε > 0, a.s. for all small
enough s, −Bs > s1/2−ε , while a.s. for all small enough u, L(u) < u−(1+ε). We
deduce that almost surely limt→0

∫ t
0 L(−Y s) ds = 0. Thus, any solution of (E (L))

is continuous.
Let us now consider two solutions Y 1, Y 2 of E (L) and fix ε > 0. Introduce

jε := inf{t > 0 :L(t) < ε−1}
and

tε0 := inf{t > 0 :−Bt > jε},
tε1 := inf{t > 0 :−Y 1

t > jε},
tε2 := inf{t > 0 :−Y 2

t > jε}.
From the continuity of Y 1, Y 2 we have Y 1(tε1 ) = Y 2(tε2 ) = −jε . Moreover, we

have a.s. tε1 ∨ tε2 ≤ tε0 , and, therefore,

tε1 ∨ tε2
a.s.−−−→

ε→0
0.(22)

Introduce a Brownian motion β independent of B and consider the (SDE)

Zε
t = βt −

∫ t

0
L(jε − Zε

s) ds.(E (ε,L))

Pathwise existence and uniqueness hold for (E (ε,L)) by standard arguments.
We then define

Y
1,ε
t =

{
Y 1

t , if t < tε1 ,
Y 1

tε1
+ Zε

t , if t ≥ tε1 ,

Y
2,ε
t =

{
Y 2

t , if t < tε2 ,
Y 2

tε2
+ Zε

t , if t ≥ tε2 .
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Clearly, Y 1,ε, Y 2,ε are a.s. continuous, and, moreover, Y 1 and Y 1,ε have the same
distribution, and so do Y 2 and Y 2,ε . However, (Y i,ε(tεi + t))t≥0 for i = 1,2 have
a.s. the same path. From this fact, the continuity of Y 1,ε, Y 2,ε and (22), it follows
that for any F ∈ Cb(C(R+,R),R)

|E[F(Y 1)] − E[F(Y 2)]| = |E[F(Y 1,ε)] − E[F(Y 2,ε)]|
goes to 0 as ε goes to 0, which completes the proof. �

4. Scaling simple sin-trees and their segments. The goal of this section is
to establish the convergence of the rescaled paths encoding suitable sequences of
well-chosen segments. In order to cover the separate cases at once, we will work
in a slightly more general context than might seem necessary. We first look at a
sequence of particular sin-trees Tk for which the vertices adjacent to the backbone
generate i.i.d. subcritical (or critical) Galton–Watson trees. The law of such a tree
is determined by the branching law on these Galton–Watson trees and the degrees
along the backbone. If the degrees along the backbone do not behave too erratically
and the percolation parameter scales correctly, then the sequence of Lukaciewicz
paths Vk has a scaling limit.

The results for the IIC follow directly. Also, we determine the scaling limits
of the paths encoding a sequence of subtrees obtained by truncations at suitably
vertices on the backbones of Tk . These will be important intermediate results in
the proofs of Theorems 1.2 and 1.3.

4.1. Notation. Throughout this section we fix for each k ∈ Z+ a parameter
wk ∈ [0,1/σ ], and denote by (θk

n)n∈Z+ a sequence of i.i.d. subcritical Galton–
Watson trees with branching law Bin(σ,wk). For each k we also let Zk be a se-
quence of random variables (Zk,n)n≥0 taking values in Z+.

DEFINITION 4.1. The (Zk, θ
k)-tree is the sin-tree defined as follows. The

backbone BB is the rightmost branch. The vertex BBi has 1 + Zk,i children, in-
cluding BBi+1. Let v0, . . . be all vertices adjacent to the backbone, in lexicographic
order, and identify vn with the root of the tree θk

n .

Thus, the first Zk,0 of the θ ’s are attached to children of BB0, the next Zk,1 to
children of BB1 and so on. We will use the notation Tk to designate the (Zk, θ

k)-
tree, and Vk for its Lukaciewicz path.

DEFINITION 4.2. Let T be a sin-tree whose backbone is its rightmost branch.
For i ∈ Z+, let BBi be the vertex at height i on the backbone of T . The i-truncation
of T is the subtree

T i := {v ∈ T :v ≤ BBi},
where ≤ denotes lexicographic ordering.
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Thus, the i-truncation of a tree consists of the backbone up to BBi and the
subtrees attached strictly below level i. We denote by Tk,i the i-truncation of Tk ,
and by Vk,i its Lukaciewicz path. We further define τ (i) as the time of the (i +1)th
return to 0 of Vk ; here we suppress the dependence of τ (i) on k. Observe then that
Vk,i coincides with Vk up to the time τ (i), takes the value −1 at τ (i) + 1, and
terminates at that time.

It will be useful to study first the special case where Zk is a sequence of
i.i.d. binomial Bin(σ,wk) random variables. Observe that in this case the sub-
trees attached to the backbone are i.i.d. Galton–Watson trees [with branching law
Bin(σ,wk)]. We use calligraphed letters for the various objects in this case. We de-
note the binomial variables Zk,n, we write T k for the corresponding (Zk, θ

k)-tree,
T k,i for its i-truncation, and V k, V k,i for the corresponding Lukaciewicz paths.

In the perspective of proving our main results, we note another special distri-
bution of the variables Zk,n that is of interest. If Zk,n are i.i.d. Bin(σ − 1,wk),
then the subtrees emerging from the backbone of the (Zk, θ

k)-tree are indepen-
dent subcritical percolation clusters with parameter wk . In particular, for suitably
chosen values of wk,nk , Tk,nk has the same law as a certain segment of R. On
the other hand, if wk ≡ σ−1, then the corresponding (Z, θ)-tree is simply the IIC
conditioned on its backbone being the rightmost branch of T , which we denote
by IICR. We will see below that the IIC with unconditioned backbone, as well as
segments of the unconditioned IPC, can be treated in a similar way.

4.2. Scaling of segments.

PROPOSITION 4.3. Let Zk,n be random variables satisfying the following as-
sumptions: ⎧⎪⎪⎨⎪⎪⎩

For any k, the variables (Zk,n)n are i.i.d.;
for some C,α > 0, EZ1+α

k,n < C for any k;
for some η > 0, P(Zk,n > 0) > η for any k;
if mk = EZk,n then m = limmk exists.

(A)

Further assume that wk ≤ σ−1 satisfy limk k(1 − σwk) = u. Then, as k → ∞,
weakly in C(R+,R), (

1

k
Vk

[k2t]
)

t≥0
−−−→
k→∞ (Xt)t≥0,(23)

where Xt = Yt − Y t and Yt = Bγ t − ut is a drifted Brownian motion.

Since our goal is to represent segments of the IPC as well-chosen Tk,i , we have
to deduce from Proposition 4.3 some results for the coding paths of the truncated
trees. The convergence will take place in the space of continuous stopped paths
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denoted S . An element f ∈ S is given by a lifetime ζ(f ) ≥ 0 and a continuous
function f on [0, ζ(f )]. S is a Polish space with metric

d(f, g) = |ζ(f ) − ζ(g)| + sup
t≤ζ(f )∧ζ(g)

{|f (t) − g(t)|}.

It is clear from the right-hand description of Lukaciewicz paths that the path
of Tk,i visits 0 exactly when reaching backbone vertices. In particular, its length
is τ (i), the time of the ith return to 0 by the path Vk . We shall use this to prove the
following.

COROLLARY 4.4. Assume the conditions of Proposition 4.3 are in force. As-
sume further that 0 < x = limnk/k. Then, weakly in S ,(

1

k
Vk,nk

[k2t]
)

t≤τ (nk)/k2
−−−→
k→∞ (Xt)t≤τmx ,(24)

where X and Y are as in Proposition 4.3, and τy is the stopping time inf{t >

0 :Yt = −y}.

It is then straightforward to deduce convergence of the height functions. Let hk

(resp., hk,i) denote the height function coding the tree Tk (resp., Tk,i).

COROLLARY 4.5. Suppose the assumptions of Corollary 4.4 are in force.
Then weakly in C(R+,R),(

1

k
hk

[tk2]
)

t≥0
−−−→
k→∞

(
2

γ
(Yt − Y t ) − 1

m
Y t

)
t≥0

.(25)

Furthermore, weakly in S ,(
1

k
h

k,nk

[tk2]
)

t≤τ (nk)/k2
−−−→
k→∞

(
2

γ
(Yt − Y t ) − 1

m
Y t

)
t≤τmx

.(26)

4.3. Proof of Proposition 4.3. We start with the following lemma, which re-
lates the Lukaciewicz paths of a sequence of trees, and that of the tree consisting
of a backbone to which the trees of the sequence are attached.

LEMMA 4.6. Let (θn)n≥0 be a sequence of trees, and define the sin-tree T to
be the sin-tree with a backbone BB on the right, such that the root of θn is identified
with BBn. Let U be the Lukaciewicz path coding the sequence θ , and let V be the
Lukaciewicz path of T . Then

Vn = Un + 1 − Un−1,

where U is the infimum process of U and by convention U−1 = 1.
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PROOF. The lemma follows directly from the definition of Lukaciewicz paths.
U reaches a new infimum (and U decreases) exactly when the process completes
the exploration of a tree in the sequence. The increments of V differ from the
increments of U only at vertices of the backbone of T , where the degree in T is
one more than the degree in θn. �

We first establish the proposition in the special case introduced earlier, where
Zk is a sequence of i.i.d. Bin(σ,wk) random variables. In this case, the subtrees
attached to the backbone of T k are a sequence of i.i.d. Galton–Watson trees with
branching law having expectation σwk (which tends to 1 as k → ∞) and variance
σwk(1 − wk) (which tends to γ as k → ∞).

The Lukaciewicz path U k of this sequence of Galton–Watson trees is a random
walk with drift σwk − 1 and stepwise variance σwk(1 − wk). From a well-known
extension of Donsker’s invariance principle (see, e.g., [10], Theorem II.3.5), it
follows that (

1

k
U k(k2t)

)
t≥0

−−−→
k→∞ (Yt )t≥0

weakly in C(R+,R). It now follows from Lemma 4.6 that(
1

k
V k(k2t)

)
t≥0

−−−→
k→∞ (Xt)t≥0.(27)

Having Proposition 4.3 for Zk,n, we now extend it to other degree sequences.
By the Skorokhod representation theorem, we may assume (by changing the prob-
ability space as needed) that (27) holds a.s.:(

1

k
V k(k2t)

)
t≥0

a.s.−−−→
k→∞ (Xt)t≥0.(28)

We further couple the trees T k and Tk (on a suitable probability space where the
sequences Zk are defined) by using the same sequences θk of off-backbone trees.
Namely, the subtree descended from the nth vertex adjacent to the backbone, in
lexicographic order, is θk

n for both T k and Tk , and we will identify v ∈ θk
n with

the corresponding vertices of T k and Tk . However, because the sequences Zk and
Zk are different, the Lukaciewicz paths of these two trees differ, and we now give
bounds to control this difference.

It will be convenient to consider the sets of points

Gk := {(i,Vk(i)), i ∈ Z+}, Gk := {(i, V k(i)), i ∈ Z+},
which are the integer points in the graphs of Vk, V k . To each vertex v ∈ Tk cor-
responds a point (xv,yv) ∈ Gk [and similarly (xv, yv) ∈ Gk for v ∈ T k]. From the
right-hand description of Lukaciewicz paths introduced in Section 2.3, we see that

Gk = {(xv,yv) :v ∈ Tk} = {(
#(Tk)v, n(v,Tk) − 1

)
:v ∈ Tk},

Gk = {(xv, yv) :v ∈ T k} = {(
#(T k)v, n(v, T k) − 1

)
:v ∈ T k}.
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The next step is to show that these two sets are close to each other. Any v ∈ θk
n is

contained in both Tk and T k . We first show that xv ≈ xv and yv ≈ yv for such v,
and then show how to deal with the backbones.

Any tree θk
n is attached by an edge to some vertex in the backbone of Tk and T k .

For any vertex v ∈ θk
n we denote the height of this vertex by lv and �v , respectively:

lv = sup{t : BBt < v in Tk}, �v = sup{t : BBt < v in T k}.
These values depend implicitly on k. Note that lv, �v do not depend on which
v ∈ θk

n is chosen, hence, by a slight abuse of notation, we also use ln, �n for the
same values whenever v ∈ θk

n .

LEMMA 4.7. Assume v ∈ θk
n . Then

|xv − xv| = |lv − �v|,
|yv − yv| ≤ σ + Zk,lv .

PROOF. We have

xv = #(T k)v = ∑
i<n

#θk
i + #(θk

n)v + �n

and, similarly,

xv = #(Tk)v = ∑
i<n

#θk
i + #(θk

n)v + ln.

The first claim follows.
For the second bound use yv = n(v,Tk) − 1. There are n(v, θk

n) edges connect-
ing (Tk)v to its complement inside θk

n and at most Zk,ln edges connecting BBln to
the complement. Similarly, in T k we have the same n(v, θk

n) edges inside θk
n and

at most Zk,�n ≤ σ edges connecting BB�n to the complement. It follows that the
difference is at most σ + Zk,ln . �

Next we prepare to deal with the backbone. For a vertex v ∈ Tk , define u ∈ Tk

by

u = min{u ∈ (Tk \ BB) :u ≥ v}.
If v /∈ BB, then u = v. If v is on the backbone, then u is the first child of v, unless
v has no children outside the backbone. Note that u ∈ θk

n for some n, so we may
also consider u as a vertex of T k . Note also that v → u is a nondecreasing map
from Tk to T k .

LEMMA 4.8. For a backbone vertex v in Tk , define n by θk
n < v < θk

n+1. Then

|xv − xu| ≤ 1 + ln+1 − ln,

|yv − yu| ≤ σ + Zk,ln+1 .
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PROOF. The only vertices between v and u in the lexicographic order are u

and some of the backbone vertices with indices from ln to ln+1, yielding the first
bound.

Let w ∈ BB be u’s parent. If v has children apart from the next backbone vertex,
then w = v and u is v’s first child, so yu − yv = ku − 1 ≤ σ − 1. If v has no other
children, then yu − yv = (ku − 1) + (kw − 1) ≤ σ + Zk,ln+1 . �

LEMMA 4.9. Fix ε,A > 0 and let w be the [Ak2]th vertex of Tk . Then with
high probability �w, lw ≤ k1+ε .

PROOF. Since each θk
n is (slightly) subcritical, we have P(#θk

n > k2) > c1k
−1

for some c1 > 0. Consider the first k1+ε vertices along the backbone in Tk . With
high probability, the number of θ ’s attached to them is at least ηk1+ε/2. On this
event, with high probability, at least c2k

ε of these have size at least k2, hence,
there are c2k

2+ε � Ak2 vertices v with lv ≤ k1+ε (and these include the first Ak2

vertices in the tree). �w is dealt with in the same way. �

LEMMA 4.10. Fix A > 0 and let w be the [Ak2]th vertex of Tk . For ε > 0
small enough,

P

(
sup
v<w

|xv − xu| > 3k1+ε
)
−−−→
k→∞ 0

and

P

(
max
v<w

|yv − yu| > k1−ε
)
−−−→
k→∞ 0.

PROOF. For a vertex v ∈ θk
n off the backbone we have u = v and

|xv − xu| ≤ |lv − �v| ≤ lv + �v ≤ lw + �w,

and with high probability this is at most 2k1+ε . If v < w is in the backbone, then
we argue that |xv − xu| � k1+ε . To this end, note that ln+1 − ln is dominated by
a geometric random variable with mean 1/η (since the Zk,n’s are independent).
Since only n < Ak2 might be relevant to the initial part of the tree, this shows that
with high probability |xv − xu| < c log k � k1+ε .

The bound on the y’s follows from the bounds on |yv − yu|. All that is needed
is to show that with high probability Zk,n < k1−ε for all n < k1+ε , and this follows
from assumption (A) and Markov’s inequality. �

We now finish the proof of Proposition 4.3. Because the path of Vk is linearly
interpolated between consecutive integers, and since for any A > 0 the paths of X

are a.s. uniformly continuous on [0,A], the proposition will follow if we establish
that for any A,ε > 0,

P

(
sup

t∈[0,A]

∣∣∣∣1kV k
[k2t] − Xt

∣∣∣∣ > ε

)
−−−→
k→∞ 0.(29)
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Consider first t such that k2t ∈ Z+. Then there is some vertex v ∈ Tk so that
xv = k2t . Let u ∈ T k be as defined above, and suppose k2s = xu. Then (28) implies
that |k−1yu −Xs | is uniformly small. Lemma 4.10 implies that with high probabil-
ity |k2s −k2t | = |xu −xv| ≤ 3k1+ε for all such v. Thus, |s − t | ≤ k−1+ε � 1. Since
paths of X are uniformly continuous, we find |Xs −Xt | is uniformly small, and so
|k−1yu − Xt | is uniformly small. Finally, Lemma 4.10 states that |yu − yv| ≤ C,
so the scaled vertical distance is also o(1).

Next, assume m < k2t < m+ 1. Then Vk(k2t) lies between Vk(m) and Vk(m+
1). Since both of these are close to the corresponding values of X, and since X

is uniformly continuous (and the pertinent points differ by at most k−2), we may
interpolate to find that (29) holds for all t < A.

4.4. Proofs of Corollaries 4.4 and 4.5.

PROOF OF COROLLARY 4.4. By Proposition 4.3, the limit of the process
(1
k
V k

[k2t])t≤τ (nk) must take the form (Xt)t≤τ for some possibly random time τ , and,
furthermore, Xτ = 0. We need to show that τ = τmx = inf{t ≥ 0 :−Yt = mx}.

In the special case of the tree T k we note that the infimum process U k records
the index of the last visited vertex along the backbone. Therefore, τ (nk) is the
time at which U k first reaches −nk , and by assumption nk ∼ xk. Using the a.s.
convergence of 1

k
U k([k2t]) toward Yt , along with the fact that for any fixed x > 0,

ε > 0, one has a.s. Y τx−ε > −x > Y τx+ε , we deduce that a.s., τ (nk)/k2 → τx . It
then follows that(

1

k
V k

[k2t], t ≤ (
τ (nk) + 1

)
/k2

)
a.s.−−−→

k→∞ (Xt , t ≤ τx).

Since, in this case, mk = σwk → m = 1, this implies the corollary for this special
distribution.

The general case then follows as a consequence of excursion theory. Indeed,
(−Y t , t ≥ 0) can be chosen to be the local time at its infimum of Y (see, e.g., [17],
Paragraph VI.8.55), that is, a local time at 0 of X, since excursions of Y away from
its infimum match those of X away from 0. However, if N

(ε)
t denotes the number

of excursions of X away from 0 that are completed before t and reach level ε, then
(limε→0 εN

(ε)
t , t ≥ 0) is also a local time at 0 of X, which means that it has to be

proportional to (−Y t , t ≥ 0) (cf., e.g., [4], Section III.3(c) and Theorem VI.2.1).
In other words, there exists a constant c > 0 such that for any t ≥ 0,

lim
ε→0

εN
(ε)
t = −cY t .

In the special case when Zk,n = Bin(σ,wk) we have already proven the corollary.
In particular, the number N k,(ε) of excursions of (1

k
U k

k2t
, t ≤ τ (nk)) which reach

level ε is such that, when letting k → ∞ and then ε → 0, we have εN k,(ε) → cx.
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Let Nk,(ε) be the number of excursions of (1
k
V k

[k2t], t ≤ τ (nk)) which reach

level ε. It follows from Proposition 4.3 that, in distribution, Nk,(ε) → Nε
τ as

k → ∞.
However, by assumption A we can use the law of large numbers for the se-

quences (Zk,n)n∈N along with the fact that mk → m, to ensure that εNk,(ε) ∼
k→∞

mεN k,(ε). Therefore, letting first k → ∞, then ε → 0, we find εNk,(ε) → mcx.
From the fact that τ (nk) are stopping times, we deduce that τ itself is a stopping

time. Since Xτ = 0, for any s > 0, the local time at 0 of X (i.e., −Y ) increases on
the interval (τ, τ + s). It follows that for a certain real-valued random variable R,
τ = τR = inf{t ≥ 0 :−Yt = R}, and we deduce that, in distribution, R = mx, that
is, τ = τmx �

PROOF OF COROLLARY 4.5. The relation between the height function and
the Lukaciewicz path is well known; see, for example, [8], Theorem 2.3.1 and
equation (1.7). Combining with Proposition 4.3, one finds that the height process of
the sequence of trees emerging from the backbone of Tk converges when rescaled
to the process

2

γ
(Yt − Y t ).

Moreover, the difference between the height process of Tk and that of the sequence
of trees emerging from the backbone of Tk is simply −Uk . As in the proof of
Corollary 4.4, one has weakly in C(R+,R),(

−1

k
Uk

[k2t]
)

t≥0
−−−→
k→∞

(
− 1

m
Y t

)
t≥0

,

and (25) follows. The proof of (26) is similar. �

In fact, [8], Corollary 2.5.1, states the joint convergence of Lukaciewicz paths,
height and contour functions. It is thus easy to deduce a strengthening of Corol-
lary 4.5 to get the joint convergence.

4.5. Two-sided trees. The limit appearing in Proposition 4.3 retains very min-
imal information about the sequence Zk . If two trees (or two sides of a tree)
are constructed as above using independent θ ’s but dependent sequences of Z’s,
the dependence between two sequences might disappear in the scaling limit. For
k ∈ Z+, let wk ∈ [0,1/σ ], and denote by (θk

n)n∈Z+ and (θ̃ k
n )n∈Z+ two independent

sequences of i.i.d. subcritical Galton–Watson trees with branching law Bin(σ,wk).
We let Zk , Z̃k be two sequences of random variables taking values in Z+ such that
the pairs (Zk,n, Z̃k,n) are independent for different n; however, we allow Zk,n and
Z̃k,n to be correlated.
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Let Tk, T̃k designate, respectively, the (Zk, θ
k)-tree, (Z̃k, θ̃

k)-tree as defined in
Section 4.1. Let Vk , respectively, Ṽk , denote their Lukaciewicz paths. We recall
that Tk,nk , T̃k,nk are, respectively, the nk-truncation of Tk , respectively, T̃k , and
we denote by Vk,nk , Ṽk,nk their respective Lukaciewicz paths.

PROPOSITION 4.11. Suppose wk ≤ σ−1 is such that u = limk→∞ k(1−σwk)

exists, and assume that both sequences of variables Zk,n, Z̃k,n satisfy assump-
tion (A). Then, as k → ∞, weakly in C(R+,R

2)

k−1(Vk
[k2t], Ṽk

[k2t]
)
t≥0 −−−→

k→∞ (Xt , X̃t )t≥0,

where the processes X, X̃ are two independent reflected Brownian motions with
drift −u and diffusion coefficient γ .

Moreover, if nk/k → x > 0, mk → m, m̃k → m̃ as k → ∞, we have

k−1(Vk,nk

[k2t], Ṽk,nk

[k2t]
)
t≤τ (nk)/k2 −−−→

k→∞ (Xt , X̃t )t≤τmx .

The proof is almost identical to that of Proposition 4.3. When the sequences
Zk, Z̃k are independent with Bin(σ,wk) elements the result follows from Propo-
sition 4.3. For general sequences, the coupling of Section 4.3 shows that the sides
have the same joint scaling limit.

4.6. Scaling the IIC. At this point we are already in a position to prove the
path convergence results for the IIC, equations (10)–(15) from Theorem 1.6.
As discussed in Section 2.2, the IIC is the result of setting wk = 1/σ in the
above constructions. Specifically, let us first suppose that Z is a sequence of i.i.d.
Bin(σ − 1,1/σ) variables and (θn)n is a sequence of i.i.d. Bin(σ,1/σ) Galton–
Watson trees. Let T be a (Z, θ)-tree: then T has the same distribution as IICR.

The convergence of the rescaled Lukaciewicz path encoding this sin-tree to a
time-changed reflected Brownian path is thus a special case of Proposition 4.3.
The scaling limits of the height and contour functions follow from Corollary 4.5.
We have m = γ , so both limits are 2

γ
Bγ t − 3

γ
Bγ t .

For the IIC with unconditioned backbone, let Yn be i.i.d. uniform in {1, . . . , σ }.
Let Zn ∼ Bin(Yn − 1,1/σ) and Z̃n ∼ Bin(σ − Yn,1/σ), independent conditioned
on Yn and independently of all other n. Moreover, suppose that θ, θ̃ are two inde-
pendent sequences of i.i.d. Bin(σ,1/σ) Galton–Watson trees. Then, T and T̃ are
jointly distributed as IICG and IICD .

Since in this case m = m̃ = γ /2, from Proposition 4.11 we see that the rescaled
Lukaciewicz paths encoding these two trees converge toward a pair of independent
time-changed reflected Brownian motions, and similarly for the right/left height
and contour functions of the IIC.

The proofs of the remaining parts of Theorems 1.6 and 1.7 are identical to the
proofs for the IPC, which are given in the next two sections.
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5. Bottom-up construction.

5.1. Right grafting and concatenation.

DEFINITION 5.1. Given a finite plane tree, its rightmost leaf is the maximal
vertex in the lexicographic order; equivalently, it is the last vertex to be reached by
the contour process, and is the rightmost leaf of the subtree above the rightmost
child of the root.

DEFINITION 5.2. The right-grafting of a plane tree S on a finite plane tree T ,
denoted T ⊕ S, is the plane tree resulting from identifying the root of S with the
rightmost leaf of T . More precisely, let v be the rightmost leaf of T . The tree T ⊕S

is given by its set of vertices {u :u ∈ T \ {v} or u = vw,w ∈ S}.

Note, in particular, that the vertices of S have been relabeled in T ⊕ S through
the mapping from S to T ⊕ S which maps w to vw.

DEFINITION 5.3. The concatenation of two functions V1,V2 ∈ S with
V2(0) = 0, denoted V = V1 ⊕ V2, is defined by

V (t) =
{

V1(t), t ≤ ζ(V1),
V1(ζ(V1)) + V2

(
t − ζ(V1)

)
, t ∈ [ζ(V1), ζ(V1) + ζ(V2)].

LEMMA 5.4. If each Yi ∈ S attains its minimum at ζ(Yi), then⊕
(Yi − Y i) = ⊕

Yi −⊕
Yi.

The following is straightforward to check, and may be used as an alternate def-
inition of right-grafting.

LEMMA 5.5. Let R = T ⊕S be finite plane trees, and denote the Lukaciewicz
path of R (resp., T ,S) by VR (resp., VT ,VS). Let V ′

T be VT terminated at #T (i.e.,
without the final value of −1). Then VR = V ′

T ⊕ VS .

Consider a sin-tree T in which the backbone is the rightmost path (i.e., the path
through the rightmost child at each generation). Given some increasing sequence
{xi} of vertices along the backbone, we cut the tree at these vertices: let

T̃i := {v ∈ T :xi ≤ v ≤ xi+1}.
Thus, T̃i contains the segment of the backbone [xi, xi+1] as well as all the subtrees
connected to any vertex of this segment except xi+1. We let Ti be T̃i rerooted
at xi (formally, Ti contains all v with xiv ∈ T̃i). It is clear from the definitions that
T = ⊕∞

i=0 Ti . Note that apart from being increasing, the sequence xi is arbitrary.



250 O. ANGEL, J. GOODMAN AND M. MERLE

5.2. IPC structure and the coupling: Proof of Theorem 1.2. In this section we
prove Theorem 1.2.

Recall the Ŵ -process introduced in Section 2.1 and the convergence (20). The
Ŵ -process is constant for long stretches, giving rise to a partition of R into what
we shall call segments. Each segment consists of an interval of the backbone along
which Ŵ is constant, together with all subtrees attached to the interval. To be
precise, define xi inductively by x0 = 0 and xi+1 = infn>xi

{Ŵn > Ŵxi
}. With a

slight abuse, we also let xi designate the vertex along the backbone at height xi .
The backbone is the union of the intervals [xi, xi+1] for all i ≥ 0, and the rest

of the IPC consists of subcritical percolation clusters attached to each vertex of the
backbone y ∈ [xi, xi+1). We can now write

R =
∞⊕
i=0

Ri,

where Ri is the [xi, xi+1] segment of R, rerooted at xi . Ri has a rightmost branch
of length ni := xi+1 − xi . The degrees along this branch are i.i.d. Bin(σ − 1, Ŵxi

),
and each child off the rightmost branch is the root of an independent Galton–
Watson tree with branching law Bin(σ, Ŵxi

). In what follows, we say that Ri is a
Ŵxi

-segment of length ni , and we observe that these segments fall into the family
dealt with in Section 4.

We may summarize the above in the following lemma:

LEMMA 5.6. Suppose Ŵ consists of values Ui repeated ni times. Then Ri is
distributed as a Ui -segment of length ni and conditioned on {Ui,ni}, the trees {Ri}
are independent.

A difficulty we must deal with is that in the scaling limit there is no first seg-
ment, but rather a doubly infinite sequence of segments. Furthermore, the initial
segments are far from critical, and so need to be dealt with separately. This is re-
lated to the fact that the Poisson lower envelope process L(t) diverges near 0 and
has no “first segment.” Because of this we restrict ourselves at first to a slightly
truncated invasion percolation cluster. For any β > 0 we define

x
β
0 = min{x :σŴx > 1 − β/k}, x

β
i+1 = min{x > x

β
i : Ŵx > Ŵ

x
β
i

}.
Note that x

β
0 = xm for some m and that x

β
i = xm+i for the same m and all i.

Since we have convergence in distribution of the process Ŵ , we may couple
the IPCs for different k’s so that the convergence holds a.s. (This means that the
random tree R depends on k; we will leave this dependence implicit.) More pre-
cisely, let (j

β
i )i∈Z be the sequence of jump times for {L(t)}, indexed such that

L(j
β
0 ) < β < L(j

β
−1) a.s. [We may do this since a.s. β is not in the range of L(t).]

By the convergence (20) and the Skorohod representation theorem, we may as-
sume that a.s. for any t /∈ J we have k−1(1 − σŴk[kt])−−−→

k→∞ L(t). Indeed, we will
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assume further that k−1x
β
i → j

β
i a.s. for each i. This slightly stronger statement

follows from (19), which shows that (k(1 − σŴ[kt])) and L(t) have asymptoti-
cally the same total jump rate. In other words, there are no “small” jumps of Ŵ

that disappear in the scaling limit L(t).
Denote by V

β
i (implicitly depending on k) the Lukaciewicz path corresponding

to the ith segment R
β
i in Rβ . For any β, i, the ith segment has associated perco-

lation parameter w
β
i satisfying k(1 − σwi)−−−→

k→∞ L(j
β
i ) and length n

β
i satisfying

k−1n
β
i → j

β
i+1 − j

β
i . By Corollary 4.4, we have the convergence in distribution(

k−1V
β
i (k2t),0 ≤ t ≤ τ (n

β
i ))−−−→

k→∞
(
Xt,0 ≤ t ≤ τ

γ (j
β
i+1−j

β
i )

)
,(30)

where Xt = Yt − Y t , and Yt solves

dYt = √
γ dBt − L(j

β
i ) dt.

As in the previous section, τ (n
β
i ) denotes the lifetime of V

β
i [i.e., its (n

β
i )th return

to 0] and τy is the hitting time of −y by Y .
Because the convergence in (30) holds for all β, i ∈ N, we may construct the

coupling of the probability spaces so that the convergence is also almost sure, and
this is the final constraint in our coupling.

LEMMA 5.7. Fix β > 0. In the coupling described above we have, almost
surely, the scaling limit

k−1V β(k2t)−−−→
k→∞ Xt,

where Xt = Y β
t − Y β

t , and Y β solves

Y β
t = √

γBt −
∫ t

0
L

(
j

β
0 − 1

γ
Y β

s

)
ds.(31)

PROOF. Solutions of the equation for Y β are a concatenation of segments. In
each segment the drift is fixed, and each segment terminates when Y β reaches
a certain threshold. The corresponding segments of X exactly correspond to the
scaling limit of the tree segments R

β
i .

Lemma 5.7 then follows from Lemmas 5.4 and 5.5. �

LEMMA 5.8. Almost surely,

(Y β
t , t > 0)−−−→

β→∞ Yt ,

where Y solves

Yt = √
γBt −

∫ t

0
L

(
− 1

γ
Y

s

)
ds.
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PROOF. Consider the difference between the solutions for a pair β < β ′. We
have the relation

Y β ′ = Z ⊕ Y β,

where Z is a solution of Zt = √
γBt − ∫ t

0 L(j
β ′
0 − 1

γ
Zs) ds, killed when Z first

reaches γ (j
β ′
0 −j

β
0 ). In particular, Z is a stochastic process with drift in [−β ′,−β]

(and quadratic variation γ ). Thus, to show that Y β is close to Y β ′
, we need to show

that Z is small both horizontally and vertically, that is, ζ(Z) is small, as is ‖Z‖∞.

The vertical translation of Y β is
√

γ k−1(x
β
0 − x

β ′
0 ), which is at most k−1x

β
0 .

From [2] we know that this tends to 0 in probability as β → ∞. This convergence
is a.s. since x

β
0 is nonincreasing in β .

The values of Z are unlikely to be large, since Z has a nonpositive (in fact,
negative) drift and is killed when Z reaches some negative level close to 0.

Finally, there is a horizontal translation of Y β in the concatenation. This trans-

lation is just the time at which Z first reaches γ (j
β ′
0 − j

β
0 ), which is also small,

uniformly in β ′. �

Theorem 1.2(1) is now a simple consequence of Lemmas 5.7 and 5.8. Indeed,
the process Y − Y has the same law as the right-hand side of (1), due to the scale
invariance of solutions of (E (L)). We shall note that, in fact, Y is the limit of the
rescaled Lukaciewicz path coding the sequence of off-backbone trees.

The same argument using Corollary 4.5 instead of Corollary 4.4 gives the con-
vergence of the height function.

Finally, convergence of contour functions is deduced from that of height func-
tions by a routine argument (see, e.g., [13], Section 1.6).

5.3. The two-sided tree: Proof of Theorem 1.3. For convenience we use the
shorter notation T to designate the IPC, and we recall the left and right trees TG

and TD as introduced in Section 2.4. The two trees TG and TD obviously have
the same distribution, but are not independent. As in the previous section, we may
cut these two trees into segments along which the Ŵ -process is constant. More
precisely,

TG =
∞⊕
i=0

T i
G, TD =

∞⊕
i=0

T i
D,

where the distribution of T i
D,T i

G can be made precise as follows.
Let (θ i

n)n, (θ̃
i
n)n be sequences of Galton–Watson trees with branching law

Bin(σ, Ŵxi
), all independent. Let Yn,n ∈ Z+ be independent uniform on {1, . . . ,

σ }, and, conditionally on Yn, let Zn be Bin(Yn − 1, Ŵxi
) and Z̃n be Bin(σ −

Yn, Ŵxi
), where conditioned on the Y ’s all are independent. Then T i

G and T i
D are
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distributed as the ni -truncations of the (Z, θ i)-tree, respectively, of the (Z̃, θ̃ i)-tree
(constructed as in Definition 4.1).

The rest of the proof of Theorem 1.3 is then almost identical to that of Theo-
rem 1.2, using Proposition 4.11 instead of Proposition 4.3. Note, however, that the
expected number of children of a vertex on the backbone of TG or TD [i.e., E(Zn)

or E(Z̃n)] is divided by 2 compared to the conditioned case. As a consequence,
the limits of the rescaled coding paths of T β

G , T β
R will be expressed in terms of

solutions to the equation

Y β
t = √

γBt −
∫ t

0
L

(
j

β
0 − 2

γ
Y β

s

)
ds(32)

instead of the equation (31) from Lemma 5.7. Further details are left to the reader.

5.4. Convergence of trees: Proof of Theorem 1.1. In this section we prove
weak convergence of the trees as metric spaces. We refer to [13] for background
on the theory of continuous real trees.

PROOF OF THEOREM 1.1. To prove convergence in the pointed Gromov–
Hausdorff topology, it suffices to prove that the ball of radius R in the rescaled
metric converges in the ordinary Gromov–Hausdorff sense (note that these balls
are all compact a.s.). To simplify the argument, we will consider R, the IPC condi-
tioned to have its backbone on the right, which does not affect the metric structure.

For compact real trees Tg,T
′
g coded by compactly supported contour functions

g,g′, the inequality

dG-H(Tg, T
′
g) ≤ 2‖g − g′‖∞(33)

relates convergence of contour functions to convergence of metric spaces (see, e.g.,
[13], Lemma 2.4). Therefore, fix R > 0 and write

gk(t) = k−1CR(2k2t), Tk,R = sup{t :gk(t) ≤ R}.
By Theorem 1.2, gk converges in distribution as k → ∞.

CLAIM 5.9. Tk,R also converges in distribution.

Assuming this for the moment, the function defined by

gk,R(t) =
⎧⎨⎩

gk(t) ∧ R, if t ≤ Tk,R,
R + Tk,R − t, if Tk,R < t ≤ R + Tk,R,
0, if t > Tk,R + R,

is continuous, has compact support, and converges in distribution as k → ∞. But
gk,R is a contour function coding the part of R within rescaled distance R of the
root. By (33) this completes the proof subject to Claim 5.9. �
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PROOF OF CLAIM 5.9. Tk,R is determined by gk(t), but we have convergence
of gk(t) only for t in compact subsets of R+. Therefore, it suffices to show that
Tk,R is tight.

Fix t > 0 and note that P(Tk,R > t) is the probability that the tree R has more
than k2t descendants of backbone vertices at heights at most kR. We will bound
this by replacing R by a stochastically larger tree T , namely, the tree T k from
Section 4.3 with wk = pc for each k. Write U for the Lukaciewicz path for the
corresponding sequence of off-backbone paths, so that −U ([k2t]) is the height of
the backbone vertex from which the [k2t]th vertex is descended. Thus, P(Tk,R >

t) ≤ P(−U (k2t) ≤ kR). But −1
k

U (k2t) → −Bγ t , where Bt is a Brownian motion.
Tightness follows since −Bγ t ↗ ∞ as t → ∞. �

6. Level sizes and volumes: Proofs of Theorems 1.4 and 1.5.

PROOF OF THEOREM 1.4. We first prove (7). We begin by observing that

1

n2 C[0, an] =
∫ ∞

0
1[0,a]

(
1

n
HR(sn2)

)
ds.

Our objective is the limit in distribution∫ ∞
0

1[0,a]
(

1

n
HR(sn2)

)
ds −−−→

n→∞

∫ ∞
0

1[0,a](Hs) ds.

This almost follows from Theorem 1.2. The problem is that
∫

1[0,a](Xs) ds is not a
continuous function of the process X, and this is for two reasons. First, because of
the indicator function, and second, because the topology is uniform convergence
on compacts and not on all of R.

To overcome the second obstacle, we argue that for any ε there is an A such that

P

(∫ ∞
A

1[0,a]
(

1

n
HR(sn2)

)
ds �= 0

)
< ε.

Indeed, in order for the height function to visit [0, na] after time n2A, the total size
of the [na] subcritical trees attached to the backbone up to height [na] must be at
least [n2A]. This probability is small for A sufficiently large, even if the trees are
replaced by [na] critical trees. Thus, it suffices to prove that for every A∫ A

0
1[0,a]

(
1

n
HR(sn2)

)
ds

dist.−−−→
n→∞

∫ A

0
1[0,a](Hs) ds.(34)

Next we deal with the discontinuity of 1[0,a] by a standard argument. We may
bound fε ≤ 1[0,a] ≤ gε , where fε, gε are continuous and coincide with 1[0,a] out-
side of [a − ε, a + ε]. Define the operators

Fε(X) =
∫ A

0
fε(Xs) ds, Gε(X) =

∫ A

0
gε(Xs) ds.
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Then we have a sandwich

Fε

(
1

n
HR(sn2)

)
≤
∫ A

0
1[0,a]

(
1

n
HR(sn2)

)
ds ≤ Gε

(
1

n
HR(sn2)

)
,

and similarly for Hs . By continuity of the operators,

Fε

(
1

n
HR(sn2)

)
dist.−−−→

n→∞ Fε(Hs), Fε

(
1

n
HR(sn2)

)
dist.−−−→

n→∞ Fε(Hs).

In the limit we have

Gε(Hs) − Fε(Hs)
a.s.−−−→

ε→0
0

and since Gε − Fε is continuous, we also have for any δ > 0

lim
ε→0

lim
n→∞P

(
Gε

(
1

n
HR(sn2)

)
− Fε

(
1

n
HR(sn2)

)
> δ

)
= 0.

Combining these bounds implies (34), and thus (7).
We now turn to the proof of (8). From (7), we know that for any η > 0,

1

ηn2 C[an, (a + η)n] dist.−−−→
n→∞

1

η

∫ ∞
0

1[a,a+η](Hs) ds.

Thus, (8) will follow if we can prove that for any η > 0, we have the following
limit in probability as n → ∞:∣∣∣∣ηnC[an] − C[an, (a + η)n]

ηn2

∣∣∣∣ P→ 0.(35)

For a given vertex v, let hv denote the height of v. If v is not on the backbone, we
let perc(v) be the percolation parameter of the off-backbone percolation cluster to
which v belongs. We now single out the vertex on the backbone at height [an] and
group together vertices at height [an] which correspond to the same percolation
parameter.

More precisely, if ŵ1, ŵ2, ŵ3, . . . , ŵNn are the distinct values taken by the Ŵ -
process up to time [na], we let

C(wi)
n := {v ∈ IPC \ BB :hv = [an],perc(v) = ŵi},

so that

C[an] := {v ∈ IPC :hv = [an]} =
Nn⋃
i=1

C(ŵi) ∪ BB[an], C[an] = #C[an].

Moreover, any vertex between heights [an] and [(a + η)n] in the IPC descends
from one of the vertices of C[an]. We let

P (ŵi )
n := {

v ∈ IPC \ BB : [an] ≤ hv ≤ (a + η)n,∃w ∈ C(ŵi) s.t. w ≤ v
}
,

P BB[an]
n := {

v ∈ IPC : [an] ≤ hv ≤ (a + η)n,BB[an] ≤ v
}
.
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In particular, C(wi)
n ⊂ P (wi)

n and vertices of the backbone between heights [an] and
[(a + η)n] are contained in P BB[an]

n . Moreover,

C[an, (a + η)n] := {v ∈ IPC : [an] ≤ hv ≤ (a + η)n} = P BB[an]
n ∪

Nn⋃
i=1

P (wi)
n .

However, the number of distinct values of percolation parameters which one sees
at height [an] remains bounded with arbitrarily high probability.

CLAIM 6.1. For any ε > 0, there is A > 0 such that, for any n ∈ N,

P
[
#
{
i ∈ {1, . . . ,Nn} :

∣∣C(wi)
n

∣∣ �= 0
}
> A

] ≤ ε.

From [2], Proposition 3.1, the number of distinct values the Ŵ -process takes be-
tween [na]/2 and [na] is bounded, uniformly in n, with arbitrarily high probability.
Furthermore, it is well known that with arbitrarily high probability, among [na]/2
critical Galton–Watson trees, the number which reach height [na]/2 is bounded,
uniformly in n. It follows that the number of clusters rising from the backbone at
heights {0, . . . , [na]/2} and which possess vertices at height [na] is, with arbitrar-
ily high probability, also bounded for all n. The claim follows.

CLAIM 6.2. For any η > 0, in probability,

lim
n→∞

∣∣∣∣ 1

ηn2 P BB[an]
n

∣∣∣∣ = 0.

Fix η. We observe that P BB[an]
n is bounded by the total progeny up to height ηn

of ηn critical Galton–Watson trees. If |B| denotes a reflected Brownian motion and
l0
t (|B|) its local time at 0 up to t , we then deduce from a convergence result for a

sequence of such trees (cf. formula (7) of [13]) that for any ε > 0,

lim sup
n→∞

P

[
1

ηn2 P BB[an]
n > ε

]
≤ P

[
1

η
inf{t > 0 : l0

t (|B|) > η} > ε

]
,

and the claim follows from the fact that (inf{t > 0 : l0
t (|B|) > u}, u ≥ 0) is a half

stable subordinator.

CLAIM 6.3. For any t ∈ (0, a), η > 0, in probability,

lim
n→∞

∣∣∣∣P (Ŵ[nt])
n

ηn2 − #(C
(Ŵ[nt])
n )

n

∣∣∣∣ = 0.
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Fix t, η, and define wn := Ŵ[nt]. We have

P

[∣∣∣∣P (wn)
n

ηn2 − #(C
(wn)
n )

n

∣∣∣∣ > ε

]

≤ P
[
#
(
C(wn)

n

)
> nε−2]+ P

[∣∣∣∣P (wn)
n

ηn2 − #(C
(wn)
n )

n

∣∣∣∣ > ε,#
(
C(wn)

n

)
< ε2n

]

+
[ε−2n]∑

k=[ε2n]
P
(
#
(
C(wn)

n

) = k
)
P

[∣∣∣∣P (wn)
n

ηn2 − #(C
(wn)
n )

n

∣∣∣∣ > ε
∣∣∣#(C(wn)

n

) = k

]
.

Using a comparison to critical trees as in the previous argument, the first two
terms in the sum above go to 0 as n → ∞. Furthermore, from [8], Corollary 2.5.1,
we know that, conditionally on the processes Ŵ , L, for any u > 0, the level sets
of [un] subcritical Galton–Watson trees with branching law Bin(σ,wn) converge
to the local time process of a reflected drifted Brownian motion (|Xs |, s ≥ 0), with
drift L(t), stopped at τu. Therefore, for any u > 0,

lim
n→∞P

[∣∣∣∣P (wn)
n

ηn2 − #(C
(wn)
n )

n

∣∣∣∣ > ε
∣∣∣#(C(wn)

n

) = [nu]
]

= P

[∣∣∣∣1η
∫ τu

0
1[0,η](|Xs |) ds − l0

t (|X|)
∣∣∣∣ > ε

]
,

which for any ε > 0 goes to 0 as η → 0. Thus, by dominated convergence,

lim
η→0

lim sup
n→∞

[ε−2n]∑
k=[ε2n]

P
(
#
(
C(wn)) = k

)

× P

[∣∣∣∣P (wn)
n

ηn2 − #(C(wn))

n

∣∣∣∣ > ε
∣∣∣#(C(wn)) = k

]
= 0.

Claim 6.3 follows.
From our decompositions of C[an, (a + η)n],C[an], and Claims 6.1, 6.2 and

6.3, we now deduce (35). This implies (8) and completes the proof of Theorem 1.4.
�

PROOF OF THEOREM 1.5. The basis of the proof is to express the limiting
quantity in (8) as a sum of independent contributions corresponding to distinct
excursions of Y − Y . Conditionally on the L-process, these contributions will be
independent exponential random variables, with parameters arising from certain
excursion measures.

From (8), the corollary will be proved if we manage to express γ
4 la∞(H) as the

right-hand side of (9). Note that, if lxt (
√

γ

2 H) denotes the local time up to time t at
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level x of √
γ

2
H = Yt − 3

2
Y t ,

then

γ

4
lat (H) =

√
γ

2
l
√

γ a/2
t

(√
γ

2
H

)
,

so that we may as well express
√

γ

2 l
√

γ a/2
t (

√
γ

2 H).

To reach this goal, it is convenient to decompose the path of
√

γ

2 H according
to the excursions above the origin of Y − Y . Let us introduce some notation. We
let F (R+,R) denote the space of real-valued finite paths, so that excursions of
Y and of Y − Y are elements of F (R+,R). For a path e ∈ F (R+,R), we define
e := sups≥0 e(s), e := infs≥0 e(s). For c ≥ 0, we let N(−c) denote the excursion
measure of drifted Brownian motion with drift −c away from the origin, and n(−c)

that of reflected drifted Brownian motion with drift −c above the origin (see, e.g.,
[17], Chapter VI.8).

LEMMA 6.4. For any c > 0, a > 0, we have

n(−c)(e > a) = 2c

exp(2ca) − 1
,(36)

N(−c)(e < −a) = c

1 − exp(−2ca)
.(37)

For c = 0 we have n(0)(e > a) = a−1, N(0)(e < −a) = (2a)−1.

This result is well known and can be proven by using basic properties of drifted
Brownian motion and excursion measures.

We are now going to determine the excursions of Y − Y which give a nonzero
contribution to γ

4 la∞(H). We may and will choose −Y to be the local time process
at 0 of Y − Y . Using excursion theory (see, e.g., [17], Section VI.8.55), we know
that for this normalization of local time, conditionally on the L-process, the ex-
cursions of Y − Y form an inhomogeneous Poisson point process P in the space
R+ × F (R+,R+) with intensity ds × n(−L(s)).

For b ≥ 0, let τb denote the hitting time of b by −Y . Note that for any s > τb,
−Y s > b, from the fact that drifted Brownian motion started at 0 instantaneously

visits the negative half line. We therefore observe that the last visit to
√

γ

2 a by√
γ

2 H is at time τa
√

γ . Hence, any point of P whose first coordinate is larger than
a
√

γ corresponds to a part of the path of H which lies strictly above a, and there-

fore cannot contribute to la∞(H). Moreover, a part of the path of
√

γ

2 H which
corresponds to an excursion of Y − Y starting at a time s < τa

√
γ will only reach
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height
√

γ

2 a whenever the supremum of this excursion is greater or equal than
1
2(a

√
γ − Y s). Therefore, any excursion of Y − Y which gives a nonzero con-

tribution to la∞(H) corresponds to a point of P whose first coordinate is some
s such that s ≤ a

√
γ and whose second coordinate is an excursion e such that

e ≥ 1
2(a

√
γ − s).

These considerations, along with properties of Poisson point processes, lead to
the following claim.

CLAIM 6.5. Conditionally on the L-process, the excursions of Y − Y which

give a nonzero contribution to γ
4 la∞(H) =

√
γ

2 l
√

γ a/2
∞ (

√
γ

2 H) are points of a Pois-
son point process P ⊂ P on R+ × F (R+,R+) with intensity

1[0,a
√

γ ](s)1
(
e ≥ 1

2

(
a
√

γ − s
))

ds × n−L(s)(·).

The number of points of P clearly is almost surely countable, so we may write
P = (si, ei)i∈Z+ . In particular, by (36), (si)i∈Z+ are the points of the Poisson point
process on [0, a

√
γ ] introduced in Theorem 1.5.

Note that {ei, i ∈ Z+} correspond obviously to distinct excursions of Y − Y , so

that their contributions to l
√

γ a/2
∞ (

√
γ

2 H) are independent.

CLAIM 6.6. Conditionally given L, for each i ∈ Z+ the contribution of the

excursion ei to l
√

γ a/2
∞ (

√
γ

2 H) is exponentially distributed with parameter

N(−L(si))
(
ei ≤ 1

2

(−a
√

γ + si
))

.

Fix i ∈ Z+, and condition on L. Recall that (si, ei) is one of the points of the
Poisson process P , so that ei is chosen according to the measure

n(−L(si))
(·, e > 1

2

(
a
√

γ − si
))

.

Up to the time at which ei reaches 1
2(a

√
γ − si), ei does not contribute to

l
√

γ a/2
∞ (

√
γ

2 H). From the Markov property of e under the restricted measure
n(−L(si))(·, e > 1

2(a
√

γ − si)), the remaining part of ei [after it has reached
1
2(a

√
γ − si )] follows the path of a drifted Brownian motion, with drift −L(si),

started at 1
2(a

√
γ − si), and stopped when it gets to the origin. Thus, the contribu-

tion of ei to l
√

γ a/2
∞ (

√
γ

2 H) is exactly the local time of this stopped drifted Brown-
ian motion at level 1

2(a
√

γ − si). By shifting vertically, it is also l0∞(X), the total
local time at the origin of X, a drifted Brownian motion, with drift −L(si), started
at the origin and stopped when reaching 1

2(−a
√

γ + si). By excursion theory, if
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P̃i is a Poisson point process on R+ × F (R+,R) with intensity ds × N(−L(si)),
then l0∞(X) is the coordinate of the first point of P̃i which falls into the set

R+ × {
e ∈ F (R+,R) : e < 1

2

(−a
√

γ + si
)}

.

Claim 6.6 follows.
From Lemma 6.4, Claim 6.5 (along with the remark which follows it) and

Claim 6.6, we deduce Theorem 1.5. �

REFERENCES

[1] ALDOUS, D. (1991). Asymptotic fringe distributions for general families of random trees. Ann.
Appl. Probab. 1 228–266. MR1102319

[2] ANGEL, O., GOODMAN, J., DEN HOLLANDER, F. and SLADE, G. (2008). Invasion percola-
tion on regular trees. Ann. Probab. 36 420–466. MR2393988

[3] BARLOW, M. T. and KUMAGAI, T. (2006). Random walk on the incipient infinite cluster on
trees. Illinois J. Math. 50 33–65 (electronic). MR2247823

[4] BLUMENTHAL, R. M. (1992). Excursions of Markov Processes. Birkhäuser, Boston, MA.
MR1138461

[5] CHAYES, J. T., CHAYES, L. and NEWMAN, C. M. (1985). The stochastic geometry of invasion
percolation. Comm. Math. Phys. 101 383–407. MR0815191

[6] DAMRON, M. and SAPOZHNIKOV, A. (2011). Outlets of 2D invasion percolation and
multiple-armed incipient infinite clusters. Probab. Theory Related Fields 150 257–294.
MR2800910

[7] DUQUESNE, T. (2005). Continuum tree limit for the range of random walks on regular trees.
Ann. Probab. 33 2212–2254. MR2184096

[8] DUQUESNE, T. and LE GALL, J.-F. (2002). Random trees, Lévy processes and spatial branch-
ing processes. Astérisque 281 vi+147. MR1954248

[9] GOODMAN, J. (2012). Exponential growth of ponds in invasion percolation on regular trees.
J. Stat. Phys. DOI:10.1007/s10955-012-0509-7.

[10] JACOD, J. (1985). Théorèmes limite pour les processus. In École D’été de Probabilités
de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 298–409. Springer, Berlin.
MR0883648

[11] JÁRAI, A. A. (2003). Invasion percolation and the incipient infinite cluster in 2D. Comm. Math.
Phys. 236 311–334. MR1981994

[12] KESTEN, H. (1986). The incipient infinite cluster in two-dimensional percolation. Probab. The-
ory Related Fields 73 369–394. MR0859839

[13] LE GALL, J.-F. (2005). Random trees and applications. Probab. Surv. 2 245–311. MR2203728
[14] MUNN, M. (2010). Volume growth and the topology of pointed Gromov–Hausdorff limits.

Differential Geom. Appl. 28 532–542. MR2670085
[15] NEWMAN, C. M. and STEIN, D. L. (1995). Broken ergodicity and the geometry of rugged

landscapes. Phys. Rev. E (3) 51 5228–5238.
[16] NICKEL, B. and WILKINSON, D. (1983). Invasion percolation on the Cayley tree: Exact solu-

tion of a modified percolation model. Phys. Rev. Lett. 51 71–74. MR0708864
[17] ROGERS, L. C. G. and WILLIAMS, D. (1994). Diffusions, Markov Processes and Martingales,

2nd ed. Cambridge Mathematical Library 2. Cambridge Univ. Press, Cambridge.

http://www.ams.org/mathscinet-getitem?mr=1102319
http://www.ams.org/mathscinet-getitem?mr=2393988
http://www.ams.org/mathscinet-getitem?mr=2247823
http://www.ams.org/mathscinet-getitem?mr=1138461
http://www.ams.org/mathscinet-getitem?mr=0815191
http://www.ams.org/mathscinet-getitem?mr=2800910
http://www.ams.org/mathscinet-getitem?mr=2184096
http://www.ams.org/mathscinet-getitem?mr=1954248
http://dx.doi.org/10.1007/s10955-012-0509-7
http://www.ams.org/mathscinet-getitem?mr=0883648
http://www.ams.org/mathscinet-getitem?mr=1981994
http://www.ams.org/mathscinet-getitem?mr=0859839
http://www.ams.org/mathscinet-getitem?mr=2203728
http://www.ams.org/mathscinet-getitem?mr=2670085
http://www.ams.org/mathscinet-getitem?mr=0708864


SCALING LIMIT OF INVASION PERCOLATION 261

[18] WILKINSON, D. and WILLEMSEN, J. F. (1983). Invasion percolation: A new form of percola-
tion theory. J. Phys. A 16 3365–3376. MR0725616

O. ANGEL

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BRITISH COLUMBIA

1984 MATHEMATICS ROAD

VANCOUVER, BRITISH COLUMBIA

V6T 1Z2
CANADA

E-MAIL: angel@math.ubc.ca

J. GOODMAN

MATHEMATISCH INSTITUUT

UNIVERSITEIT LEIDEN

PO BOX 9512, 2300 RA LEIDEN

NETHERLANDS

E-MAIL: goodmanja@math.leidenuniv.nl

M. MERLE

UNIVERSITÉ PARIS DIDEROT

175, RUE DU CHEVALERET

75013 PARIS

FRANCE

E-MAIL: mathieu.merle@math.univ-paris-diderot.fr

http://www.ams.org/mathscinet-getitem?mr=0725616
mailto:angel@math.ubc.ca
mailto:goodmanja@math.leidenuniv.nl
mailto:mathieu.merle@math.univ-paris-diderot.fr

	Introduction and main results
	Convergence of trees
	Level sizes and volumes
	Application to the incipient infinite cluster

	Background and overview
	Structure of the IPC
	Structure of the IIC
	Encodings of finite trees
	Encoding sin-trees
	Overview

	Solving (E(L))
	Scaling simple sin-trees and their segments
	Notation
	Scaling of segments
	Proof of Proposition 4.3
	Proofs of Corollaries 4.4 and 4.5
	Two-sided trees
	Scaling the IIC

	Bottom-up construction
	Right grafting and concatenation
	IPC structure and the coupling: Proof of Theorem 1.2
	The two-sided tree: Proof of Theorem 1.3
	Convergence of trees: Proof of Theorem 1.1

	Level sizes and volumes: Proofs of Theorems 1.4 and 1.5
	References
	Author's Addresses

